
 

Institute for Economic Studies, Keio University 
 
 

Keio-IES Discussion Paper Series 
 

 

 

 
ジョブのローテーションと特化ー動学マッチングモデル分析ー 

 

栗野 盛光、黒川 義教 
 

2020 年 12 月 17 日 
DP2020-026 

https://ies.keio.ac.jp/publications/13627/ 
 
 
 
 

 
 
 
 

Institute for Economic Studies, Keio University 
2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan 

ies-office@adst.keio.ac.jp 
17 December, 2020 

 
 
 



ジョブのローテーションと特化ー動学マッチングモデル分析ー 

栗野 盛光、黒川 義教 

IES Keio DP2020-026 

2020 年 12 月 17 日 

JEL Classification: C78, P51 

キーワード: ジョブの割り当て; 世代間重複; ジョブローテーション; ジョブ特化 

 
【要旨】 

企業がジョブを労働者に割り当てる際にローテーションと特化のどちらが利潤上望ましいのか

という問いに答えるため、本研究は労働者とジョブをマッチさせる動学企業モデルを構築す

る。まず毎期全ての労働者が訓練中か訓練後という世代間重複のない基本モデルを作り、次に

毎期訓練中と訓練後の労働者が混在する世代間重複のあるモデルに拡張する。どちらのモデル

においても、ローテーションと特化の二つの形態のみが企業の利潤最大化から生じることを示

す。さらに、どちらが望ましいかは、将来のジョブの存続に関する不確実性や訓練コストの程

度に依存し、年功賃金の度合いが大きくなるほどローテーションが望ましくなる可能性が増え

ることも示す。 

 

 

栗野 盛光 

慶應義塾大学経済学部 

〒108-8345 

東京都港区三田2-15-45 

kurino@econ.keio.ac.jp 

 

黒川 義教 

筑波大学人文社会系 

〒305-8571 

茨城県つくば市天王台1-1-1 

kurokawa.yoshi.fw@u.tsukuba.ac.jp 

 

 

謝辞：Onur Kesten氏、宮川栄一氏、Suraj Prasad氏、日本経済学会の参加者からいただいたコ

メントに謝意を表したい。本研究は科学研究費基盤(C)（No.16K03547）及び科学研究費挑戦

的研究（開拓）（No.20K20279）の支援を得た。なお、本論文に残る全ての誤りは筆者に帰

するものである。 



Job rotation or specialization? A dynamic matching
model analysis ∗

Morimitsu Kurino† Yoshinori Kurokawa‡

December 17, 2020

Abstract

Which works better when making a job assignment in firms, rotation or specializa-
tion? To answer this question, we develop a dynamic firm model of matching workers
with indivisible jobs as in an overlapping generations (OLG) matching model à la Kurino
(2014). First, we build a simple benchmark model without OLG in which all workers are
either under-training or fully trained in each period, and then we show that either the
rotation or the specialization of jobs for a worker emerges from the firms’ profit maxi-
mization. We extend the benchmark model to the OLG model in which workers under-
and post-training coexist in each period. We show that the profit-maximizing allocation
is either a rotation or a specialization in this extended model as well. Hence, in both the
benchmark and the extended models, the rotation and specialization schemes are the
only variations that can be optimal in terms of profits. Moreover, the rotation scheme
is better when the training cost is smaller, the uncertainty about job continuation in
the future is larger, or the slope of seniority wages is larger.
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1 Introduction

It is often said that, under globalization, the era of the Japanese system of employment is
over and the Japanese system is now converging to the U.S. system of employment.1 The
Japanese employment system is supported by flexible job assignments, lifetime employment,
and seniority wages. The flexible job assignment is possible because firms rotate their workers
through a variety of jobs in the early stages of the workers’ careers. When sales of automobiles
decreased in the mid-1980s, for example, Nissan moved those workers in idle production lines
to other sections, such as sales, and thus maintained employment without firing its workers.
This is known as a typical example of Japanese lifetime employment that is supported
by flexible job assignment due to job rotation (Ito, 1992). On the other hand, the U.S.
employment system is supported by specialized job assignment, non-lifetime employment,
and non-seniority wages. In this system, the shutdown of production lines means firing
workers there, not moving them to other sections.

So is the era of the Japanese system really over? The answer, it seems, is no. As Iwai
(2014) points out, the 2001 data in Jacoby et al. (2005) show that to the question of “What
is important to you in your job? Share price or employees’ jobs?” most of the U.S. human
resource executives answered “share price” while the Japanese ones answered “employees’
jobs.” This is also implied by the fact that from the Lehman Shock (2008) to the trough of
the subsequent downturn, the increase in the unemployment rate was large in the U.S. but
small in Japan. As indicated by these observations, the Japanese system has not ended. Yet
why do we still observe both types of systems?

We start with an individual firm’s behavior of adjusting job assignments, including job
rotation and specialization, to maximize its profit. To discuss job rotation or specialization
adequately, we have to take into account the fact that jobs are indivisible in most cases, if not
all, and a worker can do one job. Specifically, we build a single-firm’s matching model with
overlapping generations (OLG) and analyze a problem of dynamically assigning different
jobs (indivisible goods) to workers for its profit maximization. In the model, one of the
characteristics of the job assignment is that in each period a worker can only do one job,
not multiple jobs. Thus, the firm faces an assignment problem of rotating workers through a
variety of jobs over time, or to keep assigning one specialized job to him. Since the firm incurs
a cost of training workers who do a new job, affecting the profit, the assignment problem
is not trivial. Job rotation enables workers to do a variety of jobs but needs more training
costs, whereas job specialization needs less training costs but does not enable workers to do

1For examples of this debate, see Katz and Darbishire (2000); Hansmann and Kraakman (2001); Jacoby
et al. (2005); Sako (2005); Kambayashi and Kato (2012).
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Table 1: Specialization and rotation when job B disappears

Specialization t = 1 t = 2
t = 3 Rotation t = 1 t = 2

t = 3
( no B ) (no B )

Worker 1 A A A Worker 1 A B A
Worker 2 B B ∅ Worker 2 B A A

Note: The left table shows the specialization scheme for job assignment for each worker where ∅ means that
worker 2 is not assigned any job. The right table shows the rotation scheme.

a variety of jobs.
We first introduce a simple finite-horizon model without OLG in which all workers are

either under- or post-training in each period. Then we show that the job-assignment scheme
that can result from a firm’s profit maximization is either the rotation scheme or the spe-
cialization scheme.

The essence of our model is as follows. Suppose that there are three periods and that a
firm has two types of jobs, job A and job B, and employs two workers, worker 1 and worker 2
(see Table 1). There is an uncertainty over whether job B might be discontinued in the third
period. Under the scheme of job specialization, in the first two periods job A is assigned
to worker 1 (A, A) while job B is given to worker 2 (B, B). Under the job rotation scheme,
on the other hand, job A and job B are alternately assigned to worker 1 (A, B) while job
B and job A are assigned to worker 2 (B, A). Both workers can thus handle job A and job
B in the third period. Here, we assume that any job needs training costs when a worker is
first assigned to it. Then, if job B is discontinued in the third period, under the scheme of
job specialization, the firm fires worker 2 who is specialized in job B, which corresponds to
the U.S. non-lifetime employment. Under the scheme of job rotation, however, the firm does
not have to fire either worker because both workers can handle job A due to job rotation,
which corresponds to the Japanese lifetime employment.

In this benchmark model, we compare the firm’s profits under all possible job allocations.
Then, we show that the rotation scheme and the specialization scheme are the only variations
that can be optimal in terms of profits, and we also show how selecting which scheme is better
depends on the uncertainty about job continuation in the future and the training costs. We
note that the larger the slope of seniority wages, or the lower the time discount rate, the
larger the possibility that the rotation scheme is better. Thus, this simple model provides
a unified explanation for the systems of employment in terms of (1) job assignment, (2)
lifetime employment, and (3) wages.

Based on the benchmark model, we introduce the OLG structure in which workers under-
and post-training coexist in each period. Then, we show that the profit-maximizing alloca-
tion is either a rotation or a specialization. We also show that the qualitative results are
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basically the same as in the benchmark model and are thus robust.
Thus, our paper makes the following contributions to the literature. The first is on the

job rotation literature. According to Campion et al. (1994), previous studies have provided
mainly two explanations for job rotation: the employee learning theory and the employee
motivation theory. These theories emphasize the effects of job rotation on employees’ actions.
The former argues that job rotation is beneficial because it fosters employee learning and
encourages human capital accumulation, while the latter argues that job rotation raises
the employees’ motivation and reduces their boredom. On the other hand, Ortega (2001)
proposes the firm learning theory that emphasizes the effects of job rotation on firm learning.
It argues that job rotation enables firms to learn effectively about their employees. Recently,
Brünner et al. (2019) introduced a model of an employee learning about his or her talents
in a labor market, and showed that competitive labor markets encourage experimentation
(corresponding to job rotation) in learning talents whereas monopsonistic labor markets
induce job specialization.2 In light of these studies, our paper now proposes an alternative
firm model to Ortega’s.

