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【要旨】 

This study investigates the causal effects of long-term PM2.5 exposure on COVID-19 deaths, fatality rates 

and cases in India by using an instrumental variables approach based on thermal inversion episodes. The 

estimation results indicate that a 1% increase in long-term exposure to PM2.5 leads to an increase in 

COVID-19 deaths by 5.7 percentage points and an increase in the COVID-19 fatality rate by 0.027 

percentage points, but this exposure is not necessarily correlated with COVID-19 cases. People with 

underlying health conditions such as respiratory illness caused by exposure to air pollution might have a 

higher risk of death following SARS-CoV-2 infection. This finding might also apply to other countries where 

high levels of air pollution are a critical issue in terms of development and public health. 
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Abstract  

This study investigates the causal effects of long-term PM2.5 exposure on COVID-19 deaths, 

fatality rates and cases in India by using an instrumental variables approach based on thermal 

inversion episodes. The estimation results indicate that a 1% increase in long-term exposure to 

PM2.5 leads to an increase in COVID-19 deaths by 5.7 percentage points and an increase in the 

COVID-19 fatality rate by 0.027 percentage points, but this exposure is not necessarily correlated 

with COVID-19 cases. People with underlying health conditions such as respiratory illness 

caused by exposure to air pollution might have a higher risk of death following SARS-CoV-2 

infection. This finding might also apply to other countries where high levels of air pollution are 

a critical issue in terms of development and public health. 
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The causal effects of long-term PM2.5 exposure on COVID-19 in India 

1. Introduction 

South Asia is at the epicenter of the global air pollution problem, which has become a 

silent killer in the contemporary world. About 91% of the population in this region lives in places 

where air quality fails to meet World Health Organization (WHO) guideline limits (WHO, 2005). 

Such contaminated air impairs the functions of the respiratory organs and can lead to lung cancer, 

obstructive pulmonary disease, and acute respiratory infections. Furthermore, ambient air 

pollution and household air pollution cause millions of deaths globally, including 4.2 million and 

2.8 million deaths, respectively, in 2015 (Cohen et al., 2017). India is no exception and has 

recorded one of the highest levels of air pollution over the past decade. In addition to the severe 

environmental contamination caused by air pollution, the ongoing COVID-19 pandemic has 

created a dire situation in the country, which has seen one of the largest losses of life in the world 

along with a record economic collapse, with a GDP growth rate between −9.6% and −10.3% 

according to October 2020 projections of the World Bank and International Monetary Fund. 

Although many scientific studies have confirmed the negative effects of air pollution on 

respiratory diseases, cardiovascular diseases, pregnancy outcomes, and neurocognitive diseases 

(e.g., Brook et al., 2004; Dominici et al., 2006; Puett et al., 2009; Wellenius, 2012; Di et al., 

2017), evidence on how air pollution impacts health outcomes, especially in developing 

countries, remains scarce and has focused mainly on the effects of household air pollution (Duflo 

et al., 2008; Hanna et al., 2016; Balietti and Datta, 2017; Kurata et al., 20204). Moreover, 

 

4 Kurata et al. (2020) simultaneously consider both ambient and indoor air pollution to investigate their effects on 

child health outcomes in Bangladesh. 
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evidence obtained using causal inference frameworks that link ambient air pollution exposure 

with COVID-19 is similarly scarce in both developed and developing country contexts; two such 

studies focused on the US and the Netherlands, which are moderately polluted countries (Austin 

et al., 2020; Cole et al., 2020). Given these gaps in the literature, our study examines the case of 

India, one of the most polluted countries in the world in terms of air pollution exposure and also 

one of the countries most severely affected by the COVID-19 pandemic, in order to investigate 

associations between pollution and COVID-19. Specifically, we estimate the connection of long-

term PM2.5 exposure with COVID-19 deaths, fatality rates, and cases in India at the district level 

by using an instrumental variables (IV) approach based on thermal inversion episodes to 

represent exogenous variations in the level of PM2.5. Thermal inversions are a meteorological 

phenomenon that worsens air quality levels. Exploiting long-term thermal inversion variations 

across districts in India, we find that those districts most severely affected by long-term exposure 

to PM2.5 have an increase in COVID-19 deaths by 5.7 percentage points and an increase in the 

fatality rate by 0.027 percentage points, but this exposure is not necessarily correlated with 

COVID-19 cases. People with underlying health conditions such as respiratory illness caused by 

exposure to air pollution might have a higher risk of death following SARS-CoV-2 infection. 

Our findings might also apply to other countries where high levels of air pollution are a critical 

issue in terms of development and public health. 

This paper contributes to the literature in the following ways. First, building on the first 

correlation study by Wu et al. (2020), this paper provides the first causal evidence in the context 

of a developing country where air pollution is a critical development and public health issue, 

linking exposure to air pollution with COVID-19 deaths, and the fatality rate, and cases. In the 

recent literature, (i) preliminary findings are based mostly on correlations, (ii) there are few 

investigations employing causal inference frameworks in either developed or developing country 
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contexts, and (iii) causal inference studies have focused on only moderately polluted countries, 

such as the US and the Netherlands (Austin et al., 2020; Cole et al., 2020). Second, this paper 

examines the case of India to add to the body of evidence on long-term exposure to PM2.5 in 

order to demonstrate external validity. The critical hypothesis behind this is that underlying 

health conditions such as respiratory illness caused by exposure to air pollution may increase the 

risk of death following SARS-CoV-2 infection. To test this hypothesis, it would be reasonable 

to use long-term exposure data, given that short-term exposure to air pollution does not 

immediately cause health disorders; put simply, accumulated exposure matters. The use of long-

term PM2.5 data would also be valid, particularly in the case of India, given that the mobility of 

people there is exceptionally low; for example, the urban-rural migration rate for working-age 

men between the ages of 25 and 49 years ranged from 4% to 5.4% in the period 1961–2001 

(Munshi and Rosenzweig, 2016). This rate is critical for employing reduced-form econometric 

identification as our empirical strategy, which is an approach that depends on the reduced form 

regression model to regress COVID-19 indicators on the long-term lagged PM2.5 data. 

