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Semiparametric Quasi-Bayesian Inference with Dirichlet Process

Priors: Application to Nonignorable Missing Responses

June 26, 2017

Ryosuke Igari and Takahiro Hoshino

Graduate School of Economics, Keio University

Abstract

Quasi-Bayesian inference, in which we can use an objective function such as generalized

method of moments (GMM), M-estimators, or empirical likelihoods instead of log-likelihood

functions, has been studied in Bayesian statistics. However, existing quasi-Bayesian estima-

tion methods do not incorporate Bayesian semiparametric modeling such as Dirichlet process

mixtures. In this study, we propose a semiparametric quasi-Bayesian inference with Dirich-

let process priors based on the method proposed by Hoshino and Igari (2017) and Igari and

Hoshino (2017), which divide the objective function into likelihood function and objective

function of GMM. In the proposed method, auxiliary information such as population in-

formation can be incorporated in a GMM-type function, whereas the likelihood function is

expressed as infinite mixtures. In the resulting Markov chain Monte Carlo (MCMC) algo-

rithm, the GMM-type objective function is considered in the Metropolis Hastings algorithm

in the blocked Gibbs sampler. For illustrative purposes, we apply the proposed estimation

method to the missing data analysis with nonignorable responses, in which the missingness

depends on the dependent variable. We show the performance of our model using a simula-

tion study.

Keyword: Dirichlet Process Mixture Model; Blocked Gibbs Sampler; GMM; Auxiliary

Information; Selection Model; Misspecified Missing Mechanism
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1 Introduction

Recently, quasi-Bayesian inference methods or the Bayesian generalized method of moments

(GMM) have been developed and applied in various studies (Chernozhukov and Hong, 2003;

Hoshino, 2008; Yin, 2009; Yang and He, 2012). In quasi-Bayesian inference, we can use

an objective function such as GMM, M-estimators, or empirical likelihoods instead of log-

likelihood functions. Most existing applications of the quasi-Bayesian estimation method

emphasize the robustness of the estimation results in that the correct specification of the

entire model is not required (e.g., Li and Jiang, 2016). The classical (non-Bayes) GMM

methods (or empirical likelihood methods) can easily include more restrictions than the

number of parameters (Hansen, 1982). Additionally, vast literature exists that proposes

non-Bayesian methods for making an inference that incorporates auxiliary information using

classical GMM methods (Imbens and Lancaster, 1994; Hellerstein and Imbens, 1999; Nevo,

2003) and the empirical likelihood method (Qin, 2000; Qin and Zhang, 2007; Chaudhuri

et al., 2008). However, numerical optimization (and integration) is required in classical

(non-Bayes) GMM methods, which is often difficult in complex models. Even when the

optimization of an objective function is difficult, a quasi-Bayesian inference such as Bayesian

GMM can be also available by using Markov chain Monte Carlo (MCMC) without numerical

optimization. Additionally, the Bayesian GMM can incorporate external information into

an objective function, such as the classical GMM.

Moreover, vast literature exists on non or semiparametric Bayesian inference, such as

the Dirichlet process mixtures model (DPM) (e.g., Ferguson, 1973; Ishwaran and James,

2001; Hjort et al., 2010). In the DPM, the distribution is expressed using an infinite mixture

distribution that can reproduce various distributions, and blocked Gibbs sampling algorithms

are available to easily estimate parameters (Ishwaran and James, 2001) in a manner similar

to that of Bayesian finite mixture models. Additionally, semiparametric Bayesian estimation

methods have been proposed and applied to weaken the parametric assumptions in various

fields (e.g., Lee and Berger, 2001; Hoshino, 2013). If semiparametric Bayesian methods

are used in a quasi-Bayesian inference, parameters can be estimated using blocked Gibbs

sampling without numerical optimization with constraining the restriction from external

information such as the GMM. However, the quasi-Bayesian method with latent variable

models or semiparametric inference has not been developed. In this circumstance, Hoshino

and Igari (2017) and Igari and Hoshino (2017) proposed a new quasi-Bayesian inference

that divides the objective function into two components: a likelihood function and moment

restrictions. In their method the quasi-posterior mean estimator is shown consistent and
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asymptotically normally distributed. By dividing the objective functions in a quasi-Bayesian

inference, we can incorporate latent variables and moment restrictions from population-level

information through data augmentation (e.g., Tanner and Wong, 1987; Albert and Chib,

1993) into the models in an MCMC implementation.