Second, our paper also makes a contribution to matching theory. Kurino (2014) was the
first to develop a dynamic matching model. His model, however, does not include pecuniary
transactions, and thus it is not appropriate as a firm model. In this line, our paper is the
first to introduce a dynamic matching model with pecuniary aspects to the literature.

Third, our paper also makes a contribution to the argument about the Japanese em-
ployment system vs. the U.S. employment system. The Japanese employment system is
characterized by job rotation, lifetime employment, and seniority wages, while the U.S. em-
ployment system is characterized by job specialization, non-lifetime employment, and non-
seniority wages. Carmichael and MacLeod (1993) relate job rotation (resp. specialization)
to lifetime employment (resp. non-lifetime employment). Their model shows that under the
rotation (resp. specialization) scheme, workers will cooperate (resp. will not cooperate) with
labor-saving technological change because they will not be fired (resp. will be fired). On the
basis of mutual complementarity, Aoki and Okuno (1996) provide a theoretical answer to the
essential question of why lifetime employment and seniority wages should come as a package,
as has been evident in Japan (Ito, 1992). We go further and develop a firm model of match-
ing workers with indivisible jobs that can provide a unified explanation for the Japanese and
U.S. employment systems in terms of all three characteristics: job rotation/specialization,
lifetime/non-lifetime employment, and seniority/non-seniority wages.3

2On a related note, Anderson (2012) constructs a model of a worker’s choice to be a specialist or generalist,
and shows that it is rational to be a generalist when there are barriers to working on problems in other
disciplines but problems are relatively simple.

3In the same spirit, Iwai (1999, 2014) provides a unified theory of the Japanese and U.S. corporation

4



The organization of this paper is as follows. In Section 2 we set up our benchmark model,
and then compare the firm’s profits under all possible job allocations. Section 3 incorporates
the OLG structure to the benchmark model. Section 4 concludes.

2 Benchmark: Finite-period Model

We first introduce a benchmark finite-horizon model without OLG in which all workers are
either under-training or are post-training in each period.

2.1 The model

There are three periods, t ∈ {1, 2, 3}. There is a firm that has two jobs, J ∈ {A,B}. The
firm hires two workers, i ∈ {1, 2}, and assigns each worker at most one job, i.e., job A, job
B, or neither.

We make the following assumptions.

Assumption 1. For a job J ∈ {A,B}, if it is the first time assigned to her, each worker

• needs to be trained for job J (on-the-job training) in period t ∈ {1, 2};

• cannot have any training at period t = 3. Thus, if she has had no experience in job J
in the past, she cannot be assigned job J in period 3.

Assumption 2. A job J ∈ {A,B} disappears with probability pJ . The probability that no job
disappears is 1−pA−pB. We assume that the two jobs are symmetric, that is, p := pA = pB.

Note that there is no chance that both jobs will disappear at the same time.4

Assumption 3. The firm pays w∗ to a worker under-training, and w to a worker post-
training. We assume w∗ < w.

We express an allocation by

x =

(
x1

x2

)
=

(
x11, x12 x13,pA x13,pB x13,1−pA−pB
x21 x22 x23,pA x23,pB x23,1−pA−pB

)
.

systems. Aoki and Okuno (1996) also provide a unified explanation for the Japanese and U.S. systems;
however, they do not involve job rotation vs. specialization.

4This implies that the event of one job loss is not independent of that of another job loss, making the job
assignment problem well-defined. Otherwise there would be no room for job assignments.

5



Here, for each i ∈ {1, 2} and each t ∈ {1, 2}, xit denotes the job assigned to worker i in
period t. On the other hand, xi3,pA (xi3,pB) is the job assigned to worker i in the event of job
A (job B) disappearing in period 3 with probability pA (pB), while xi3,1−pA−pB is the job to
worker i in the event of no job disappearing in period 3 with probability 1 − pA − pB. To
simplify the notation, we denote an allocation by, for example,

• The rotation scheme

xR1 =

(
A∗ B∗ B A A/B

B∗ A∗ B A B/A

)
or xR2 =

(
B∗ A∗ B A A/B

A∗ B∗ B A B/A

)

where A∗ (B∗) means that job A (B) is assigned to the corresponding worker for the first
time, and A/B means the assignment of either job A or job B.

• The specialization scheme:

xS1 =

(
A∗ A ∅ A A

B∗ B B ∅ B

)
or xS2 =

(
B∗ B B ∅ B

A∗ A ∅ A A

)

where ∅ means that no job is assigned.
We define the production function for each period. Let an allocation x be given. We

define x̄it,J as the contribution of worker i in period t with job J ∈ {A,B} to the production.
Any job needs training for its first assignment. We call it the worker i’s training period
for job J ∈ {A,B}. Regarding the training period, we make the following two assumptions.
First, period t = 3 cannot be any worker’s training period for each job. Second, in the
training period, the contribution is reduced. Formally, for each worker i ∈ {1, 2}, each
period t ∈ {1, 2, 3}, and each job J ∈ {A,B},

x̄it,J =


0 if xit 6= J,

λ if xit = J and t is agent i’s training period for job J,

1 if xii = J and t is not agent i’s training period for job J,

(1)

where 0 < λ < 1. The parameter λ indicates the training cost in terms of the labor
contribution to production. The larger λ is, the smaller the training cost is. Then, the
output, ft(x), produced by the firm is
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ft(x) =


(x̄1t,B + x̄2t,B)α if t = 3 and job A disappears,

(x̄1t,A + x̄2t,A)α if t = 3 and job B disappears,√
(x̄1t,A + x̄2t,A)(x̄1t,B + x̄2t,B) otherwise,

where 0 < α < 1. Note that x̄ is a function of x as we define it in (1). The production form
is different when one or two jobs are present. For example, when two trained workers are
assigned jobs, the output is 1 when both jobs are available; the output is 2α when only one
job is available. It is possible that 1 < 2α, which might seem odd at first sight. It is, however,
reasonable if we interpret this change in production form as the labor-saving technological
change (e.g., Carmichael and MacLeod, 1993).

Assumption 4 (No-free-disposal). 0 < 1− w < 2α − 2w.

Consider the case where in period 3 one job disappears and the other surviving job can
be done by both workers. This assumption says that the profit (2α − 2w) from employing
both workers is greater than the one (1 − w) from employing one worker, which is also
greater than the profit of zero. This is viewed as a no-free-disposal, since the firm does not
dispose of any trained worker for a surviving job. Note that this assumption does not impose
no-free-disposal of untrained workers for a surviving job.

2.2 Comparison in profits

We denote the discount factor by δ, 0 < δ < 1, and also the profit at an allocation x by
π(x). Then, we can calculate the profit for the rotation xR1 and the specialization xS1.

π(xR1) = [λ− 2w∗] + δ[λ− 2w∗]

+δ2[p · 2α + p · 2α + (1− 2p)− {p · 2w + p · 2w + (1− 2p) · 2w}],

π(xS1) = [λ− 2w∗] + δ[1− 2w]

+δ2[p+ p+ (1− 2p)− {p · w + p · w + (1− 2p) · 2w}].

Thus, we have the following proposition.

Proposition 1. For any parameters, α, δ, p, w, w∗, and λ, the profit-maximizing allocation
is either the rotation or the specialization. In particular, the profit-maximizing allocation is

1. the rotation if p > (1−λ)−2(w−w∗)
2δ(2α−1−w) ;
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k Allocation xk Profit π(x)
π(xk) is do-
-minated by

1
(
A∗ A ∅ A A
A∗ A ∅ A A

)
(0− 2w∗) + δ(0− 2w) + δ2[0 + 2αp

π(xR1)
+(1− 2p) · 0− {0 + p · 2w + (1− 2p) · 2w}]

2
(
A∗ A ∅ A A
A∗ B∗ B A B

)
(0− 2w∗) + δ[λ1/2 − w − w∗] + δ2[1 · p+ 2α · p

Not dominated
+(1− 2p)− {pw + p · 2w + (1− 2p) · 2w}]

3
(
A∗ B∗ B A A/B
A∗ B∗ B A B/A

)
(0− 2w∗) + δ(0− 2w∗) + δ2[2αp+ 2αp

π(xR1)
+(1− 2p)− {p · 2w + p · 2w + (1− 2p) · 2w}]

4
(
A∗ A ∅ A A
B∗ A∗ B A B

)
(λ− 2w∗) + δ[0− w − w∗] + δ2[p+ 2αp

π(xR1)
+(1− 2p)− {pw + p · 2w + (1− 2p) · 2w}]

5
(
A∗ B∗ B A A
B∗ B B ∅ B

)
(λ− 2w∗) + δ(0− w − w∗) + δ2[2αp+ p

π(xR1)
+(1− 2p)− {p · 2w + p · w + (1− 2p) · 2w}]

6
(
B∗ A∗ B A A/B
B∗ A∗ B A B/A

)
(0− 2w∗) + δ(0− 2w∗) + δ2[2αp+ 2αp

π(xR1)
+(1− 2p)− {p · 2w + p · 2w + (1− 2p) · 2w}]

7
(
B∗ A∗ B A A
B∗ B B ∅ B

)
(0− 2w∗) + δ(λ1/2 − w − w∗) + δ2[2αp+ p

Not dominated
+(1− 2p)− {p · 2w + p · w + (1− 2p) · 2w}]

8
(
B∗ B B ∅ B
B∗ B B ∅ B

)
(0− 2w∗) + δ(0− 2w) + δ2[2αp+ 0

π(xR1)
+(1− 2p) · 0− {p · 2w + 0 + (1− 2p) · 2w}]

Table 2: Profit calculations

2. the specialization if p < (1−λ)−2(w−w∗)
2δ(2α−1−w) ;

3. the rotation and the specialization if p = (1−λ)−2(w−w∗)
2δ(2α−1−w) .