The remainder of the paper is structured as follows. Section 2 describes the data and 

methodology used. Section 3 discusses the main findings from the estimation results and the 

potential mechanisms. Section 4 concludes the paper and suggests future areas of research. 

2. Background 

 This section provides background on air pollution in India (Section 2.1), the 

meteorological phenomenon known as thermal inversion that we rely on for identification in this 

study (Section 2.2), the COVID-19 pandemic in India (Section 2.3), and emerging studies linking 

COVID-19 cases, deaths, and fatality rates to air pollution exposure (Section 2.4). 
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2.1. Air pollution in India 

India has recorded one of the world’s highest levels of air pollution over the past decade. 

India State-Level Disease Burden Initiative Child Mortality Collaborators (2020) suggest that 

air pollution contributes to 8.8% of the total deaths in India each year. Air pollution is also 

identified as one of the most severe risk factors for public health in India (ICMR et al., 2017). 

Around 1.04 million premature deaths and 31.4 million disability-adjusted life years (DALYs) 

are estimated to be attributable to household air pollution, whereas 627,000 premature deaths 

and nearly 17.8 million DALYs are attributable to ambient air pollution in the form of PM2.5 

(Balakrishnan et al., 2014). PM exposure levels in India are more than five times higher than 

those in the US (Greenstone and Hanna, 2014). Air pollution is not limited to urban areas but 

also affects rural areas owing to agricultural practices such as crop burning, emissions from 

heavy application of fertilizers, and biomass burning for indoor cooking.  

A multiplicity of sources and geographical source regions, modes of exposure, and a 

range of impacts all add to the complexity of the air pollution problem in South Asia. 

Topographic characteristics also influence the spatial variations of air pollution. For example, 

air pollution can become trapped and stagnate relatively close to the ground across the Indo-

Gangetic Plain owing to India’s hilly and land-locked topography.  

2.2. Thermal inversion 

Thermal inversion is a meteorological phenomenon that occurs when a layer of warm 

air passes between two layers of cold air. The warm air traps the bottom layer of cold air, causing 

pollutants and particulates to concentrate near the Earth’s surface (e.g., Jacobson, 2002). To date, 

few studies have used thermal inversion as an investigative tool. Some studies have proposed 
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using thermal inversion conditional on weather-related variables for the instrument of air 

pollution. In the economics literature, Knittel et al. (2016) is one of the first studies to mention 

the relationship between thermal inversion and air pollution level, and Arceo-Gomez et al. (2016) 

use thermal inversion as an instrument for the concentration of air pollution.5 Thermal inversions 

result from the combination of atmospheric forces and topographic characteristics. By 

controlling for their effects, thermal inversions can be considered exogenous phenomena that are 

suitable instruments for air pollution levels. That is, thermal inversions are highly correlated with 

levels of PM2.5, affect outcome variables only through their effects on the level of PM2.5 (in our 

case, COVID-19 indicators), and do not correlate with other omitted variables. 

2.3. COVID-19 in India 

Even as the rest of the world was beginning to feel the impact of the COVID-19 

pandemic, few cases were observed in India until March 2020. The government was successful 

in keeping the virus out of the country by restricting international travel and isolating individual 

cases. Although this enabled India to buy some time and build the necessary internal response 

capacity, it soon became apparent that the challenges involved in preventing domestic 

transmission would be enormous. India has some of the largest population clusters in the world, 

making it an ideal breeding ground for a contagion, especially among the those most vulnerable, 

including slum dwellers and migrant workers.  

 

5 See also Jans et al. (2018), Sager (2019), Cui et al. (2019), Molina (2020), and Tsaneva and Balakrishnan (2020). 

As an alternative instrument, Deryugina et al. (2019) propose the use of changes in local wind direction to develop 

a new approach that uses machine learning techniques to estimate life-years lost due to air pollution exposure. 
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According to the Ministry of Health and Family Welfare, as of November 20, 2020, 

India had a total of 8,383,602 COVID-19 cases and 131,578 deaths, in line with the cumulative 

numbers reported by the COVID-19 India Dashboard (8,999,049 cases and 132,133 deaths). As 

of November 2020, the number of positive cases ranked second in the world according to Johns 

Hopkins University, despite the Indian government’s relatively early decision to implement a 

nationwide lockdown of its 1.3 billion people at midnight on March 24, 2020, when the total 

reported cases had reached 568. Overcrowded cities and homes in the country are likely to have 

facilitated the spread of the virus. Governments debated how to balance saving lives with 

preserving livelihoods, concluding to ease lockdown restrictions in favor of returning people to 

work, which naturally led to a rapid increase in the number of positive cases and deaths. In 

addition, the relaxation of other restrictions also led to massive spikes in the number of cases 

across India. A sustained exponential increase in the number of positive cases continued until 

the end of September 2020, after which the curve mostly flattened (Appendix Figure 1). 

