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Abstract

In statistics, researchers have rigorously investigated the reproductive property, which

maintains that the sum of independent random variables with the same distribution follows

the same family of distributions. However, even if a distribution of the sum of random

variables demonstrates the reproductive property, estimating parameters appropriately from

only summed observations is difficult. This is because of identification problems when com-

ponent random variables have different parameters. In this study, we develop a method to

effectively estimate parameters from the sum of independent random variables with different

parameters. In particular, we focus on the sum of Gamma random variables composed of

two types of distributions. We generalize the result according to Moschopoulos (1985) to a

proportional hazard model with covariates and a frailty model to capture individual hetero-

geneities. Additionally, to estimate each parameter from the sum of random variables, we

incorporate auxiliary information using quasi-Bayesian methods, and we propose the estima-

tion procedure by Markov chain Monte Carlo. We confirm the effectiveness of the proposed

method through a simulation study and apply it to the interpurchase timing model in mar-

keting.

Keyword: Survival Analysis; Covariates; Random Effects; Auxiliary Information; Quasi-

Bayesian Inference; Markov Chain Monte Carlo
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1 Introduction

1.1 Background

In statistics, the ”reproductive property,” which holds that the sum of random variables

that follow a distribution also follow the same family of distributions, is widely known.

For example, in a normal distribution, when Xi ∼ N(µi, σ
2
i ), the sum of random variables

follows the normal distribution, that is
∑n

i=1 Xi ∼ N
(∑n

i=1 µi,
∑n

i=1 σ
2
i

)
. If (µ1, σ

2
1)

T =

(µ2, σ
2
2)

T = · · · = (µn, σ
2
n)

T ≡ (µ, σ2)T , the parameters (µ, σ2)T can be estimated from

the sum of random variables, and the confidential intervals for sample mean X can be

calculated as X ∼ N
(
µ, σ2/n). However, when (µ1, σ

2
1)

T ̸= (µ2, σ
2
2)

T ̸= · · · ̸= (µn, σ
2
n)

T ,

it is not possible to identify each parameter from only the sum of observations without

additional information. In this study, we propose a method to appropriately estimate each

parameter from only the sum of random variables, where each random variable follows the

same distribution family but each distribution has different parameters. In particular, we

focus on the Gamma distribution that is composed of two types of distributions with different

parameters, and we apply it to survival analysis (e.g., Klein and Moeschberger, 2003; Ibrahim

et al., 2001) with covariates in which a Gamma distribution is employed as a baseline hazard

function. Moreover, we expand our model to the Gamma frailty model.

In marketing, Gamma distribution is widely used in lifetime value analysis (e.g., Schmit-

tlein, 1987; Moe and Fader, 2004; Fader and Hardie, 2009). Additionally, survival analysis,

including the Gamma hazard model, has been widely used to capture interpurchase timing

(e.g., Allenby et al., 1999; Seetharaman et al., 2003; Bijwaard et al., 2006). Interpurchase

timing models can predict the next time a customer will purchase products or can estimate

the effects of marketing variables such as price. Generally, interpurchase timing models fo-

cus on purchase duration analysis in a store or on one product category purchase in-store.

That is to say, the general interpurchase timing model deals with univariate survival times

in a store or product category. However, we should consider purchase behavior not only

within one store or product category but also among stores (competing stores, for example),

because customers can purchase products in more than one store. When considering stores,

we should model a multivariate survival analysis including competing stores. Leszczyc et al.

(2000) proposed the interpurchase timing model to consider competing stores using multi-

state hazard models. The parameters in these multi-state models are estimated differently

for each event (store), that is, their model assumes that each store has a different hazard

function. Thus, naturally, each realized duration value is generated from other distributions

with different parameters, whereby the idea of the reproductive property of a probability
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distribution is necessary.

However, the purchase histories in competing stores cannot be obtained in general mar-

keting environments, including in database marketing (e.g., Blattberg et al., 2008), and only

accumulated interpurchase timing is observed in the database (Igari and Hoshino, 2018). In

these circumstances, general survival analysis (e.g., a proportional hazard model) cannot be

applied as is. Then, Chen et al. (2012) proposed a method to estimate parameters from

the sum of independent duration times. They assumed that each random variable follows

an independent and identical exponential distribution, and they deal with the sum of dura-

tions as an Erlang distribution based on the sum of durations. However, they held the very

strong assumption that each random variable follows the independent and identical distri-

bution, which goes against the proposal of Leszczyc et al. (2000) in which the parameters

of each store are different. Moreover, when component random variables have different pa-

rameters, it is difficult to estimate parameters from only cumulative observations because of

identification problems, even if the distribution of the sum of the random variables has the

reproductive property. In that case, auxiliary information is needed to accurately estimate

each parameter from the sum of random variables.

1.2 Data Combination Approach

Here, we review a method to use auxiliary information in the modeling from individual-

level data. It is widely known that observed individual-level data are likely to be biased

for various reasons, for example, from selection bias and nonignorable missingness. That

is to say, it is difficult to obtain complete individual-level data that is free from biases.

Researchers can sometimes obtain auxiliary information such as population-level information

or estimated means from large-scale surveys. This information is generally available from

government statistical databases or research institutions. However, this auxiliary information

is often limited to summary statistics such as variable averages or proportions, whereas

parameters that show relationships between dependent and independent variables are not

typically available.