The firm diversifies the risk of lower profits due to job loss. The proposition says that
there are two allocations for such risk diversification, rotation or specialization.

Proof. We have eight allocations, xk, k ∈ {1, . . . , 8}, in Table 2, to compare with the rotation
xR1 or the specialization xS1. The profits from each of these eight are calculated in Table 2.
Note that by symmetry, each of the other allocations is profit-equivalent with some of the
ten allocations—the above eight allocations, the rotation xR1, and the specialization xS1.

Claim 1. π(xR1) T π(xS1)⇔ p T (1−λ)−2(w−w∗)
2δ(2α−1−w) .

Since π(xR1)− π(xS1) = δ[(λ− 1)− 2(w∗ − w)] + δ2[2p(2α − 1)− 2pw],

π(xR1) T π(xS1)⇔ p T
(1− λ)− 2(w − w∗)

2δ(2α − 1− w)
, (2)

where the fraction is well defined as w < 2α − 1 by Assumption 4. This completes the proof
of Claim 1.
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Figure 1: Profit comparison in the graph (λ, p)

Note: The rotation region is when the profit from the rotation is larger, while the specialization region is
when the profit from the specialization is larger. The boundary is when the profits from the rotation and
the specialization are equal. The above blue arrow indicates that the boundary shifts to the origin as w∗ is
smaller, that is, w − w∗ is larger.

Claim 1 tells us the boundary of p regarding the profits of the rotation and the specializa-
tion. Moreover, we can show that when p > (1−λ)−2(w−w∗)

2δ(2α−1−w) , the rotation is profit maximizing,
i.e., for each k ∈ {1, . . . , 8}, π(xR1) > π(xk); when p < (1−λ)−2(w−w∗)

2δ(2α−1−w) , the specialization is
profit maximizing, i.e., for each k ∈ {1, . . . , 8}, π(xS1) > π(xk); and when p = (1−λ)−2(w−w∗)

2δ(2α−1−w) ,
the specialization and the rotation are profit maximizing. The verification is delegated to
Appendix A.

Here, it would be useful to do the comparative statics to see how the parameters affect
whether rotation or specialization is better in terms of profit. To this end, we identify
the regions of rotation and specialization in a (λ, p)-diagram given the other parameters
w,w∗, α, δ (Figure 1). Recall that λ are the training costs and p is the uncertainty about job
continuation. By (2), we have

p T
(1− λ)− 2(w − w∗)

2δ(2α − 1− w)
. (3)

The rotation region in Figure 1 is when the left-hand side of (3) is larger, i.e., the rotation is
better; the specialization region is when the right-hand side is larger, i.e., the specialization
is better. The boundary is when both sides are equal, i.e., the profit from the rotation is the
same as that from the specialization.
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Then, we have the following implications. First, the firm faces the risk of profit decline
from the job loss, and thus allocates jobs to diversify the risk. The specialization scheme
would be a simple solution to risk diversifications when the uncertainty of job loss (p) is low
and the training cost is high (λ is low). However, as the uncertainty is high or the training
cost is low (λ is high), the rotation turns to be the best risk diversification.

Second, suppose that w∗ (the wage during the training period) declines, that is, w − w∗

(the difference between wages under- and post-training) rises. Then, the rotation region
expands (see Figure 1). This is consistent with the Japanese practice of the seniority-
wage with the rotation. Finally, suppose that δ (the discount factor) or α (the technology
parameter of the production function when job A or B disappears) is larger. Then, the p-
intercept is smaller and the slope is also smaller. This means that for a small λ, the rotation
region expands; for a large λ the specialization region expands.

3 Infinite-period Overlapping Generations Model

Section 2 is about a finite-period model. In this section, we develop an infinite-period OLG
model.

3.1 The model

In our OLG model, time is discrete, starts at t = 1, and lasts forever. Each period t is
divided into two subperiods s ∈ {1, 2} (See Table 3). There is one firm who has two workers
in each period. In period t = 1, there is one worker, a0, called the initially old worker
who works only in period 1. In each period t ≥ 1, one worker, at, arrives at the firm and
works for two periods, t and t + 1. There are two jobs, A and B, initially available, one of
which might be lost with some probability as specified below. In each subperiod s ∈ {1, 2}
of period t, the firm uses two workers assigned to the available job(s) or nothing to produce
an output. Like in our benchmark model, we make the following assumptions.

Assumption 5. For a job J ∈ {A,B}, if it is the first subperiod assigned to her, each worker
at needs to get trained for job J (on-the-job training) in the subperiod and cannot have any
training at period t+ 1.

Assumption 6. Consider the beginning of each period t ≥ 1.

1. When the two jobs remain available, a job J ∈ {A,B} disappears with probability p.
The probability that no job will disappear is 1-2p. There is no chance that both jobs
will disappear at the same time.
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Table 3: OLG with two generations

t = 1 t = 2 t = 3 . . .
s = 1 s = 2 s = 1 s = 2 s = 1 s = 2

a0 A A
a1 B∗ B B B
a2 A∗ A A A
a3 B∗ B . . .
...

2. When only one of the two jobs, say J ∈ {A,B}, remains available, the job J will
remain available from the next period on.

In each period t, we have two kinds of states (ωOt , ω
A
t ):

• ωOt is the set of assignable jobs that the firm can assign to the old worker in period
t, based on her training in the previous period t− 1, due to Assumption 5. Note that
any ωOt contains ∅ meaning that the firm does not assign any job to the old worker.

• ωAt is the set of available jobs, ωA, due to Assumption 6.

For each period t ≥ 1, a period-t allocation is the one that assigns jobs to workers in
each of its subperiods. We denote it by

xt =

(
xt−1t,1 xt−1t,2

xtt,1 xtt,2

)
,

where xt−1t,s stands for a job assigned to the old worker in subperiod s = 1, 2, while xtt,s for
a job assigned to the young worker in subperiod s = 1, 2. Thus, the first row is for the old,
and the second row for the young; the first column is for the first subperiod, and the second
column for the second subperiod.

An allocation is a collection of period-t allocations xt. Like in the previous section, the
two types of allocations—a rotation and a specialization—will be important in our analysis.
An allocation x is called a rotation if for each t ≥1,

xt =

(
A B

B A

)
or

(
B A

A B

)
.

On the other hand, it is called a specialization if for each t ≥1,

xt =

(
A A

B B

)
or

(
B B

A A

)
.
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An allocation is history-dependent on the assignability and the availability of jobs which
we call states. Due to this history-dependence, the set of allocations is restricted. To make
the set non-trivial and as much unrestricted as possible, we make the following assumption.

Assumption 7. We assume that the initial state is ω1 = (ωO1 , ω
A
1 ) = ({∅, A,B}, {A,B}) in

period t = 1, that is, both jobs A and B can be done by the initially old worker, and are
available at t = 1.

Let us now discuss all of the possible states. First, consider the state of available
jobs, ωAt . Take a sequence of states of available jobs, ωA = (ωAt )∞t=1. Then there are
three possibilities: (1) ωA = ({A,B}, {A,B}, {A,B}, . . .), i.e., for each period jobs A
and B are available. (2) ωA = ({A,B}, . . . , {A,B}, {A}, {A}, {A}, . . .), i.e., for some pe-
riod t ≥ 2, job B disappears and after this only job A is available forever. (3) ωA =

({A,B}, . . . , {A,B}, {B}, {B}, {B}, . . .), i.e., for some period t ≥ 2, job A disappears and
after this only job B is available forever.

Second, consider the state of assignable jobs, ωOt . Take a sequence of assignable jobs,
ωO = (ωOt )∞t=1. For each t ≥ 2, the state depends on period t− 1 allocation as

ωOt = {xt−1t−1,1, x
t−1
t−1,2} ∪ {∅}. (4)

Note again that any ωOt contains ∅ – the possibility that the firm does not assign any job
to the old worker. Specifically, the following covers all possibilities.

ωOt =



{∅, A,B} if (xt−1t−1,1, x
t−1
t−1,2) = (A,B) or (B,A),

{∅, A} if (xt−1t−1,1, x
t−1
t−1,2) = (A, ∅), (∅, A), or (A,A),

{∅, B} if (xt−1t−1,1, x
t−1
t−1,2) = (B, ∅), (∅, B), or (B,B),

{∅} if (xt−1t−1,1, x
t−1
t−1,2) = (∅, ∅).