Initially, cases and fatalities were observed mostly in urban centers such as Mumbai and 

Delhi, but subsequently became more prevalent across the entire country. Part of the massive 

spread of the contagion is attributable to the lockdown, which triggered a humanitarian crisis of 

unprecedented proportions. Fearing for their own survival, millions of migrant workers fled the 

city because of income loss, hunger, destitution, persecution from authorities policing 

containment, and fear of communities not maintaining social distancing (Sengupta and Jha, 

2020). As they made their long trek home, the migrants carried the virus with them to rural areas. 

Lee et al. (2020) suggest that the initial wave of COVID-19 cases in India, Pakistan, and 

Bangladesh could be explained more readily by the mass migration from city centers to 

hometowns and rural areas driven by sudden job losses and the anticipation of India’s lockdown 

restrictions. 
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2.4. Emerging studies linking COVID-19 to air pollution exposure 

Evidence suggests that older adults, particularly those with severe underlying health 

conditions, might be at higher risk of severe COVID-19-related symptoms and death compared 

with younger people. According to medical data from China, approximately 80% of COVID-19 

deaths occurred among adults over the age of 60 years, whereas only one (0.1%) death occurred 

in someone under the age of 19 years (CDC, 2020). However, there is still limited information 

regarding the risk factors for COVID-19 backed by scientific evidence, although many studies 

already underway are investigating these confounding factors. Among the various potential 

COVID-19 risk factors, medical specialists and researchers are focusing initially on respiratory 

ailments such as asthma and chronic lung disease. This is because, among those first hospitalized 

with COVID-19, the most frequently encountered complications were pneumonia, sepsis, 

respiratory failure, and acute respiratory distress syndrome. Various other risk factors for 

COVID-19 have since been identified, most of which remain under investigation.6 The US 

Centers for Disease Control and Prevention (CDC) has published several potential risk factors 

in order to raise awareness and encourage precautionary behaviors. These underlying ailments 

include chronic lung disease, asthma, diabetes, and severe heart conditions.7  

 

6 In addition to well-known breathing problems, blood clots pose a significant danger for COVID-19 patients. Clots 

cause patients with COVID-19 to have heart attacks and strokes, form rashes on their skin, and develop red, 

swollen wounds that resemble frostbite on their fingers and toes (Jose and Manuel, 2020). 

7 The CDC also lists chronic kidney disease being treated with dialysis, severe obesity, age 65 years and older, 

living in a nursing home or long-term care facility, immunocompromised, and liver disease as underlying health 

conditions. For details, please see the following CDC webpage retrieved on April 27, 2020 

(https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/groups-at-higher-risk.html). 
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One of the first quantitative investigations into the role of pollution in this context comes 

from a correlation analysis in the US by Wu et al. (2020).8 Surprisingly, their results indicate 

that only a 1-μg/m³ increase in PM2.5 is associated with an 8% increase in the COVID-19 fatality 

rate. Their results were statistically significant and robust to secondary and sensitivity analyses. 

Although representing the first evidence establishing a link between air pollution and COVID-

19 mortality, their study has potential estimation bias derived from endogeneity and omitted 

variables. Air pollution likely plays an important role, but it might be through a different 

mechanism, which could have very different policy implications. Likewise, most other studies 

focus on moderately polluted countries, such as the US, Netherland, Italy, Spain, France, and 

Germany (Andree, 2020; Conticini et al., 2020; Travaglio et al., 2020; Wu et al., 2020), and 

suggest a positive relationship between the air pollution and COVID-19. Given this gap, Yamada 

et al. (2020) examine the case of India, which is one of the most polluted countries in terms of 

ambient air pollution and household air pollution, and use district-level data to investigate links 

with the COVID-19 fatality rate. The results suggest a positive and statistically significant 

association between exposure to household air pollution and the COVID-19 fatality rate. 

However, the authors consider the estimation results as still premature, constrained by data 

availability and possible estimation bias. Although the above-mentioned studies are useful as 

preliminary estimates, they warrant more convincing and rigorous analysis beyond mere 

correlation. Unlike other studies, Austin et al. (2020) use wind direction as an instrument for 

PM2.5 in order to establish causality, whereas Cole et al. (2020) use the long lag of air pollution 

 

8 Ogen (2020) suggests a link between COVID-19 deaths and nitrogen dioxide (NO2) levels, but that study does 

not control for any confounding factors.  
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and commuting times as their instruments. Although the validity of the instruments using long 

lag of air pollution and commuting times needs to be further clarified in terms of exclusion 

restrictions (e.g., longer commuting times may be correlated with the increase in number of 

COVID-19 infections), the wind direction instrument as employed by Deryugina et al. (2019) is 

promising. 

3. Empirical strategy 

3.1. Data 

Table 1 presents the summary statistics for our sample. The details of each variable are 

described below. PM2.5 and all other climate variables use the values at the geographical centroid 

of each district to reflect the representative value.  