In this paper, we propose a semiparametric quasi-Bayesian inference with Dirichlet pro-

cess priors using the method proposed by Hoshino and Igari (2017) and Igari and Hoshino

(2017). In the proposed method, auxiliary information—such as population information—

can be incorporated in the GMM-type function, whereas the likelihood function is expressed

as infinite mixtures. In the resulting MCMC algorithm, the GMM-type objective function

is considered in the Metropolis Hastings algorithm in the blocked Gibbs sampler. For illus-

trative purposes, we apply the proposed estimation method to missing data analysis (e.g.,

Little and Rubin, 2002) with nonignorable missing responses in which the missingness de-

pends on the response variable. Several models have been proposed, such as the Tobit type

II model (Heckman, 1979; Amemiya, 1984) for nonignorable missingness; however, the selec-

tion mechanism must be correctly specified. Other methods employ non or semiparametric

model formulation for the selection model (e.g., Lee and Berger, 2001; van Hasselt, 2011;

Hoshino, 2013); however, these models are weakly identified and the results obtained are

instable. Instead, in this study, we use marginal population-level information to avoid model

misspecification.

2 Semiparametric Quasi-Bayesian Inference

2.1 Dirichlet Process Mixture Model

First, we define the semiparametric Bayesian model with the DPM. In the Dirichlet process

priors G ∼ DP (α,G0), G is expressed as follows:

G(θ) =

∞∑
k=1

πkδθk
, δθk

∼ G0, (1)

where δθk
denotes a discrete measure concentrated at θk and

∑∞
k=1 πk = 1.

In practice, let y = (y1, ..., yn) be a dependent vector; the model is:

p(y|·) =
∞∑
k=1

πkp(y|θk). (2)
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The stick-breaking process is:

π1 = V1, πk = Vk

k−1∏
h=1

(1− Vh), Vk ∼ Be(1, α), (3)

where α ∼ Ga(aα, bα).

To estimate the parameters, the blocked Gibbs sampler (Ishwaran and James, 2001)

is widely used. In implementing the blocked Gibbs sampler, we generate the multinomial

indicator qi that indicates that subject i is allocated to each component in each MCMC

iteration:

p(qi = k|·) = πkp(yi|θk, qi = k)∑M
l=1 πlp(yi|θl, qi = l)

, (4)

where M is the maximum number of components.

2.2 Quasi-Bayesian Inference and Bayesian GMM

Next, we define the quasi-Bayesian inference (Chernozhukov and Hong, 2003) with a GMM-

type objective function. Let θ be a parameter with a r-dimensional vector. Then, the

quasi-Bayesian posterior is:

q(θ|y) = exp{Ln(θ)}p(θ)∫
Θ
exp{Ln(θ)}p(θ)dθ

∝ exp{Ln(θ)}p(θ), (5)

where p(θ) is a prior distribution for θ, Θ is the parameter space of θ, and Ln(θ) is an objec-

tive function such as GMM, M-estimators, or empirical likelihoods instead of log-likelihood

functions (Chernozhukov and Hong, 2003; Hoshino, 2008; Yin, 2009; Yang and He, 2012).

The quasi-Bayesian posterior means are represented as follows:

θ̂ =

∫
Θ

θq(θ|y)dθ =

∫
Θ

θ

(
exp{Ln(θ)}p(θ)∫

Θ
exp{Ln(θ)}p(θ)dθ

)
dθ. (6)

It is shown that under mild regularity conditions, the quasi-Bayesian posterior means are

consistent and asymptotically normally distributed (Kim, 2002; Chernozhukov and Hong,

2003; Yin, 2009; Yang and He, 2012).

The GMM-type objective function is defined as follows:

Ln(θ) = −n

2

( 1
n

n∑
i=1

m(yi|θ)
)T

Ω−1
n (θ)

( 1
n

n∑
i=1

m(yi|θ)
)
, (7)

where m(yi|θ) is a moment restriction that is E
[
m(y|θ)

]
= 0, and Ωn(θ) is the optimal

weight matrix:
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Ωn(θ) = E
[
m(y|θ)m(y|θ)T

]
. (8)

Yin (2009) and Li and Jiang (2016) used the generalized estimation equation (GEE) for

moment restriction m(yi|θ). Their method can be applied to the longitudinal data in which

the observations in the same subject are correlated. However, if additional restrictions ex-

ist, such as theory constraints, except for the restrictions of each parameter, their method

using GEE must simultaneously incorporate both the restrictions of each parameter and ad-

ditional restrictions in m(yi|θ), in which flexible modeling, such as latent variable modeling

or non/semiparametric Bayesian modeling, can not be admitted.

In this study, to enable flexible modeling, we divide moment restriction m(yi|θ) into two

parts: (1) a likelihood function and (2) additional moment restrictions. That is to say:

m(y|θ) =
( ∂

∂θT
log p(y|θ) m∗T (y|θ)

)T
. (9)

From this formulation, we have some computational flexibility and can construct flexible

models, such as random effects or semiparametric models. When we draw other parameters

unrelated to additional moment restriction m∗T (y|θ) in an MCMC implementation, we can

easily draw samples from only the likelihood function (and prior distribution). Additionally,

we can easily include latent variables in Equation (9) (see Hoshino and Igari (2017) for

details).