In this situation, some studies use auxiliary information to strengthen the accuracy of

their individual-level data modeling. Imbens and Lancaster (1994) and Hellerstein and Im-

bens (1999) suggested using the generalized method of moments (GMM) to incorporate

macro-level auxiliary information obtained from governmental surveys into individual-level

models. Additionally, Igari and Hoshino (2017) expanded Imbens and Lancaster (1994)’s

method to Bayesian GMM and applied it to survival analysis using incomplete data. Igari
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and Hoshino (2018) also employed Bayesian estimation for repeated durations with intermit-

tent missingness. They solved the problem of missing indicators not being observable in the

intermittent missingness by using the Bayesian approach. Similarly, Qin (2000), Chaudhuri

et al. (2008), and Huang et al. (2016) proposed empirical likelihood approaches that in-

clude auxiliary information in individual-level modeling. These kinds of data combinations

are commonly used in economics (Ridder and Moffit, 2007). Data combination involves the

piecing together of data that is obtained from different sources. Combining individual-level

data and auxiliary information is one type of data combination; thus, we refer to it as data

combination in this study. We propose a Bayesian estimation procedure from the sum of

Gamma random variables integrating auxiliary information.

1.3 The Purpose of This Study

In this study, we deal with survival analysis using observations with summed durations. Igari

and Hoshino (2018) proposed a method to estimate parameters from summed durations in

the form of survival analysis with repeated events using auxiliary information. However, Igari

and Hoshino (2018) focused on finding durations that were not summed under unobserved

missing indicators. They estimated the original parameters of Weibull hazard models using

only the durations that were not summed. In other words, they did not estimate parameters

directly from summed durations.

In this study, we propose a method to estimate parameters directly from the sum of

independent random variables with different parameters. In particular, we consider summed

durations from two types of distributions. We show a diagram of this study in Figure 1. In

the figure, Ycomp is a random variable from a distribution with parameter θcomp, and Yown

is a random variable from a distribution with parameter θown. However, we can obtain only

the sum Y = Ycomp + Yown, and we must estimate both θcomp and θown only from observed

Y . Particularly, we assume a Gamma distribution, and we estimate each parameter from

the sum of durations following the Gamma distributions with different parameters. The

Gamma distribution becomes an exponential distribution when the shape parameter equals

1; it also becomes an Erlang distribution when the shape parameter is an integer greater

than or equal to 2. That is, the model using the Gamma distribution incorporates Chen et

(2012)’s model, in which the Erlang distribution was assumed. Additionally, the Gamma

distribution has the reproductive property when the scale parameters are common among

all random variables (see Section 2).

Subsequently, Moschopoulos (1985) introduced the probability density function (pdf) for
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the sum of Gamma distributions whose parameters differ from one another. In this study,

we generalize Moschopoulos’s (1985) result to a proportional hazard model with covariates.

Moreover, we expand the Gamma hazard model to a frailty model, in which the latent vari-

ables are used to capture individual heterogeneities. Unobserved heterogeneities, which can

be considered random effect models, generalized linear mixed models, or hierarchical Bayes

models, are important in individual-level modeling. In marketing, consumer heterogeneities

have also been modeled (e.g., Allenby, and Rossi, 1998; Allenby et al., 1999). However, even

if the pdf of the sum of durations follows the Gamma distributions with different parameters,

it is difficult to estimate each parameter from only summed durations because of identifica-

tion problems. Therefore, we incorporate the auxiliary information from one distribution to

estimate each parameter using the quasi-Bayesian method, as in Hoshino and Igari (2017)

and Igari and Hoshino (2018). Furthermore, we propose the estimation procedure by Markov

chain Monte Carlo (MCMC). The originality of our method compared to Chen et al. (2012)

or Igari and Hoshino (2018) is that we estimate parameters from only the sum of durations

following the Gamma distribution with different parameters. Though our proposed approach

can be expanded to the more general model that includes more than durations, we focus only

on the case in which the sum of durations is composed of two kinds of distributions. This is

because we aim to apply our method to database marketing, in which one distribution is in

its own database and the other refers to competing stores.

Purchased in own store

Purchased in competing store

Observed duration

Unobserved duration Unobserved duration

TimeCustomer

Figure 1: Sum of Durations Following Different Distributions

The remainder of the paper is organized as follows. Section 2 covers a literature review for

Gamma distribution and the methods of Moschopoulos (1985). Section 3 provides a model

generalizing Moschopoulos’s (1985) result to a proportional hazard model with covariates and

an estimation procedure by quasi-Bayesian inference using MCMC. Section 4 summarizes

the simulation study and applies the proposed model to interpurchase timing in marketing.
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Section 5 concludes the paper.

2 Literature Review

2.1 Gamma Distribution and Reproductivity

First of all, we introduce the Gamma hazard model. Let the y be a time-to-event following

the Gamma distribution Ga(α, λ) of which the pdf is

p(y|α, λ) = 1

Γ(α)λα
yα−1exp(−y/λ), (1)

where α is a shape parameter and λ is a scale parameter that are α > 0 and λ > 0. If

we incorporate the covariate vector x into the model, the scale parameter is represented as

λ = exp(xTβ), which is considered a proportional hazard model. The expectation of the

Gamma hazard model is E[y|α, λ] = αλ.