We will define the production function for each subperiod s of period t. To do so, given
an allocation x, we define x̄tτ,s,J as the contribution of worker at with job J ∈ {A,B} in
subperiod s ∈ {1, 2} of period τ ∈ {t, t + 1} to the production. Any job needs training
when the job is assigned for the first time to the young worker at. We call it the worker
at’s training subperiod. Moreover, the training costs to the firm is represented by the
following reduced contribution. Formally, for each worker at, each period τ ∈ {t, t+ 1}, each
subperiod s ∈ {1, 2}, and each job J ∈ {A,B},
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x̄tτ,s,J =



0 if xtτ,s 6= J,

λ if τ = t, xtt,s = J, and s is worker at’s training subperiod for job J,

1 if τ ∈ {t, t+ 1}, xtτ,s = J,

and s is not worker at’s training subperiod for job J,
where 0 < λ < 1. The first equality (x̄tτ,s,J = 0) means that a worker’s contribution to any
unassigned job is 0. The second and third equalities (x̄tτ,s,J = λ and x̄tτ,s,J = 1) mean that a
worker’s contribution to his assigned job for the first time when young is reduced to λ, while
the contribution post-training is 1 at the full level.

We turn to the production function of the firm. One constraint that the firm faces is the
availability of jobs due to Assumption 6. Like in the finite-period model, the output f(x;ωAt )

with available jobs ωAt is

f(x;ωAt ) =


(x̄t−1t,s,B + x̄tt,s,B)α if job A disappeared and thus ωAt = {B},

(x̄t−1t,s,A + x̄tt,s,A)α if job B disappeared and thus ωAt = {A},√
(x̄t−1t,s,A + x̄tt,s,A)(x̄t−1t,s,B + x̄tt,s,B) if no job disappeared and thus ωAt = {A,B},

where 0 < α < 1. Note that x̄ is a function of x. As shown in Table 3, for example,
in subperiod 1 in period 1, the old worker is assigned job A, and its contribution is 1.
The young worker is assigned job B for the first time, and its contribution is λ. Thus,
f(x; {A,B}) =

√
(1 + 0)(0 + λ) =

√
λ.

The firm maximizes its profit, which is the sum of discounted profits in subperiods of all
periods. The profit for subperiod s in period t is

π(xt−1t,s , x
t
t,s;ω

A
t ) =



pf(xt−1t,s , x
t
t,s;ω

A
t )− w − w if the two workers are assigned not for the first time,

pf(xt−1t,s , x
t
t,s;ω

A
t )− w − w∗ if the two workers are assigned

and the young is in the training subperiod,

pf(xt−1t,s , x
t
t,s;ω

A
t )− w if only one worker is assigned

and she is not in the training subperiod,

pf(xt−1t,s , x
t
t,s;ω

A
t )− w∗ if only one worker is assigned

and she is in the training subperiod,

0 if no worker is assigned.
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Therefore, the firm’s problem is choosing an allocation x = (xt)
∞
t=1 = (xt−1t,s , x

t
t,s)s=1,2;t=1,...,∞

to maximize its profit on an infinite horizon such that the initial state is ω1 = (ωO1 , ω
A
1 ) =

({∅, A,B}, {A,B}); the old worker’s assignable jobs in each period t, ωOt , are those she ex-
perienced in the previous period5; the allocation for the old worker in subperiods, xt−1t,1 and
xt−1t,2 , is those jobs that are assignable and available to her; the allocation for the young
worker in subperiods, xtt,1 and xtt,2, is just available to her. That is,

maxx

∞∑
t=1

δt−1{π(xt−1t,1 , x
t
t,1;ω

A
t ) + π(xt−1t,2 , x

t
t,2;ω

A
t )}

s.t. ω1 = ({∅, A,B}, {A,B}),

ωOt = {xt−1t−1,1, x
t−1
t−1,2} ∪ {∅}, t ≥ 2,

xt−1t,1 , x
t−1
t,2 ∈ (ωOt ∩ ωAt ) ∪ {∅},

xtt,1, x
t
t,2 ∈ ωAt ∪ {∅}.

Note that in any subperiod of period t, assigning no job to the two workers is always
feasible. Define the value function V (ωOt , ω

A
t ) as

V (ωOt , ω
A
t ) = max

(xτ )∞τ=t

∞∑
τ=t

δτ−1{π(xτ−1τ,1 , x
τ
τ,1;ω

A
τ ) + π(xτ−1τ,2 , x

τ
τ,2;ω

A
τ )}

s.t. ωOτ = {xτ−1τ−1,1, x
τ−1
τ−1,2} ∪ {∅}, τ ≥ t+ 1,

xτ−1τ,1 , x
τ−1
τ,2 ∈ (ωOτ ∩ ωAτ ) ∪ {∅},

xττ,1, x
τ
τ,2 ∈ ωAτ ∪ {∅}.

Then, the profit-maximization problem can be stated in the following recursive form.

V ({∅, A,B}, {A,B}) = max
x1

π(x01,1, x
1
1,1; {A,B}) + π(x01,2, x

1
1,2; {A,B})

+δ{pV (ωO2 , {A}) + pV (ωO2 , {B}) + (1− 2p)V (ωO2 , {A,B})},

s.t. ωO2 = {x11,1, x11,2} ∪ {∅},

x01,1, x
0
1,2 ∈ (ωO1 ∩ ωA1 ) ∪ {∅},

x11,1, x
1
1,2 ∈ ωA1 ∪ {∅}.

Here, we make the following assumption in the same spirit as the no-free-disposal in
Assumption 4 for the benchmark model. When one of the jobs is available, it is profitable

5This is the rule that we already explained in (4).
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for the firm to employ a worker even if she is young.

Assumption 8. For each available job J ∈ {A,B}, π(∅, ∅; {J}) < π(∅, J∗; {J}) < π(J, J∗; {J})
and π(∅, ∅; {J}) < π(J, ∅; {J}) < π(J, J∗; {J}).

3.2 Comparison in profits

Proposition 2. For any parameters, α, δ, p, w, w∗, and λ, the profit-maximizing allocation
is either the rotation or the specialization. In particular, the profit-maximizing allocation is

1. the rotation if pδ {V ({∅, A}, {A})− V ({∅}, {A})} > 1 − w + w∗ − λ
1
2 , i.e., p >

1−w+w∗−λ
1
2

δ{(1+λ)α+2α−λα−1−2w} ,

2. the specialization if p < 1−w+w∗−λ
1
2

δ{(1+λ)α+2α−λα−1−2w} ,

3. either the rotation or the specialization if p = 1−w+w∗−λ
1
2

δ{(1+λ)α+2α−λα−1−2w} .

Proposition 2 argues that either the rotation or the specialization is a profit-maximizing
allocation, depending on the parameters. For the proof, we use the following two lemmas
whose proofs are delegated to Appendix B.

Lemma 1. For any parameters, α, δ, p, w, w∗, and λ, we have the following.

1. If the profit-maximizing allocation is the rotation, then pδ {V ({∅, A}, {A})− V ({∅}, {A})} ≥
1− w + w∗ − λ 1

2 , i.e., p ≥ 1−w+w∗−λ
1
2

δ{(1+λ)α+2α−λα−1−2w} .

2. If pδ {V ({∅, A}, {A})− V ({∅}, {A})} > 1 − w + w∗ − λ 1
2 , then the profit-maximizing

allocation is the rotation only.

For the rotation to be optimal, the first part of Lemma 1 gives the necessary condition,
while the second gives an almost sufficient condition.

Lemma 2. The profit-maximizing allocation is either the rotation or the specialization.

Now we are ready to prove Proposition 2.

Proof of Proposition 2. If pδ {V ({∅, A}, {A})− V ({∅}, {A})} > 1 − w + w∗ − λ 1
2 , then

Lemma 1-(2) is the desired result. Next, if pδ {V ({∅, A}, {A})− V ({∅}, {A})} < 1 − w +

w∗ − λ 1
2 , then it follows from Lemma 1-(1) that the profit-maximizing allocation is not the

rotation. Thus, under Lemma 2, the profit-maximizing one is the specialization. Finally, if
pδ {V ({∅, A}, {A})− V ({∅}, {A})} = 1−w+w∗−λ 1

2 , the last part is obvious from Lemma
2. 2
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Figure 2: Profit comparison in the graph (λ, p)

Note: The curve shows the function f(λ) = 1−w+w∗−λ
1
2

δ{(1+λ)α+2α−λα−1−2w} when we change w∗ = 0.3, 0.5,
keeping w = 0.7, α = 0.8, and δ = 0.9. According to Proposition 2, the rotation region is when the
profit of the rotation is larger, while the specialization region is the opposite. The boundary, f(λ),
is when the profits from the rotation and the specialization are equal.

Here, it would be useful to do the comparative statics to see how parameters affect
which—rotation or specialization—is better in terms of profit.

