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Nonparametric Inference in Functional Linear Quantile

Regression by RKHS Approach

Kosaku Takanashi

Faculty of Economics, Keio University

Abstract

This paper studies an asymptotics of functional linear quantile regression in which the depen-
dent variable is scalar while the covariate is a function. We apply a roughness regularization ap-
proach of a reproducing kernel Hilbert space framework. In the above circumstance, narrow con-
vergence with respect to uniform convergence fails to hold, because of the strength of its topology.
A new approach we propose to the lack-of-uniform-convergence is based on Mosco-convergence
that is weaker topology than uniform convergence. By applying narrow convergence with respect
to Mosco topology, we develop an infinite-dimensional version of the convexity argument and
provide a proof of an asymptotic normality of argmin processes. Our new technique also provides
the asymptotic confidence intervals and the generalized likelihood ratio hypothesis testing in fully

nonparametric circumstance.

1 Introduction.

Functional data have become increasingly encountered in many applications, and quantile regression,
developed by Koenker and Bassett Jr (1978), offers a variety of fruitful applications for a functional
data by estimating several different conditional quantiles. This paper studies an asymptotics of func-
tional linear quantile regression in which the dependent variable is scalar while the covariate is a
function. Several statistical models and methods have been developed for them: Shin and Lee (2016),
Yao et al. (2017), Yuan and Cai (2010), Hall et al. (2007), Hall et al. (2006), Miiller et al. (2005),
Yao et al. (2005). Functional principle component analysis (FPCA) is commonly used for analyzing
such models; see, Kato (2012). The success of these FPCA-based approaches, however, hinges on
the availability of a good estimate of the functional principal components for the slope function; see
Cai and Yuan (2012). Roughness regularization method circumvents the spacing of eigenvalues of the
covariance function which is required by the FPCA method, and allow one to regularize the model

complexity in a continuous manner, see Yuan and Cai (2010).
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In order to construct the asymptotics of the estimator and hypothesis testing, we make the uniform
convergence of the objective function to its population counterpart. In order to make the objective
function satisfy the uniform convergence, we have to impose some compactness of the parameter
space or entropy conditions (e.g., van der Vaart (1998)). These assumptions are rather restrictive for
functional linear quantile regression models. Although since the objective function for functional
linear quantile regression is convex (which is the “check function” defined in section 2), it seems that
we may use the convexity lemma (e.g., Pollard (1991) and Theorem 10.8 of Rockafellar (1970)) to
ensure that point-wise convergence of convex functions implies uniform convergence, however, in
the infinite-dimensional case, this argument for uniform convergence may fail (see Section 3.1).

To solve the aforementioned lack-of-uniform-convergence issue, we shall propose to apply an
alternative mode of convergence, Mosco convergence, which is weaker than uniform convergence but
still strong enough to enable statistical applications. Mosco convergence of the objective function
ensures the convergence of its minimizer (Attouch (1984)). We develop narrow convergence theory
with respect to the Mosco metric, see also Geyer (1994), Dupacava and Wets (1988), Molchanov
(2005), Knight (2003) in finite dimensional setting and Bucher et al. (2014) for epigraph convergence.
There exist alternative forms of convergence that is equivalent to Mosco convergence but more easily
verifiable. They include graph convergence (G-convergence) of subdifferential operators and strong
convergence of resolvent. We shall explain these key concepts in Section 3. Using these equivalences,
we can establish the consistency and narrow convergence of an M-estimator in an infinite-dimensional
parameter space. Furthermore, Mosco convergence also ensures the invertibility of the “Hessian”
operator.

The rest of this paper is organized as follows. In Section 2, we present the set-up of functional
linear quantile regression model. In Section 3, we describe the Mosco convergence and introduce the
narrow convergence in the Mosco topology and we derive the quadratic approximation of a convex
objective function in an infinite-dimensional Hilbert space. In Section 4 we apply our techniques
to functional linear quantile regression model. We also provide the asymptotic distribution of the
likelihood ratio statistic. Appendixes give some technical lemmas.

Here we introduce some notations used in this paper. Let ~» denote narrow convergence and i
denote convergence in probability. We use empirical process notation: G, p = \/Lﬁ S p(0.2) —
E [p (6, Z;)). We denote ||| as l-norm or L,-norm of an element of Hilbert space § € H. Let6,, = 6,
denote convergence in strong topology, e.g., ||6,, — 0o|| — 0and 6,, = 6, denote convergence in weak
topology, e.g., (0, 0) — (0o, 0*) for all identical dual 6* € H* (= H). We denote the limit in weak

topology as w-lim,,_, 0,,. Let 1. denote the indicator function.
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2 The Model and Estimation Strategy

Let Z = (Y, X) be a pair of a scalar response variable Y and a square integrable random function
X = {X (t)}cpp,) on a interval [0,1]. Let Q- (Y[X) be the th conditional quantile function of ¥’
given X for any 7 € (0, 1) that is away from 0 and 1. The 7th conditional quantile @, (Y'|X) can be

written as a linear functional of X:
1
Q- (VIX) =a, + [ X5 Bdt e,
0

where X (t) = X (t) — E[X ()], o, is a scalar constant and 3, (¢) is a scalar function in L? [0, 1].
Hereafter, we consider estimating the slope function (,. The unknown parameter 6, = («, ) belongs
toH =R x L*[0,1].