Here, we consider the sum of random variables following the Gamma distribution. The

Gamma distribution has the reproductive property, and the sum of random variables follows

the Gamma distribution only when the scale parameters λ are common among all distri-

butions (e.g, Krishnamoorthy, 2006). When yk(k = 1, ...,K) follows Ga(αk, λ) with α1 ̸=

, ..., ̸= αK , y =
∑K

k=1 yk follows Ga(
∑

k αk, λ). However, even when the sum of the Gamma

random variables follows the Gamma distribution, the shape parameters α1, ..., αK cannot

be accurately estimated because of an identification problem. Besides, the scale parameter λ

is assumed to be common for each distribution. It is natural that Gamma distributions that

have different shape parameters have different scale parameters as λ1 ̸=, ..., ̸= λK . More-

over, if we incorporate covariates in the model, the scale parameter becomes λk = exp(xTβk),

which follows a different distribution than the others. However, it is known that a Gamma

distribution does not have the reproductive property when the scale parameters differ.

In response, Moschopoulos (1985) and Sim (1992) proposed the pdf for Gamma distribu-

tions with different shape and scale parameters. Moschopoulos (1985) introduced the pdf of

the sum of random variables with different parameters in the Gamma distributions from the

moment-generating function. We will introduce the details of Moschopoulos (1985) in the

next subsection. Sim (1992) also proposed the pdf for the sum of Gamma random variables

that are correlated. Johnson et al. (1994) provided a detailed review of the distribution of the

sum of the Gamma random variables. Additionally, Nadarajah (2008) also reviewed the sum

of random variables from distributions, including the Gamma distribution. In this study, we

will employ the method of Moschopoulos (1985) and generalize it to the proportional hazard

6



model and frailty model.

2.2 Moschopoulos’s (1985) Method

Now we consider the time-to-events y =
∑K

k=1 yk with yk ∼ Ga(αk, λk) where α1 ̸= α2 ̸=

... ̸= αK and λ1 ̸= λ2 ̸= ... ̸= λK . Moschopoulos (1985) represented the pdf for y as follows:

p(y|α1, ..., αK , λ1, ..., λK) = C
∞∑
r=0

δry
ρ+r−1exp(−y/ω)

ωρ+rΓ(ρ+ r)
, (2)

where ω = min(λ1, ..., λK), ρ =
∑K

k=1 αk, C =
∏K

k=1(ω/λk)
αk , and

δr+1 =
1

r + 1

r+1∑
s=1

sγsδr+1−s, r = 0, 1, ...., δ0 = 1,

γr =
K∑

k=1

αk(1− ω/λk)
r/r, r = 1, 2, ..... .

(3)

From the above, we can construct the likelihood function. However, even if the pdf

for the sum of durations is represented, the individual parameters cannot be estimated

appropriately because of the identification problem. We will describe this in details in the

simulation section. Thus, in this study, we propose an estimation method for the different

parameters of the Gamma distribution using auxiliary information.

3 Proposed Method

3.1 The Gamma Frailty Model for Sum of Durations

We consider a Gamma frailty model for repeated events. Let individual i(i = 1, 2, ..., n)’s

j(j = 1, 2, ..., Ji)-th time-to-event be yij with yij =
∑K

k=1 y(k)ij where y(k)ij ∼ Ga(αk, λ(k)ij).

Only yij can be observed and y(1)ij , ..., y(K)ij cannot be observed. Here, αk is a shape

parameter that is α1 ̸= · · · ̸= αK , and λ(k)ij is a scale parameter that is λ(1)ij ̸= · · · ̸=

λ(K)ij . We incorporate the covariate and latent variables in the scale parameter as λ(k)ij =

exp(bkfi + xT
ijβk). Then, fi is a latent variable with fi ∼ N(µ, σ2), x is a covariate vector

excluding the intercept term, βk is a coefficient vector that is β1 ̸= · · · ̸= βK , and bk is the

coefficient for the latent variable fi that is b1 ̸= · · · ̸= bK . Here, one of bk is fixed to 1 (e.g.,

bK = 1). This gives one of the frailty models. We set yi = (yi1, ..., yiJi)
T , y = (yT

1 , ...,y
T
n )

T ,

α = (α1, ..., αK)T , β = (βT
1 , ...,β

T
K)T and b = (b1, ..., bK)T .
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The likelihood function of the proposed model is

p(y|α,β, b) =
n∏

i=1

∫
p(yi|α,β, b, fi)p(fi|µ, σ2)dfi

=

n∏
i=1

∫ Ji∏
j=1

[
Cij

∞∑
r=0

δij,ry
ρ+r−1
ij exp(−yij/ωij)

ωρ+r
ij Γ(ρ+ r)

]
p(fi|µ, σ2)dfi

(4)

where ωij = min(λ(1)ij , ..., λ(K)ij), ρ =
∑K

k=1 αk, Cij =
∏K

k=1(ωij/λ(k)ij)
αk , and

δij,r+1 =
1

r + 1

r+1∑
s=1

sγij,sδij,r+1−s, r = 0, 1, ...., δij,0 = 1.

γij,r =
K∑

k=1

αk(1− ωij/λ(k)ij)
r/r, r = 1, 2, ..... .

