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nontrivially, because it restricts the (growing-dimensional) score vector in the series regression

on a random polytope, and hence, effectively alters the score’s asymptotic normality. A novel

critical value is proposed to account for this truncation effect. We establish the size and local

power properties of the proposed selective test under a general setting for heterogeneous serially
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1 Introduction

Testing conditional moment restrictions is an important topic in econometrics. One approach is

to nonparametrically estimate the conditional moment function via a series regression (Andrews

(1991a), Newey (1997)) and then test whether the function is zero in a uniform sense (Belloni,

Chernozhukov, Chetverikov, and Kato (2015), Li and Liao (2020)). In practice, however, it is often

difficult to decide which series terms should be employed to approximate the unknown function:

Using too few may induce bias, but using too many hurts efficiency. To address this issue, it

seems natural to apply some machine-learning-based variable selection procedure such as the Lasso

(Tibshirani (1996)) and its variants. Although such methods may achieve the so-called “oracle

property” in large samples, they are unlikely to completely meet that theoretical ideal in finite

samples. Ignoring the sampling variability in the selection step may thus lead to possibly severe

size distortions in the subsequent test (see Section 4 for concrete Monte Carlo evidence).

The main contribution of this paper is to propose a new critical value for the nonparametric

test, which properly accounts for the effect of the preliminary Lasso-based selection. Our analysis

reveals that the first-stage selection affects the second-stage inference by restricting the series-

regression score on a random polytope. Since the asymptotics of the series estimator is captured

by the (growing-dimensional) Gaussian coupling for the score vector, this restriction effectively

results in a form of truncated normality, which explains the size distortion of the “naive” critical

value directly constructed from the conventional asymptotic Gaussian approximation. The novel

critical value proposed in this paper accounts for the truncation effect, and it greatly improves the

test’s size control in finite samples as shown in our simulation study.

To better understand the power property of the proposed test, we also characterize local alter-

natives against which the test is consistent. The power analysis clarifies an adaptive feature of the

proposed selective test: The test is able to detect smaller deviations from the null if the deviation

has a simpler form. In the extreme case when the unknown function can be approximated by a

bounded number of series terms (but with a priori unknown identities), the test achieves consis-

tency nearly—up to a logarithmic factor—at the parametric rate. In the worst-case scenario in

which the unknown function is “very complex” (e.g., all covariates have equal predictive power),

the power of the selective test deteriorates to the same level as the benchmark non-selective test.

But in general, the former is shown to be more powerful than the latter.

The remainder of this paper is organized as follows. We present the econometric method
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and the related asymptotic theory in Section 2, followed by a couple of extensions in Section

3. Section 4 demonstrates the finite-sample performance of the proposed test in a Monte Carlo

experiment. Section 5 concludes. The Appendix provides requisite implementation details and

a pedagogical example. Technical proofs and additional simulation results are relegated to the

Online Supplemental Appendix.

2 Main theory

We present our main theory in this section. Section 2.1 describes the testing problem and some

related background. Section 2.2 presents the new selective test, with its theoretical properties

established in Section 2.3.

2.1 The testing problem and some background

We start with introducing the econometric setting. Consider a series (Yt, X
>
t ), 1 ≤ t ≤ n, of

observed data, where Yt is scalar-valued and Xt takes values in a compact set X ⊆ Rd.1 Denote

the conditional expectation function of Yt given Xt by

g(x) ≡ E [Yt|Xt = x] , x ∈ X ,

with the associated residual term εt ≡ Yt − g (Xt). Our econometric interest is to test the null

hypothesis

H0 : g(x) = 0 for all x ∈ X , (2.1)

against its complementary alternative, that is, g(x) 6= 0 for some x. In some applications, Yt

may depend on an unknown finite-dimensional parameter θ∗ and, if so, we may emphasize this

dependence explicitly by writing Yt (θ∗). The testing of conditional moment restrictions arises

routinely from various empirical settings. To help fix ideas, we briefly consider two prototype

examples.

Example 1 (Forecast Rationality). Suppose that at time t a forecaster produces a one-

period-ahead forecast Ft+1|t for the next period’s target variable, denoted F †t+1 (e.g., inflation).

It is well-known that given a time-t information set It, the optimal forecast that minimizes the

mean-squared-error loss is the conditional expectation E[F †t+1|It]. Therefore, if Ft+1|t is optimal,

the forecasting error Yt = Ft+1|t−F
†
t+1 should satisfy E [Yt|Xt] = 0 for any Xt in the It information

1We consider scalar-valued Yt mainly for ease of exposition. The econometric method can be trivially extended

to accommodate multivariate Yt.
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set. In this setting, a test for (2.1) can be interpreted as a test for forecast rationality, as studied

by Hansen and Hodrick (1980), Brown and Maital (1981), and Romer and Romer (2000), among

others.

Example 2 (Euler and Bellman Equations). In dynamic equilibrium models, the equilibrium

is often characterized by Euler equations in the form of conditional moment restrictions. The

classical example is Hansen and Singleton’s (1982) study of consumption-based asset pricing, in

which the one-period-ahead pricing equation takes the form

E
[
βU ′ (Ct+1, γ)

U ′ (Ct, γ)
Rt+1 − 1

∣∣∣∣Xt

]
= 0, (2.2)

where U ′ (·, γ) is the representative agent’s marginal utility function with a preference parameter

γ, β is the discounting factor, Ct is the consumption process, Rt+1 is the return of an asset,

and Xt is the state variable underlying the dynamic model. Equation (2.2) can be written in

the form of (2.1) by setting θ∗ = (β, γ) and Yt (θ∗) = βU ′(Ct+1,γ)
U ′(Ct,γ)

Rt+1 − 1. Similar equilibrium

conditions can also be derived from Bellman equations; see, for example, Li and Liao (2020). In

the macroeconomic setting, the parameter θ∗ is often, though not always, calibrated based on

external data and auxiliary models.

As seen from these examples, the Yt variable may play different roles in different contexts

and sometimes may involve a finite-dimensional parameter θ∗ that may be estimated or calibrated

depending on the style of empirical research. In addition, it is generally important to accommodate

time-series dependence for these applications. In the remainder of Section 2, we shall assume that

Yt is directly observed so as to focus on the main innovation of the present paper. It is relatively

straightforward to allow for the presence of an unknown θ∗, and we will develop that extension in

Section 3.

Testing the hypothesis in (2.1) is econometrically nontrivial, as it concerns the global prop-

erty of the conditional expectation function g (·). In practice, empiricists often take “parametric

shortcuts” to bypass that nonparametric functional inference problem. The simplest way to do

so is to integrate out the conditioning variable Xt and test the unconditional moment restriction

E [Yt] = 0. This amounts to regressing Yt on a constant term and then conducting a t-test. To

incorporate the conditioning information in Xt, it is common to run a linear regression

Yt = a+ b>Xt + et, (2.3)

and then test whether the coefficients are all zero. The pros and cons of the parametric approach

are also well understood. On one hand, if the observed data were known to be generated under

4



the conjectured specification, the parametric approach would clearly be the simplest and the most

efficient way to carry out the test. On the other hand, if the null is violated in a way that is

“orthogonal” to the given parametric specification, the test will have little power in detecting it.

In applied work, non-rejections may thus be challenged by a critical reader, because the parametric

test is designed to seek power only in very specific directions that are generally hard to justify on

the ground of economic theory.

A natural way to address this issue is to make the regression more flexible by including ad-

ditional nonlinear terms. Following Andrews (1991a) and Newey (1997), one may formalize this

more general approach as a nonparametric series regression so as to directly attack the functional

inference. Consider a collection of approximating basis functions (pj(·))1≤j≤m such as polynomials,

splines, trigonometric functions, wavelets, etc., and set P (·) ≡ (p1(·), . . . , pm(·))>. We may regress

Yt on P (Xt) and construct the associated nonparametric series estimator for g (·) as

ĝ(·) ≡ P (·)>
(

n∑
t=1

P (Xt)P (Xt)
>

)−1( n∑
t=1

P (Xt)Yt

)
. (2.4)

With the number of series terms m→∞, the specification of this regression becomes increasingly

more flexible in larger samples, so that the series approximation will approach the true unknown

function. The test can then be carried out by examining whether the estimated function ĝ (·) is

statistically zero in a uniform sense. A theoretical subtlety stems from the fact that the uniform

inference for the series estimator is a non-Donsker problem due to the growing dimensionality of

the regressors.2 Li and Liao (2020) show that the estimation error function ĝ (·) − g (·) can be

strongly approximated, or coupled, by a sequence of divergent Gaussian processes in a time-series

setting for general heterogeneous mixingales; also see Belloni, Chernozhukov, Chetverikov, and

Kato (2015) for a similar analysis in the cross-sectional setting. Based on that theory, one may

test g (·) = 0 using a “functional t-test” based on the sup-t statistic supx∈X |ĝ (x)| /ŝ (x), where

ŝ (·) is an estimator of the standard error function of ĝ (·). The null hypothesis is rejected if the

sup-t statistic is greater than a critical value determined by the strong Gaussian approximation.