Our estimation strategy is based on the method of regularization. For the detailes, see Yuan and
Cai (2010), Shin and Lee (2016). We suppose X (t) satisfies E [fo X () dt] < 00. We take the
slope function 3, (t) to be an RKHS, #, a subspace of the Hilbert space of square integralbe functions
L?[0,1]. We denote the inner product and the associated norm in H by (-,-) and ||-|| respectively.
Suppose we observe data (Y;, X; (¢)), 1 < i < n consisting of n independent copies of (Y, X (1)).
With them, we may estimate «., 5, via by penalization method :

<d7',n,/\7 B‘r,n,A) = arg min FT,n,/\ (9)

a€ER,BEH
@.1)
£a , — [ X And
aeﬁ%zmip( —om [0 s0d) 2 5)
where p (u) = {7 — L(u<o)} u is the check function (Koenker and Bassett Jr (1978)), A, is the

smoothing parameter that converges to zero as n — oo and J (/) is a convex penalty functional
on /3. Obviously, the criterion function p. (-) is not continuously differentiable.

Similarly to Yuan and Cai (2010), we assume the penalty functional .J is a squared semi-norm on
J. Let H, be a finite dimensional subspace of H such that

Ho={6eM: J(B)=0}

with orthonormal basis {v1,--- ,vx} and dim (Hy) = N. Let H; be the orthogonal complement of
Ho in ‘H and H has an orthogonal decomposition H = Hy @ H;. In this paper, we suppose that
J(B) = ||lm. B3, where my, is the orthogonal projection of 3 € H onto a subspace #;. The
canonical example of penalized functional is J ([ fo 1B (t | dt (see, for example Koenker et al.
(1994), Portnoy (1997)).

Let K (-,-) be the reproducing kernel of H; such that J (1) = ||fillx = || fil5, for all f; €

H1. We assume that K (-, -) is continuous and square integrable. By reproducing property, we have
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B (1) =(B(-),K (u,-))y. The objective function (2.1) is rewritten as
= ZpT == (&, B)y) + M (B)

where &; (¢ fo x; ( (u,t) du. Then, by the representer theorem, the minimizer over (3 in (2.1)

can be written as
n N

Brna = _ & (t)+ > dpw (t)

i=1 k=1
where d = (dy,--- ,dy) € RN and ¢ = (c1, -+ ,¢,) € R™

Obtaining the estimator of éﬂm N = (&m, As Bm’ A), we put an estimator of the conditional 7th
quantile of Y given X = z (¢) as

1
Q- (Y|X) = drpn +/ X (t) Brna (t)dt
0

by plug-in method. The purpose of this paper is to derive the asymptotic statistical inference of
Q- (Y|zo) for any nonrandom z, € L2 0, 1] and the asymptotic distribution of the penalized like-

lihood ratio test statistic £, (6-0.1) — Frnn (ém ,\> where 6, » is the minimizer of

Froa(0) £ E[or (Y —a = (£, B)y) + Al (B)] (22)

which is the population counterpart of F.,, . These results are established in a fully infinite dimen-

sional setting.

3 Mosco Convergence and Quadratic Approximation

3.1 Lack of Uniform Convergence

Before describing our proposed techniques, let us explain a lack of uniform convergence issue for an
infinite dimensional circumstance briefly. Recall that uniform convergence of the objective function

to its population counterpart is follows:

sup |Frna(0) —E[Frna(0)]] 5 0.
OERXH
In order to make the objective function satisfy the uniform convergence, we have to impose some
compactness or entropy conditions on the parameter space R x H (e.g., van der Vaart (1998)). These

assumptions are rather restrictive for non-differentiable convex objective function settings. It is be-
cause of the theorem by Bakhvalov (Theorem 12.1.1. of Dudley (1999)) . When p = |-| and # is in an
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infinite-dimensional space, we have

sup |Frp (0) = E[Frnn (0)]] = v
OERXH
for some constant . The left-hand side of the inequality does not converge uniformly. The convexity
lemma argument to ensure that point-wise convergence of convex functions implies uniform conver-
gence may fail. Let 7,,, n = 1,2, --- be the sequence of projection operators on ¢ onto F,, C 5
where E,, ; E,~n. Consider a quadratic form (m,,0,0) for VO € 7 that is considered as a convex
function of 6. Then, as n — oo, (7,0, 0) converges point-wise to (¢, 6) but not uniformly.

