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Abstract

Quasi-Bayesian inference, in which we can use an objective function such as generalized
method of moments (GMM), M-estimators, or empirical likelihoods instead of log-likelihood
functions, has been studied in Bayesian statistics. However, existing quasi-Bayesian estima-
tion methods do not incorporate Bayesian semiparametric modeling such as Dirichlet process
mixtures. In this study, we propose a semiparametric quasi-Bayesian inference with Dirich-
let process priors based on the method proposed by Hoshino and Igari (2017) and Igari and
Hoshino (2017), which divide the objective function into likelihood function and objective
function of GMM. In the proposed method, auxiliary information such as population in-
formation can be incorporated in a GMM-type function, whereas the likelihood function is
expressed as infinite mixtures. In the resulting Markov chain Monte Carlo (MCMC) algo-
rithm, the GMM-type objective function is considered in the Metropolis Hastings algorithm
in the blocked Gibbs sampler. For illustrative purposes, we apply the proposed estimation
method to the missing data analysis with nonignorable responses, in which the missingness
depends on the dependent variable. We show the performance of our model using a simula-

tion study.

Keyword: Dirichlet Process Mizture Model; Blocked Gibbs Sampler; GMM; Auziliary

Information; Selection Model; Misspecified Missing Mechanism



1 Introduction

Recently, quasi-Bayesian inference methods or the Bayesian generalized method of moments
(GMM) have been developed and applied in various studies (Chernozhukov and Hong, 2003;
Hoshino, 2008; Yin, 2009; Yang and He, 2012). In quasi-Bayesian inference, we can use
an objective function such as GMM, M-estimators, or empirical likelihoods instead of log-
likelihood functions. Most existing applications of the quasi-Bayesian estimation method
emphasize the robustness of the estimation results in that the correct specification of the
entire model is not required (e.g., Li and Jiang, 2016). The classical (non-Bayes) GMM
methods (or empirical likelihood methods) can easily include more restrictions than the
number of parameters (Hansen, 1982). Additionally, vast literature exists that proposes
non-Bayesian methods for making an inference that incorporates auxiliary information using
classical GMM methods (Imbens and Lancaster, 1994; Hellerstein and Imbens, 1999; Nevo,
2003) and the empirical likelihood method (Qin, 2000; Qin and Zhang, 2007; Chaudhuri
et al., 2008). However, numerical optimization (and integration) is required in classical
(non-Bayes) GMM methods, which is often difficult in complex models. Even when the
optimization of an objective function is difficult, a quasi-Bayesian inference such as Bayesian
GMM can be also available by using Markov chain Monte Carlo (MCMC) without numerical
optimization. Additionally, the Bayesian GMM can incorporate external information into
an objective function, such as the classical GMM.

Moreover, vast literature exists on non or semiparametric Bayesian inference, such as
the Dirichlet process mixtures model (DPM) (e.g., Ferguson, 1973; Ishwaran and James,
2001; Hjort et al., 2010). In the DPM, the distribution is expressed using an infinite mixture
distribution that can reproduce various distributions, and blocked Gibbs sampling algorithms
are available to easily estimate parameters (Ishwaran and James, 2001) in a manner similar
to that of Bayesian finite mixture models. Additionally, semiparametric Bayesian estimation
methods have been proposed and applied to weaken the parametric assumptions in various
fields (e.g., Lee and Berger, 2001; Hoshino, 2013). If semiparametric Bayesian methods
are used in a quasi-Bayesian inference, parameters can be estimated using blocked Gibbs
sampling without numerical optimization with constraining the restriction from external
information such as the GMM. However, the quasi-Bayesian method with latent variable
models or semiparametric inference has not been developed. In this circumstance, Hoshino
and Igari (2017) and Igari and Hoshino (2017) proposed a new quasi-Bayesian inference
that divides the objective function into two components: a likelihood function and moment

restrictions. In their method the quasi-posterior mean estimator is shown consistent and



asymptotically normally distributed. By dividing the objective functions in a quasi-Bayesian
inference, we can incorporate latent variables and moment restrictions from population-level
information through data augmentation (e.g., Tanner and Wong, 1987; Albert and Chib,
1993) into the models in an MCMC implementation.

