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Identification of heterogeneous treatment
effects as a function of potential untreated
outcome under the nonignorable assignment

condition

Keisuke Takahata and Takahiro Hoshino

Abstract

We provide sufficient conditions for the identification of hetero-
geneous treatment effects (HTE), in which the missing mechanism
is nonignorable, when the information on the marginal distribution of
untreated outcome is available. It is also shown that, under such a situ-
ation, the same result holds for the identification of average treatment
effects (ATE). Exposing certain additivity on the regression function
of the assignment probability, we reduce the identification of HTE to
the uniqueness of a solution of some integral equation, and discuss
it borrowing the idea from the literature on statistical inverse prob-
lems. Our result contributes to theoretical understandings in causal
inference with heterogeneity and also the relaxation of the conditional
independence assumption in statistical data fusion or statistical data
combination.

Keyword: nonignorable missing; identifiability; auxiliary information;
causal inference; statistical data fusion; integral equation

1 Introduction

In observational studies, a treatment effect of interest is generally defined as
average treatment effects (ATE) or average treatment effects on the treated
(ATT). The strong ignorability condition, which requires an assignment to
be independent of potential outcomes given covariates, is well-known to play
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a significant role in the identification of those quantities (Rosenbaum and
Rubin, 1983). On the other hand, at times, researchers want to know more
individualized or heterogeneous causal effects, while, as its name suggests,
ATE and ATT are averaged effects over the population or a subset of the
population. Estimation of such effects has been paid attention to in recent
years (e.g., Wager and Athey, 2017), particularly in marketing and medicine
where personalized treatments are known to be effective, but theoretical as-
pects have not been necessarily studied sufficiently. Considering this purpose,
we discuss the identification of the following heterogeneous treatment effects
(HTE), which we define in this paper as

HTE(y0) ≡ E[y1 − y0|y0] = Ex|y0 [E[y1|y0, x]]− y0, (1)

where y1 ∈ R and y0 ∈ R are the outcome variables when assigned to the
treatment group and the control group respectively, and x ∈ Rd is a d-
dimensional covariate vector. Ex|y0 [·] denotes the expectation over x given
y0. HTE implies how much effect people whose outcome is y0 under the
untreated condition would get if assigned to the treatment. Therefore, HTE
is a function of y0.

Although HTE may have an implication for researchers’ interest, its iden-
tification is not trivial owing to the dependence of unobserved variable: we
need to identify the density of y1 given y0 and x, p(y1|y0, x), as seen in
equation (1), but y1 and y0 are never observed simultaneously. Therefore,
additional conditions are needed for the identification. In this paper, we
obtain relaxing the strong ignorability condition as

p(z|y1, y0, x) = p(z|y0, x), (2)

where z ∈ {0, 1} is an assignment indicator, which is z = 1 when assigned to
the treatment group. We refer to this assumption as weak ignorability. This
assumption is justifiable for the following two reasons. First, it is always
weaker than the strong ignorability assumption. Second, since an assignment,
z, precedes the outcome in causal inference, it is natural to assume that an
assignment to the treatment should be influenced by the default value of the
outcome, y0, rather than by the outcome with some special treatment, y1. It
would not be straightforward to observe how weak ignorability works in the
identification of HTE, but the details will be described in section 2.

However, weak ignorability still requires us to consider dependence on un-
observed outcome y0 in the treatment group, that is, the missing mechanism
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is nonignorable (or NMAR, Little and Rubin, 2002). Under nonignorable
missingness, full parametric assumptions, which cannot be tested by original
data alone, are generally needed for identification (e.g., Miao et al., 2017;
Cui et al., 2017). One of the most popular approaches to deal with this issue
is to use auxiliary information (Hirano et al., 2001; Nevo, 2003; Deng et al.,
2013; Si et al., 2014; Chen et al., 2017). Following this approach, we provide
sufficient conditions for the identification of HTE with auxiliary information
under weak ignorability. We assume that the marginal distribution of an
outcome under the untreated condition, p(y0), is available. As a treatment
is generally conducted on a small subset of the target population and y0 is
the outcome when not assigned to such treatment, we may use information
on p(y0) outside the experiment. For example, survival time distribution
in the population is available in medical research, or income distribution is
estimated by using the census in economics.