A more detailed discussion is given in Section 2.2 below.

The advantage of the nonparametric approach is that it speaks directly to the original hypoth-

esis (2.1), whereas the parametric approach concentrates only on some of its implications. That

being said, the flexibility of the nonparametric approach comes with an efficiency cost, which man-

ifests theoretically in the relatively slow rate of convergence of the nonparametric estimator. The

cost is also easily understood in practical terms. Indeed, if g (x) happens to be a linear function in

2That is, the ĝ (·) estimator does not satisfy a functional central limit theorem (i.e., Donsker theorem) as consid-

ered in Pollard (2001), Andrews (1994), and van der Vaart and Wellner (1996), among others.
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x, adding (a growing number of) higher-order polynomial terms in the series regression ought to

be a “waste.” In practice, the null hypothesis may be rejected by a simple parametric test, whereas

the theoretically “omniscient” nonparametric test may be less powerful and fail to reject.

The above discussion clarifies the trade-off between flexibility and efficiency in the present

testing context: Flexibility requires the inclusion of a large number of regressors that might be

useful, but in order to achieve sharper inference, it would be better to focus on a small number

of regressors that are actually useful for capturing the main features of the alternative. Our goal

is to improve this trade-off margin. A reasonable approach is to first properly select a subset

of approximating functions in the spirit of “feature extraction,” and only use them to run the

series regression and construct the sup-t test statistic. Given this goal, as well as the least-

squares structure of the series regression, the Lasso method is clearly the most natural choice for

implementing the selection.

We refer to this proposal as the selective test. The aforementioned construction of the test

statistic is arguably straightforward in view of the prior literature on series estimation and Lasso.

The key challenge for carrying out the selective test, however, is to properly determine its critical

value. This turns out to be highly nonstandard. A seemingly reasonable approach is to treat

the Lasso-selected subset of approximating functions “as given” (i.e., ignoring the fact that it is

data-driven), and compute the critical value in the same way as in the benchmark non-selective

test (Belloni, Chernozhukov, Chetverikov, and Kato (2015), Li and Liao (2020)). However, as we

shall show in the simulations (see Section 4), this approach may result in quite nontrivial size

distortions. This motivates us to develop a correction for the critical value so as to account for the

selection effect. Our analysis is in spirit akin to the sequential inference theory commonly seen in

econometrics (cf. Section 6 of Newey and McFadden (1994)). But, unlike the conventional setting,

our “first-stage estimator” may be viewed as set-valued (in the form of a selection event), and

it affects the second-stage through a fairly complicated truncation of the support of the coupling

Gaussian process that drives the asymptotics of the series estimator. We now turn to the details.

2.2 The selective test

We construct the selective test in this subsection. Let M denote the index set associated with a

collection (pj(·))1≤j≤m of candidate approximating functions. For ease of discussion, we identify

M with the associated collection of approximating functions, and refer to it as a dictionary. We

assume that the size of M grows asymptotically (i.e., m→∞ as n→∞), though its dependence

on n is kept implicit in our notation for simplicity. For any nonempty subset S ⊆ M, we denote

PS (·) ≡ (pj(·))j∈S , which collects a subset of approximating functions selected by S. The specific
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ordering of the pj (·) components is irrelevant, because our statistics of interest are all invariant to

the ordering. We refer to S as a selection and denote its cardinality by |S|. Analogous to (2.4),

the series estimator for g (·) based on the selection S is given by

ĝS (·) ≡ PS(·)>
(

n∑
t=1

PS (Xt)PS (Xt)
>

)−1( n∑
t=1

PS (Xt)Yt

)
. (2.5)

Note that this includes the non-selective estimator ĝ (·) defined in (2.4) as a special case corre-

sponding to S =M. The standard error function associated with ĝS (·) is given by

σS(·) ≡
√
PS(·)>Q−1S ΣSQ

−1
S PS(·),

where QS ≡ n−1
∑n

t=1 E
[
PS(Xt)PS(Xt)

>] and ΣS ≡ Var[n−1/2
∑n

t=1 PS(Xt)εt]. We may esti-

mate QS via Q̂S ≡ n−1
∑n

t=1 PS(Xt)PS(Xt)
> and estimate ΣS using a (growing-dimensional)

heteroskedasticity and autocorrelation consistent (HAC) estimator Σ̂S , following known results in

the literature.3 The standard error function σS(·) can then be estimated via

σ̂S(·) ≡
√
PS(·)>Q̂−1S Σ̂SQ̂

−1
S PS(·). (2.6)

Finally, we define the sup-t test statistic associated with the selection S as

T̂S ≡ sup
x∈X

∣∣∣∣∣n1/2ĝS(x)

σ̂S(x)

∣∣∣∣∣ . (2.7)

We use Lasso to perform a data-driven selection from the dictionary M. In some empirical

applications, the user may consider a subsetM0 ⊆M of regressors to be important a priori (pos-

sibly based on economic reasoning) and like to “manually” select them into the series regression.

To accommodate this type of customization, we design a selection procedure that always includes

the prior choice set M0 and relies on Lasso to select additional regressors from the remainder set

Mc
0 ≡ M\M0. For example, the user may insist on using a constant and a linear term in the

series regression, but is uncertain about which higher-order polynomial terms should be included

in addition. In this situation, they may put the constant and linear terms inM0, and let Lasso to

“machine-learn” whether and which additional terms are needed. The role of Lasso in this design

is thus to assist the user’s choice rather than dictating it. Below, we maintain a mild convention

3We may take Σ̂S to be the classical Newey–West estimator or more generally the HAC estimators studied by

Andrews (1991b). The consistency and rate of convergence of these HAC estimators have been established in a

general time-series setting with growing dimensions by Li and Liao (2020); see their Lemma B3. The consistency

and rate of convergence of Q̂S towards QS follow a law of large numbers of growing-dimensional matrices; see, for

example, Lemma 2.2 in Chen and Christensen (2015) and Lemma B2 in Li and Liao (2020).
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that M0 contains at least the constant term (which is also our recommended default choice);

this ensures the selected set of regressors to be non-empty, and hence, avoids an uninteresting

degeneracy.

This “Lasso-assisted” selection is implemented as follows. Given the user’s prior choice M0,

we perform a Lasso estimation with the resulting estimator given by

β̂
Lasso ≡ argmin

β∈Rm

1

2

n∑
t=1

(Yt − P (Xt)
>β)2 + λn

∑
j∈Mc

0

ωj |βj |

 , (2.8)

where λn is a sequence of penalty parameters commonly seen in Lasso-type problems, and (ωj)j∈Mc
0

is a collection of positive weights. Note that the L1 penalty is applied only to the remainder set

Mc
0, whereas the coefficients in the prior choice set M0 are unrestricted. A simple choice of the

ωj weights is to set ωj = 1 identically or ωj =
√
n−1

∑n
t=1 pj(Xt)2 (see, e.g., Zhao and Yu (2006),

Bickel, Ritov, and Tsybakov (2009), and Belloni and Chernozhukov (2011)), but the more general

setting in (2.8) also accommodates the adaptive Lasso (Zou (2006)). In Appendix A.1, we provide

a concrete data-driven choice of these penalty parameters and establish its theoretical validity

within our econometric framework. Due to the L1 penalty, many coefficients indexed by Mc
0 will

be shrunk to zero. Our Lasso-assisted selection is then given by

L ≡M0

⋃{
j ∈Mc

0 : β̂
Lasso

j 6= 0
}
, (2.9)

which consists of the user’s ex ante choice M0 and Lasso’s ex post selection from Mc
0. The

corresponding selective test statistic is defined as

T̂L ≡ T̂S
∣∣
S=L = sup

x∈X

∣∣∣∣∣n1/2ĝL(x)

σ̂L(x)

∣∣∣∣∣ . (2.10)

A large value of the test statistic T̂L signifies a violation of the null hypothesis (i.e., g (·) 6= 0).