In this study, we apply the following quasi-Bayesian joint posterior distribution for pa-

rameter vector θ

q(θ|y)QB∗ =

{∏n
i=1 p(yi|θ)

}
× exp

[
Q∗

n(θ)
]
× p(θ)∫ {∏n

i=1 p(yi|θ)
}
× exp

[
Q∗

n(θ)
]
× p(θ)dθ

(10)

to sample the random draws of θ, where

Q∗
n(θ) = −n

2

[ 1
n

n∑
i=1

m∗(yi|θ)
]T

Ω∗−1
n (θ)

[ 1
n

n∑
i=1

m∗(yi|θ)
]
, (11)

and Ω∗
n(θ) is a matrix converging to E[m∗(y|θ)m∗(y|θ)T ].

Note that the quasi-Bayesian posterior distribution (Equation (10)) is proportional to the

likelihood
∏n

i=1 p(yi|θ) times the following quasi-Bayesian posterior distribution, conditional

5



on the external information of the moment m∗(y|θ):

q(θ|m∗)QB∗ =
exp
[
Q∗

n(θ)
]
× p(θ)∫

{exp
[
Q∗

n(θ)
]
× p(θ)dθ

. (12)

See Hoshino and Igari (2017) for the proof of the consistency and asymptotic properties of

the estimator.

2.3 Semiparametric Quasi-Bayesian Inference and Algorithm

In a semiparametric quasi-Bayesian inference, we replace Equation (10) with the DPM for-

mat,

m(y|θ) =
( ∂

∂θT
log

∞∑
k=1

p(y|θk, q = k)p(q = k) m∗T (y|θ)
)T

. (13)

where m∗(y|θ) are the moment restriction with the DPM format.

We consider that the S-dimensional auxiliary information y∗ = (y∗1 , ..., y∗S)
T are avail-

able. The moment restrictions m∗(yi|θ) are determined by letting:

m∗(yi|θ) =


I1i
[
y∗1 − E[yi|θ]

]
· · ·

ISi
[
y∗S − E[yi|θ]

]
 , (14)

where Isi = 1 when subject i belongs to group s (e.g., gender or range of age), and the

expected value is E[yi|θ] =
∑∞

k=1 πkE[yi|θk].

The semiparametric quasi-Bayesian posterior distribution is:

q(θ, q|y)SQB∗ =
{
∏n

i=1

∑∞
k=1 p(yi|θk, qi = k)p(qi = k)} × exp

[
Q∗

n(θ)
]
× p(θ)∫

{
∏n

i=1

∑∞
k=1 p(yi|θk, qi = k)p(qi = k)} × exp

[
Q∗

n(θ)
]
× p(θ)dθ

. (15)

Blocked Gibbs Sampling Algorithm

In our augmentation approach, the algorithm for drawing samples of θ from Equation (10)

is very straightforward.

Sampling θk

We use the blocked Gibbs sampler and draw θk for each other, which corresponds to Equation
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(10).

q(θk, q|y)SQB∗ =
{
∏n

i=1∈{qi=k} p(yi|θk, qi = k)p(qi = k)} × exp
[
Q∗

n(θ)
]
× p(θk)∫

{
∏n

i=1∈{qi=k} p(yi|θk, qi = k)p(qi = k)} × exp
[
Q∗

n(θ)
]
× p(θk)dθk

.

(16)

In this setup, because it is difficult to draw samples θk directly from this distribution,

we use the Metropolis-Hastings algorithm by drawing the candidate of θk, θ
(cand)
k from the

candidate distribution c(θk) and accept the value with the following probability:

p(θ
(old)
k → θ

(cand)
k ) = min

{
q(θ

(cand)
k , q|y)SQB∗c(θ

(old)
k |θ(cand)

k )

q(θ
(old)
k , q|y)SQB∗c(θ

(cand)
k |θ(old)

k )
, 1

}
, (17)

where θ
(old)
k is the value obtained in the previous MCMC iteration.

Sampling qi

The probability that subject i belongs to component k given all other parameters is:

p(qi = k|·) = πkp(yi|θk, qi = k)∑M
l=1 πlp(yi|θl, qi = l)

, (18)

where M is a the finite number of components.

Similarly, we draw other parameters V1, ..., VM−1, r using the usual blocked Gibbs sampler

(Ishwaran and James, 2001; Gelman et al., 2013) and show them in Section 3.5.

3 Application to Missing Data Analysis

3.1 Semiparametric Selection Model

Let y be a dependent variable vector, x be an independent variable vector, and z be a missing

indicator vector. Then, the dependent variable vector y contains nonignorable responses.