According to Proposition 2, we have

p T f(λ) =
1− w + w∗ − λ 1

2

δ{(1 + λ)α + 2α − λα − 1− 2w}
.

This can be shown by Figure 2, which describes the profit comparison in the graph of
the training costs (λ) and the uncertainty about job continuation (p).

Then, we have the following implications:

1. Suppose that p and λ are large (noting the larger the λ, the smaller the training costs).
Then, the rotation is better.

2. As w−w∗ (the difference between wages under- and post-training) is larger, the rotation
region expands. Under the seniority wage scheme as in Japan, where w − w∗ is large,
the rotation region is large.

3. Suppose that δ, the discount factor, is larger. Then, the curve of f shifts to the origin.
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This means that the rotation region expands.

4. Suppose that α, which is the technology parameter of the production function when
job A or B disappears, is larger. Note that function f is decreasing in α, because the
numerator of f is constant in α and the denominator of f is increasing in α. To see
it for the denominator, its partial derivative with respect to α, δ{(1 + λ)α ln(1 + λ) +

2α ln 2−λα lnλ}, is positive. Thus, the curve of f shifts to the origin. This means that
the rotation region expands.

4 Conclusion

We have developed a firm’s decision problem of assigning (indivisible) jobs to workers, with
and without OLG. We have shown that only job rotation or specialization can be a profit-
maximizing job allocation in both models. Moreover, we have shown that in both models, the
rotation is better when the training cost is smaller, the uncertainty about job continuation
in the future is larger, or the slope of seniority wages is larger.

Finally, one of the most important implications from our results is that both job rotation
and specialization can be an optimal scheme in terms of a firm’s profits. Therefore, it is no
wonder that we still observe the coexistence of both the Japanese employment system (sup-
ported by job rotation) and the U.S. employment system (supported by job specialization).

A Proof of Proposition 1

We complete the proof of Proposition 1 by checking the profit comparison in the following
three cases.
Case 1: p > (1−λ)−2(w−w∗)

2δ(2α−1−w) . We show that for each k ∈ {1, . . . , 8}, π(xR1) > π(xk).
First, under Claim 1, π(xR1) > π(xS1). Second, from Table 2, for each k ∈ {1, . . . , 8} \

{2, 7}, π(xR1) > π(xk). It remains to show the inequality for k ∈ {2, 7}.

π(xR1)− π(x2) = π(xR1)− π(x7)

= λ+ δ{λ− λ1/2 + w − w∗}+ δ2p(2α − 1− w)

> λ+ δ{λ− λ1/2 + w − w∗}+
δ

2
{(1− λ)− 2(w − w∗)}

= λ+ δ

(
1

2
− λ1/2 +

λ

2

)
,

where the inequality follows from p > (1−λ)−2(w−w∗)
2δ(2α−1−w) . Let us define the function f : [0, 1]→ R
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by

f(λ) = λ+ δ

(
1

2
− λ1/2 +

λ

2

)
.

Then,

f(0) =
δ

2
< 1 = f(1),

f ′(λ) = 1 +
δ

2

(
1− 1

λ1/2

)
,

f ′′(λ) =
δ

4
λ−3/2 > 0.

Thus, function f is concave and there is a unique λ∗ such that f ′(λ∗) = 0, i.e., λ∗ =(
δ
δ+2

)2 ∈ (0, 1). Because our calculation gives us

f(λ∗) =
2δ2 + 4δ

2(2 + δ)2
> 0,

we can conclude that for any λ ∈ [0, 1], f(λ) > 0. Thus, π(xR1) > π(x2) and π(xR1) > π(x7).
Case 2: p < (1−λ)−2(w−w∗)

2δ(2α−1−w) . We show that for each k ∈ {1, . . . , 8}, π(xS1) > π(xk).
First, under Claim 1, π(xS1) > π(xR1). Second, from Table 2, for each k ∈ {1, . . . , 8} \

{2, 7}, π(xR1) > π(xk), and thus π(xS1) > π(xk). It remains to show the inequality for
k ∈ {2, 7}.

π(xS1)− π(x2) = π(xS1)− π(x7)

= λ+ δ{1− λ1/2 − (w − w∗)} − δ2p(2α − 1− w)

> λ+ δ{1− λ1/2 − (w − w∗)} − δ

2
{(1− λ)− 2(w − w∗)}

= f(λ), (5)

where the inequality follows from p < (1−λ)−2(w−w∗)
2δ(2α−1−w) . As shown in Case 1, for each λ ∈ [0, 1],

f(λ) > 0. Thus, under inequality (5), π(xS1) > π(x2) and π(xS1) > π(x7).
Case 3: p = (1−λ)−2(w−w∗)

2δ(2α−1−w) . The last part of the proposition is now straightforward from the
arguments in cases 1 and 2. �

B Proof of Proposition 2

To complete the proof of Proposition 2, it remains to show lemmas 1 and 2. We start with
some preliminaries.
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B.1 Preliminaries

We need to calculate the value function depending on the states ωO and ωA. Note that
ωO is the set of assignable jobs at some period, and ωA is the set of available jobs at some
period. For the simplicity of notation, when we write the state (ωO, ωA), for example, we
denote (ωO, ωA) = (∅, A;A,B) for ({∅, A}; {A,B}) where we omit the braces for sets. Thus,
for value functions, we denote V (ωO, ωA) = V (∅, A;A,B) for V ({∅, A}, {A,B}). Because of
the symmetric roles of jobs A and B, we only need to calculate the value function for the
following five cases.

1. V (∅;A) = V (∅;B) = V (∅, B;A) = V (∅, A;B)

2. V (∅;A,B)

3. V (∅, A;A) = V (∅, B;B) = V (∅, A,B;B) = V (∅, A,B;A)

4. V (∅, A;A,B) = V (∅, B;A,B)

5. V (∅, A,B;A,B)

B.1.1 Calculation of V (∅;A) = V (∅;B) = V (∅, B;A) = V (∅, A;B)

We calculate V (∅;A), which is obviously equal to V (∅;B), V (∅, B;A), and V (∅, A;B). We
have the following three candidates for V (∅;A), depending on period-t allocations.

V 11 V 12 V 13

Alloc. at t States at t+ 1 Alloc. at t States at t+ 1 Alloc. at t States at t+ 1

s = 1 s = 2 s = 1 s = 2 s = 1 s = 2

at−1 ∅ ∅ ωAt+1 = {A} at−1 ∅ ∅ ωAt+1 = {A} at−1 ∅ ∅ ωAt+1 = {A}

at A∗ A ωOt+1 = {∅, A} at ∅ (A∗) A∗ (∅) ωOt+1 = {∅, A} at ∅ ∅ ωOt+1 = {∅}

Denote

V 11 = π(∅, A∗;A) + π(∅, A;A) + δV (∅, A;A),

V 12 = π(∅, ∅;A) + π(∅, A∗;A) + δV (∅, A;A)

or π(∅, A∗;A) + π(∅, ∅;A) + δV (∅, A;A),

V 13 = π(∅, ∅;A) + π(∅, ∅;A) + δV (∅;A).
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Claim 2. V 11 > V 12 and V 11 > V 13. Thus, V (∅;A) = V 11.

Proof. First, V 11−V 12 = π(∅, A;A)−π(∅, ∅;A). Thus, since π(∅, A;A) > π(∅, ∅;A) accord-
ing to Assumption 8, we have V 11 > V 12.

We next show V 11 > V 13.

V 11 − V 13 = {π(∅, A∗;A)− π(∅, ∅;A)}+ {π(∅, A;A)− π(∅, ∅;A)}

+δ{V (∅, A;A)− V (∅;A)}.

Under Assumption 8, π(∅, A∗;A) > π(∅, ∅;A) and π(∅, A;A) > π(∅, ∅;A). Moreover,
since any allocation under state (∅;A) is possible under state (∅, A;A), we have V (∅, A;A) ≥
V (∅;A). Thus, V 11 > V 13.

Thus, we have

V (∅;A) = V 11 = π(∅, A∗;A) + π(∅, A;A) + δV (∅, A;A). (6)

Since V (∅, A;A) = π(A,A∗;A)+π(A,A;A)
1−δ (this will be shown in Section B.1.3),

V (∅;A) = π(∅, A∗;A) + π(∅, A;A) +
δ

1− δ
(π(A,A∗;A) + π(A,A;A)) .

B.1.2 Calculation of V (∅;A,B)

We have the following three candidates for V (∅;A,B), depending on period-t allocations.

V 21

Alloc. at t States at t+ 1 States at t+ 1 States at t+ 1

s = 1 s = 2

at−1 ∅ ∅ ωAt+1 = {A,B} ωAt+1 = {A} ωAt+1 = {B}
at B∗ B ωOt+1 = {∅, B} ωOt+1 = {∅, B} ωOt+1 = {∅, B}

V 21 = π(∅, B∗;A,B) +π(∅, B;A,B) + (1− 2p)δV (∅, B;A,B) + pδV (∅, B;A) + pδV (∅, B;B).