The remaining task is to determine a critical value for T̂L. Before elaborating our proposal,

it is instructive to first review how the critical value may be constructed in a simpler benchmark

scenario with a nonrandom selection S, as studied in Belloni, Chernozhukov, Chetverikov, and

Kato (2015) and Li and Liao (2020).4 These authors show that T̂S can be strongly approximated

by the supremum of a Gaussian process under the null hypothesis. More precisely, there exists a

sequence of |S|-dimensional Gaussian random vectors ÑS ∼ N (0,ΣS) such that

T̂S − T̃S = op (1) , where T̃S ≡ sup
x∈X

∣∣∣∣∣PS (x)>Q−1S ÑS
σS(x)

∣∣∣∣∣ . (2.11)

4The theory of Belloni, Chernozhukov, Chetverikov, and Kato (2015) and Li and Liao (2020) does not explicitly

involve selection, and hence, corresponds to the case with S =M. But it is easy to see that their inference theory

can be trivially adapted to accommodate any nonrandom selection S.
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The 1 − α quantile of T̃S can thus be used as a critical value for T̂S at significance level α. A

feasible version of this critical value can be estimated as the 1− α quantile of

T̃ ∗S ≡ sup
x∈X

∣∣∣∣∣PS (x)> Q̂−1S Ñ∗S
σ̂S(x)

∣∣∣∣∣ , (2.12)

where Ñ∗S , conditional on data, is N (0, Σ̂S)-distributed.

A seemingly natural way to construct T̂L’s critical value is to directly apply this benchmark

theory by plugging in S = L. However, this approach turns out to suffer from nontrivial size

distortion as shown in our simulation study below. To address this issue, we need to account for

the effect of selection and adjust the critical value accordingly. The remainder of this subsection

is devoted to this task.

More notation is needed. Let In denote the n-dimensional identity matrix, ε ≡ (εt)1≤t≤n, and

G ≡ (g(Xt))1≤t≤n. By convention, all vectors are column vectors. For any S ⊆ M, denote PS ≡
(PS(X1), . . . , PS(Xn))>. When S =M, we suppress its subscript by simply writing P = PM.

In addition, let P̃S denote the residual matrix obtained from projecting PS onto PM0 . That

is, P̃S ≡ DnPS , where Dn ≡ In − PM0(P>M0
PM0)−1P>M0

. Finally, we define ŝ as a |L \M0|-
dimensional vector that collects the signs of β̂

Lasso

j for j ∈ {j : β̂
Lasso

j 6= 0} \M0.

We first characterize the selection event. By the Karush–Kuhn–Tucker conditions for the Lasso

problem (2.8), the selection event can be represented by a system of linear-inequality restrictions on

n−1/2P>ε = n−1/2
∑n

t=1 P (Xt) εt, which is the score vector of the series regression using the entire

dictionary of regressors.5 Specifically, for any nonrandom selection S satisfyingM0 ⊆ S ⊆M and

a sign vector s ∈ {±1}|S\M0|, we have

{L = S, ŝ = s} =
{
n−1/2P>ε ∈ Π(S, s, λn)

}
. (2.13)

Here, Π(S, s, λn) is an m-dimensional (random) polytope given by

Π(S, s, λn) ≡

z ∈ Rm :
diag (s) (ASz + cS) > n−1/2λnbS(s) and

n−1/2λnb
′
l,S(s) < A′Sz+c

′
S < n−1/2λnb

′
u,S(s)

 , (2.14)

where diag (s) is a diagonal matrix with its diagonal components given by s,
cS ≡ n1/2

(
P̃>S\M0

P̃S\M0

)−1
P̃>S\M0

DnG,

c′S ≡ n−1/2P̃>M\S

(
In − P̃S\M0

(
P̃>S\M0

P̃S\M0

)−1
P̃>S\M0

)
DnG,

(2.15)

5See Lemma SA.1 in the Supplemental Appendix for details, which extends a similar result in Lee, Sun, Sun, and

Taylor (2016) by allowing for the prior choice set M0 and penalty weights ωj .
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and bS(s), b′l,S(s), b′u,S(s), AS , and A′S are directly observable quantities. The latter observable

quantities do not pose any difficulty in our theoretical analysis (though they are needed for imple-

mentation). We thus defer their somewhat complicated definitions to Appendix A.1 to streamline

the discussion; see (A.1). On the contrary, the random vectors cS and c′S are unobservable because

G involves the unknown g (·) function. For this reason, the structure of the polytope Π(S, s, λn)

is not directly observed, either.

The significance of the above (non-asymptotic) characterization is that it precisely depicts

the relation between the Lasso-assisted selection and the subsequent series estimation in finite

samples, through their common dependence on the score vector n−1/2P>ε. To see this more

clearly, recall that for any given selection S, the asymptotic normality (formulated in terms of

strong Gaussian coupling) of the ĝS (·) estimator is driven by the score n−1/2P>S ε, which is a

subvector of n−1/2P>ε. However, when S is selected by Lasso with a particular sign configuration

s, the score n−1/2P>ε is restricted within the polytope Π(S, s, λn). This restriction would modify

the score’s asymptotic normality into a form of truncated normality. Roughly speaking, the data-

driven selection may make the originally exogenous conditioning variables “effectively endogenous”

through truncating the support of the score. A failure to account for this effect would generally

lead to size distortion. It is important to note that this type of size distortion is distinct from the

usual small-sample phenomenon that central limit theorems may not “kick in” sufficiently well in

a moderately sized sample; indeed, the aforementioned truncation effect would arise even if the

score is exactly normally distributed (say, in a Gaussian model with fixed design).

We now propose a new critical value to adjust for the truncation effect. The key is to construct

a feasible approximation for the unobserved polytope Π(S, s, λn) for any given S that containsM0.

As mentioned above, the polytope is not directly observed because G is unknown. To construct

an approximation for G, we regress Y on PS with the resulting regression coefficient given by

b̂S ≡
(
P>SPS

)−1
P>SY. (2.16)

We then apply a truncation on this least-squares estimator to obtain β̃S , with its jth component

given by

β̃S,j ≡ b̂S,j · 1
{
|̂bS,j | ≥ log(n)n−1/2σ̂S,j

}
, (2.17)

where b̂S,j denotes the jth component of b̂S , and σ̂S,j is the estimated standard error of b̂S,j

obtained as the square-root of the jth diagonal element of Q̂−1S Σ̂SQ̂
−1
S .6 The n-dimensional vector

6The intuition for using the truncation is as follows. If the estimator b̂S,j corresponds to a zero coefficient in the

population, b̂S,j/(n
−1/2σ̂S,j) is approximately N (0, 1). In addition, these “zero” t-statistics are uniformly bounded

by the log (n) factor with probability approaching 1. The truncation shrinks these noisy estimates of zero directly
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G is then approximated by the (truncated) projection PS β̃S . Plugging this approximation into

(2.15), we further obtain (after simplifying the expressions) approximations for cS and c′S in the

form of

ĉS = n1/2β̃S\M0
, ĉ′S = 0,

where β̃S\M0
is the subvector of β̃S extracted in accordance with S \ M0 as a subset of S. A

feasible proxy for Π(S, s, λn) can then be obtained by replacing (cS , c
′
S) with (ĉS , ĉ

′
S) defined in

(2.14), that is,

Π̂(S, s, λn) ≡

z ∈ Rm :
diag (s) (ASz + n1/2β̃S\M0

) > n−1/2λnbS(s) and

n−1/2λnb
′
l,S(s) < A′Sz < n−1/2λnb

′
u,S(s)

 . (2.18)

We are now ready to construct the new critical value. Let Ñ∗ be an m-dimensional standard

Gaussian random vector that is independent of the data. For a given selection S, define Ñ∗S as the

subvector of Σ̂
1/2
M Ñ∗ extracted in accordance with S as a subset of M, and use it to compute T̃ ∗S

as described in (2.12). We then set

cvS,α ≡ inf

u ∈ R :
P∗
(
T̃ ∗S ≥ u, Σ̂

1/2
M Ñ∗ ∈ Π̂(S, s, λn)

)
P∗
(

Σ̂
1/2
M Ñ∗ ∈ Π̂(S, s, λn)

) = α

 , (2.19)

where P∗(·) denotes the conditional distribution of Ñ∗ given data.7 Our proposed critical value is

obtained by evaluating cvS,α at S = L, that is,

cvL,α ≡ cvS,α
∣∣
S=L. (2.20)

The selective test rejects the null hypothesis in (2.1) if T̂L > cvL,α.