In this paper, we propose a semiparametric quasi-Bayesian inference with Dirichlet pro-
cess priors using the method proposed by Hoshino and Igari (2017) and Igari and Hoshino
(2017). In the proposed method, auxiliary information—such as population information—
can be incorporated in the GMM-type function, whereas the likelihood function is expressed
as infinite mixtures. In the resulting MCMC algorithm, the GMM-type objective function
is considered in the Metropolis Hastings algorithm in the blocked Gibbs sampler. For illus-
trative purposes, we apply the proposed estimation method to missing data analysis (e.g.,
Little and Rubin, 2002) with nonignorable missing responses in which the missingness de-
pends on the response variable. Several models have been proposed, such as the Tobit type
IT model (Heckman, 1979; Amemiya, 1984) for nonignorable missingness; however, the selec-
tion mechanism must be correctly specified. Other methods employ non or semiparametric
model formulation for the selection model (e.g., Lee and Berger, 2001; van Hasselt, 2011;
Hoshino, 2013); however, these models are weakly identified and the results obtained are
instable. Instead, in this study, we use marginal population-level information to avoid model

misspecification.

2 Semiparametric Quasi-Bayesian Inference

2.1 Dirichlet Process Mixture Model

First, we define the semiparametric Bayesian model with the DPM. In the Dirichlet process

priors G ~ DP(«a, Gy), G is expressed as follows:

G(O) = Zﬂ-k‘(sek) 69k ~ GOa (1)

k=1

where dg, denotes a discrete measure concentrated at 8, and Z;O:I 7, = 1.

In practice, let y = (y1, ..., yn) be a dependent vector; the model is:

pyl) = mp(ylBr)- (2)
k=1



The stick-breaking process is:

k—1
m =V, m =Vi [[(1 = Vi), Vi ~ Be(1,0), (3)
h=1
where a ~ Ga(aq, ba)-
To estimate the parameters, the blocked Gibbs sampler (Ishwaran and James, 2001)
is widely used. In implementing the blocked Gibbs sampler, we generate the multinomial
indicator ¢; that indicates that subject ¢ is allocated to each component in each MCMC

iteration:
m |0k, qi =k

- Zﬁl mp(yil O, qi = 1)

where M is the maximum number of components.

2.2 Quasi-Bayesian Inference and Bayesian GMM

Next, we define the quasi-Bayesian inference (Chernozhukov and Hong, 2003) with a GMM-
type objective function. Let @ be a parameter with a r-dimensional vector. Then, the

quasi-Bayesian posterior is:

exp{Ln(60)}p(6)

WO1Y) = T b (L., (0)}p(0)d8

o exp{Ln(0)}p(8), ()

where p(0) is a prior distribution for 8, © is the parameter space of 8, and L, (8) is an objec-
tive function such as GMM, M-estimators, or empirical likelihoods instead of log-likelihood
functions (Chernozhukov and Hong, 2003; Hoshino, 2008; Yin, 2009; Yang and He, 2012).

The quasi-Bayesian posterior means are represented as follows:

- _ exp{L,(0)}p(6)
9_/99q(oy)d0_/®0< da)do. (6)

Jo exp{Ln(0)}p(0)

It is shown that under mild regularity conditions, the quasi-Bayesian posterior means are
consistent and asymptotically normally distributed (Kim, 2002; Chernozhukov and Hong,
2003; Yin, 2009; Yang and He, 2012).

The GMM-type objective function is defined as follows:

n n

La0) = 2 (-3 m(wio)) 210 (> m(wi)). @

i=1 i=1

where m(y;|0) is a moment restriction that is E[m(y|@)] = 0, and £2,,(6) is the optimal

weight matrix:



2.(0) = E|m(y|0)m(y|6)" |. (®)

Yin (2009) and Li and Jiang (2016) used the generalized estimation equation (GEE) for
moment restriction m(y;|@). Their method can be applied to the longitudinal data in which
the observations in the same subject are correlated. However, if additional restrictions ex-
ist, such as theory constraints, except for the restrictions of each parameter, their method
using GEE must simultaneously incorporate both the restrictions of each parameter and ad-
ditional restrictions in m(y;|0), in which flexible modeling, such as latent variable modeling
or non/semiparametric Bayesian modeling, can not be admitted.