V 22

Alloc. at t States at t+ 1 States at t+ 1 States at t+ 1

s = 1 s = 2

at−1 ∅ ∅ ωAt+1 = {A,B} ωAt+1 = {A} ωAt+1 = {B}
at A∗ A ωOt+1 = {∅, A} ωOt+1 = {∅, A} ωOt+1 = {∅, A}
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V 22 = π(∅, A∗;A,B) + π(∅, A;A,B) + (1− 2p)δV (∅, A;A,B) + pδV (∅, A;A) + pδV (∅, A;B).

V 23

Alloc. at t States at t+ 1 States at t+ 1 States at t+ 1

s = 1 s = 2

at−1 ∅ ∅ ωAt+1 = {A,B} ωAt+1 = {A} ωAt+1 = {B}
at A∗ B∗ ωOt+1 = {∅, A,B} ωOt+1 = {∅, A,B} ωOt+1 = {∅, A,B}

V 23 = π(∅, A∗;A,B) + π(∅, B∗;A,B)

+(1− 2p)δV (∅, A,B;A,B) + pδV (∅, A,B;A) + pδV (∅, A,B;B)

= π(∅, A∗;A,B) + π(∅, B∗;A,B)

+(1− 2p)δV (∅, A,B;A,B) + pδV (∅, A;A) + pδV (∅, B;B).

Claim 3. V 23 > V 21 = V 22. Thus, V (∅;A,B) = V 23.

Proof. First, V 21 = V 22 by symmetry. Next, we have

V 23 − V 22 = π(∅, B∗;A,B)− π(∅, A;A,B) + (1− 2p)δ(V (∅, A,B;A,B)− V (∅, A;A,B))

+pδ(V (∅, B;B)− V (∅, A;B))

= −w∗ + w + (1− 2p)δ(V (∅, A,B;A,B)− V (∅, A;A,B)) + pδ(V (∅, B;B)− V (∅;B))

> 0.

The last inequality follows from the fact that w > w∗, V (∅, A,B;A,B) ≥ V (∅, A;A,B), and
V (∅, B;B) ≥ V (∅;B).

B.1.3 Calculation of V (∅, A;A) = V (∅, B;B) = V (∅, A,B;B) = V (∅, A,B;A)

We calculate V (∅, A;A), which is obviously equal to V (∅, B;B), V (∅, A,B;B), and V (∅, A,B;A).
We have the following three candidates for V (∅, A;A), depending on period-t allocations.

V 31 V 32 V 33

Alloc. at t States at t+ 1 Alloc. at t States at t+ 1 Alloc. at t States at t+ 1

s = 1 s = 2 s = 1 s = 2 s = 1 s = 2

at−1 A A ωAt+1 = {A} at−1 A A ωAt+1 = {A} at−1 A A ωAt+1 = {A}

at A∗ A ωOt+1 = {∅, A} at ∅ (A∗) A∗ (∅) ωOt+1 = {∅, A} at ∅ ∅ ωOt+1 = {∅}
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V 31 = π(A,A∗;A) + π(A,A;A) + δV (∅, A;A)

V 32 = π(A, ∅;A) + π(A,A∗;A) + δV (∅, A;A)

V 33 = π(A, ∅;A) + π(A, ∅;A) + δV (∅;A).

Claim 4. V 31 > V 32 and V 31 > V 33. Thus, V (∅, A;A) = V 31.

Proof. First, V 31−V 32 = π(A,A;A)−π(A, ∅;A). Then, since π(A,A;A) > π(A, ∅;A) under
Assumption 8, we have V 31 > V 32.

We next show V 31 > V 33. We have

V 31 − V 33 = {π(A,A;A)− π(A, ∅;A)}+ {π(A,A∗;A)− π(A, ∅;A)}

+δ{V (∅, A;A)− V (∅;A)}.

Under Assumption 8, π(A,A;A) > π(A, ∅;A) and π(A,A∗;A) > π(A, ∅;A). Moreover,
V (∅, A;A) ≥ V (∅;A). Hence, V 31 > V 33.

Thus, we have

V (∅, A;A) = V 31 = π(A,A∗;A) + π(A,A;A) + δV (∅, A;A)

=
π(A,A∗;A) + π(A,A;A)

1− δ
. (7)

B.1.4 Calculation of V (∅, A;A,B) = V (∅, B;A,B)

We calculate V (∅, A;A,B), which is obviously equal to V (∅, B;A,B). We have the following
three candidates for V (∅, A;A,B), depending on period-t allocations.

V 41

Alloc. at t States at t+ 1 States at t+ 1 States at t+ 1

s = 1 s = 2

at−1 A A ωAt+1 = {A,B} ωAt+1 = {A} ωAt+1 = {B}
at B∗ B ωOt+1 = {∅, B} ωOt+1 = {∅, B} ωOt+1 = {∅, B}

V 41 = π(A,B∗;A,B)+π(A,B;A,B)+(1−2p)δV (∅, B;A,B)+pδV (∅, B;A)+pδV (∅, B;B).
Note that V 41 is the value of the specialization.
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V 42

Alloc. at t States at t+ 1 States at t+ 1 States at t+ 1

s = 1 s = 2

at−1 A A ωAt+1 = {A,B} ωAt+1 = {A} ωAt+1 = {B}
at A∗ A ωOt+1 = {∅, A} ωOt+1 = {∅, A} ωOt+1 = {∅, A}

V 42 = π(A,A∗;A,B)+π(A,A;A,B)+(1−2p)δV (∅, A;A,B)+pδV (∅, A;A)+pδV (∅, A;B).

V 43

Alloc. at t States at t+ 1 States at t+ 1 States at t+ 1

s = 1 s = 2

at−1 A A ωAt+1 = {A,B} ωAt+1 = {A} ωAt+1 = {B}
at A∗ B∗ ωOt+1 = {∅, A,B} ωOt+1 = {∅, A,B} ωOt+1 = {∅, A,B}

V 43 = π(A,A∗;A,B) + π(A,B∗;A,B)

+(1− 2p)δV (∅, A,B;A,B) + pδV (∅, A,B;A) + pδV (∅, A,B;B)

= π(A,A∗;A,B) + π(A,B∗;A,B)

+(1− 2p)δV (∅, A,B;A,B) + pδV (∅, A;A) + pδV (∅, B;B).

Claim 5. V 41 > V 42 and V 43 > V 42.

Proof. First,

V 41 − V 42 = {π(A,B∗;A,B)− π(A,A∗;A,B)}+ {π(A,B;A,B)− π(A,A;A,B)}

+(1− 2p)δ{V (∅, B;A,B)− V (∅, A;A,B)}

+pδ{V (∅, B;A)− V (∅, A;B)}+ pδ{V (∅, B;B)− V (∅, A;A)}.

By calculation, π(A,B∗;A,B) > π(A,A∗;A,B) and π(A,B;A,B) > π(A,A;A,B).
Moreover, by symmetry, V (∅, B;A,B) = V (∅, A;A,B), V (∅, B;A) = V (∅, A;B), and V (∅, B;B) =

V (∅, A;A). Thus V 41 > V 42.
We next show V 43 > V 42.
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V 43 − V 42 = π(A,B∗;A,B)− π(A,A;A,B) + pδ (V (∅, B;B)− V (∅, A;B))

+(1− 2p)δ (V (∅, A,B;A,B)− V (∅, A;A,B))

= π(A,B∗;A,B)− π(A,A;A,B) + pδ (V (∅, B;B)− V (∅;B))

+(1− 2p)δ (V (∅, A,B;AB)− V (∅, A;A,B))

> 0.

The last inequality follows from the fact that π(A,B∗;A,B)− π(A,A;A,B) = (λ1/2 − w −
w∗) + 2w = λ1/2 +w−w∗ > 0, V (∅, B;B) ≥ V (∅;B), and V (∅, A,B;A,B) ≥ V (∅, A;A,B).
Thus, V 43 > V 42.

At this stage, we cannot clearly say which is larger, V 41 or V 43.

B.1.5 Calculation of V (∅, A,B;A,B)

We have the following four candidates for V (∅, A,B;A,B), depending on period-t allocations.

• Case 1: (xt−1t,1 , x
t−1
t,2 ) = (A,A). Then, the old worker is assigned job A though jobs A

and B are assignable. Thus, the value candidate V 51 in this case is equal to the value
when only job A is assignable, i.e., V 51 = V (∅, A;A,B).

• Case 2: (xt−1t,1 , x
t−1
t,2 ) = (B,B). Then, similarly, the value candidate V 52 in this case is

V 52 = V (∅, B;A,B).

• Case 3: (xt−1t,1 , x
t−1
t,2 ) = (A,B). Denote the value candidate in this case by V 53. Then,

we have the following four subcandidates for V 53, depending on the young worker’s
assignment (xtt,1, x

t
t,2).