The intuition for the proposed critical value is as follows.8 Note that the (conditionally) Gaus-

sian vector Σ̂
1/2
M Ñ∗ provides a distributional approximation for the score vector n−1/2P>ε. Since

T̃ ∗S is formed using the subvector Ñ∗S , Σ̂
1/2
M Ñ∗ and T̃ ∗S provide a joint distributional approximation

for the score n−1/2P>ε and the sup-t statistic T̂S under the null hypothesis. As such, the joint

asymptotic behavior of the test statistic and the selection event {n−1/2P>ε ∈ Π(S, s, λn)} is cap-

tured by that of T̃ ∗S and {Σ̂1/2
M Ñ∗ ∈ Π̂(S, s, λn)}. The critical value described in (2.19) is simply

to zero. This noise-reduction generally leads to better performance in finite samples.
7This critical value may be computed by simulating the Gaussian random vector Ñ∗. A computationally more

efficient method is to sample directly from the truncated normal distribution in restriction to the selection event.

The Matlab package accompanying this paper follows the latter computational strategy by using the minimax tilting

algorithm proposed in Botev (2016).
8Appendix A.2 provides a pedagogical example, where we use a simple linear regression model to illustrate more

concretely the effect of model selection on the subsequent inference and the intuition for the new critical value.
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defined as a tail quantile of the conditional distribution of T̃ ∗S in restriction to the “coupling”

selection event {Σ̂1/2
M Ñ∗ ∈ Π̂(S, s, λn)}, which captures how the polytope restriction on the score

vector distorts the distribution of the sup-t statistic.9

We close this subsection with a couple of remarks. We first note that our strategy for correcting

the critical value is not restricted to the Lasso method. For the other methods such as the group

Lasso (Yuan and Lin (2006)) and the elastic net (Zou and Hastie (2005), Zou and Zhang (2009)),

one may modify the underlying Karush–Kuhn–Tucker conditions accordingly and characterize the

selection event in a similar fashion as (2.13). Critical values may then be constructed from the

corresponding conditional coupling distributions. Secondly, we stress that our analysis focuses on

testing whether g (·) = 0, and hence, our inference concentrates on the null hypothesis. Another

open question is how to make uniform inference for the unknown function g (·) also under the

alternative, while properly accounting for the selection effect. The latter question is more chal-

lenging because, under “local” alternatives, the selection may miss “moderate” features of g (·),
and lead to non-negligible biases for inference.10 This is not an issue (in terms of size control) for

our hypothesis-testing problem because under the null g (·) is known to be zero.

2.3 Asymptotic properties of the selective test

We now establish the asymptotic properties of the selective test. We shall show that the proposed

test has valid size control under the null hypothesis. We also analyze the test’s power under local

alternatives so as to theoretically clarify how the Lasso-assisted selection helps improve power. In

this subsection, we focus on the baseline setting in which Yt is directly observed. The result can

be straightforwardly extended to allow Yt to depend on some unknown parameter θ∗; see Section

3 below. We start with introducing a few regularity conditions.

9One may wonder whether the size correction can be automatically achieved via resampling methods such as the

bootstrap. We investigate this possibility through a simulation study in Section SC.2 of the online supplemental

appendix. The simulation results show that a test based on the i.i.d. bootstrap tends to be very conservative and

have poor power (even if there is no serial dependence in the data). The theoretical investigation of resampling

methods for the selective test is beyond the scope of this paper and is left for future research.
10The uniform nonparametric inference with a data-driven selection of series terms should be distinguished from

a recent strand of literature on “selective inference.” For example, in a Gaussian linear model, Lee, Sun, Sun, and

Taylor (2016) study the inference for the coefficients of a submodel selected by Lasso. That research question is very

different from making uniform nonparametric inference, because it would effectively shift the inferential target from

g(·) to a statistically selected submodel; the latter is a “moving target” that could be very different from the original

object of interest. That being said, selective inference may be fruitfully used in many other econometric problems,

as demonstrated in the recent interesting work by Cox and Shi (2019), Liao and Shi (2020), Andrews, Kitagawa,

and McCloskey (2021a,b); our coupling-based inference technique might be useful to extend that line of research to

growing-dimensional or functional settings for general serially dependent data.
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Assumption 1. (i) The eigenvalues of QM and ΣM are bounded from above and away from zero;

(ii) there exists a sequence of m-dimensional standard Gaussian random vectors Ñn such that

n−1/2
n∑
t=1

P (Xt) εt = Σ
1/2
M Ñn + op(log(n)−1);

(iii) ‖Q̂M −QM‖+ ‖Σ̂M −ΣM‖ = op((m
1/2 log(n))−1); (iv) m = o(n) and log(ζLn ) = O(log(m)),

where ζLn ≡ supx1,x2∈X ‖P (x1)− P (x2)‖ / ‖x1 − x2‖.

Assumption 1 imposes high-level conditions that are similar to those used in prior work on uni-

form series-based inference. Condition (i) is fairly standard for series estimation; see, for example,

Andrews (1991a), Newey (1997), and Chen (2007). Condition (ii) requires that the scaled score

sequence n−1/2
∑n

t=1 P (Xt)εt admits a Gaussian coupling in the growing-dimensional setting (i.e.,

m → ∞), which may be verified by applying Yurinskii’s coupling for i.i.d. data, or the theory

of Li and Liao (2020) in the more general time-series setting for heterogeneous mixingales. This

condition is crucial for our purpose of making uniform functional inference and it also implicitly

imposes the binding restriction within our analysis on how fast m may grow with the sample size

(especially in the presence of series dependence); see Li and Liao (2020) for a more detailed tech-

nical discussion.11 Condition (iii) pertains to the convergence rates of Q̂M and Σ̂M, which can

be verified under primitive conditions as shown in Chen and Christensen (2015) and Li and Liao

(2020). Condition (iv) is trivially satisfied by commonly used series basis.

To set the stage for the local power analysis, we consider a sequence of data generating processes

under which E [Yt|Xt = x] = gn(x), where gn (·) is a (possibly) drifting sequence of functions. These

functions are assumed to satisfy the following.

Assumption 2. (i) There exists a sequence (b∗n)n≥1 of m-dimensional constant vectors such that

sup
x∈X

n1/2
∣∣∣gn(x)− P (x)>b∗n

∣∣∣ = O(1);

(ii) there exists a subset R ⊆Mc
0 such that minj∈R |b∗n,j | > 0 and b∗n,j = 0 when j ∈Mc

0 \ R.

Assumption 2(i) states that the gn (·) function may be approximately represented by the

growing-dimensional b∗n vector, which specifies how gn (·) loads on the basis functions. This is

11If one restricts attention to the setting with i.i.d. data, it might be possible to generalize our result to allow m

to grow faster possibly under some additional sparsity restriction (which is not assumed here). We do not pursue

that extension in the present paper because our primary goal is to accommodate serial dependence commonly seen

in time-series settings so as to facilitate macro and finance applications, and certain applied-micro applications

involving panel data. Establishing a theory for m > n under sparsity is not our main focus, but might be an

interesting topic for future research; this could be technically challenging in a setting with general serially dependent

data (e.g., mixingales) as considered here.
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well understood in series estimation, for which comprehensive results are available from the liter-

ature on numerical approximation (see, e.g., Chen (2007)); this setup also directly accommodates

linear specifications with “many regressors.” Given this representation, condition (ii) further in-

troduces a “relevance set,” R, which marks all basis functions inMc
0 (on which the Lasso selection

is active) with nonzero loadings. Note that R is empty under the null hypothesis, but it plays an

important role under the alternative.

Intuitively, if the user knew the (actually unknown) structure of R a priori, it would be natural

to combine it with their prior choice M0 to form an “oracle” selection

M? ≡M0 ∪R,

which is arguably the best one may wish to obtain from any selection algorithm (e.g., Lasso). The

M? set thus depicts the intrinsic complexity of gn (·) given the user’s ex ante choice (including the

dictionaryM and the prior choiceM0). In this sense, gn (·) is the most complex whenM? =M,

because one would use all basis functions to conduct the series estimation. On the other extreme, if

M? is “sparse” in the sense that it contains only a few elements, gn (·) is “effectively parametric,”

and hence, relatively simple to uncover. Consistent with this logic, our theory presented below

shows that the selective test satisfies an adaptive property, namely, it is more powerful when

the alternative is less complex. In our analysis, it turns out that the aforementioned notion of

complexity may be more precisely quantified as (with ‖ · ‖ denoting the Euclidean norm)

κ (M?) ≡ sup
x∈X
‖PM?(x)‖ ,

which is a non-decreasing function ofM? with respect to the partial order of set inclusion. Hence,

a larger M? corresponds to a higher value or faster divergence rate of κ (M?), and vice versa.12

We also need the following condition on the Lasso penalty. For any m1 × m2 real matrix

A = [Aij ]1≤i≤m1,1≤j≤m2
, we denote ‖A‖1 ≡ max1≤j≤m2

∑m1
i=1 |Aij |.