(5)

However, it is difficult to estimate α, β, b and fi appropriately. Thus, we estimate them

using the auxiliary information.

3.2 Incorporating Auxiliary Information

The parameters can be identified to incorporate auxiliary information y∗ in Moschopou-

los (1985). Thus, we incorporate the auxiliary information, similar to Imbens and Lan-

caster(1994), Chaudhuri et al. (2008), and Igari and Hoshino (2017, 2018). Generally, when

there are K-th types of distributions, the auxiliary information for K − 1 distribution is

needed. In this study, we consider K = 2 hereafter. We use the auxiliary information y∗ for

one kind of distribution.

We set a moment condition from the auxiliary information y∗ for Ga(α1, λ(1)ij) by the

GMM, Then, the moment condition is

m(y(1)ij |α1,β1, b1) = y∗ − E[y(1)ij |α1,β1, b1] (6)

In practice, we use the Monte Carlo method:

E[y(1)ij |α1,β1, b1] =

∫
E[y(1)ij |α1,β1, b1, fi]p(fi)dfi

≃ 1

L

L∑
l=1

E[y(1)ij |α1,β1, b1, f
l
i ]

(7)

where L is the number of Monte Carlo simulation and f l
i is generated from f l

i ∼ N(µ, σ2).

The expectation of the proposed model is E[y(1)ij |α1,β1, fi] = α1exp(b1fi + x′
ijβ1).
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The objective function of the moment condition is

L∗
n = −N

2

(
1

N

∑
i,j

m(y(1)ij |α1,β1, b1)

)T

Ω

(
1

N

∑
i,j

m(y(1)ij |α1,β1, b1)

)
, (8)

where N is a total number that is N =
∑n

i=1 Ji and Ω is an optimal weight matrix that is

Ω = E
[
m(y(1)ij |α1,β1, b1)m(y(1)ij |α1,β1, b1)

T
]−1

. This form is a kind of quasi-Bayesian

inference (e.g., Chernozhukov and Hong, 2003; Hoshino, 2008) and Bayesian GMM (Yin,

2009; Igari and Hoshino, 2017).

3.3 Quasi-Bayesian Estimation

We use the method by Hoshino and Igari (2017) and Igari and Hoshino (2018), which ex-

panded the quasi-Bayesian inference (Chernozhukov and Hong, 2003; Hoshino, 2008; Yin,

2009). The quasi-Bayesian method permits the objective functions such as GMM or M-

estimator instead of the likelihood function.

Hoshino and Igari (2017) developed the quasi-Bayesian posterior distribution by dividing

the objective function of quasi-Bayes into the likelihood and the additional moment con-

ditions from auxiliary information. Let θ be a parameter vector for a model. Then the

quasi-Bayesian posterior is

q(θ|y) ∝ p(y|θ)× exp{L∗
n} × p(θ), (9)

where p(θ) is a prior distribution for θ, Please refer to Hoshino and Igari (2017) for an

introduction to this method. From this form, we can use the likelihood function to draw

some parameters efficiently.

Additionally, Hoshino and Igari (2017) showed that the latent variables can be incorpo-

rated into the moment conditions. When the parameter is θ and the latent variable is f , the

quasi-Bayesian posterior distribution q(θ,f |y) with latent variable f is generally represented

as

q(θ,f |y) ∝ p(y|θ,f)× exp
{
Ln(θ)

}
× p(θ)× p(f |θ), (10)

where p(f |θ) is a prior distribution for f .

3.4 Sampling using MCMC

We draw the samples for quasi-Bayesian posterior distribution by using the MCMC.

For sampling the parameters for the Gamma duration model, θ∗ =
(
log(α)T ,βT , bT

)T
,
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we use the random-walk Metropolis–Hastings (MH) algorithm to draw samples as follows:

θ∗(cand) ∼ N(θ∗(old),Ψ), (11)

where θ∗(old) is the previous value in the MCMC iteration, and Ψ is a variance-covariance

matrix adjusted to an appropriate acceptance rate.

Then, the probability of accepting the new candidate sample θ∗(cand) is

min

{
1,

q(θ∗(cand)|y)
q(θ∗(old)|y)

}
. (12)

In the calculation of q(θ∗(cand)|y), the latent variable in the moment condition is integrated

out, and we calculate E[y(1)ij |α1,β1, b1] using the Monte Carlo method in each MCMC

iteration.

For sampling the latent variable fi, we can use the general data augmentation method

(Tanner and Wei, 1987; Albert and Chib, 1993),

p(fi|θ∗,yi) ∝
Ji∏
j=1

p(yij |fi,θ∗)p(fi|µ, σ2), (13)

where the term exp{L∗
n} is canceled out when sampling fi because fi is integrated out in the

moment condition E[y(1)ij |α1,β1, b1]. That is to say, we can use the usual MH algorithms

here. Please refer to Hoshino and Igari (2017) for details on the quasi-Bayesian inference

with latent variables.

For sampling µ and σ2, the term exp{L∗
n} is canceled out, and µ and σ2 can be drawn

from a full-conditional posterior distribution using a usual Gibbs sampling approach (e.g.,

Gelman et al., 2013).