V 531

Alloc. at t States at t+ 1 States at t+ 1 States at t+ 1

s = 1 s = 2

at−1 A B ωAt+1 = {A,B} ωAt+1 = {A} ωAt+1 = {B}
at B∗ A∗ ωOt+1 = {∅, A,B} ωOt+1 = {∅, A,B} ωOt+1 = {∅, A,B}

V 531 = π(A,B∗;A,B) + π(B,A∗;A,B)

+(1− 2p)δV (∅, A,B;A,B) + pδV (∅, A,B;A) + pδV (∅, A,B;B).
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Note that V 531 is the value of the rotation.

V 532

Alloc. at t States at t+ 1 States at t+ 1 States at t+ 1

s = 1 s = 2

at−1 A B ωAt+1 = {A,B} ωAt+1 = {A} ωAt+1 = {B}
at A∗ B∗ ωOt+1 = {∅, A,B} ωOt+1 = {∅, A,B} ωOt+1 = {∅, A,B}

V 532 = π(A,A∗;A,B) +π(B,B∗;A,B) + (1−2p)δV (∅, A,B;A,B) +pδV (∅, A,B;A) +

pδV (∅, A,B;B).

V 533

Alloc. at t States at t+ 1 States at t+ 1 States at t+ 1

s = 1 s = 2

at−1 A B ωAt+1 = {A,B} ωAt+1 = {A} ωAt+1 = {B}
at A∗ A ωOt+1 = {∅, A} ωOt+1 = {∅, A} ωOt+1 = {∅, A}

V 533 = π(A,A∗;A,B)+π(B,A;A,B)+(1−2p)δV (∅, A;A,B)+pδV (∅, A;A)+pδV (∅, A;B).

V 534

Alloc. at t States at t+ 1 States at t+ 1 States at t+ 1

s = 1 s = 2

at−1 A B ωAt+1 = {A,B} ωAt+1 = {A} ωAt+1 = {B}
at B∗ B ωOt+1 = {∅, B} ωOt+1 = {∅, B} ωOt+1 = {∅, B}

V 534 = V 533 by symmetry.

Thus, V 53 = max{V 531, V 532, V 533, V 534}.

Claim 6. V 531 > V 532.

Proof. This is because π(A,B∗;A,B) > π(A,A∗;A,B) and π(B,A∗;A,B) > π(B,B∗;A,B).

• Case 4: (xt−1t,1 , x
t−1
t,2 ) = (B,A). Let V 54 be the value in this case. Then, by symmetry,

V 54 = V 53.
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B.2 Proof of Lemma 1: A necessary and almost sufficient condition

for the rotation to be optimal

B.2.1 A necessary condition for the rotation to be optimal

Since our initial condition is (∅, A,B;A,B), we focus on Section B.1.5 for V (∅, A,B;A,B).
Suppose that the rotation is a profit-maximizing allocation. Then, the value is V (∅, A,B;A,B) =

V 531. In addition to the inequality of Claim 6, we have the following relations.

V 531 ≥ V 533 = V 534, (8)

V 531 ≥ V 51 = V 52 = V 4, (9)

where V 4 := V (∅, A;A,B) = max{V 41, V 42, V 43}. Let

M := (1− 2p)δ{V (∅, A,B;A,B)− V (∅, B;A,B)}+ pδ{V (∅, A;A)− V (∅;A)}.

Then,

V 43 − V 41 = M − (1− w + w∗), (10)

V 531 − V 533 = M −
(

1− 2λ
1
2 + w∗ − w

)
. (11)

Thus, we have

Claim 7. V 43 > V 41 ⇒ V 531 > V 533.

To know the implications from (8) and (9) using (10) and (11), we explore the value of
M . Since V (∅, A,B;A,B) = V 531 and V (∅, A;A,B) = V 4, we have

M = (1− 2p)δ(V 531 − V 4) + pδ(V (∅, A;A)− V (∅;A)). (12)

In the above M , we have the three unknowns: The first unknown is V 531. It follows from
Section B.1.5 that

V 531 = π(A,B∗;A,B) + π(B,A∗;A,B) + (1− 2p)δV 531 + pδV (∅, A;A) + pδV (∅, B;B).

Thus, solving this equation for V 531, we have
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V 531 =
1

1− (1− 2p)δ

(
π(A,B∗;A,B) + π(B,A∗;A,B)

+pδV (∅, A;A) + pδV (∅, B;B)
)
. (13)

The second unknown is

V (∅, A;A)− V (∅;A) = V (∅, A;A)− π(∅, A∗;A)− π(∅, A;A)− δV (∅, A;A) (∵ (6))

= π(A,A∗;A) + π(A,A;A)− π(∅, A∗;A)− π(∅, A;A) (∵ (7))

= (1 + λ)α − w − w∗ + 2α − 2w − (λα − w∗)− (1− w)

= (1 + λ)α + 2α − λα − 1− 2w. (14)

The third unknown is V 4 for which we have two cases from (10): M < 1 + w∗ − w and
M ≥ 1 + w∗ − w.
Case 1: M < 1 + w∗ − w. Then, V 43 − V 41 = M − (1− w + w∗) < 0 and thus, V 43 < V 41.
Thus, since V 41 > V 42 and V 43 > V 42 by Claim 5 in Section B.1.4, we have V 4 = V 41. Now,
it follows from Section B.1.4 that

V 4 = V 41 = π(A,B∗;A,B) + π(A,B;A,B) + (1− 2p)δV (∅, B;A,B) + pδV (∅, B;A) + pδV (∅, B;B).

Since V (∅, B;A,B) = V 4 and V (∅, B;A) = V (∅;A), this becomes

V 4 = π(A,B∗;A,B) + π(A,B;A,B) + (1− 2p)δV 4 + pδV (∅;A) + pδV (∅, B;B)

⇒ V 4 =
1

1− (1− 2p)δ
(π(A,B∗;A,B) + π(A,B;A,B) + pδV (∅;A) + pδV (∅, B;B)) .

With this, we have obtained the three unknowns. Hence, (V 531 − V 4) in M can be
calculated as

V 531 − V 4 =
1

1− (1− 2p)δ

(
π(B,A∗;A,B)− π(A,B;A,B)

+pδV (∅, A;A)− pδV (∅;A)
)
. (15)

Thus, we can calculate the value of M as follows.
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M =
(1− 2p)δ

1− (1− 2p)δ

{
π(B,A∗;A,B)− π(A,B;A,B) + pδV (∅, A;A)− pδV (∅;A)

}
+pδ {V (∅, A;A)− V (∅;A)}

=
1

1− (1− 2p)δ

[
(1− 2p)δ {π(B,A∗;A,B)− π(A,B;A,B)}+ (1− 2p)pδ2

{
V (∅, A;A)

−V (∅;A))
}

+ {1− (1− 2p)δ} pδ(V (∅, A;A)− V (∅;A))
]

=
1

1− (1− 2p)δ

[
(1− 2p)δ

{
π(B,A∗;A,B)− π(A,B;A,B)

}
+ pδ

{
V (∅, A;A)− V (∅;A)

}]
=

1

1− (1− 2p)δ

[
(1− 2p)δ{λ

1
2 − w − w∗ − (1− 2w)}+ pδ{V (∅, A;A)− V (∅;A)}

]
=
−(1− 2p)δ(1− λ 1

2 + w∗ − w) + pδ(V (∅, A;A)− V (∅;A))

1− (1− 2p)δ
.

Therefore, we substitute this M into (11) to get the following implication from (8).

−(1− 2p)δ(1− λ 1
2 + w∗ − w) + pδ(V (∅, A;A)− V (∅;A))

1− (1− 2p)δ
≥ 1− 2λ

1
2 + w∗ − w

⇒ 1− λ
1
2 + w∗ − w − λ

1
2 + (1− 2p)δλ

1
2 ≤ pδ(V (∅, A;A)− V (∅;A)). (16)

On the other hand, we use (15) to get the following implication from (9).

V 531 − V 41 =
1

1− (1− 2p)δ

{
π(B,A∗;A,B)− π(A,B;A,B) + pδV (∅, A;A)− pδV (∅;A)

}
≥ 0.

⇒ λ
1
2 − w − w∗ − (1− 2w) + pδ(V (∅, A;A)− V (∅;A)) ≥ 0

⇒ 1− λ
1
2 + w∗ − w ≤ pδ(V (∅, A;A)− V (∅;A)). (17)

Therefore, for Case 1, we have the two necessary conditions (16) and (17). In these
equations, since −λ 1

2 + (1 − 2p)δλ
1
2 < 0, (17) implies (16). Hence, we have (17) as a

necessary condition.
Case 2: 1 + w∗ − w ≤ M . Then, V 43 − V 41 = M − (1− w + w∗) ≥ 0 and thus, V 43 ≥ V 41.
Thus, since V 41 > V 42 and V 43 > V 42 under Claim 5 in Section B.1.4, we have V 4 = V 43.
Now, it follows from Section B.1.4 that
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V 4 = V 43 = π(A,A∗;A,B) + π(A,B∗;A,B) + (1− 2p)δV 531 + pδV (∅, A;A) + pδV (∅, B;B)

= 0− w − w∗ + λ
1
2 − w − w∗ + (1− 2p)δV 531 + pδV (∅, A;A) + pδV (∅, B;B).