To solve the aforementioned lack-of-uniform-convergence issue, we apply the Mosco conver-
gence, which is weaker than uniform convergence but still strong enough to enable statistical applica-
tions. Mosco convergence of the objective function ensures the convergence of its minimizer (Attouch
(1984)). If the parameter space is weakly compact, Mosco convergence of the convex objective func-
tion ensures that both empirical minimizer and empirical optimal value function will converges to the
true minimizer and the true optimal value function respectively. This property makes it possible to
derive the asymptotic distribution of the penalized likelihood ratio test statistic.

First, we introduce a mode of convergence, Mosco convergence, for proper lower semi-continuous
(I.s.c.) convex functions on a real separable Hilbert space. For l.s.c. convex functions on a finite di-
mensional Euclidean space, point-wise convergence is equivalent to locally uniform convergence.
For functions defined on an infinite-dimensional space, however, this is not the case. Mosco conver-
gence, on the other hand, still ensures arg min convergence of l.s.c. convex functions on an infinite-
dimensional space, though it is weaker than locally uniform convergence. In this section, we also

provide preliminary results related to Mosco convergence for later use.

3.2 Mosco Convergence

Mosco convergence and similar concepts in a non-stochastic environment are considered in Mosco
(1969), Attouch (1984) and Beer (1993). Mosco convergence is particularly useful in the context of

functional optimization, making it well suited to stochastic optimization.

Definition 1. [Mosco Convergence]

Let f, : H — (—o0,00], n=1,2,... be asequence of proper lower semi-continuous(l.s.c.) convex
functions. f,, is said to be Mosco-convergent to the L.s.c. convex function f : H — (—o0, oo] if and
only if the following two conditions hold.

(M1) For each § € H, there exist a convergent sequence 6,, —  such that limsup f, (6,,) < f (6).
(M2) liminf f,, (6,) > f (6) whenever 6,, = 6.
In this paper, we let “f, M f” denote “f,, Mosco-converges to f.”

The variational properties of Mosco convergence are given by the following theorem (Theorem



3 MOSCO CONVERGENCE AND QUADRATIC APPROXIMATION 6

1.10 in Attouch (1984)), which ensures the convergence of both empirical minimizer and empirical
minimum value of the objective function to the true ones. Suppose arg min f,, # @, and existence of

argmin f,, and inf f,, are proved in Appendix ??.

Theorem 2. We assume the same definitions for f, fo,--- and f. If f, RS f, then
(argmin f,, h) — (argmin f, h) (Vh € H*),

in the weak topology. If there is a weakly compact set K C ¢ such that argmin f,, C K foralln,
then lim,,_,, (inf f,,) = inf f.

It is difficult to prove Mosco convergence directly in general settings. Fortunately, several equiv-
alence conditions for Mosco convergence are known in the literature. One of the most convenient
conditions for Mosco convergence is point-wise convergence of subdifferentials of functions.

To deal with this mode of convergence, we introduce several basic tools in convex analysis: sub-
differential and resolvent. For more details and proofs on these subjects, see Aubin and Frankowska
(1990). For fixed Z € E where E is an arbitrary topological space, we can define a set-valued map-
ping 0f (6,7) : © x E — 5 by

Of(0.2)={0e#:7Ce A, f((.Z)>[f0.Z)+(C—0,0)}.

Such f (0, -) is said to be the subdifferential of f at §. For each fixed 0, 0f (0, Z) is considered as a
possibly set-valued function of Z. We may regard 0f (0, Z) as a generalized derivative of f at 0, for
each fixed Z. If f is Gateaux differentiable at 6 and has a continuous Géteaux derivative V f (), then
of (0,7) = Vf(0,7). Subdifferential operator for proper l.s.c. convex functions hold distributive

law:

I(fi+ f2) =0fi+0f

where f; and f5 are proper L.s.c. convex functions on 77 (see Theorem 3.16. in Phelps (1992)). When
J 1is real separable, subdifferential operator is exchangeable with respect to integral (Clarke (1983)
page 76.):

af(e):a/Ef(e,Z)PZ(dZ):/Eaf(e,Z)PZ(dZ).

Subdifteretial calculus for a linear quantile are given by the following lemma:

Lemma 3. f (0) = [|0]3,

af () =20 (0 € H)
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Lemma 4. The criterion function p, (y; — (x;,0)) is a proper L.s.c. convex function with respect to 0
and has the subdifferential such that

Apr (4 — (1, 0)) =

Proof. Proof'is given in Appendix A.1. [

Lemma 5. The limit criterion E [p, (y — (x,0))] is convex function and has the subdifferential

OE [p- (y — (2,0))] = E[0p; (y — (x,0))],
and
E[0p: (y — (2,0)] = E [{T = 1(y—z0)<0) } 7]
E[E[{r - 14-@o<o} 2| 2]] (.1
=[x {r — fix ({z.0)|)}]

In this paper, we assume that the subdifferential O f is selected and measurable in Z. In general,

because Jf is a set-valued mapping, the selection is not unique. Nonetheless, we can show that not

only such measurable selections exist but also the set of all measurable selector Sy is identical to Jf.