Assumption 3. The penalty parameters λn and {ωj}j∈Mc
0

satisfy

(n log(m))1/2

λn minj∈Mc
0\R ωj

+
|R|1/2n−1/2λn maxj∈R ωj + log(n)

n1/2 minj∈R |b∗n,j |
= op(1) (2.21)

and, for some fixed η ∈ (0, 1),

maxj∈R ωj
minj∈Mc

0\R ωj

∥∥∥(P̃>RP̃R)−1P̃>RP̃Mc
0\R

∥∥∥
1
≤ 1− η (2.22)

with probability approaching 1.

12In our theory,M? is allowed to contain a growing number of elements. Therefore, κ (M?) is typically a divergent

sequence of positive numbers and its “magnitude” is gauged by its growth rate to infinity.
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Assumption 3 mainly ensures that the Lasso estimator described in (2.8) is sign-consistent

under the null and alternative hypotheses.13 This condition is high-level in nature and it does not

directly pin down any specific penalty scheme. In Appendix A.1, we provide a concrete feasible

choice that fulfills this technical condition.

We are now ready to state the asymptotic size and power properties of the selective test, which

is the main result of this paper. Below, for two sequences of positive numbers an and bn, we write

an � bn if an ≥ cnbn for some strictly positive sequence cn →∞.

Theorem 1. Under Assumptions 1, 2, and 3, the following statements hold for any significance

level α ∈ (0, 1/2): (a) The selective test has asymptotic level α under the null hypothesis (2.1),

that is, P(T̂L > cvL,α) → α; (b) the selective test is consistent against any local alternative that

satisfies

sup
x∈X
|gn(x)| � κ (M?) log(n)1/2n−1/2, (2.23)

that is, P(T̂L > cvL,α)→ 1.

Part (a) of Theorem 1 shows that the selective test has valid size control under the null

hypothesis. Part (b) further establishes the consistency of the test against local alternatives that

satisfy condition (2.23), with the “boundary” of the local neighborhood (under the uniform metric)

characterized by the κ (M?) log(n)1/2n−1/2 rate.

The local power result deserves some additional discussion. Its key significance is to provide

a sense in which the selective test is adaptive with respect to the complexity of gn (·) as gauged

by κ (M?). That is, the test is able to consistently detect a faster-vanishing nonzero sequence of

supx∈X |gn(x)| when the gn (·) function is easier to approximate (i.e., M? is smaller), despite the

fact that this information is unknown a priori. This is an important improvement relative to the

benchmark non-selective method (cf. Belloni, Chernozhukov, Chetverikov, and Kato (2015) and

Li and Liao (2020)). Indeed, the non-selective method employs the entire dictionary M of basis

functions, which can be considered as a corner case of the selective test corresponding to the most

conservative prior choiceM0 =M. The power of the non-selective test is thus always dictated by

the fast-diverging sequence κ (M), and hence low, regardless of the actual complexity underlying

the data generating process (i.e., it is non-adaptive).

To further appreciate the adaptiveness of the selective test, we consider another “corner” case

in which the setM? only contains a bounded number of elements. This corresponds to a situation

13Recall that R is empty under the null hypothesis. By convention, we set the maximum and minimum of a

collection of nonnegative numbers over the empty set to 0 and ∞, respectively. Under this convention, Assumption

3 can be reduced to a simpler form under the null hypothesis, that is,
√
n log(m)/(λn minj∈Mc

0
ωj) = op(1).
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in which gn (·) under the alternative has a parametric but a priori unknown form. In this case,

κ (M?) is bounded and the κ (M?) log(n)1/2n−1/2 rate can be simplified as log(n)1/2n−1/2, which is

essentially the n−1/2 parametric rate. Attaining this nearly parametric rate is remarkable because

the user was “prepared” to conduct a nonparametric analysis, as they did not know beforehand

that gn (·) has a simple form, let alone its specific parametric specification among a large number

(i.e., 2m with m→∞) of possibilities. In sharp contrast, the non-selective method has power only

at the well-known and much slower nonparametric rate.

3 Extensions

We consider two extensions for our baseline method developed in the previous section. Section 3.1

presents a different version of the selective test based on an alternative test statistic. Section 3.2

describes two approaches for handling unknown finite-dimensional parameters.

3.1 Selective test with an alternative test statistic

The T̂L test statistic is based on the supremum of the (studentized) series estimator for g (·), which

quantifies deviations from the null under the uniform metric on the functional space. This is a

natural choice in the nonparametric setting, as g (·) is the model primitive in that context. That

noted, the underlying econometric idea can be easily extended to accommodate the other types of

test statistics. In this subsection, we provide a concrete example to demonstrate how our baseline

theory may be modified for that purpose.

Consider an alternative test statistic defined as the maximum of the t-statistics associated with

individual regression coefficients in the series regression. Since this statistic is directly based on the

regression coefficients, it is perhaps better suited than T̂L for studying linear models with “many”

regressors. Specifically, for each given selection S, we define the test statistic as

T̂ ′S ≡ max
1≤j≤|S|

n1/2
∣∣̂bS,j∣∣

σ̂S,j
, (3.24)

where we recall that b̂S,j is the jth component of the series regression coefficient b̂S (see (2.16))

and σ̂S,j is the estimated standard error obtained as the square-root of the jth diagonal element

of Q̂−1S Σ̂SQ̂
−1
S . Its feasible distributional “coupling” is given by

T̃ ′∗S ≡ max
1≤j≤|S|

∣∣[Q̂−1S Ñ∗S
]
j

∣∣
σ̂S,j

, (3.25)

where the [ · ]j operator extracts the jth component of a vector and Ñ∗S is a subvector exacted from

Σ̂
1/2
M Ñ∗ in accordance with S as a subset of M for some generic m-dimensional standard normal
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random vector Ñ∗. Analogous to (2.19), we define the critical value for the new test statistic as

cv′S,α ≡ inf

u ∈ R :
P∗
(
T̃ ′∗S ≥ u, Σ̂

1/2
M Ñ∗ ∈ Π̂(S, s, λn)

)
P∗
(

Σ̂
1/2
M Ñ∗ ∈ Π̂(S, s, λn)

) = α

 . (3.26)

Finally, we set

T̂ ′L = T̂ ′S
∣∣
S=L, cv′L,α ≡ cv′S,α

∣∣
S=L. (3.27)

This alternative “sup-b” selective test rejects the null hypothesis in (2.1) if T̂ ′L > cv′L,α. Similar to

Theorem 1, we have the following result for its asymptotic properties.

Theorem 2. Under Assumptions 1, 2, and 3, the following statements hold for any significance

level α ∈ (0, 1/2): (a) The sup-b selective test has asymptotic level α under the null hypothesis

(2.1), that is, P(T̂ ′L > cv′L,α) → α; (b) the sup-b selective test is consistent against any local

alternative that satisfies

max
1≤j≤|M?|

∣∣b∗n,j∣∣ � log(n)1/2n−1/2, (3.28)

that is, P(T̂ ′L > cv′L,α)→ 1.

3.2 The case with unknown parameters

So far, we have analyzed the selective test in the baseline setting in which Yt is directly observable.

As the examples in Section 2.1 show, Yt may depend on an unknown parameter θ∗ in some empirical

applications. In this subsection, we describe how the selective test may be applied in this more

general setting. Below, we write Yt (θ) to emphasize the dependence of Yt on a generic parameter

value θ ∈ Θ and, correspondingly, use T̂L (θ) and cvL,α (θ) to denote the selective test statistic

and the critical value (recall (2.10) and (2.20)) computed using Yt = Yt (θ). The null hypothesis

of interest concerns the conditional moment restriction evaluated at the true value θ∗, that is,

H0 : g (·) = 0, where g (x) ≡ E [Yt(θ
∗)|Xt = x].

Arguably the most straightforward approach for dealing with the unknown parameter is to

construct the Anderson–Rubin confidence set by inverting the selective test. Specifically, for each

candidate parameter value θ ∈ Θ, we implement the selective test for the null hypothesis

H0,θ : E [Yt (θ) |Xt = x] = 0 for all x ∈ X .

The 1− α level Anderson–Rubin confidence set for the true value θ∗ is then constructed as

CS1−α ≡
{
θ ∈ Θ : T̂L (θ) ≤ cvL,α (θ)

}
,

17



which collects the θ’s such that the selective test does not reject. By the duality between test and

confidence set, Theorem 1 implies that θ∗ ∈ CS1−α with probability approaching 1−α. We reject

the original null hypothesis (i.e., g (·) = 0) when the confidence set CS1−α is empty.