4 Application

4.1 Simulation Study

In this section, we introduce two types of simulation studies: (1) the basic Gamma hazard

model without latent variables, and (2) the Gamma frailty model with latent variables. In

particular, we show the performance of the proposed model in comparison with existing

models. That is, we construct three models in both simulations as follows:

(1) Moschopoulos’s (1985) model without auxiliary information (Non-Macro)

(2) The proposed model with one piece of auxiliary information (Proposed NMR =1)

10



(3) The proposed model with three pieces of auxiliary information (Proposed NMR=3)

where models (2) and (3) are the proposed models, but they differ in the amount of auxiliary

information. NMR means the number of moment restriction.

Simulation 1: Basic Gamma Hazard Model

In simulation 1, we evaluate a basic Gamma hazard model without latent variables, and

one observation is given for each individual, that is J1 = · · · = Jn ≡ 1. Now, we explain

a procedure for generating simulation data. In simulation 1, we assume the sum of du-

rations comprises one duration from distribution A and one from distribution B: y(A)i ∼

Ga(αA, λ(A)i), λ(A)i = exp(βA
0 + xiβ

A
1 ) and y(B)i ∼ Ga(αB , λ(B)i), λ(B)i = exp(βB

0 + xiβ
B
1 )

where αA ̸= αB , βA
0 ̸= βB

0 , and βA
1 ̸= βB

1 . Here, we generate y(A)i ∼ Ga(αA, λ(A)i) and

y(B)i ∼ Ga(αB , λ(B)i) once for each individual i, and set yi = y(A)i + y(B)i. The covariate x

is generated as xi ∼ N(0, 1), and we assume that the covariate x is common among distri-

butions A and B. That is, the x should be a stable variable such as demographics. However,

we can observe only yi and xi. The true values of parameters are set to αA = 1.2, αB = 1,

βA
0 = 1, βA

1 = 0.4, βB
0 = 1.2, βB

1 = 1.

Additionally, in Proposed NMR=1 and Proposed NMR=3, we use auxiliary information

for distribution A. Concretely, in Proposed NMR=1, we use the mean value for distribution

A. On the other hand, in Proposed NMR=3, we use three pieces of auxiliary information:

(i) the total average duration for distribution A, (ii) the average duration for distribution

A, that is x > 0, (iii) the average duration for distribution A, that is x < 0. If we use more

than one piece of auxiliary information, we generalize the moment condition in equation (6)

to the S-th dimensional vector as

m(y(A)i|αA, βA
0 , β

A
1 ) =


I1i
[
y∗1 − E[y(A)i|βA

0 , β
A
1 )]
]

· · ·

ISi
[
y∗S − E[y(A)i|βA

0 , β
A
1 ]
] , (14)

where Isi = 1 when individual i belongs to group s (e.g., gender or age range), and E[y(A)i|βA
0 , β

A
1 ]
]
=

αAexp(βA
0 + xiβ

A
1 ). In simulation 1, the Monte Carlo integration in equation (7) is not re-

quired, because there are no latent variables in the model.

We set the simulation number to 200 and draw a total of 80,000 MCMC samples after

20,000 burn-in phases, and we set the thinning interval per 10. The resulting number of

MCMCs after thinning and burn-in was 8,000. We set the sample size as n = 100 and

n = 500. We confirm the convergence of the MCMCs by the Geweke (1992) method. We
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show the summary of simulation results in Table 1. The table shows the results from an

average of 200 simulation data sets. The ”Average” shows mean values for each posterior

mean and the ”MSE ×102” shows the mean squared error (MSE) which shows performance of

the models. The ”MSE Ratio” is fixed when the MSE of Proposed NMR=3 equals one; when

”MSE Ratio” is greater than 1, the accuracy of the model is worse than that of Proposed

NMR=3. The table shows that the results of Proposed NMR=3 are the best of all models

in terms of MSEs. Additionally, the results of Proposed NMR=1 are worse than those of

Proposed NMR=3 but better than those of Non-Macro. Next, we show the boxplot of results

for each posterior mean in Figure 2. The figure shows that Non-Macro cannot effectively

estimate parameters but that the Proposed NMR=3 can. From the results of simulation

study 1, we understand that even if the pdf for the sum of durations is represented by

the Moschopoulos (1985) method, the individual parameters cannot be estimated because of

lack of identification. However, using auxiliary information, the parameters can be estimated

appropriately.

Table 1: Simulation Results (Simulation 1)

True Average MSE×10
2

Value
Non-

Macro
Proposed
(NMR=1)

Proposed
(NMR=3)

Non-
Macro

Proposed
(NMR=1)

Proposed
(NMR=3)

n =100αA 1.2 1.014 0.808 1.349 103.31 36.56 11.59αB 1 1.101 1.472 1.008 104.63 39.14 7.06β0
A 1 5.044 3.181 0.959 4199.49 2425.53 6.26β1
A 0.4 0.530 0.755 0.410 107.85 117.08 0.03β0
B 1.2 5.123 1.170 1.267 4352.95 3.12 7.10β1
B 1 0.814 0.797 0.992 121.37 5.18 1.79

MSE Ratio 761.44 644.31 1.00

n =500αA 1.2 1.050 1.000 1.191 45.38 10.26 2.62αB 1 1.126 1.223 1.033 43.05 11.20 1.91β0
A 1 1.501 1.107 1.027 107.77 4.46 1.95β1
A 0.4 0.740 0.633 0.402 15.94 9.32 0.00β0
B 1.2 1.394 1.179 1.188 60.11 1.70 1.59β1
B 1 0.731 0.824 0.995 11.43 4.84 0.31