Proposition 6. There exists a measurable selector of the subdifferential Of, i.e., Soy # 0. Moreover,
Sar = Of.

Proof. Proofis given in Appendix A.2 in ? [

Consider a map
RVY¢={ze : 2+ 20f(2)>(}.

Such a map should be single-valued (on Proposition 3.5.3 in Aubin and Frankowska (1990)). Such
R\ > 0 are called resolvents of 3 f and denoted by

1 —1
A>0, RY = (I+ Xaf> .
Such map is single-valued and equal to the solution of penalized convex optimization problem:
R/ ¢ = argmin {f (=) + A1z = ¢Jl3,} -

Therefore, considering the convergence of this resolvent will leads to the convergence of an estimation
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problem (2.1). We write R‘zF °0 as
R0 = 0,05 = argminE p, (Y = — (€, f)y) + A (8)]

for each 7 and RiF "0 as

1 n
R0 =0, , = argmin — (Y —a— (&, +A\J
X i = argmir ngp ( (& Blw) + AT (B)
for each 7.
The following theorem states the equivalence between Mosco convergence and strong convergence

of resolvents and G-convergence of subdifferential operators. The proofs are given in Theorem 3.26.
and Theorem 3.66. of Attouch (1984).

Theorem 7. Let A be a real separable Hilbert space. Let (f,), cx, [n: A — (—00,00], 'n € N

be a proper l.s.c. convex function. The following statements are equivalent.

(D) fo = Jo
(2)"\>0,%0 € A, Rff"G — R§f9 strongly in 7 as n goes to o.

Ofn % 0fs,
F(0y,m0) € Ofo (O, mm) € Ofn such that 0, = 0y, 1 > 10, fn (On) — fo (0o),
where 0 f,, ) fo means that, for every (6y,m0) € O0fo, there exists a sequence (0,,,m,) € Of, such

(3)

that 0,, — 0y strongly in F, 1, — no strongly in F* (= ).

Remark 8. Statement (3) in Theorem 7 is called G-convergence of monotone operators. This states
that point-wise convergence of all measurable selectors of subdifferential operators is equivalent to
Mosco convergence of functionals. When the subdifferential is calculable, point-wise convergence of

measurable selectors are easy to verify.

Remark 9. From the foregoing theorems: theorem 2, proposition 6 and theorem 7, it will be seen that
the law of large numbers(LLN) of subdifferential p (¢) implies the Mosco convergence. From lemma
13 and the LLN in Banach spaces for each sequence of measurable selectors of dp (f), we have the
LLN of subdiffential dp (0):

%Z 9p(0,2) L E[9p (6, 2))

— E[p(6,2).

Thus this fact establish the consistency of local functional estimation.

(2) in the above theorem 7 give a metric that induces the Mosco convergence. Based on resolvet,
Attouch (1984) (p. 365) gives a metric that induces graph convergence on the space of subdifferential
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operators:

de (9f,9g) 2 Z%inf{l, R0, — RigekH} ,
keN

for any subdifferential operators Jf and dg where )\, is taken strictly positive and {0; k € N} is

a dense subset of 7. This metric ds induces the Mosco convergence topology and is complete.
Convergence in d are equivalent to the convergence results in (1)~(3) in Theorem 7.

Hoffman-Jergensen weak convergence theory performs in a metric space. Generally, epi-convergence

does not usually work with a metric but a semi-metric. Even if functions f, g are different each other, it

is possible f epi-converges to g (see, Section 3 in Bucher et al. (2014)). Fortunately, in the case where
the functional space is constituted by convex functions, we can obtain a metric space as described

above. We shall define a weak convergence in the following way.

Definition 10. [Mosco Convergence in Distribution]
A sequence of random elements f,, in the space of proper Ls.c. convex functions .77 — (—o00, ]
is said to be Mosco converges in distribution to the random element f; in the space of proper l.s.c.

convex functions if f,, ~ fy with metric d;. We use the notation f,, R fo-

3.3 Second Order Differentiability

In typical situations, we assume that the function Fj, has a quadratic expansion at , and their Hessian
is often supposed to be continuously invertible (Theorem 3.3.1. of van der Vaart and Wellner (1996)).
In an infinite-dimensional case, the assumption that the Hessian operator is continuously invertible is
harder to ascertain. However, if the convex function £ has a generalized second order differentiability
(defined later), its “generalized Hessian is continuously invertible.

Define the Young-Fenchel conjugate f* of convex function f as
S () = sup ((n.6) — [ (6)).