The Anderson–Rubin approach has a well-known desirable feature that it is robust against the

weak/partial identification of the unknown parameter θ∗. This issue is particularly relevant for the

empirical analysis of macro-style models (see, e.g., Stock and Wright (2000)). Although making

this type of robust inference on θ∗ is not our primary goal, it is a “free” by-product of the proposed

test.14

The downside of the Anderson–Rubin approach, however, is that inverting the test for a large

number of candidate values may be computationally expensive. For this reason, we also consider

a more practical “plug-in” approach. Suppose that an estimate for θ∗, denoted θ̂, is available.

We assume that θ̂ is n1/2-consistent for θ∗ but do not impose any additional specific structure

on it. This agnostic setup is intentionally designed to accommodate applications in which θ̂ is

calibrated (possibly in other studies based on external datasets that are unavailable), which is quite

typical in macro-style applications (see Chodorow-Reich and Karabarbounis (2016) for interesting

examples). Below, we propose a set of conditions under which the Op(n
−1/2) estimation error in

θ̂ is asymptotically negligible for our testing purpose. Given the lack of information regarding θ̂,

this is arguably the only reasonable way to proceed. The resulting plug-in selective test rejects the

null hypothesis when T̂L(θ̂) > cvL,α(θ̂).

Assumption 4. (i) The estimator θ̂ satisfies n1/2(θ̂−θ∗) = Op(1); (ii) Yt(θ) is twice continuously

differentiable in θ with bounded derivatives; (iii) n−1
∑n

t=1 P (Xt)(∂θYt (θ∗))> − Γ = op(log(n)−1),

where Γ ≡ n−1
∑n

t=1 E
[
P (Xt)(∂θYt (θ∗))>

]
; (iv) the function hn (x) ≡ E [∂θYt (θ∗)|Xt = x] does

not depend on t, and there exist some constant r ≥ 1/2 and a matrix-valued sequence φ∗n such

that supx∈X ‖φ∗nPM0(x)− hn (x)‖ = O(|M0|−r); (v) for some constant C > 0, infx∈X ‖PM0(x)‖ ≥
C|M0|1/2 and |M0| ≥ C log (m)3/2.

Assumption 4(i) states that θ̂ is a n1/2-consistent estimator for θ∗, which is satisfied by most

commonly used estimators.15 Conditions (ii)–(iv) ensure that the statistics of interest depend on

θ in a smooth manner. Condition (v) mainly requires that the size of M0 grows at least at the

log (m)3/2 rate. Note that this condition is not needed in our baseline setting (recall Theorem

1). Here, we require M0 to diverge so as to ensure that the post-selection series estimation is

14Along this line, it might be interesting to extend the selective test to the setting with conditional moment

inequalities (see, e.g., Andrews and Shi (2013), Chernozhukov, Lee, and Rosen (2013), Li, Liao, and Quaedvlieg

(2020)). But these extensions are clearly beyond the scope of the current paper, and hence, left for future research.
15Under the alternative hypothesis, θ∗ is interpreted as the pseudo-true parameter.
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at least “moderately nonparametric.” By doing so, the statistical noise in the nonparametric test

will dominate the fast-converging estimation error in θ̂, which makes the latter asymptotically

negligible for the nonparametric inference.

Proposition 1. Under Assumptions 1, 2, 3, and 4, the assertions in Theorem 1 hold for the

plug-in selective test that rejects the null hypothesis when T̂L(θ̂) > cvL,α(θ̂).

4 Monte Carlo simulations

We examine the finite-sample performance of the proposed selective test in a Monte Carlo experi-

ment. Section 4.1 presents the setting and Section 4.2 reports the results.

4.1 The setting

We consider a bivariate conditioning variable Xt = (X1,t, X2,t) simulated as Xj,t = Zt + vj,t for

j = 1, 2, where Zt is an autoregressive process generated by

Zt = ρZt−1 + (1− ρ2)1/2ηt,

and ηt, v1,t, and v2,t are i.i.d. standard normal random shocks. We set ρ = 0.5 or 0.8 so that Xt

may have different levels of persistence, whereas the variance of Zt is normalized to unity. The

dependent variable Yt is further generated according to Yt = g(Xt) + εt, where

g(x) =
δ exp(x1 + x2)

1 + exp(x1 + x2)
, εt = exp(Zt)ε

∗
t , ε∗t

i.i.d.∼ N (0, 1) .

The ε∗t shock is independent of the other processes, but the disturbance term εt in the nonpara-

metric regression features conditional heteroskedasticity. The δ parameter plays a key role in our

simulation design. When δ = 0, g (·) = 0 identically, so the null hypothesis holds. When δ 6= 0,

we are under the alternative hypothesis and the magnitude of δ quantifies how far the alternative

deviates from the null. Below, we set δ = 0 for the size analysis, and set δ ∈ {0.1, 0.2, . . . , 1} to

trace out a test’s power curve. The sample size is set as n = 150, 250, or 500. The number of

Monte Carlo replications is 10,000.

We examine the finite-sample size and power properties of the proposed selective test at sig-

nificance level α = 5%. To implement the test, we choose the Lasso penalty parameters according

to Algorithm A in Appendix A.1, and then implement the test as described in Section 2.2. The

prior choice set M0 only contains the constant term, which is our recommended default choice.

For comparison, we also consider two other tests. The first is the non-selective test of Belloni,
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Chernozhukov, Chetverikov, and Kato (2015) and Li and Liao (2020), which rejects the null hy-

pothesis when T̂M exceeds the 1− α quantile of T̃ ∗M given data; recall the definitions in (2.7) and

(2.12). The second is the uncorrected selective test, which rejects the null hypothesis when the

selective test statistic T̂L exceeds the 1 − α quantile of T̃ ∗L ≡ T̃ ∗S |S=L given data (i.e., it does not

correct for the truncation effect). For simplicity, we refer to the three tests under consideration as

the selective, non-selective, and the uncorrected test, respectively.

We need a collection of basis functions to implement these tests. A natural choice is polyno-

mials. Clearly, “plain” polynomial terms of conditioning variables tend to be highly correlated in

a given sample. This may lead to numerical instability in the series estimation (e.g., the n−1P>P

matrix may not be inverted with enough numerical precision using commonly used software) es-

pecially when a large number of series terms are involved. Following prior work (see, e.g., Li,

Liao, and Quaedvlieg (2020)), we mitigate this numerical issue by using the Legendre polynomial.

Recall that the kth-order univariate Legendre polynomial is given by Lk (x) ≡ 1
2kk!

dk

dxk

(
x2 − 1

)k
,

and Lj (·) is orthogonal to Lk (·) under the Lebesgue measure on [−1, 1] for j 6= k.16 To set up the

series basis using Legendre polynomials, we first rescale the X1,t (resp. X2,t) conditioning variable

onto the [−1, 1] interval to obtain a transformed variable X̃1,t (resp. X̃2,t). The bivariate series

basis is then formed by collecting Lj(X̃1,t)Lk(X̃2,t) for all j, k ≥ 0.

It is worth clarifying that our econometric theory does not require the regressors in the series

estimation to be orthogonal. The construction above is not meant to achieve orthogonality among

regressors, either. Instead, we employ this construction only for the purpose of reducing their

empirical correlation so as to improve numerical stability in the practical implementation of series

regression (which would be a non-issue if the researcher had infinite numerical precision). To better

achieve this goal, a rule-of-thumb is to rescale Xj,t in a way such that the empirical distribution

of the transformed variable X̃j,t is “roughly” uniform on [−1, 1], so that we may better exploit the

orthogonality property of the Legendre polynomials. Our practical recommendation is to transform

Xj,t onto [0, 1] using its empirical cumulative distribution function, which may be calibrated using

any reasonable parameterization (e.g., the normal distribution), and then rescale it linearly onto

[−1, 1].

Finally, in order to examine how the finite-sample performance of the tests depends on the

pre-specified dictionaryM, we considerM = {Lj(x1)Lk(x2) : j, k ≥ 0, j + k ≤ p}) for p = 2, 4, 6,

and 8, so that the resulting dictionary contains m = 6, 15, 28, and 45 terms, respectively.

16The Legendre polynomials can also be computed recursively as L0 (x) = 1, L1 (x) = x, and Lk (x) =
2k−1

k
xLk−1 (x)− k−1

k
Lk−2 (x) for k ≥ 2.
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4.2 Results

We start with discussing the results from the size analysis (i.e., δ = 0). Table 1 presents the finite-

sample rejection rates of the selective, non-selective, and uncorrected tests at the 5% significance

level under the null hypothesis. Since the results for the ρ = 0.5 and 0.8 cases are similar, we shall

focus our discussion on the former for brevity.