In this study, to enable flexible modeling, we divide moment restriction m(y;|0) into two

parts: (1) a likelihood function and (2) additional moment restrictions. That is to say:

m(yl0) = (o7 logp(yl0) m(y10)) . )

From this formulation, we have some computational flexibility and can construct flexible
models, such as random effects or semiparametric models. When we draw other parameters
unrelated to additional moment restriction m*? (y|@) in an MCMC implementation, we can
easily draw samples from only the likelihood function (and prior distribution). Additionally,
we can easily include latent variables in Equation (9) (see Hoshino and Igari (2017) for
details).

In this study, we apply the following quasi-Bayesian joint posterior distribution for pa-

rameter vector @

{TT p(yi10)} x exp|Q(6)] x p(6)

q(0ly)on« = (10)
O I (w16} x exp[Q3(6)] x p(0)a0
to sample the random draws of @, where
nrl n T . 1 n i}
Q0) = —5 [ > m o) 7' O)] > m (wile)]. (11)

and Q7 (0) is a matrix converging to E[m*(y|0)m*(y|0)7].
Note that the quasi-Bayesian posterior distribution (Equation (10)) is proportional to the

likelihood [T, p(y;|0) times the following quasi-Bayesian posterior distribution, conditional



on the external information of the moment m*(y|0):

exp|Q;(0)] x p(6)
a(6lm")gp. = . (12)
J{exp|@2(0)] x p(8)d

See Hoshino and Igari (2017) for the proof of the consistency and asymptotic properties of

the estimator.

2.3 Semiparametric Quasi-Bayesian Inference and Algorithm

In a semiparametric quasi-Bayesian inference, we replace Equation (10) with the DPM for-

mapt

)

m(yl) = (500 108> p(y0a = Kpla =) m7T(w0)) (13)
k=1

where m*(y|@) are the moment restriction with the DPM format.

We consider that the S-dimensional auxiliary information y* = (y7, ..., yg)T are avail-
able. The moment restrictions m*(y;|@) are determined by letting:
I yi — Elyilo]]
m(]0) = | ... , (14)

IF [y — Elyil6]]

where If = 1 when subject i belongs to group s (e.g., gender or range of age), and the
expected value is Ely;|0] = Y72 | . E[y;|0%].
The semiparametric quasi-Bayesian posterior distribution is:
(I 327 P(wil6k, @ = k)plas = k)} x exp|Q3(6)] x p(6)

9(0.49ly)sqps = ~ - . (15)
ST X5 POk, ai = )p(a; = B)} x exp| Q4 (8)] x p(6)d6

Blocked Gibbs Sampling Algorithm
In our augmentation approach, the algorithm for drawing samples of 8 from Equation (10)

is very straightforward.

Sampling 6;,

We use the blocked Gibbs sampler and draw @, for each other, which corresponds to Equation



(10).

{Il2 e giry PWilOk, 0 = k)p(g; = k)} x exp {QZ(G)} x (k)

ST s gy P16k 0: = B)plas = B)} x exp[Q5(0)] x p(6x)d6,
(16)

q(0k7 q|y)SQB* =

In this setup, because it is difficult to draw samples 0y directly from this distribution,
we use the Metropolis-Hastings algorithm by drawing the candidate of 6, Ol(ccand) from the

candidate distribution ¢(0) and accept the value with the following probability:

o can e(cand) * G(Old) 9(cand)
p(ol(c 4) - 9/(6 d)) = m’”’l{ q( k(old) 7q|y)SQB C( (lzand)l k(old) )7 ) (17)
900, , qly)sqB«c(6), 16,"")

0’(:[(1)

where is the value obtained in the previous MCMC iteration.

Sampling ¢;
The probability that subject ¢ belongs to component k£ given all other parameters is:

Tep(Yi|Ok, @ = k
plgi =k|-) = M (wil ) )
> Tp(Yilr, g = 1)

where M is a the finite number of components.
Similarly, we draw other parameters V1, ..., Vas_1, r using the usual blocked Gibbs sampler

(Ishwaran and James, 2001; Gelman et al., 2013) and show them in Section 3.5.