Hirano et al. (2001) considered a situation where there is nonignorable
attrition in a two-period panel, while refreshment samples, which are new
additional units randomly sampled from the target population, are avail-
able. They provided sufficient conditions for identification in this setting.
In this paper, we reduce the identifiability of HTE to the uniqueness of a
solution of some integral equation. The integral equation to solve here has
the same structure as that of nonparametric instrumental variable models;
the uniqueness of the integral equation is then discussed based on Newey
and Powell (2003), which characterized uniqueness of the integral equation
as completeness of certain conditional distribution.

Based on these results, we show that, with the information on p(y0), it
is sufficient for the identification of HTE that the extended version of the
propensity score (described later) (i) is specified by the logistic regression,
(ii) the regression function has no interaction term between y0 and x, and
(iii) its part relating to y0 is linear in parameters (but note that it can be
a nonlinear function of y0). It is also shown that the same conditions are
sufficient for the identification of ATE under weak ignorability, and that
only the information on p(y0) is sufficient for ATT. In addition, it is notable
that our result ensures point identification, while there are several literature
providing partial identification results on statistical data combination, where
outcome variables and covariates are separately observed (Manski, 2000; Fan
et al., 2014; Fan et al., 2017).
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2 Identification of ATT, ATE, and HTE

Let us assume that the marginal distribution of the untreated outcome, p(y0),
is known. ATE and ATT can be formulated as

ATE ≡ E[y1 − y0] = Ey0,x[E[y1|y0, x]]− E[y0], (3)

ATT ≡ E[y1 − y0|z = 1] = E[y1|z = 1]− E[y0|z = 1]. (4)

Note that we can consistently estimate E[y1|z = 1] through observed data
and E[y0] by the assumption. Besides, as p(y0|z = 1) can be calculated by

p(y0|z = 1) =
p(y0)− p(y0|z = 0)Pr(z = 0)

Pr(z = 1)
, (5)

the identifiability of ATT is trivial. Therefore, it suffices to provide conditions
for the identification of p(y0, x) and p(y1|y0, x) for ATE, and this is clearly
sufficient for HTE.

First, we discuss the identification of p(y0, x). By Bayes’ rule, p(y0, x)
can be written as

p(y0, x) =
p(y0, x|z = 0)Pr(z = 0)

Pr(z = 0|y0, x)
=

p(y0, x|z = 0)Pr(z = 0)

1− Pr(z = 1|y0, x)
. (6)

According to Hirano et al. (2001)’s main theorem, when p(y0) is known,
p(z = 1|y0, x) is identified in the following form:

Pr(z = 1|y0, x) = 1− g(k0 + ky0(y0) + kx(x)), (7)

where g is a known function that is differentiable, strictly increasing with
limx→−∞ g(x) = 0 and limx→∞ g(x) = 1, and ky0(·) and kx(·) are a unique
set of functions subject to normalizations, ky0(0) = kx(0) = 0. Equation (7)
can be interpreted as the extended version of the propensity score (hereafter,
simply “the propensity score”), while the original version of the propensity
score is generally defined as the probability of being assigned to the treatment
group given only covariates (Rosenbaum and Rubin, 1983). The point is
that the propensity score must be specified not including an interaction term
between y0 and x, that is, additivity has to hold in equation (7). Considering
this result, it is straightforward to observe that p(y0, x) is identifiable.
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Next, we discuss the identification of p(y1|y0, x). Let us consider the
following integral equation:

p(y1|x, z = 1) =

∫
p(y1|y0, x, z = 1)p(y0|x, z = 1)dy0

=

∫
p(y1|y0, x)p(y0|x, z = 1)dy0, (8)

where the second equality holds due to weak ignorability. Note that we
can consistently estimate p(y1|x, z = 1) through observed data. Moreover,
by substituting z = 0 with z = 1 in the middle part of equation (6), it is
easily verified that p(y0|x, z = 1) is identifiable. Hence, if there is a unique
p(y1|y0, x) that satisfies equation (8), then p(y1|y0, x) is identifiable, which
leads to the identifiability of HTE and ATE.