Panel A of Table 1 shows that the selective test controls size quite well. Specifically, we observe

that the test’s null rejection rates are generally very close to the 5% nominal level as long as the

sample size is not too small (i.e., n = 250 or 500), or the dictionaryM is not too large (i.e., m = 6

or 15). The only visible size distortion occurs when M contains “many” series terms and the

sample size is small (i.e., m = 45 and n = 150). That noted, this is actually a quite challenging

inferential scenario, because the number of candidate regressors is nearly one third of the sample

size. It is perhaps remarkable that the selective test over-rejects only by less than 4% even under

this “stress test.”

The results for the non-selective test, reported on Panel B, show a sharp contrast. First note

that the non-selective test also controls size well for smallM with m = 6, which is consistent with

the asymptotic theory of Belloni, Chernozhukov, Chetverikov, and Kato (2015) and Li and Liao

(2020). However, as m increases to 15, the non-selective test starts to show nontrivial over-rejection

(with 23.4% rejection rate) when n = 150. We clearly see that this is a small-sample phenomenon,

because the size-distortion shrinks quickly as we increase the sample size to n = 500. The over-

rejection becomes substantially more severe for largerM. Indeed, when m = 45, the non-selective

test almost always (mistakenly) rejects the null hypothesis when the sample size n = 150, and it

rejects more than 60% of the time even when n = 500.

The size distortion of the non-selective test is perhaps not surprising: Since it always employs

all approximating functions in M for the series estimation, the growing-dimensional asymptotics

may not provide an adequate finite-sample approximation when the dimension grows “too fast”

relative to the sample size. From this perspective, we see why the selective test may help mitigate

this issue, in that the Lasso-assisted selection removes most candidate approximating functions

(which are all irrelevant under the null hypothesis), and hence, substantially reduces the “effective

dimensionality” of the series inference.

This intuition can be further corroborated by the results shown on Panel C for the uncorrected

test. Since the uncorrected test is based on the same Lasso-assisted selection, it also benefits from

the aforementioned dimension-reduction effect. Looking at the m = 45 case in Panel C, we indeed

see that the size distortion of the uncorrected test is much smaller than that of the non-selective
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Table 1: Rejection Rates Under the Null Hypothesis

ρ = 0.5 ρ = 0.8

n = 150 n = 250 n = 500 n = 150 n = 250 n = 500

Panel A: Selective Test

m = 6 0.053 0.050 0.045 0.054 0.048 0.048

m = 15 0.059 0.045 0.043 0.057 0.051 0.048

m = 28 0.072 0.055 0.051 0.070 0.055 0.050

m = 45 0.088 0.066 0.053 0.078 0.063 0.053

Panel B: Non-selective Test

m = 6 0.061 0.053 0.050 0.062 0.057 0.046

m = 15 0.234 0.143 0.082 0.240 0.144 0.079

m = 28 0.712 0.482 0.268 0.720 0.492 0.267

m = 45 0.958 0.853 0.620 0.959 0.852 0.619

Panel C: Uncorrected (Selective) Test

m = 6 0.076 0.067 0.060 0.084 0.073 0.066

m = 15 0.143 0.120 0.109 0.148 0.132 0.114

m = 28 0.202 0.155 0.136 0.177 0.155 0.141

m = 45 0.214 0.177 0.155 0.197 0.169 0.145

Note: This table reports the rejection rates of the selective test, the non-selective test,

and the uncorrected selective test at the 5% significance level under the null hypothesis

(i.e., δ = 0). These results are generated for a variety of specifications under which the

autoregressive coefficient ρ ∈ {0.5, 0.8}, the number of candidate basis functions m ∈
{6, 15, 28, 45}, and sample size n ∈ {150, 250, 500}. The rejection rates are computed

based on 10,000 Monte Carlo replications.
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test. Nevertheless, the uncorrected test still over-rejects by a nontrivial amount, and hence, is

clearly inferior to the proposed selective test in terms of size control. Recall that the selective and

the uncorrected tests share the same test statistic T̂L and they differ only in the construction of

critical values. This comparison thus directly shows the necessity of accounting for the “truncation

effect” induced by the data-driven selection.

Overall, the size analysis shows that the proposed selective test has excellent size control, even

in adversarial situations with a small sample size and/or a large number of candidate approximating

functions. In contrast, the non-selective and the uncorrected tests are able to control size properly

only when m is relatively small, and may suffer from severe size distortions in general. The selective

test is clearly the most reliable method among the three.

Next, we compare the finite-sample powers of these tests. For brevity, we focus on the setting

with n = 500. Since the non-selective and uncorrected tests generally suffer from nontrivial size

distortions, directly comparing their power with that of the selective test is problematic, as the

most size-distorted test may (misleadingly) appear to be the most powerful. We thus instead

focus on the size-adjusted power. Figure 1 plots the size-adjusted power curves for the selective,

non-selective, and uncorrected tests for m = 6 or 45.17

Looking at Figure 1, we first note that the size-adjusted power curves of all three tests hit the

nominal size 0.05 at γ = 0 by construction and, as expected, their rejection rates are increasing in

δ; recall that δ quantifies the “distance” between the null and alternative hypotheses. From the

top row of the figure, we see that the proposed selective test and the uncorrected test have similar

power properties when m = 6, and they are more powerful than the benchmark non-selective test.

The latter finding is consistent with the intuition that the Lasso-assisted selection helps the tests

seek power in a targeted fashion.

The case with “many” series terms (i.e., m = 45) displayed on the bottom row of Figure 1

shows a more striking contrast. Indeed, the size-adjusted power of the proposed selective test is

far higher than that of the non-selective test, and the former also outperforms the uncorrected

test by a notable margin. These findings suggest that the non-selective and uncorrected tests not

only suffer from non-trivial size distortions as seen in Table 1, they also deliver worse trade-offs

between size and power than the proposed selective test, as measured by the size-adjusted power.

In summary, the simulation study above shows that the proposed selective test has excellent size

control across a broad range of scenarios, and is notably more powerful than the non-selective test.

These findings clearly demonstrate the usefulness of our proposal relative to that benchmark. We

17The cases with m = 15 or 28 are bracketed by these two “corner” cases with similar patterns, and so, are omitted

for brevity.
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Figure 1: Simulation Results: Size-adjusted Power Curves

Note: This figure plots the size-adjusted Monte Carlo rejection rates of the selective test (solid), the

non-selective test (dotted), and the uncorrected selective test (dashed) at the 5% significance level

(highlighted by the shaded area) over δ ∈ {0, 0.1, 0.2, . . . , 1}. Results for m = 6 (resp. m = 45) are

reported on the top (resp. bottom) row. Results for ρ = 0.5 (resp. ρ = 0.8) are reported on the

left (resp. right) column. The sample size is fixed at n = 500. The rejection rates are computed

based on 10,000 Monte Carlo replications.
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also see that the “naive” uncorrected selective test generally has nontrivial size distortion, which

confirms the necessity of adopting our novel critical value. Given these findings, we unambiguously

recommend the selective test for practical applications.18

5 Concluding remarks

Conditional moment restrictions may be tested by running a nonparametric series regression.

The guidance from the conventional theory is to search for power broadly by using a relatively

large number of approximating functions in the series estimation. The cost of doing so could

be concerning in practice: If some, even many, regressors are not important for capturing the

main features of the conditional expectation function, they may dilute power and, at the same

time, distort size. In view of the vast and burgeoning literature on machine-learning-based feature

selection, it appears rather natural to use this type of methods, such as Lasso, to select series terms

before running the nonparametric test. However, as this paper shows, the data-driven selection

itself may cause size distortion through restricting the score on a random polytope (which in turn

affects the score’s asymptotic normality). This take-home message complements in an interesting

way the “orthogonality-induced negligibility” phenomenon articulated by Belloni, Chernozhukov,

and Hansen (2014) in a distinct semiparametric context. Our proposed critical value is effective in

correcting for this effect. The resulting selective test exhibits improved size and power properties,

which is consistent with the theoretical intuition. In this paper, we have focused on the Lasso

method for feature selection. The underlying strategy may be applied more broadly to the other

variable-selection methods, provided that a tractable characterization of the selection event is

available. This seems to be an interesting topic for future research.