MSE Ratio 2863.63 1661.82 1.00

Simulation 2: Gamma Frailty Model

Next, we consider the Gamma frailty model for repeated durations. Let individual i’s j-th

time-to-event be yij with yij = y(A)ij+y(B)ij . We consider two types of Gamma frailty mod-
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Figure 2: Boxplot in Simulation 1 (n = 500)
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els: y(A)ij ∼ Ga(αA, λ(A)ij), λ(A)ij = exp(xijβ
A + fi) and y(B)ij ∼ Ga(αB , λ(B)ij), λ(B)ij =

exp(xijβ
B + b2fi). Then fi ∼ N(µ, σ2). However, only yij and xij can be observed in the

analysis. The true values of parameters are set to αA = 1.2, αB = 1, βA = 0.4, βB = 1,

b2 = 1.2, µ = 1, σ2 = 0.5, and b1 is fixed at 1. The procedures for generating data sets and

auxiliary information in simulation 2 are the same as in simulation 1. In simulation 2, we

set the number of repeated events at 3, that is J1 = · · · = Jn ≡ 3. The MCMC algorithms

for estimating the model in simulation 2 are shown in Section 3.

We set the simulation number to 100, and the sample size at n = 200. The number of

MCMCs and the convergence are the same as in simulation 1. We show the summary of

simulation results in Table 2 and the boxplot of results for each posterior mean in Figure 3.

The interpretations of the table are the same as in simulation 1. The table shows that the

results of Proposed NMR=3 are the best of all models in terms of MSEs, while the results of

Proposed NMR=1 are worse than those of Proposed NMR=3 but better than those of Non-

Macro. Next, the boxplot shows that Non-Macro cannot estimate parameters appropriately

but that the proposed model Proposed NMR=3 can. From the results of simulation studies 1

and 2 we can understand that, even if there are some latent variables (as in the frailty model),

the proposed model using auxiliary information can estimate each parameter effectively.

Table 2: Simulation Results (Simulation 2)

True Average MSE×10
2

Value
Non-

Macro
Proposed
(NMR=1)

Proposed
(NMR=3)

Non-
Macro

Proposed
(NMR=1)

Proposed
(NMR=3)αA 1.2 1.152 0.738 1.104 50.28 25.30 2.73αB 1 1.018 1.427 1.124 44.91 23.80 3.04β1

A 0.4 0.637 0.660 0.401 122.45 98.26 0.13β1
B 1 0.937 0.745 0.941 354.74 15.93 0.76

b2 1.2 1.286 1.013 1.162 76.59 15.44 1.89µ 1 -1.465 1.043 1.076 4458.28 249.42 2.59σ2 0.5 1.100 0.750 0.593 155.11 10.93 1.77

MSE Ratio 468.19 127.73 1.00

4.2 Application to Interpurchase Timing Model in Marketing

Model for Empirical Analysis

As we previously mentioned, interpurchase timing models using the proportional hazard

model have been widely studied in marketing (e.g., Jain and Vilcassim, 1991; Helsen, and

Schmittlein, 1993; Allenby et al., 1999; Seetharaman et al., 2003; Bijwaard et al., 2006; Igari
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Figure 3: Boxplot in Simulation 2 (n = 200)
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and Hoshino, 2018). In empirical analysis, only purchase histories in a company’s own store

can be observed, but we assume that the purchase number in competing stores can be known

to researchers by using auxiliary information such as marketing surveys. We show a diagram

of the analysis in Figure 4. First, we consider the two distributions: own store and competing

stores. We let the consumer i’s j-th interpurchase timing observed in the individual database

be yij . Here, yij comprises the sum of Kij-th durations, the one-duration in own store, yown
ij ,

and (Kij − 1)-th durations in competing stores. That is yij = (
∑Kij−1

k=1 y
comp(k)
ij ) + yown

ij .

In the hazard function, we use covariate xij in the individual duration, but we do not

use covariates in competing durations because marketing variables cannot be obtained in

competing stores.

Purchased in own store

Purchased in competing store

Observed duration� � �������� � �������� ��� ����
Unobserved duration�������������� Unobserved duration������������ TimeCustomer

Figure 4: Interpurchase Timing Model in Empirical Analysis

The scale parameters are represented as λown
ij = exp(b1fi + xT

ijβ) and λcomp
ij = exp(fi),

where b2 is fixed to 1. The latent variable fi is explained by the demographic variable di,

that is fi ∼ N(dT
i η, σ

2). We assume b1 > 0 as a theory constraint, and we set σ2 = 1 to

simply perform the estimation.

The pdf, given latent variable fi, is

p(yij |α,β, b1, fi) =


yαown−1
ij exp(−yij/λ

own
ij )

Γ(αown)λ
αown
ij

if Kij = 1

Cij

∑∞
r=0

δij,ry
ρij+r−1

ij exp(−yij/ωij)

ω
ρij+r

ij Γ(ρij+r)
if Kij > 1

, (15)
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where ωij = min(λown
ij , λcomp

ij ), ρij = αown + (Kij − 1)αcomp, and

Cij = (ωij/λ
own
ij )αown × (ωij/λ

comp
ij )(Kij−1)αcomp

δij,r+1 =
1

r + 1

r+1∑
s=1

sγij,sδij,r+1−s, r = 0, 1, ...., δij0 = 1.