3 Application to Missing Data Analysis

3.1 Semiparametric Selection Model

Let y be a dependent variable vector,  be an independent variable vector, and z be a missing
indicator vector. Then, the dependent variable vector y contains nonignorable responses.

The selection model we considered here is:

p(ylz, Np(zly,7), (19)

where p(z|y, ) is a selection model that represents the missing mechanisms, and p(y|z, A)
is a parametric model such as a linear regression, a proportional hazard model, or a Poisson
regression model.

We consider a selection model for which y; is missing, corresponding to the values of its

own variable. We define y; as observed when z; = 1 and y; is missing when z; = 0. In the



selection model, including the sample selection model, it is widely known that if the missing
mechanism is misspecified, the estimated results are severely biased. Then, we use the DPM

in the selection mechanism p(z|y,~y) to avoid misspecification:

(z[y.7) Zﬂkp 2|y, k) (20)

Although we focus on the nonignorable missing responses in this study, our models can
be easily extended to the missing covariates problem (e.g., Ibrahim et al., 2001; Kato and
Hoshino, submitted).

Although the DPM is flexible, the practical identification of the model is often weak and

we use moment restrictions from the external information.

3.2 Likelihood Function

The likelihood function of the semiparametric selection model is:

1—27',
L= H{ yz|mza Zz|yu } {/{p yz|mz7 Zz|yu )}dyz}

21)
o0 1oz (
=H{p(yilwi,k)zww(ziyz—ﬁk)} {/{p(yilwi,k)Zmp(ziniﬁk)}dyi} :

=1 k=1 k=1
3.3 Restriction from Population-level Information
The S-dimensional population-level information y* = (y7, ..., yg)T is set to identify the

parameters of the true distribution. The moment restrictions from the population-level

information m*(y;|\) are determined by letting:

Iz'l [yf - E[%@i)\]]
m (yilA) = | - , (22)

]z's [yfq - E[?/i|wi, /\]]

where I7 = 1 when subject ¢ belongs to group s (e.g., gender or range of age). The la-

tent variables y™%s*

or components of the DPM ¢; are not included in the expected value
Elyi|x;, A], the blocked Gibbs sampler, or Monte Carlo integration, and are not required in
the calculation of the moment restriction.

The objective function of the moment restriction is:

2w =2 m ) e (o me ). (23)



where Q%(\) = E [m*(yp\)m*(yp\)T]
3.4 Quasi-Bayesian Posterior

gAYy, z) o< L x exp{Q(A)} x p(A) x [ ] p(vx)

i=1 k=1

xexp{ ( Zm yl\)\) Q:‘L—l()\)<;im*(yz|)\)>}
i=1

o [T

where p(A) and p(+x) are prior distributions for A and .

3.5 Estimation

ﬁ{ (yil i, )iﬂkp(zﬂyi,%)}m{/{p(yiwi,A)kZZmp(zilyi,vk)}dyi}

1—27;

We use the MCMC method to estimate the parameters of the proposed model. In addition

to the algorithms in Section 2.3, we introduce the algorithm corresponding to the selection

model using data augmentation.

3.5.1 Blocked Gibbs Sampler for DPM

Sampling ¢;

The probability that subject ¢ belongs to component & given all other parameters is:

1) = TP (2 |Yi, Vi)
- M .
> i—1 mp(zilyi, )

plgi =k

Sampling V;,

The stick-breaking weight Vj, is generated from the Beta distribution:

M
Vi ~Beta<1—|—nk,oz—|— Z nh>,
h=k+1

where nj means the number of subjects that belong to component k.