Appendix

A.1 Implementation Details

This section provides the additional details related to the implementation of the proposed selective

test, which include (i) the exact expressions of bS(s), b′l,S(s), b′u,S(s), AS , and A′S that are needed in

the definition of Π(S, s, λn); (ii) a feasible algorithm for determining the Lasso penalty parameters

in (2.8).

18The finite sample distributions of the number of series terms selected in the Lasso estimation are provided in

Section SC.1 of the online supplemental appendix.
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Requisite definitions related to the selection event. We provide the precise definitions of bS(s),

b′l,S(s), b′u,S(s), AS , and A′S for a given selection S satisfying M0 ⊆ S ⊆ M and a sign configu-

ration s ∈ {±1}|S\M0|. These quantities are used to define the polytope Π(S, s, λn) and its proxy

Π̂(S, s, λn). Let ωS\M0
and ωM\S denote the subvectors of ω ≡ (ωj)j∈Mc

0
indexed by S \M0 and

M\ S, respectively. For ease of notation, we write A+ ≡ (A>A)−1A> for any matrix A with full

column rank and adopt the convention that any matrix indexed by the empty set is empty. The

quantities of interest are defined as

bS(s) ≡ diag (s) (n−1P̃>S\M0
P̃S\M0

)−1diag
(
ωS\M0

)
s,

b′l,S(s) ≡ −ωM\S − P̃>M\S(P̃+
S\M0

)>diag
(
ωS\M0

)
s,

b′u,S(s) ≡ ωM\S − P̃>M\S(P̃+
S\M0

)>diag
(
ωS\M0

)
s,

AS ≡
(
(n−1P̃>S\M0

P̃S\M0
)−1,0|S\M0|×|M\S|

)(
−P>Mc

0
(P+
M0

)>, I|Mc
0|
)
,

A′S ≡
(
− P̃>M\S(P̃+

S\M0
)>, I|M\S|

)(
−P>Mc

0
(P+
M0

)>, I|Mc
0|
)
.

(A.1)

A data-driven choice of Lasso penalty parameters. We propose a feasible choice of the penalty

parameters λn and {ωj}j∈Mc
0

that are needed to implement the Lasso estimation in (2.8). We

also show that it satisfies the high-level Assumption 3, and hence, is coherent within our econo-

metric framework. This choice is used in our simulation study, and we recommend it for practical

applications. The algorithm is given below, followed by its theoretical justification.

Algorithm A (A Recommended Choice of Penalty Parameters)

Step 1. Run a preliminary Lasso estimation with the resulting coefficient given by

γ̂ ≡ argmin
γ∈Rm

1

2

n∑
t=1

(Yt − P (Xt)
>γ)2 +

√
n log(m) log(log(n))

∑
j∈Mc

0

|γj |

 .

Step 2. Set the weights in (2.8) as ωj = (|γ̂j |+ n−1/2)−1 for each j ∈Mc
0.

Step 3. Let kγ denote the cardinality of {j ∈ Mc
0 : γ̂j 6= 0} and σ2γ denote the sample variance of

Yt − P (Xt)
> γ̂. Set the penalty sequence in (2.8) as λn = σγ max{k1/2γ , 1} log(m) log(log(n)). �

Proposition A1. Suppose that Assumptions 1 and 2 hold, n−1
∑n

t=1 ε
2
t = σ2ε + op(1) for some

positive constant σ2ε , and

min
j∈R
|b∗n,j | � |R| log (n)n−1/2. (A.2)

Then the penalty parameters λn and (ωj)j∈Mc
0

described in Algorithm A satisfy Assumption 3 when

Yt = Yt(θ
∗). The same conclusion obtains for Yt = Yt(θ̂), if Assumption 4 also holds.

26



A.2 A pedagogical illustration for the selection effect

In subsection 2.2, we describe how the data-driven selection affects the subsequent inference. The

mechanism manifests as the restriction on the score vector n−1/2P>ε within the Π(S, s, λn) poly-

tope, and our proposed critical value adjusts for this truncation effect. That general discussion,

however, is somewhat abstract and notationally involved. To further clarify the main force at play,

in this subsection we complement the general discussion with a pedagogical example under which

the polytope has a simple form.

The setting is as follows. Suppose that Xt is scalar-valued, the dictionaryM contains only two

terms, the constant term and the linear term Xt, and the prior choice setM0 = {1}. This means,

the constant term is always included in the regression and Lasso determines whether the linear

term should be included or not. The specification of the post-selection regression is thus given by
Yt = a+ bXt + εt if L =M,

Yt = a+ εt if L =M0.

The (full) score vector is

n−1/2P>ε =

 n−1/2
∑n

t=1 εt

n−1/2
∑n

t=1Xtεt

 . (A.3)

The inferential analysis for the test concentrates on the null hypothesis, which under the current

setting corresponds to a = b = 0. Under the null, the collection of Π(S, s, λn) polytopes has the

following simple structure: with X̄ denoting the sample average n−1
∑n

t=1Xt, we have

Π(S, s, λn) =



{
(z1, z2) ∈ R2 : z2 > X̄z1 + n−1/2λn

}
, if S =M, s = +1,{

(z1, z2) ∈ R2 : z2 < X̄z1 − n−1/2λn
}
, if S =M, s = −1,{

(z1, z2) ∈ R2 :
∣∣z2 − X̄z1∣∣ ≤ n−1/2λn} if S =M0.

(A.4)

Geometrically, the first (resp. second) set corresponds to the half-plane above (resp. below) the

line with slope X̄ and intercept n−1/2λn (resp. −n−1/2λn). The third set corresponds to the

“stripe” between those two borderlines.

We then readily see how the selection step restricts the score vector. For brevity, we only

discuss the case with S =M and s = +1; that is, the Xt term is selected by Lasso with a positive

sign. Plugging (A.3) and (A.4) into (2.13), we may characterize this selection event explicitly as{
n−1/2

n∑
t=1

Xtεt > X̄

(
n−1/2

n∑
t=1

εt

)
+ n−1/2λn

}
, (A.5)
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Figure 2: Numerical Illustration: Effect of Truncation
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Note: This figure plots the distributions of the regression coefficients of Yt = a+bXt+εt. The data

is formed as a random sample with sample size n = 100 such that Xt ∼ N (1, 1) and εt ∼ N (0, 1).

The null hypothesis is imposed by setting a = b = 0. In the unrestricted case, the least-squares

estimation is done without selection. In the restricted case, the distribution is restricted to event

on which the Xt term is selected by Lasso with a positive sign. The Lasso penalty parameter is

λ = 10 and the ω weight is normalized to 1.

which shows that the score vector n−1/2P>ε = (n−1/2
∑n

t=1 εt, n
−1/2∑n

t=1Xtεt) is restricted by an

inequality constraint once the selection is made. Recall from the “textbook” regression theory that

the asymptotic normality of the least-square estimator for (a, b), denoted (â, b̂), is driven by the

asymptotic normality of the score vector n−1/2P>ε. But restricting its support via (A.5) clearly

will alter its distribution, which in turn will affect that of the least-square estimates. To visualize

this effect, we plot in Figure 2 the distributions of the least-square estimates of (a, b) with and

without the inequality restriction (A.5) computed in a numerical experiment. From the figure, we

see that the selection-induced restriction indeed “pushes” the finite-sample distribution of the least-

squares estimates notably away from the benchmark (unrestricted) normal distribution suggested

by the “textbook” theory. It is then intuitively clear that this effect will further contaminate the

distributions of “functional estimator” ĝ (x) = â + b̂x and the associated sup-t statistic, and so,

leads to size distortion.

The intuition gained from this pedagogical example alludes to a more general logic. Although

the population coefficients of all regressors are zero under the null hypothesis, Lasso in any given

finite sample may select a few regressors purely due to randomness. Including extra regressors in
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this manner is far from innocuous, because the regressors are selected precisely because they appear

(spuriously) important in the Lasso estimation. As such, they also tend to appear important in the

subsequent series estimation, and so, are likely to result in false rejections of the null hypothesis.

Put simply, the post-selection test might be systematically “fooled by randomness” in finite samples

due to this mechanism, whenever the theoretically optimistic “oracle” property is not actually in

force. It is worth clarifying that this concern does not apply to the familiar scenario in which an

empiricist a priori decides to include a few exogeneous control variables in the regression, say, based

on economic reasoning rather than statistical screening. The key lesson here is that the selection

step may make the originally exogeneous variables “effectively endogenous” by truncating the

support of the score. The conditional adjustment underlying our proposed critical value is exactly

designed to account for this truncation effect. This adjustment indeed provides excellent finite-

sample performance as we have shown in the more comprehensive numerical experiment presented

in Section 4.
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