COVID-19 

We compile the COVID-19 data as of November 1, 2020, including the number of cases 

and deaths by district based on the COVID-19 India Dashboard, a website that tracks the spread 

of COVID-19 in India. The COVID-19 India Dashboard collects data from multiple sources, 

including CSSE at Johns Hopkins University, Covid-19-India, reliable news sources, and 

government press releases.9 We rely on this because the Ministry of Health and Family Welfare 

does not make public its district-level COVID-19 data. The data from the Dashboard and the 

Ministry are in close agreement, at least in terms of state-level COVID-19 indicators, with a 

correlation of 0.9993 for cases and 1.0 for deaths. A sustained exponential increase in the number 

 

9  Please see further details at the COVID-19 India Dashboard website 

(https://hisham2k9.pythonanywhere.com/aboutview). 
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of positive cases was observed until the end of September 2020. However, the curve has been 

mostly flat since then (Appendix Figure 1). All but three districts have had at least 1 case and 46 

districts have not had any fatalities. 

Although we use the best available COVID-19 data from India, there are ongoing 

discussions about their reliability. Some experts claim that the number of deaths is underreported, 

casting doubt on the strikingly low fatality rate (about 1.5 as of November 2020). Those experts 

suggest the following factors as contributing to the underreporting of the real number of COVID-

19 deaths: fear of reporting, lack of timely access to health facilities, and cultural or religious 

cremation practices that limit the time available to perform autopsies for determining the cause 

of death. In contrast, others explain that India’s low fatality rate is accurate, reflecting the reality 

of India’s relatively young population. Still others (e.g., Philip et al., 2020) argue that India’s 

fatality rate is, if anything, too high, and predict that India’s fatality rate is actually much lower 

than that reported by the government.  

PM2.5 

We use the mean value of PM2.5 in each district from 2007 to 2016 to represent long-term 

exposure. The estimated PM2.5 data is based on high-resolution satellite images captured by the 

Global Annual PM2.5 Grids of MODIS, MISR, and the SeaWiFS Aerosol Optical Depth with 

GWR, v1 (1998–2016), which detail the annual concentrations (micrograms per cubic meter) of 

ground-level PM2.5 with dust and sea salt removed. The resolution is per 0.01-degree grid cells 

(about 1 km2). The simple two-way scatter plots show the positive correlations of the mean PM2.5 

from 2007 to 2016 with COVID-19 (Appendix Figure 2). 

Thermal inversions 

 We generate data on thermal inversions by using the temperature data of the two 

different layers at 1000 hPa and 925 hPa (about 100 m and 750 m above sea level, respectively) 
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from the NCEP/NCAR dataset, which has a resolution of 2.5° × 2.5° (roughly 250 × 250 km)10. 

These two pressure levels are the closest to the ground available in the NCEP/NCAR dataset. 

Thermal inversions occur when a layer of warm air passes between two layers of cold air. To 

derive the instrument for long-term exposure to PM2.5, we first calculate the mean temperature 

of each pressure level for the 10 years from 2006 to 2017 by district. Then, we identify thermal 

inversions when the temperature difference D is negative by using the following formula: D = 

(temperature at 1000 hPa) – (temperature at 925 hPa). Here, we use the temperature data at 

midnight (00:00) in line with previous studies (Jans et al., 2018; Molina, 2020; Tsaneva and 

Balakrishnan, 2020) in order to hold the exogeneity because daytime temperatures are deemed 

to be more susceptible to economic activities. 

Control variables 

As additional controls, we use wind velocity, humidity, precipitation, temperature, 

humidity squared, and temperature squared in order to mitigate concerns about the exclusion 

restrictions of the IV approach given that they could potentially affect the occurrence of thermal 

inversions. The quadratic terms of humidity and temperature consider the potential nonlinearity 

between COVID-19 and explanatory variables. In each variable, we use either daily or monthly 

mean values to compute the mean yearly values of 2007–2016. 

Wind velocity data are from ERA5, the fifth-generation ECMWF reanalysis dataset on 

global climate and weather for the past 4 to 7 decades. The data values show the wind velocity 

at a height of 10 m above the surface of the Earth with a resolution 0.5° × 0.5°. Humidity data 

 

10 The use of NCEP/NCAR data is supported by past literature to provide consistent best-estimate of weather at 

grid-level (e.g., Garg et al. 2018; Hansen-Leiws, 2018; Tsaneva and Balakrishnan, 2020). With the resolution of 

NCEP/NCAR at 2.5°×2.5°, the variation is deemed to be large enough to use it as the instrument for PM2.5.  
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are from the NCEP/NCAR dataset Reanalysis 1: Surface, which is a grid-level dataset from near 

the surface level (0.995 sigma level) with a resolution 2.5° × 2.5°. Precipitation and temperature 

data are from the Terrestrial Air Temperature and Terrestrial Precipitation of Version 5.01 

Gridded Monthly Time Series 1900–2017; both of these datasets are interpolated and 

documented by Kenji Matsuura and Cort J. Willmott from the University of Delaware (e.g., 

Willmott and Matsuura, 1995). The monthly averages of station temperature (degrees) and 

precipitation (mm) are interpolated to a latitude/longitude grid with a resolution of 0.5° × 0.5°. 

Table 1: Summary statistics 

  
Obs Mean 

Std. 