Sampling «

The precision parameter « plays a role in controlling the prior on the number of clusters



(Gelman et al., 2013). The conditional distribution of « follows the Gamma distribution:

M-1
awGa(aa+M—17ba — Z log(l—Vk)), (27)
k=1

where a, and b, are the hyper parameters of the prior distribution of a.
Sampling ~;

Sampling i is the same as the Bayesian finite mixture model.

n

p(Vkl+) o< p(zly, ve)p(vi) = { II »Gilyia = kﬁk)}p(%) (28)
i€{qi=k}
Because the posterior distribution of the logistic regression model is not any probability
distribution, we generate samples using the Metropolis-Hastings (MH) algorithm.
miss

3.5.2 Sampling !

(2

We generate the y"**(z; = 0) through MH data augmentation (Lee and Berger, 2001). The

posterior distribution is:

_ e = 0@, A)p(zi = 0y, Yi, ¢i = k)
fp(y;nws"zi = O7m25)‘)p(zl = O‘Zlgmssa’)’ka% = k)dy;ﬂzss '

(29)

p(y;mzss|zl =0,x;, >‘77k,; qi = k-)

We set the candidate distribution, ¢(y™***|-). Then, the probability of accepting a new

candidate sample y™*5(cand) i5 ag follows:

miss(cand) miss(old), miss(cand)
. . P = Oly: s ,q; = k . .
p(ymZSé(Old) ? ymws(cand)) = min{L Pz |ylmi85(old) Ted )C(%iss(candlylmiss(old) ) }
p(zi = 0ly; Vi G = K)e(y; |y )

(30)

Then, we set y®™? = ((y°*)7, (ymiss)T)T and draw A using them.

3.5.3 Sampling A

The A is drawn from the quasi-Bayesian posterior that incorporates a moment restriction

from auxiliary information. When we assume the multivariate normal distribution for p(\),

10



the quasi-Bayesian posterior is:

g(A[y*™?) oc p(y“|a, A) x exp{ @}, (A)} x p(N)

x ﬁ {p(yilzi, A)} x exp{ — %(% zn:m*(yip\))TQZl()\)(i Zn:m*(yﬂ)\))}

x ezp{ - %(A —X0)TAG (A= Ao)}

where Ag and A are the mean vector and variance-covariance matrix for p(A).

We draw a new candidate sample using random walk MH:

)\cand ~ N(}\old’ \I/)

(31)

(32)

where A°? is a sample in a previous MCMC iteration and W is a diagonal variance parameter

for random walk MH.

Then, the probability of accepting a new candidate sample is:

)\cand comp
p()\old — )\cand) = min 17 Q( |y am) )
q(Aolol|ycomp7 w)

4 Simulation Study

4.1 Model

In the simulation study, we assume a linear regression model for p(y|x, A):
yi = x] B+ei e~ N(0,07),

where A = (87, 02)T.

Then, the probability of z; = 1 is modeled using a logistic regression model:

logit[p(z; = 1lyi,7)] = Yo + yimni-

(35)

However, if the missing mechanisms are misspecified, the estimated results are severely bi-

ased.

We consider that the true missing mechanism is expressed by the quadratic function of

Yi:

logit[p™ (i = 1lys, ")) = 76 + it + ¥,

11

(36)



where v* = (73,75,75,)T are true parameters and p*(z; = 1]y;,¥*) is a true missing mech-
anism.
However, the estimated model (Equation (35)) is misspecified. Then, we use the DPM

in the selection mechanism p(z|y,~) to avoid misspecification:
oo
p(2lyiv) =Y mep(21yi, 1) (37)
k=1

4.2 Simulation Condition

Here, we show the performance of the proposed model using a simulation study for the
NMAR data using a semiparametric quasi-Bayesian selection model. Now, we explain the
method of generating the data. First, we generate independent variable x; and dependent
variable y; on the regression model using true parameters. Second, we create a missing
indicator z; using a logistic regression model based on the quadratic function of y;. To be
more concrete, we set the probability in which the dependent variable y; is missing as a
function of the value y; and y?. Third, we let y; be missing when z; = 0.

We set the proportion of missing indicators to about 20 ~ 30%. We compose the number
of moment restrictions (NMR = 3,5, 7) from auxiliary information on the dependent variable
y among the range of the covariate x. We set the sample size n = 1000 and generate 1,000
datasets.

For the model comparison, we estimate six models:
1) Ignoring Missingness (list-wise case deletion) without Moment
2

Selection Model without Moment

(1)
(2)
(3) DPM Selection Model without Moment (Lee and Berger, 2001)

(4) Tgnoring Missingness (list-wise case deletion) with Moment (Bayesian alternative to Im-
bens and Lancastor, 1994)

(5) Selection Model with Moment

(6) DPM Selection Model with Moment (Proposed Model)

In the MCMC procedure, we draw 4,000 MCMC samples after 2,000 burn-in phases and

confirm the convergence of the parameters using the method in Geweke (1992).