The conjugate f* has a strong link between a convex function f in the second order differentiability.
Recall the case of a convex function defined on finite dimensional parameters. A convex function
f defined on the Euclid space R? is second order differentiable and the Hessian V2 f (0) of f at 0 is
non-degenerate. Then the conjugate function f* is second order differentiable at y = V f (0), and its
Hessian V2 f* (n) at y is the inverse of V2f (0), i.e.,

1

V2F(0) = (V2f (n) .

In order to maintain a duality-type of this relation in an infinite-dimensional space, we shall define

the second order differential concepts based on Mosco convergence. Mosco convergence ensures the
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continuity of this type of conjugation (Kato (1989) and Borwein and Noll (1994)).
Define second difference quotient of f at 6 € S relative to n* € 0f (0) as

Ago () 2 L0 = J;<9> — (B

and define a purely quadratic continuous convex function as

1

q(h) =5

(Vh,h),

where V' is a closed symmetric positive linear operator. f is said to have generalized second order
differentiability at 0 relative to n* € 0f (0) if there exists a purely quadratic function ¢ such that the
second order difference quotient Ay, ; (-) converges to ¢ (-) in the Mosco sense, i.e.,

M
Agone(h) W q(h).

The closed symmetric positive linear operator V' is called the generalized Hessian of f at 0 relative to
n € of (0).

Mosco convergence is invariant under Young-Fenchel conjugation, so that Mosco convergence
of Ayg,+ (h) is equivalent to Mosco convergence of (Ayg, 1 (h))" = Ag, 0+ (h). And generalized
Hessian of f* at 7 relative to 6 € df* (n) is V1.

Next, we derive sufficient conditions under which the objective function of stochastic optimization
has generalized second order differentiability. Of is called weak* Gateaux differentiable at 6 if there
exists a bounded linear operator 7' : 7 — 7 such that

lim (ni —=n") =Vh,

t—0 ¢
in the weak* sense for any fixed h € 5 and all n; € Of (0 +th), n* € Of () where Of (0)
must consist of a single element n* . We use the notation T' = VJf () for the operator T'. For the
generalized differentiability, we quote the following result of Borwein and Noll (1994).

Theorem 11. (a variant of Proportion 6.4. of Borwein and Noll (1994))
Let (Z, Z,Py) be a probability space and © C ¢ be a separable Hilbert space. Suppose p : O X 7 —

(—00, 0] is measurable on (Z, Z,Py) and convex at any 0 € © and define a closed convex integral
functional f on © C H as

£ (6) = / p(6,2)dPy (2).

Then f is generalized second order differentiable at 0 if and only if Op is weak™ Gateaux differentiable
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and

esssup |Vop (0, 2)| < co.
z2€Z
Therefore, in order to obtain invertibility of “generalized Hessian”, we impose the following as-

sumption on p:

Assumption. 4
Op (+) is weak* Gateaux differentiable at 6y and
Opr (yi — (i, 00 + th)) — Opy (yi — (i, 00))

ess sup |lim < 00.

This assumption is a “low-level” condition which are sufficient for locally asymptotically quadratic
at 6, than that of Geyer (1994). Of course, this result is attributed to the convexity of the objective

function.

3.4 Quadratic Approximation

A common starting point in developing an asymptotic distribution theory for an M-estimator is to
define a centered stochastic process based on the objective function. We may define such a centered

stochastic process as

HT,n,)\ (t) é n |:FT,n,>\ (90 + %t) - FT,O,)\ (90>:| ) (32)
where Fr (0) = E[p- (Y — Q- (Y[X)) + AJ (8)]. And

Qron (1) = ¢, W) + % (V4 X)t,t), (3.3)

where W is an N (0, A) random vector in a Hilbert space and V' is a “Hessian” operator. Note that
t = /n(0rnx — 0:0,) minimizes H,,,  (t). H. ., (0,1) is interpreted as the log likelihood ratio for
hypothesis testing against the local alternative, i.e., Hy : 0 = 0,0; H1: 0 = 0,01 + \/%;t. Also

define auxiliary stochastic process as

1 1
GT,n,)\ (t) £ n <%t, 8FT,n,>\ (87’,0,)\)> +n |:F7',0,)\ <97’,0,)\ + %t> - FT,O,)\ (07,0)\):| ’

(V4 M) L1

1 1
02 0 0P, (0:0)) + 3

vn

We also impose the following assumption. Considering Proposition 6 : the set of all measurable

selectors of a subdifferential coincides with its own subdifferential, we denote any measurable selector
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of Jp (+) as itself.

Assumption. B
Every measurable selector in Op (0, Z) has a bounded variance: V0 € ©, E [||0p (0, Z) ||2] < 00, and

there is a sequence of measurable selectors satisfying a central limit theorem in the Hilbert space:
Gn0p (0o, Z) ~ N (0,A),

for some trace class covariance operator A.

Proposition 12.