Dev. Min Max 

Fatality rate from COVID-19 636 0.01 0.01 0 0.06 

Number of deaths from COVID-19 per km2 639 0.30 5.38 0 133.96 

Number of cases from COVID-19 per km2 639 11.80 141.96 0 3354.86 

PM2.5, 2007–2016 (average, μg/m³) 640 40.51 20.52 2.8 100.6 

Thermal inversion dummy, 2007–2016 (average) 640 0.11 0.31 0 1 

Wind velocity, 2007–2016 (average, meter per 

second) 640 2.52 0.62 1.43 5.61 

Humidity, 2007–2016 (average, %) 640 62.11 13.32 29.32 90.16 

Precipitation, 2007–2016 (monthly average, mm)  637 112.76 60.18 9.1 381.4 

Temperature, 2007–2016 (monthly average, 

degree) 637 24.39 4.52 -3.1 29.2 

Humidity2, 2007–2016 (average, %) 640 4655.03 1680.85 986.68 8738.33 

Temperature2, 2007–2016 (monthly average, 

degree) 640 617.98 260.16 0.33 983.70 
Source: COVID-19 India Dashboard, NASA, NCEP/NCAR, ERA5, NCEP/NCAR Reanalysis 1: Surface, 
Terrestrial Air Temperature and Terrestrial Precipitation of Version 5.01 

Note: COVID-19 indicators are as of November 11, 2020. 

3.2. Methods 
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We conducted our analysis at the district level, using the 640 administrative districts 

surveyed in the 2011 Census of India. An econometric analysis employing concentration of 

PM2.5 as a primary regressor is limited for multiple reasons: (i) the non-random spatial and inter-

temporal variations of PM2.5; (ii) endogeneity, such as individuals and households living in areas 

with cleaner air possibly having different unobservable socio-economic characteristics compared 

with their counterparts living in more polluted areas; and (iii) measurement errors such as 

ambient particles captured by satellite images and air pollution observation stations. To address 

these issues, we use the following two-stage identification formula.  

COVIDௗ௧ = 𝑎 + 𝑏𝑃𝑀ଶ.ହௗ்
+ 𝑑𝜎ௗ் + 𝑓௦ + 𝜇ௗ் 

𝑃𝑀ଶ.ହௗ்
= 𝑒 + 𝑓𝐼𝑁𝑉𝐸𝑅𝑆𝐼𝑂𝑁ௗ் + 𝑓௦ + 𝜑ௗ் 

Here, COVIDௗ௧  is the number of COVID-19 cases or deaths in district d at time t (as of 

November 1, 2020); 𝑃𝑀ଶ.ହௗ்
 is the mean exposure level to PM2.5 during time period T (2007–

2016); 𝜎ௗ்  is a vector of district-specific climate indicators, including temperature, 

temperature2, precipitation, wind velocity, humidity, and humidity2; 𝑓௦ is state-fixed effects to 

control for the time-invariant state-level heterogeneity such as state-level containment policies 

against COVID-19; and 𝜇ௗ் (𝜑ௗ்  in the first stage) is the error term. This identification strategy 

relies on the spatial variation of PM2.5 across districts, which are not fully controlled by state 

fixed effects (see Appendix Table 1). For the instrument of PM2.5, we use the inversion dummy, 

𝐼𝑁𝑉𝐸𝑅𝑆𝐼𝑂𝑁ௗ். Importantly, we build the inversion data using the values at midnight in order 

to hold the exogeneity given that inversion episodes based on daytime temperatures are 

susceptible to economic activities. The weather-related controls are also important to assure that 

the exclusion restriction holds, given that the weather controls may independently affect health 

outcomes, such as the link between temperature and mortality (Deschenes and Greenstone, 2011). 
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4. Results and discussion 

4.1. Estimating the causal effects of long-term PM2.5 exposure on COVID-19 

Table 3 presents the relationship between long-term PM2.5 exposure and COVID-19 

based on an IV approach. As previously discussed, we use the IV approach to mitigate the 

estimation biases from endogeneity and measurement errors. The first-stage estimation results 

show a strong link between the thermal inversion instrument and the levels of PM2.5 in Table 2. 

Also, based on the conventional threshold for the weak instrument test formalized by Staiger and 

Stock (1997), the Kleibergen-Paap (2006) rk statistic has sufficient values across all the 

specifications in Table 3.  

 

Table 2: First-stage estimation results 

  (1) (2) (3) 

  Mean PM2.5, 2007–2016 (log) 

        

Mean thermal inversions dummy, 2007–2016 0.378*** 0.223*** 0.144*** 

  (0.0426) (0.0415) (0.0335) 

Controls   √ √ 

State fixed effects     √ 

Observations 640 637 637 

R-squared 0.078 0.586 0.766 

Source: NASA, NCEP/NCAR, ERA5, NCEP/NCAR Reanalysis 1: Surface, Terrestrial Air Temperature and 
Terrestrial Precipitation of Version 5.01 
Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses. Estimations are based on a robust 
variance estimator.  
 

  

As shown in columns 1 to 6 in Table 3, exposure to PM2.5 is positively correlated with 

COVID-19 deaths, the fatality rate and cases. The statistical relationships are robust for deaths 
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and the fatality rate at the 1% significance level (columns 1 to 4), but COVID-19 cases are not 

necessarily significant (columns 5 and 6). Variations in the levels of PM2.5 could be proxied in 

part by state fixed effects. However, the results in columns 2, 4, and 6, which reflect the added 

state fixed effects and controls, do not reveal any significant change in magnitude and p-values 

from the results without state fixed effects in columns 1, 3, and 5.  