γij,r = αown(1− ωij/λ
own
ij )r/r + (Kij − 1)αcomp(1− ωij/λ

comp
ij )r/r, r = 1, 2, .....

(16)

As there are latent variables fi in the model, the Monte Carlo calculation in equation (7)

is required, and fi are drawn from equation (13).

Purchase History Data

We use the Syndicated Consumer Index (SCI) data provided by Intage, Inc. in Japan. The

SCI scanner panel data is the de facto standard for purchase panel data in the Japanese

marketing field. The SCI records purchases along with the kinds, quantities, and prices

of products purchased, the stores where items were purchased, and the date and time of

purchase. Although the scanner panel data records purchase histories within competing

store chains, we treat it as the database for a particular store, which is incomplete and lacks

information about competing stores. We choose a familiar general merchandise store chain

in Japan for the analysis. We also use purchase data for haircare items such as shampoo,

conditioners, and treatment products. We analyze the data for the period from January 2015

to June 2016. From the purchase data, we consider consumers who purchase products in this

category more than three times during the period. We select the sample size (n = 200) and

total events number (= 1214) for the parameter estimation. The histogram of the observed

duration is shown in Figure 5.

Next, we define the covariates and the auxiliary information used in our analysis. First,

for the covariates x in the Gamma hazard model, we use two variables: ”Price” and ”log

(Previous Amount).” Here, the ”Price” is scaled and equals 1 when the price at the purchase

incidence equals the regular price. In the marketing field, the effects of price discounts are

very important. Second, we use five variables for d: ”gender (male 1),” ”age,” ”child,” ”job

(fulltime 1),” and ”family size (1, 2, etc.).” Finally, we give the auxiliary information for the

expected duration for own store y∗s . We use a total of seven pieces of information: ”all,” ”age

under 30,” ”age in 30s,” ”age in 40s,” ”age in 50s or more,” ”price under 0.9,” and ”price

greater than or equal to 0.9.” The summary statistics are shown in Table 3.

Results
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Table 3: Summary Statistics

Average

Basic Information
Sample Size 200
Total Events Number 1214

Duration
Observed Cumulated Duration 63.763
The Number of Cumulated Duration 1.557

Time-Dependente Variable
Price 0.997
Previous Amount 717.878

Demographic Variables
Gender (Male=1) 0.085
Age 42.255
Child 0.545
Job (Fulltime=1) 0.235
Familiy Size 3.365

Auxiliary Information
Total 44.928
Age under 30 53.307
Age 30s 37.796
Age 40s 43.035
Age 50s or more 54.244
Price under 0.9 42.104
Price greater than or equal to 0.9 45.522

In the real data analysis, we construct two models: (1) the proposed model with auxiliary

information, and (2) the competing model without auxiliary information. In each analysis,

we draw 5,000 MCMC iterations after 25,000 burn-in phases. We confirm the convergence of

each model using the Geweke (1992) method. First of all, we check the accuracy of estimated

results compared to the auxiliary information (=true value) as in Chaudhuri et al.(2008).

We show the estimated expected duration for the own store E[yown] in Table 4. From this,

we can understand that the competing model cannot estimate the durations of the own store

but the proposed model can.

Next, we show the estimated results for parameters in the own store in Table 5. The

table shows the results from the proposed model with auxiliary information and the com-

peting model without auxiliary information. The table shows the posterior mean, posterior

standard deviation, and Bayesian 95% credible intervals. Additionally, the * in the table

shows significance from Bayesian 95% credible intervals. In the models, it is interpreted that

if the coefficient of a covariate is positive, the duration becomes long. On the other hand,
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Figure 5: Histogram of Observed Duration

Table 4: Checking Accuracy of Estimated E[yown]

Auxiliary Estimated
Information Proposed Model Competing Model

Total 44.93 43.58 17.22
Age under 30 53.31 45.95 17.84
Age 30s 37.80 37.40 16.31
Age 40s 43.03 43.88 17.11
Age 50s or more 54.24 50.85 18.39
Price under 0.9 42.10 40.33 11.33
Price greater than or equal to 0.9 45.52 44.26 18.45

we understand that if the coefficient of a covariate is negative, the duration becomes short.

In other words, the interpretation of coefficients in the proposed model is contrary to that

of the general proportional hazard model.

The results of the duration model show that the coefficient of ”Price” is significantly

positive. That is, when ”Price” becomes higher, the duration becomes longer. In the mar-

keting field, it is widely known that price discounts make interpurchase timing shorter (e.g.,

Jain and Vilcassim, 1991; Helsen and Schmittlein, 1993; Seetharaman et al, 2003; Igari and

Hoshino, 2017, 2018). Additionally, the purchase amount in the previous (the last) event

should be significantly positive, because a customer who purchased more products in the last

purchase event will purchase products later more certainly than a customer who purchased

fewer products.. The table shows that the estimated results in the proposed model do not

contradict general marketing knowledge. A comparison of the coefficients of the two models

shows that the shape parameters α are estimated to be approximately the same. However,

the coefficients of ”Price” differ between the models. The coefficient of ”Price” in the com-
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peting model is overestimated in comparison to that of the proposed model. In contrast,

the coefficient of ”b” in the competing model is underestimated in comparison to that of the

proposed model.