4.3 Results

We show in Table.1 the MSE (x10?) and the ratio of the MSE in which the MSEs of model.6

are fixed to one, and in Table.2 coverage from a 99% Bayesian credible interval. From Table.1,

12



results of model.6 (=proposed model) perform the best for all parameters and conditions. In
contrast, from Table.2, the coverages of model.6 (=proposed model) also perform the best
for all parameters and conditions. In particular, the coverages of variance parameter o2 are
bad in all models except for those of the proposed model.

Next, we show the boxplot of each parameter in the cases 1,000 when NMR = 5 in

Figure.3. From them, we understand that the proposed models can appropriately reproduce

the true parameters; however, those from the other models have large biases.

Table 1: Simulation Result (MSE)
MSEx10* MSE Ratio

Model.1 Model.2 Model.3 Model.4 Model.5 Model.6 Model.1 Model.2 Model.3 Model.4 Model.5 Model.6

NMR=3

Bo 16160 1503 1376 0192 1042 0.018 906.3 84.3 77.1 10.7 58.4 -
B1 37533 25624 11062 0162 4897 0.032 1176.7 8033 3468 51 1535 -
o 66.272 44221 33.045 23376 32061 0.802 82.6 55.1 41.2 2.2 40.0 -
NMR=5

Bo 16.187 1482 1370 0023 0303 0.009 18928 1733  160.2 2.7 35.4 -
B1 37511 25556 11.062 0104 1055  0.026 14455 9848 4263 4.0 40.6 -
o 66.100 43887 32852 23.071 22033 0.907 72.9 48.4 36.2 254 243 -
NMR=7

Bo 16126 1427 1308 0058 9752 0027 605.0 535 40.1 22 3659 -
B1 37545 25503 10955 0151 24874 0.064 586.7 3985 1712 24 3887 -
o 66.379 43997 328% 23919 88300 1.090 60.9 40.4 30.2 219 81.0 -

Table 2: Simulation Result (Coverage)

Model.1 Model.2 Model.3 Model.4 Model.5 Model.6

NMR=3

Bo 0000 0745 0735 0902 0986  1.000
B1 0000 0000 0001 099 0001 1000
o 0000 0.008 0007 0021 0040 0989
NMR=5

Bo 0000 0767 0750 0998 0997 1000
B1 0.000 0.000 0000 0984 0071 1000
o 0000 0.007 0004 0015 0083 0989
NMR=7

Bo 0000 0774 0768 1000 08%4 1000
1 0000 0.000 0004 0999 0861 1000
o 0000 0.008 0004 0012 0143 0992

Next, we show the trace plot of the proposed model in Figure.4. The trace plot of the

13
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Figure 1: Boxplots of 5y (NMR=5)

MCMC is stable and convergence is confirmed using the method by Geweke (1992).

5 Conclusion

In this paper, we propose a semiparametric quasi-Bayesian inference with Dirichlet process
priors using Hoshino and Igari (2017) and Igari and Hoshino (2017). The proposed method
can estimate parameters using a blocked Gibbs sampler, which is one of the major algorithms
in the DPM, with incorporating external information into the objective function. For illus-
trative purposes, we apply the proposed estimation method to missing data analysis with
not missing random (NMAR) data. We show the performance of the proposed models using
a simulation study. From these studies, the existing models such as the selection model or
the semiparametric Bayesian selection model cannot work appropriately when the missing
mechanisms are misspecified.

Although we apply our method to the selection models in which moment restrictions from
external information are composed only on the p(y|x, A), the proposed method can be easily
generalized to consider the internal function of the Dirichlet process mixture (Equation. (1)).

Then, the method and algorithms introduced in Section 2.3 can be applicable. We can easily

14
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Figure 2: Boxplots of 51 (NMR=5)

apply our approaches to propensity score adjustments, shared parameter models, pattern

mixture models, and sample selection models in a similar manner.
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