In India, the estimation results indicated that a 1% increase in long-term exposure to 

PM2.5 leads to an increase in COVID-19 deaths by 5.7 percentage points (column 2) and an 

increase in the COVID-19 fatality rate by 0.027 percentage points (column 4), but this exposure 

is not necessarily correlated with COVID-19 cases (column 6). These results imply that people 

with underlying health disorders such as respiratory illness caused by exposure to air pollution 

might have a higher risk of death following SARS-CoV-2 infection. However, the increase in 

COVID-19 cases in India might also be explained more readily by other factors.11 

 

11 For example, Austin et al. (2020) show that recent PM2.5 levels are associated with the incidence of COVID-19 

in the US. Lee et al. (2020) suggest that the initial increase in cases in India, roughly by the second quarter of 2020, 

is partly explained by mass migration from city centers to hometowns and rural areas due to job losses and 

anticipation of lockdowns. 
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Table 3: Effects of exposure to PM2.5 on COVID-19 

 

  
(1) (2) (3) (4) (5) (6) 

  COVID-19 deaths COVID-19 fatality rate COVID-19 cases 

  IV/2SLS IV/2SLS IV/2SLS IV/2SLS IV/2SLS IV/2SLS 

              

Mean PM2.5, 2007–2016 (log) 4.350*** 5.710*** 0.0182*** 0.0267*** 0.871 1.258 

  (1.185) (1.771) (0.00659) (0.0102) (0.692) (1.035) 

Control variables √ √ √ √ √ √ 

State fixed effects   √   √   √ 

Kleibergen-Paap (2006) rk 

statistic 19.2 15.2 28.0 18.6 28.0 18.6 

Observations 593 593 635 635 635 635 

Source: COVID-19 India Dashboard, NASA, NCEP/NCAR, ERA5, NCEP/NCAR Reanalysis 1: Surface, Terrestrial Air Temperature and 
Terrestrial Precipitation of Version 5.01 
Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are shown in parentheses. Estimations are based on a robust variance estimator. 
“COVID-19 deaths” in columns 1 and 2 denotes the number of deaths from COVID-19 per km2 in the log term. “COVID-19 cases” in columns 
5 and 6 denotes the number of COVID-19 cases per km2 in the log term. 
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4.2. Robustness test: Exclusion of Delhi, Assam, and Goa 

To check the robustness of the estimation results shown in Table 3, we run the same 

specifications using the IV approach while excluding about 5%–10% of the observations, which 

include the three states with the largest number of attritions of COVID-19 cases (i.e., Delhi, 

Assam, and Goa). As shown in Appendix Table 2, those states have many cases that cannot be 

assigned to a specific district within the state. The estimation results are robust for columns 1 

and 2, which employ COVID-19 deaths and the fatality rate, respectively, as the dependent 

variable, but not for column 3, which uses COVID-19 cases as the outcome. Column 3 in Table 

4 shows that a 1% increase in long-term exposure to PM2.5 increases the number of COVID-19 

cases by 2.2 percentage points at the 10% significance level. Also, it is worth noting that all the 

results indicate larger coefficients of mean PM2.5 in 2007–2016 compared with that shown in 

Table 3, implying that the elasticity of COVID-19 to PM2.5 exposure in Delhi, Assam, and Goa 

is relatively small compared with other states.  

Table 4: Effects of exposure to PM2.5 on COVID-19, excluding Delhi, Assam and Goa 

  (1) (2) (3) 

  COVID-19 deaths 

COVID-19 fatality 

rate COVID-19 cases 

  IV/2SLS IV/2SLS IV/2SLS 

        

Mean PM2.5, 2007–2016 (log) 6.090*** 0.0379*** 2.203* 

  (1.784) (0.0129) (1.200) 

Control variables √ √ √ 

State fixed effects √ √ √ 

Excluding Delhi, Assam, and Goa √ √ √ 

Kleibergen-Paap (2006) rk 

statistic 15.6 14.0 14.0 
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Observations 563 597 597 

Source: COVID-19 India Dashboard, NASA, NCEP/NCAR, ERA5, NCEP/NCAR Reanalysis 1: Surface, 
Terrestrial Air Temperature and Terrestrial Precipitation of Version 5.01 
Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are shown in parentheses. Estimations are based on 
a robust variance estimator. “COVID-19 deaths” in columns 1 and 2 denotes the number of deaths from COVID-19 
per km2 in the log term. “COVID-19 cases” in columns 5 and 6 denotes the number of COVID-19 cases per km2 in 
the log term. 

4.3. Discussions of the mechanism: The link between exposure to PM2.5 and COVID-19 

Exposure to air pollution adversely affects one’s respiratory and cardiovascular systems. 

This impact could exacerbate the severity of COVID-19 symptoms and may increase the risk of 

fatality in COVID-19 patients. In the case of India, this possibility is based on long-term 

exposure to toxic PM2.5. It has been reported that the risk of severe COVID-19 increases with 

age (e.g., 8 out of 10 COVID-19 deaths reported in the US have been in adults aged 65 years and 

older, according to the CDC). As new studies emerge and our understanding progresses day by 

day, we are learning about other risk factors that might increase the severity of COVID-19. The 

CDC has suggested that adults of any age with the following conditions are at increased risk of 

severe COVID-19: chronic obstructive pulmonary disease (COPD), cancer, chronic kidney 

disease, and heart conditions, among others.12 Furthermore, the CDC has also noted that adults 

of any age with underlying conditions, such as asthma, cerebrovascular disease, and cystic 

fibrosis, might also be at increased risk for severe COVID-19.  