!
T, A

1. H;,. (t) Mosco-converges to G' . , (t) in probability.

2. G, (t) converges in law to ;o » (t). Then, H.,, \ (t) Mosco-converge in law to ;o » ().

T, A
Proof. See Appendix section A.2. [

Next, we will also show convergence of the minimizer of 4, ) to that of (), », provided that the

minimizer is almost surely unique. This follows from the following lemma.
Lemma 13. The minimizer of the function Q. (t) = (t, W) + 5 ((V + ) t,t) is single valued.

Proof. Let ty = argmin; Q, . (t). Suppose there exists 1 (# ¢y) such that
1 1
<t17 W> + 5 <(V + )\[) tl, t1> = <t0, W> + 5 <(V + )\I) to,to) = .

Then,

t t 1 t to t t
<1+ O,W>—|—§<(V+)\[) 1+ 07 1+ 0>

2 2 2
1 1 1/1 1
<3 (t1, W) + 3 (to, W) + 3 <§ (V4 X)) ty,ty) + 3 (V+AI) to,t0>>
SRS S
—2a 20&—0&.

This means Q. (242) < «, which is contradiction. O
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4 Main Results

4.1 Asymptotic Normaltiy

Next, we show that the reparametrized objective function admits a certain quadratic expansion. Note

that objective function of quantile regression is

F(0) =E|p; (Y — (z,6))]
=E[E[pr (Y = (2,0)) 2]

Then, quantile regression objective function F'(6) is generalized second order differentiable at 6 if
and only if OE [p, (Y — (z,6)) |z] is weak* Gateaux differentiable and

ess sup |VOE [p, (Y — (z,0)) |z]] < oo.
zeX
From (3.1), weak* Gateaux differentiability of OF [p, (Y — (z,0)) |z] at § is equivalent to the Gateaux
differentiability of the distribution function F, (¢ — (z, 6) |x) at 6. If the distribution function F, (¢ — (x,0) |x)

is Gateaux differentiable at 6, essential boundedness of

esssup |[VOE [|Y — (z,0)| | X ]| < 00
zeX
will be automatically satisfied.
We apply the previous results to consider the asymptotic distribution of 1/n <ém7 A —0r0, 6*> n
the weak topology.

Proposition 14. Asymptotic Normality
Let W be an N (0, A) distribution. Under Assumption A and B, we obtain the asymptotic distribution

of \/n <0AT7,L,,\ — 0r0., 9*> as following,
Jn <ém,A - GT,O,A,9*> ~ (VI'W,0) Vo e o

where V1 is generalized Hessian of Young-Fenchel conjugate of F, 5 (0).

Proof. From Proposition 12, H,,, (6o, ) converges weakly to Q. (t) in Mosco topology. Apply-
ing a.s. representation theorem(Theorem1.10.4 in van der Vaart and Wellner (1996)) we get an almost

. M
sure representation H., x — Q)0 a.s.. By Theorem 7 we have
b K 70?

lim (argmin A, ) — argmin Qy a.s.
n—oo
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in the weak topology. This provide
ﬁ<ém,A 0o 9*> ~ (VIW,0°) VO €O,

]

For the implement, we need a consistent estimator of the generalized Hessian. From the fact of

the properties of the generalized differential, the natural candidates are

. 1 A~k A~
hl:r_rgo k., (9%, =)

in the weak* sense for any fixed h € # and all ) € Of <é + k:nh> , N e af <é>

4.2 Confidence Interval.

This subsection consider a confidence interval for the conditional quantile. We consider the plug-in
estimate Y = &, + fol 1o (t) B- (t) dt. By proposition 14 with the Delta method, we obtain the propo-
sition below on the pointwise confidence interval where the asymptotic estimation bias is assumed to

be removed by undersmoothing.

Corollary 15. Suppose Assumptions Al, A2 and A3 are satisfied. Then

n ~
WO/O—YO) ~ N(0,1) Yz L2[0,1].

Hence, the (1 — «) confidence inter val for Yy is

~ 1
|:YE] + %Wam <I0V71A, $0> Yol ,

where W, 3 is the (1 — %a) -quantile of standard normal distribution.

4.3 Estimation with Convex Constraints

In this subsection we consider a stochastic optimization of a parameter constrained to some convex
set in 7. To avoid subtlety of the asymptotics of constrained estimator, we concentrate our attention
on the convex constrained. Define an objective function with convex constraint G (6) from .7 to

<_007 OO] by
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where U 4 is defined by
0 (BeA
W4 (0) =
oo (0¢A)
and A is convex subset of parameter space O in a Hilbert space 7.
Lemma 16 (“Optimization Theory” Indicator Function). The indicator function V 4 is defined by
0 (BeA
Wa(f) =
oo (0¢A)
where the set A is a convex subset of ©. The normal cone N 4 (a) is defined by
Ny(a)={0"€#: (§—a,6) <0, "0 A}.
Then, Na (a) = 0V 4 (a), where N4 (a) is such that 0 € N4 (a).
Proof.
0 €0V, (a) & Vy(a)+(0—a,0) S W,(0) (VO €A
S (0 —a,0") SV, (0) (VO A)
& (0 —a,0") S0 (Ve A)
&0 e Ny (a)
Then, Ny (a) = 0V 4 (a). O