Equation (8) is called Fredholm integral equation of the first kind, and
these types of equations are known to be ill-posed problems. In other words,
additional conditions or regularizations are needed to obtain a stable and
unique solution. Several problems, such as nonparametric instrumental vari-
able models or measurement-error models, are known to reduce to solve this
type of equations, and are studied in econometrics as statistical inverse prob-
lems (see for example, Carrasco et al., 2007; Horowitz, 2009). Newey and
Powell (2003) characterized the uniqueness of a solution of this type of inte-
gral equation as completeness of the distribution with respect to which the
expectation of the function of interest is taken. Since their pioneering work,
the completeness condition has been widely used in econometrics (e.g., Hall
and Horowitz, 2005; Blundell et al., 2007; Darolles et al., 2011; Horowitz,
2011; Horowitz and Lee, 2012). Following Newey and Powell’s discussion, we
provide sufficient conditions for the identification of HTE and ATE.

Theorem. Under weak ignorability, if (i) p(y0) is known, (ii) the propensity
score is specified by the logistic regression, and (iii) ky0(·) in equation (7) is
linear in the parameter θy0, then HTE and ATE are identifiable.

Proof. Let p(y1|y0, x) and p̃(y1|y0, x) be any solutions of equation (8). By
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subtracting both equations with solution inserted, we obtain∫
(p(y1|y0, x)− p̃(y1|y0, x))p(y0|x, z = 1)dy0

=

∫
h(y0, x)p(y0|x, z = 1)dy0 = 0, (9)

where h(y0, x) = p(y1|y0, x) − p̃(y1|y0, x). If it is the case that h(y0, x)
that solves equation (9) is always zero for all x, then p(y1|y0, x) is equal
to p̃(y1|y0, x) and equation (8) has a unique solution. This implies that, if
p(y0|x, z = 1) is complete, p(y1|y0, x) is identifiable. Therefore, it suffice to
find sufficient conditions for p(y0|x, z = 1) being complete.

Let us assume that the function g in equation (7) is the distribution
function of logistic distribution. In this case, p(y0|x, z = 1) can be rewritten
as

p(y0|x, z = 1) =
p(y0, x)Pr(z = 1|y0, x)

p(x, z = 1)

= exp(k0 + ky0(y0) + kx(x))
p(y0, x|z = 0)Pr(z = 0)

p(x, z = 1)
. (10)

Pugging equation (10) into equation (9) yields∫
exp(ky0(y0))m(y0, x)dy0 = 0 (11)

where

m(y0, x) = h(y0, x) exp(k0 + kx(x))
p(y0, x|z = 0)Pr(z = 0)

p(x, z = 1)
. (12)

Here, let us introduce the additional assumption. Denote by θy0 the pa-
rameter vector of ky0(y0): ky0(y0) = ky0(y0; θy0). We assume that ky0(y0; θy0)
is linear in the parameter θy0 :

ky0(y0; θy0) =

p∑
j=1

θy0jTj(y0), (13)

where Tj(y0) is any statistics of y0. Substituting ky0(y0) in equation (11) with
equation (13), we obtain∫

exp

(
p∑

j=1

θy0jTj(y0)

)
m(y0, x)dy0 = 0. (14)
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Equation (14) has the same structure as the discussion about complete-
ness of exponential family. Therefore, considering Theorem 1 (Lehman, 1986,
p. 142), it leads to m(y0, x) = 0 for all x. As each value on the right-hand
side of (12) is strictly positive except h(y0, x), it follows that h(y0, x) = 0,
and equation (8) has a unique solution.