 

12  Based on information published on the CDC website, retrieved November 17, 2020 

(https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-

conditions.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fneed-

extra-precautions%2Fgroups-at-higher-risk.html). 
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Of these (possible) underlying conditions, we test the relationship between the level of 

PM2.5 and respiratory diseases, that is, the cases of COPD and asthma and their related deaths 

estimated from the Global Burden of Disease Study 1990–2016 by Salvi et al. (2018). COPD is 

a group of diseases that cause breathing-related issues along with symptoms such as frequent 

coughing or wheezing, shortness of breath, and difficulty in taking a deep breath. Similarly, 

asthma causes repeated wheezing episodes, breathlessness, chest tightness, and nighttime or 

early morning coughing. In the case of India, the two-way scatter plots in Figure 1 show strong 

positive correlations (ranging from 0.49 to 0.52) between the mean level of PM2.5 in 2007–2016 

and the incidence of COPD, asthma, and their related deaths for each state in India in 2016. The 

positive relationship between exposure to air pollution and onset of chronic respiratory disease 

is inconclusive (Shin et al., 2020), but this link would be plausible in many cases, as other studies 

have suggested (e.g., Andersen et al., 2012; Hendryx et al., 2019; Schraufnagel et al., 2019). This 

implies that exposure to PM2.5 might impair or worsen respiratory functions. Those who reside 

in areas with high levels of PM2.5 might have a higher risk of death following SARS-CoV-2 

infection, which is consistent with our estimation results (Table 3).
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Figure 1: Correlation between mean PM2.5 levels in 2007–2016 and respiratory diseases in each state in India in 2016 

       
Panel A: COPD cases                         Panel B: COPD deaths 

      
Panel C: Asthma cases                          Panel D: Asthma deaths 

Source: Author’s compilation based on data from NASA and the Global Burden of Disease Study 1990–2016 by Salvi et al. (2018). 
Note: COPD, asthma, and PM2.5 data are plotted as log values. COPD and asthma cases and deaths are shown in units of one thousand, and PM2.5 is shown in units of μg/mଷ. 
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The potential mechanism of the link between exposure to air pollution and incidence of 

COVID-19 remains to be clarified. Thus far, only a few studies have shown a positive causal 

link between these phenomena, in the Netherlands and the US (Austin et al., 2020; Cole et al., 

2020), where recorded air pollution levels are modest compared with those in India according to 

WHO standards. However, the number of fatalities is increasing worldwide. Austin et al. (2020) 

use wind direction as an instrument for PM2.5, whereas Cole et al. (2020) use the long lag of air 

pollution and commuting times as their instruments. The wind direction instrument has also been 

employed by Deryugina et al. (2019), but its validity would need to be clarified further in terms 

of exclusion restriction (e.g., longer commuting times might also be correlated with the increased 

number of COVID-19 infections). Even if the two studies by Austin et al. (2020) and Cole et al. 

(2020) are scientifically verified through a peer-review process, it would still be crucial to 

confirm their external validity and ascertain precisely why air pollution leads to an increase in 

the number of COVID-19 cases. For example, does a higher level of air pollution prolong the 

time the virus remains airborne, or are there any other mechanisms? This is an open policy 

question that should be addressed to save lives. At present, policies designed to limit the spread 

of COVID-19, including a phased approach of gradually increasing the capacity limit of 

restaurants and bars, rely on the assumption that COVID-19 is not airborne—that is, that 6 feet 

(~2 m) of social distancing would be sufficient to prevent transmission. The principal stance of 

the WHO is that COVID-19 is not airborne and is instead spread primarily from person to person 

through small droplets from the nose or mouth.13 These droplets are relatively heavy, do not 

 

13 According to the latest scientific brief by WHO (2020), (i) airborne transmission of SARS-CoV-2, the virus that 

causes COVID-19, can occur during medical procedures that generate aerosols; and (ii) the WHO, together with the 

scientific community, has been actively discussing and evaluating whether SARS-CoV-2 might also spread through 

aerosols in the absence of aerosol generating procedures in indoor settings with poor ventilation.  
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travel very far, and quickly fall to the ground. Future studies could examine this conventional 

wisdom to determine what additional measures to take to potentially mitigate the catastrophic 

damage from the ongoing crisis. 

5. Conclusion 

In addition to the severe environmental contamination caused by air pollution, the 

ongoing COVID-19 pandemic has created a dire situation in India, which has seen one of the 

largest losses of life worldwide along with a record economic collapse. Despite the urgent need 

to address issues related to development and public health, evidence on how ambient air pollution 

impacts health outcomes is still scarce, especially in developing countries. A few emerging 

causal studies linking air pollution exposure and COVID-19 have focused on only moderately 

polluted countries. Given these gaps, this study sought to investigate the causal effects of long-

term PM2.5 exposure on COVID-19 cases, deaths, and fatality rates in India by using an IV 

approach based on thermal inversion episodes. 

The estimation results indicate that a 1% increase in long-term exposure to PM2.5 leads 

to an increase in COVID-19 deaths by 5.7 percentage points and an increase in the COVID-19 

fatality rate by 0.027 percentage points, but this exposure is not necessarily correlated with 

COVID-19 cases. These results imply that people with underlying health conditions such as 

respiratory illness caused by exposure to air pollution might have a higher risk of death 

followingSARS-CoV-2 infection. The two-way scatter plots in Figure 1 show a strong positive 

correlation between the mean level of PM2.5 in 2007–2016 and the incidence of COPD and 

asthma and their related deaths in each state in India in 2016. Although the positive relationship 

between exposure to air pollution and onset of chronic respiratory disease is inconclusive (Shin 

et al., 2020), this link would be plausible in many cases, as other studies have suggested (e.g., 
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Andersen et al., 2012; Hendryx et al., 2019; Schraufnagel et al., 2019). This implies that exposure 

to PM2.5 might impair or worsen respiratory functions. Those who reside in areas with high levels 

of PM2.5 might have a risk of death following SARS-CoV-2 infection.  