Because F), and W 4 are convex function, GG, () are also convex function with respect to 6 for all
n. Let A,, = \/n (A — 6y). Redefine (3.2), (3.3) as

H (0,t) £ n [Fn (0 + %t) —F, (9)] + Uy, ()
Q4 (1) 2 (1,2) + 5 (Ve,1) + Wy (1)

where T4 () is tangent cone:

A—
T4 (0o) = limsup 90.

70 T

The following corollary follows from proposition 12 and proposition ??
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Corollary 17. Suppose V 4, Mosco-converges to ¥ aiog) hen, H:'n (t) Mosco-converges in law to

Q' ().

4.4 Asymptotics of Likelihood Ratio Test

Using the previous proposition 12, we derive the asymptotic distribution of the likelihood ratio statis-
tics. Let A, = \/n (© — 6y) and A,y = v/n (09 — by). The likelihood ratio statistic is written by the

form

An = inf HTJ’L,)\ (Qo,t) — lglf H’r,n,)\ (Qo,t) .

teAn te n,0

By the previous proposition 12, for large n, the likelihood ratio process is similar to the same as in
the normal experiment. By the Mosco convergence argument in theorem 7, if the parameter space is

weakly compact, the empirical optimal value of convex function achieves the true optimal.

Assumption. C
The parameter set © is weakly compact. In a Hilbert space setting © C €, weakly compactness is
equal to boundedness: for all 0 € O,there exists constant C such that ||0|| < C.

Lemma 18. Let W be an N (0, A) distribution and repeat (3.2);
Hnx(0,t) =n |F 0+ ! t F.0x(0)
T,n ) =n T,n = - I'r .
A A \/ﬁ 0,A

Lett = \/n <én — 90> denote this minimizer. Under Assumption A-C, the asymptotic distribution of

the optimal value function

HT,n,)\ (007 tA) =n |:FT,'IZ,>\ (én) - FT,n,)\ (00>

A

is the distribution of Q- x (t)

Proof. From Proposition 12, H,,, , (6o, t) converges weakly to Q.. (t) in Mosco topology. Apply-

ing a.s. representation theorem (theorem 1.10.4 in van der Vaart and Wellner (1996)) we get an almost
Mosco

sure representation H,,, » — (0. a.s.. By Theorem 2 and Assumption C, we have

lim (infH,, ) = inf Q..

n—o0
This provide the optimal value of function /1, ,,  converges weakly to () x. O

From the result of lemma 16 and lemma 18, we obtain the asymptotic distribution of the optimal
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value function
2, (80,1) ~ Qn (1)

The above result yields the asymptotic distribution of the likelihood ratio statistics A,,. The proof
strategy is based on van der Vaart (1998), Chapter 16, Theorem 16.7.

Proposition 19. Assume the parameter spaces © and O is convex. And assume Assumption A-C. If
the sets A, and A, converge to sets A and Ay, then the sequence of likelihood ratio statistics \,,

converges under 0y + \/Lﬁ in distribution to

2

1 2 1 1
HV*%W L VIt (e A)| - HV*EW L Vit(€ A,)

where W is an N (0, A) random vector.

Proof. By Lemma 18 and simple algebra

A, = t1€1}£ Hi o (0o, t) — . Ef H; (6o, t)

€An0

~2 inf <n <%t oF, (90)> NG t))
—2 inf (n <Lnt,6Fn (90)> + % <Vt,t)) +op (1)

teAn,O \/_
1 1A 2 1 1A 2
—||v"4Gu00 (80) + Vi (€ Ano)|| — ||V 4600 (80) + Vi (€ || +0r (1)
the proposition follows by the continuous mapping theorem. U

Consider a likelihood ratio statistics for testing the value of (6, z¢) at any zy € E. For some

prespecified point (¢, ¢), we consider the following hypothesis:
Hy: <(90,330> <0 vs. Hi: <(90,.170> > 0.

The objective function under the null constrained is defined as
H, IR H, Ao
P (0%0) =237 = (w0 + 3 [
i=1

where 070 € Hy = {0 € © : (fy, x0) < 0}. Note that the set Hy is convex. We define the generalized

likelihood ratio test statistic as

Ap =Fp (éHO) —Fo, (9n> ,
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where 67 is the M-estimator under convex constraint:

0" =arg min ., (QHO) :
0HocH,

If the null the interior of the hypothesis H, contains the true parameter 6y, the sequence of A,, con-
verges to zero in distribution. This means that an error of the first kind converges to zero under
that the null hypothesis is true. If the true parameter 6, belongs to the boundary: (0y,z9) = 0,
the sets \/n (©y — ) converge to the Hy = {0 : (0, x20) < 0}. The sequence of A, converges in
distribution to the distribution of the square distance of a standard normal vector to the half-space
ViH, = {9 : <9, V—%x0> < o}, that is the distribution of (W V 0).