The assumption on ky0(·) does not require ky0(·) to be a linear function
of y0, but to be a linear function of the parameter θy0 . Therefore, ky0(·)
can include, for example, a polynomial of y0. Given that the true function
can be approximated by the finite Taylor series, this assumption is not that
strong. On the other hand, the additivity condition between y0 and x may
be strong. As long as Hirano et al.’s result is followed, this condition must
be satisfied. However, if we can make use of the information on p(y0, x) from
other sources, this can be relaxed and we can identify an interaction term,
ky0,x(·, ·).

3 Discussion

The completeness condition, as used in the proof of the theorem, has been
paid attention to in recent years since Newey and Powell (2003). Although
it is widely applicable, Canay et al. (2013) showed that the completeness
condition cannot be tested by observed data. This implies that “for every
complete distribution, there exists an incomplete distribution which is arbi-
trarily close to it (Freyberger, 2017).” Canay et al. (2013) argued that their
result did not suggest to avoid using the completeness condition but to justify
it with alternative arguments. On the other hand, there are several papers
which provide sufficient conditions as alternatives for the completeness condi-
tion, which may be testable (Newey and Powell, 2003; D’Haultfoeuille, 2011;
Hu and Shiu, 2016). Our assumption that the function g is the distribution
function of the logistic distribution can be related to the latter approach.
Newey and Powell (2003) provided the sufficient condition that the certain
conditional distribution corresponding to p(y0|x, z = 1) in our model is of
the exponential family, but the specification by the logistic regression may
be rather weaker.

Our result can be related to the partial identification literature on statis-
tical data fusion or statistical data combination (Ridder and Moffitt, 2007).
Fan et al. (2014) considered a situation where outcome variables and covari-
ates are separately observed and partial identification results are derived.
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Although they assumed strong ignorability, that is, the missing mechanism
is ignorable, there was no sample observed as a set of the outcome and covari-
ates. On the other hand, we assumed that the outcome and covariates were
observed simultaneously for each group, hence their setting is more general
than ours in this sense. However, we considered the nonignorable missing
mechanism (weak ignorability) and provided point identification results by
using auxiliary information. Therefore, which approach is more useful may
depend on a situation.

Moreover, our approach can be directly extended to statistical data fu-
sion to relax the conditional independence assumption. Suppose that dataset
A contains y0 ∈ R and covariates x ∈ Rd, dataset B contains y1 ∈ R and
x, and x are common in both the datasets. The aim is to impute y1(y0) in
dataset A (B) given y0(y1) and x (respectively). In other words, p(y1|y0, x)
and p(y0|y1, x) are to be estimated. However, this implies that the miss-
ing mechanism is nonignorable. Therefore, the conditional independence,
p(y1, y0|x) = p(y1|x)p(y0|x), is generally assumed and missing values are im-
puted by p(y1|x) and p(y0|x). Although this assumption makes the missing
mechanism ignorable and tractable, it is rather arbitrary, particularly when
covariates do not have sufficient information. In data fusion, it can be the
case that the marginal distribution of each target variable is known from
other sources but the joint distribution p(y0, y1) is unknown. In this case,
our result implies that p(y1|y0, x) and p(y0|y1, x) can be consistently esti-
mated with such auxiliary information, that is, we do not have to assume
conditional independence. However in this case the weak ignorability condi-
tion may need some modification.

4 Conclusion

We provided sufficient conditions for the identification of HTE with infor-
mation on the marginal distribution of untreated outcome under the non-
ignorable missing assumption, the same result for ATE, and weaker condi-
tions for ATT. Our result contributes to the understanding of theoretical
aspects of treatment effects with heterogeneity, which are focused in mar-
keting, medicine and many other applications. It is also shown that our
result may be useful for statistical data fusion in relaxing the conditional
independence assumption.

As we discussed only identification in this paper, we are now planning to
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develop an estimation procedure. As it includes solving integral equations
such as equation (8), we may borrow existing methods from inverse problems,
such as sieve estimation or Tikhonov regularization. One aspect we need to
consider is to incorporating the information on the marginal distribution into
the optimization problem as a certain constraint and we do not consider it
to be very challenging to do so.
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