Then, (9) is automatically satisfied as follows.

V 531 − V 4 = V 531 − V 43

= (1− (1− 2p)δ)V 531 + 2w + 2w∗ − λ
1
2 − pδV (∅, A;A)− pδV (∅, B;B)

= π(A,B∗;A,B) + π(B,A∗;A,B) + pδV (∅, A;A) + pδV (∅, B;B)

+2w + 2w∗ − λ
1
2 − pδV (∅, A;A)− pδV (∅, B;B) (by (13))

= λ
1
2 − w − w∗ + λ

1
2 − w − w∗ + 2w + 2w∗ − λ

1
2

= λ
1
2 > 0.

Thus, we substitute this value (V 531 − V 4) into (12) to get

M = (1− 2p)δλ
1
2 + pδ(V (∅, A;A)− V (∅;A)).

We substitute this M into (11) to get the following implication of (8).

(1− 2p)δλ
1
2 + pδ(V (∅, A;A)− V (∅;A) ≥ 1− 2λ

1
2 + w∗ − w

⇒ 1− 2λ
1
2 + w∗ − w − (1− 2p)δλ

1
2 ≤ pδ(V (∅, A;A)− V (∅;A)). (18)

Therefore, for Case 2, we have the necessary condition (18).

In sum, we have (17) for Case 1 or (18) for Case 2. Since (17) implies (18), we have (17)
as a necessary condition for the rotation to be optimal. Hence, p ≥ 1−w+w∗−λ

1
2

δ{(1+λ)α+2α−λα−1−2w} .

B.2.2 An almost sufficient condition for the rotation to be optimal

Suppose that
pδ {V (∅, A;A)− V (∅;A)} > 1− w + w∗ − λ

1
2 . (19)

The value of the rotation, πR, is

πR = V 531 = π(A,B∗;A,B) + π(B,A∗;A,B)

+(1− 2p)δV (∅, A,B;A,B) + pδV (∅, A;A) + pδV (∅, B;B).
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We need to show

V 531 ≥ V 532 (20)

V 531 ≥ V 533 (21)

V 531 ≥ V 51 (22)

V 531 ≥ V 52 (23)

V 531 ≥ V 54 = V 53 (24)

V 531 ≥ V 41 (25)

V 531 ≥ V 42 (26)

V 531 ≥ V 43 (27)

Here, the last three inequalities follow from the fact that V 531 ≥ V 51 and V 51 = V 52 =

V (∅, A;A,B) ≡ V 4 = max{V 41, V 42, V 43}.

Claim 8. The three inequalities (21), (25), and (27) are sufficient for all of the above in-
equalities to hold.

Proof. Suppose that (21), (25), and (27) hold. First of all, Claim 6 implies (20). Note that
when (25) is true, by Claim 5 (V 41 > V 42), (26) holds. Hence, it follows from (25), (26), and
(27) that V 531 ≥ V 4. This implies that (22) and (23) are true. On the other hand, since we
have (20) and (21), we have V 531 = V 53 and thus (24).

From now on, we will check (21), (25), and (27).

• Check whether V 531 ≥ V 533, or (21).

V 531 − V 533 = (1− 2p)δ{V (∅, A,B;A,B)− V (∅, B;A,B)}

+pδ{V (∅, A;A)− V (∅;A)} − (1− 2λ
1
2 + w∗ − w)

> (1− 2p)δ{V (∅, A,B;A,B)− V (∅, B;A,B)}

+1− w + w∗ − λ
1
2 − (1− 2λ

1
2 + w∗ − w) (∵ (19))

= (1− 2p)δ{V (∅, A,B;A,B)− V (∅, B;A,B)}+ λ
1
2

≥ λ
1
2 (∵ V (∅, A,B;A,B) ≥ V (∅, B;A,B))

> 0.
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• Check whether V 531 ≥ V 41, or (25).

V 531 − V 41 = π(B,A∗;A,B)− π(A,B;A,B)

+(1− 2p)δ{V (∅, A,B;A,B)− V (∅, B;A,B)}+ pδ{V (∅, A;A)− V (∅;A)}

≥ π(B,A∗;A,B)− π(A,B;A,B)

+pδ{V (∅, A;A)− V (∅;A)} (∵ V (∅, A,B;A,B) ≥ V (∅, B;A,B))

> π(B,A∗;A,B)− π(A,B;A,B) + 1− w + w∗ − λ
1
2 (∵ (19))

= λ
1
2 − w − w∗ − (1− 2w) + 1− w + w∗ − λ

1
2

= 0.

• Check whether V 531 ≥ V 43, or (27).

V 531 − V 43 = π(B,A∗;A,B)− π(A,A∗;A,B)

= λ
1
2 − w − w∗ − (0− w − w∗)

= λ
1
2

> 0.

B.3 Proof of Lemma 2

Suppose that the rotation is not optimal. Then, we will check the two cases: V 533 > V 531

and V 533 ≤ V 531.
Case 1: V 533 > V 531. Since V 531 > V 532 under Claim 6, we have V 53 = V 533.

Claim 9. V 41 > V 43 and thus V 4 = V 41.

Proof. Since V 533 > V 531 holds, we have

V 533 − V 531 = π(A,A∗;A,B) + π(B,A;A,B)− π(A,B∗;A,B)− π(B,A∗;A,B)

+(1− 2p)δ{V (∅, A;A,B)− V (∅, A,B;A,B)}+ pδ{V (∅;B)− V (∅, B;B)} > 0.
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Thus,

V 41 − V 43 = π(A,B∗;A,B) + π(A,B;A,B)− π(A,A∗;A,B)− π(A,B∗;A,B)

+(1− 2p){δV (∅, B;A,B)− V (∅, A,B;A,B)}+ pδV {(∅;A)− V (∅, A;A)}

> π(A,B∗;A,B) + π(A,B;A,B)− π(A,A∗;A,B)− π(A,B∗;A,B)

−π(A,A∗;A,B)− π(B,A;A,B) + π(A,B∗;A,B) + π(B,A∗;A,B)

(∵ by the inequality derived from V 533 > V 531 in the above)

= 2π(A,B∗;A,B)− 2π(A,A∗;A,B)

= 2(λ
1
2 − w − w∗)− 2(0− w − w∗)

= 2λ
1
2 > 0.

Thus, V 41 > V 43. Moreover, since V 41 > V 42 under Claim 5, we have V 4 = V 41.

Claim 10. V 51 > V 533 = V 53 and thus V 5 = V 51.

Proof. We have

V 51 − V 533 = V 4 − V 533

= V 41 − V 533 (∵ Claim 9)

= π(A,B∗;A,B) + π(A,B;A,B)− π(A,A∗;A,B)− π(B,A;A,B)

+(1− 2p)δ{V (∅, B;A,B)− V (∅, A;A,B)}

+pδ{V (∅, B;A) + V (∅, B;B)− V (∅, A;A)− V (∅, A;B)}

= π(A,B∗;A,B)− π(A,A∗;A,B)

= λ
1
2 − w − w∗ − (0− w − w∗)

= λ
1
2 > 0.

Thus, V 51 > V 533. Then, since we know V 533 = V 53 and V 51 = V 52, we have V 5 =

V 51.

Note that we have V 51 = V 4, V 5 = V 51 (∵ Claim 10), and V 4 = V 41 (∵ Claim 9). Thus,
V 5 = V 41, which is the specialization value. This means that the specialization is optimal.
Case 2: V 533 ≤ V 531. Then, since V 531 > V 532 under Claim 6, we have V 53 = V 531, which
is the rotation value.

Claim 11. V 51 = V 4 > V 531.
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Proof. By definition, V 51 = V 4. Suppose to the contrary that V 51 = V 4 ≤ V 531. Then,
V 531 ≥ V 4 = V 51 = V 52, which means that the rotation is optimal. However, this contradicts
the initial argument that the rotation is not optimal.

Claim 12. V 41 ≥ V 43 and thus V 4 = V 41.

Proof. Suppose to the contrary that V 41 < V 43. Then, since V 42 < V 41 (∵ Claim 5), we have
V 4 = V 43. Thus, under Claim 11, we have V 43 > V 531. However, this inequality contradicts
the following.

V 43 − V 531 = π(A,A∗;A,B) + π(A,B∗;A,B)− π(A,B∗;A,B)− π(B,A∗;A,B)

+(1− 2p)δ{V (∅, A,B;A,B)− V (∅, A,B;A,B)}

+pδ{V (∅, A;A) + V (∅, B;B)− V (∅, A;A)− V (∅, B;B)}

= π(A,A∗;A,B)− π(B,A∗;A,B)

= −w − w∗ − (λ
1
2 − w − w∗)

= −λ
1
2 < 0

Hence, we have V 41 ≥ V 43. Moreover, as V 41 > V 42 (∵ Claim 5), we have V 4 = V 41.

Under claims 11 and 12, we have V 51 = V 4 = V 41 > V 531 = V 53. This means that the
specialization is optimal.
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