These findings could have profound implications for governments as they decide 

whether to ease lockdowns and how to deal with the aftermath of the COVID-19 pandemic. A 

scientific consensus seems to be emerging that improving air quality may play an important role 

in overcoming or at least reducing the impacts of the pandemic. Although at an early stage, 

research implies that pollution must be limited as much as possible when lockdowns are lifted 

in order to minimize the impact of subsequent waves of infections. These emerging findings also 

afford us an opportunity to not only enforce existing air pollution regulations to protect human 

health (both during and after COVID-19), but also increase investments, implement policy 

reforms, and enhance institutional capacity to improve air quality management on a more urgent 

basis. Countries could promote cleaner fuels and adopt more environmentally friendly 

transportation and energy technologies. For example, India could prioritize air pollution and 

strengthen its capacity to manage air quality based on a broader state and multi-jurisdictional 

airshed approach. 
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Appendix 

Appendix Figure 1: Daily COVID-19 cases and deaths 

 

Source: COVID-19 India Dashboard 

Note: Ten-day moving average. The correlation between cases and deaths is 0.9439. 
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Appendix Figure 2: Correlations between COVID-19 indicators and mean PM2.5 from 2007 to 

2016 

  

Panel A: COVID-19 deaths per km2 (log)       Panel B: COVID-19 fatality rate 

 

Panel C: COVID-19 cases per km2 (log) 

Source: COVID-19 India Dashboard and NASA 
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Appendix Table 1: Summary statistics of mean PM2.5 from 2007 to 2016 by state/territory 

 

State/Territory Mean S.D. Min Max 

Delhi 94.3 2.8 89 97.3 
Uttar Pradesh 74.2 13.9 43.3 100.6 
Haryana 69.1 13.9 47.1 93.9 
Bihar 63.4 6.9 50 76.9 
Chandigarh 54.2 . 54.2 54.2 
Punjab 53.4 4.6 42.3 62.9 
Jharkhand 46.0 4.8 37.8 54.1 
West Bengal 45.4 5.6 36.2 55.6 
Tripura 40.6 5.3 35.3 47.1 
Madhya Pradesh 39.9 9.1 29.7 73.3 
Rajasthan 39.5 12.4 22.3 73.7 
Chhattisgarh 38.0 7.2 26.9 52.6 
Meghalaya 35.0 6.0 27.8 42.8 
Maharashtra 34.0 3.9 24.2 41.3 
Odisha 33.2 4.1 25.5 38.6 
Uttarakhand 32.9 15.8 15.3 58.2 
Assam 30.2 5.8 20.1 41.9 
Himachal Pradesh 28.6 12.1 10 42.9 
Gujarat 28.4 4.8 18.9 36.2 
Andhra Pradesh 27.6 2.5 23 32.8 
Dadra & Nagar Ha 26.3 . 26.3 26.3 
Jammu and Kashmir 25.5 8.5 2.8 38.8 
Daman & Diu 24.7 2.1 23.2 26.2 
Puducherry 24.2 4.8 18.6 29.4 
Mizoram 22.9 3.5 18.6 28.5 
Tamil Nadu 22.5 3.2 13.9 26.6 
Karnataka 22.4 3.7 16.7 30.4 
Goa 22.2 1.1 21.4 23 
Sikkim 21.5 5.3 13.8 25.3 
Manipur 20.9 2.3 17.4 25 
Nagaland 19.4 2.1 16.4 22 
Kerala 17.2 1.4 14.9 19.6 
Lakshadweep 13.8 . 13.8 13.8 
Arunachal Pradesh 12.8 3.7 6 18.7 
Andaman & Nicobar 8.8 4.4 4.1 12.8 

Source: NASA 
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Appendix Table 2: COVID-19 cases that cannot be assigned to specific districts in India 

Source: COVID-19 India Dashboard 

 

State / Territory Cases Deaths Note 

Delhi 391,582 6,561 Unknown 
Assam 94,863 245 Unknown 
Goa 37,389 417 Unknown 
Odisha 7,508 0 State Pool 
Andaman & Nicobar Islands 4,288 60 Unknown 
Andhra Pradesh 2,461 0 Other State 
Maharashtra 2,172 147 Other State 
Manipur 2,074 2 CAPF Personnel 
Sikkim 1,949 66 Unknown 
Tamil Nadu 1,907 2 Airport Quarantine 
Manipur 1,744 32 Unknown 
Telangana 496 1,311 Unknown 
Andhra Pradesh 434 0 Foreign Evacuees 
Tamil Nadu 428 0 Railway Quarantine 
Chhattisgarh 255 32 Other State 
Telangana 250 0 Other State 
Goa 200 1 Other State 
Rajasthan 189 39 Other State 
Gujarat 162 3 Other State 
Rajasthan 85 0 BSF Camp 
West Bengal 66 3 Other State 
Rajasthan 61 0 Evacuees 
Karnataka 36 3 Other State 
Telangana 33 0 Foreign Evacuees 
Assam 13 0 Airport Quarantine 
Rajasthan 2 0 Italians 
Assam 1 0 Other State 
Tamil Nadu 0 3 Other State 
Ladakh 0 2 Unknown 
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