A Appendix

A.1 Proof of Subdifferential Calculus of p = |y — (z, 0)|

Here we show the subdifferential calculus of p = |y — (z, #)|. We use the following lemma.
Lemma 20. The subdifferential of ||0|| = (0,0) is 0|0| = {6}, 6 € A .
Proof. For 6 € 72,

<n79>_<9a9>:<77_979>7 776%7

then 8 [|0]| = {6} O

Proposition (Subdifferential Calculus of p = |y — (x, 0)|). The criterion function p (0,7) = |y — (x,0)|

is a proper l.s.c. convex function and has the subdifferential such that

op(0,2) = %" (y—(z,0)x, ify— (x,0) #0;
=1 1], if'y — (x,0) = 0.

Proof. Lett € [—1,1],0 = tx. Forall ( € J7,
<tl‘7C—9> :t<l',C> _tyg t‘<$a<> _y| < ‘t’ ’<5U>C> _y’ < ’<£L‘,C> _yl

Then, § =tz € dp (y — (z,0) =0) and [-1,1]z C Ip (y — (x,0) = 0).
Next, we shall show the inverse inclusion: dp (y — (z,6) = 0) C [—1,1]z. Letf € dp (y — (z,0) = 0)
and assume 0 # x. From 0 € Jp (y — (z,0) = 0), we have

|y—<377§>|2<§—9, 0>7 VCE%' (Al)
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Fromnow on, set H = {n € 5 : (x,n) =y} and G = {n € 5 : (n,0) = (0,0)}, we shall show
that H = G. Whendim (2°) =1, H = G = {£}. Assume dim {#’} > 2. Firstn € H = n € G,
pick n € H: (z,n) = y we have n = 6, so (n,0) = (0,60). Then, H C G. We shall show the
inverse inclusion G C H. Assume ) € G andn ¢ H. Because 6 # x, there exists u € J¢ such that

(0,u) #y. Putp = (z,n)u — (x,u)n + 0, because u and 7 are linear independent, p # . On the
other hand

(z,p) = (v, {x,n) v — (z,u)n + 0)
= (z,n) (v,u) — (z,u) (x,n) +y
=y.

This is contradiction, therefore G C H. Finally, we have G = H.
Now, set
rE( -

St (v—0), (e,

Then, we have

(2.0 = (2.0) = L= (a0 —6)
(0,0~ L (o)
— (£.0) v (.0
y
Furthermore 2’ € H = 2’ € G. Therefore,
0.0) = (0.4
— 0.0~ L= g, 0

(0.0 - = - o)

= 60,00 - S - )

—(0.C-6) - f_<">> ((3.6) (2,0,

and we get (6, —0) = t(x,( —0) where t = &0

y— $

7& 0. Because of (A.1), (0, v—10) <
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|y — (x,v)| and

—(0, v—=0)=(0, 06 —v) <|—(x,0 —v)|
= [{z,v) —y|
= |y — (z,v)|,

Since (0, —0) # 0,(x,( —6) # 0. We have [(#, v—0)| < |y—(x,v)], |t| < 1. Therefor,
ap (y - <l’,9> = O) - [_171] Z. [

A.2  Proof of Proposition 12

Proof. The proof is the same as in ?. A minor difference is a subdifferential culculus. So, we shall
prove the first statement only. In order that H,, ) (¢) converges in Mosco to G, » (t), we will ap-
ply Theorem 7 to H, ,, » (t) and G, (t) . All we have to do is to show the graph convergence of
the subdifferential 0H , » () to OG, . x (t) in probability. Considering proposition 6, we denote
any measurable selector of Jp (+) as itself in the following proof below. Calculate subdifferential of

H. , x, G\ With respect to ¢, we obtain

OH, o (t) = V/ROF,px (90 + —t>
Zap (00 + nt) + = ( %t) ,
G rnx (t) = VROF, (6) + /noF, (0 )

= %;8/)((90,21-) + % (60) + V/nE [éw (90 + %t, Zﬂ :

Recall 0f, 9 fo means that for every (6y,n0) € Ofo, there exists a sequence (6,,,7,) € Jf, such
that 0,, — 6, strongly in 7, n,, — nq strongly in * (= ). 0H, 4 0G,, means that there exists
a sequence of measurable selectors of \/iﬁ S, 0p (90 + \/iﬁt, Zi> such that

Zap(90+ tZ)%—Z@p (60, Z )+\/_E{8p(90+\/1— Z)}

strongly in 7. Later is the same as in ? [
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