The estimated coefficients for demographic variables in the two models have the same

tendency. It can be interpreted that the coefficient of gender (male) is positive, which

shows the durations for male customers are longer than those for female customers. On the

other hand, the coefficients of age, child, job, and family size are negative. Families with

many children consume more products than those with fewer children. However, because

there are no demographic variables whose coefficients are significant, the interpretation of

positive or negative should be just a suggestion. Thus, the estimated results are consistent

with the previous literature, and evidently, the proposed model can estimate parameters

appropriately.

Table 5: Estimated Results for Own Store

Posterior Mean Posterior  Sd CI95 Low CI95 High

Proposed Model(with Auxiliary Infromation)α 0.7417 0.1069 0.5518 0.9952 *β Price 0.2627 0.1568 0.0186 0.5847 *
log(Previous Amount) 0.3907 0.0633 0.2411 0.5016 *

b 0.4745 0.0956 0.2980 0.6414 *η Intercept 2.9137 0.4773 2.0048 3.8586 *
Gender (Male=1) 0.2463 0.3080 -0.3499 0.8369
Age -0.0011 0.0082 -0.0172 0.0148
Child -0.3019 0.1853 -0.6684 0.0530
Job (Fulltime=1) -0.0393 0.2067 -0.4471 0.3735
Family Size -0.0592 0.0810 -0.2206 0.0999

Competing Model(without Auxiliary Infromation)α 0.7593 0.1137 0.5843 0.9941 *β Price 1.6323 0.2694 1.0283 2.1282 *
log(Previous Amount) 0.2078 0.0487 0.1118 0.3178 *

b 0.0434 0.0363 0.0020 0.1344 *η Intercept 3.7593 0.4477 2.8806 4.6215 *
Gender (Male=1) 0.2929 0.3088 -0.3218 0.8919
Age -0.0004 0.0081 -0.0167 0.0154
Child -0.2776 0.1893 -0.6467 0.0922
Job (Fulltime=1) -0.0553 0.2018 -0.4525 0.3461
Family Size -0.0665 0.0841 -0.2325 0.1017

Next, we show the distribution of expected estimated durations in competing stores,

that is E[ycomp], in the proposed model. The posterior mean of the shape parameters of

competing stores α̂comp is 1.655. We show the distribution of expected durations E[ycomp
i ]

in competing stores in Figure 6. Thus, the proposed model can estimate the unobserved

distribution of durations in competing stores. Marketing managers may find this useful to
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understand consumer behavior in competing stores.
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Figure 6: Expected Durations E[ycomp] in Proposed Model

5 Conclusion

In this study, we propose a method to estimate parameters from the sum of independent

Gamma durations with different parameters. Concretely, we generalized the Moschopoulos

(1985) result to the proportional hazard model with covariates and to frailty models. We

also incorporate auxiliary information by the quasi-Bayesian methods and propose the es-

timation procedure by MCMC. In two simulation studies, we show that the results of the

proposed model with auxiliary information are better than those without it. The proposed

model reproduces the true parameters appropriately. Additionally, we apply our model to

the interpurchase timing model in marketing. From the estimated expected durations, we

show the accuracy of the proposed model with auxiliary information in comparison to the

competing model without auxiliary information. The results show that the proposed model

can estimate the effects of price and the previous amounts, which does not contradict the

findings of previous studies. Moreover, we show that the proposed model can calculate the

expected duration of competing stores, which is usually unobserved.

Our approach can be applied to other proportional hazard models whose baseline hazard

function is represented by exponential, log-normal distributions instead of Gamma distribu-

tions. However, specifying the pdf of the sum of durations is necessary. For example, the pdf

of the sum of Weibull durations is not yet known (Nadarajah, 2008). It is also expected that

the proposed method will be expanded to the Cox proportional hazard model (Cox, 1972),

whose baseline hazard function is expressed in a nonparametric form. We set this as a goal
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for future research. Additionally, we consider only two types of distributions, but our model

can be applied to three or more types of distributions. However, to estimate parameters

appropriately, the auxiliary information for K − 1-th distributions is generally required for

the analysis of K-th type of distributions.

In this study, we demonstrate the effectiveness of our model through a simulation study.

In real data analysis, we verify the accuracy by the estimated expected durations. Model

selection using information criteria such as the Bayes factor in quasi-Bayesian inference is

proposed by Li and Jiang (2016). Using this method, we can discuss the overidentification

problem in GMM (e.g., Hansen, 1982) and discuss which auxiliary information should be

used. We posit this as another goal for future research.

Moreover, our model can be applied to recency, monetary, frequency, and clumpiness

(RMFC) analysis (Zhang et al., 2013; 2015) in marketing. Clumpiness has recently emerged

as an important concept to capture consumers’ purchase behaviors. Researchers can capture

the irregularity of interpurchase timing called clumpiness, which we think is generated from

purchase behavior in competing stores. Our model can capture the causes of clumpiness as

a sum of independent random variables. In the future, we will expand our model to RFMC

analysis in marketing science.
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