The selection model we considered here is:

p(y|x,λ)p(z|y,γ), (19)

where p(z|y,γ) is a selection model that represents the missing mechanisms, and p(y|x,λ)

is a parametric model such as a linear regression, a proportional hazard model, or a Poisson

regression model.

We consider a selection model for which yi is missing, corresponding to the values of its

own variable. We define yi as observed when zi = 1 and yi is missing when zi = 0. In the
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selection model, including the sample selection model, it is widely known that if the missing

mechanism is misspecified, the estimated results are severely biased. Then, we use the DPM

in the selection mechanism p(z|y,γ) to avoid misspecification:

p(z|y,γ) =
∞∑
k=1

πkp(z|y,γk). (20)

Although we focus on the nonignorable missing responses in this study, our models can

be easily extended to the missing covariates problem (e.g., Ibrahim et al., 2001; Kato and

Hoshino, submitted).

Although the DPM is flexible, the practical identification of the model is often weak and

we use moment restrictions from the external information.

3.2 Likelihood Function

The likelihood function of the semiparametric selection model is:

L =
n∏

i=1

{
p(yi|xi,λ)p(zi|yi,γ)

}zi{∫ {
p(yi|xi,λ)p(zi|yi,γ)

}
dyi

}1−zi

=
n∏

i=1

{
p(yi|xi,λ)

∞∑
k=1

πkp(zi|yi,γk)

}zi{∫ {
p(yi|xi,λ)

∞∑
k=1

πkp(zi|yi,γk)
}
dyi

}1−zi

.

(21)

3.3 Restriction from Population-level Information

The S-dimensional population-level information y∗ = (y∗1 , ..., y∗S)
T is set to identify the

parameters of the true distribution. The moment restrictions from the population-level

information m∗(yi|λ) are determined by letting:

m∗(yi|λ) =


I1i
[
y∗1 − E[yi|xi,λ]

]
· · ·

ISi
[
y∗S − E[yi|xi,λ]

]
 , (22)

where Isi = 1 when subject i belongs to group s (e.g., gender or range of age). The la-

tent variables ymiss
i or components of the DPM qi are not included in the expected value

E[yi|xi,λ], the blocked Gibbs sampler, or Monte Carlo integration, and are not required in

the calculation of the moment restriction.

The objective function of the moment restriction is:

Q∗
n(λ) = −n

2

( 1
n

n∑
i=1

m∗(yi|λ)
)T

Ω∗−1
n (λ)

( 1
n

n∑
i=1

m∗(yi|λ)
)
, (23)
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where Ω∗
n(λ) = E

[
m∗(y|λ)m∗(y|λ)T

]
.

3.4 Quasi-Bayesian Posterior

q(λ,γ|y, z) ∝ L× exp
{
Q∗

n(λ)
}
× p(λ)×

M∏
k=1

p(γk)

=
n∏

i=1

{
p(yi|xi,λ)

M∑
k=1

πkp(zi|yi,γk)

}zi{∫ {
p(yi|xi,λ)

M∑
k=1

πkp(zi|yi,γk)
}
dyi

}1−zi

× exp

{
− n

2

( 1
n

n∑
i=1

m∗(yi|λ)
)T

Ω∗−1
n (λ)

( 1
n

n∑
i=1

m∗(yi|λ)
)}

× p(λ)×
M∏
k=1

p(γk),

(24)

where p(λ) and p(γk) are prior distributions for λ and γk.

3.5 Estimation

We use the MCMC method to estimate the parameters of the proposed model. In addition

to the algorithms in Section 2.3, we introduce the algorithm corresponding to the selection

model using data augmentation.

3.5.1 Blocked Gibbs Sampler for DPM

Sampling qi

The probability that subject i belongs to component k given all other parameters is:

p(qi = k|·) = πkp(zi|yi,γk)∑M
l=1 πlp(zi|yi,γl)

. (25)

Sampling Vk

The stick-breaking weight Vk is generated from the Beta distribution:

Vk ∼ Beta

(
1 + nk, α+

M∑
h=k+1

nh

)
, (26)

where nk means the number of subjects that belong to component k.

Sampling α

The precision parameter α plays a role in controlling the prior on the number of clusters
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(Gelman et al., 2013). The conditional distribution of α follows the Gamma distribution:

α ∼ Ga

(
aα +M − 1, bα −

M−1∑
k=1

log(1− Vk)

)
, (27)

where aα and bα are the hyper parameters of the prior distribution of α.

Sampling γk

Sampling γk is the same as the Bayesian finite mixture model.

p(γk|·) ∝ p(z|y,γk)p(γk) =

{ n∏
i∈{qi=k}

p(zi|yi, qi = k,γk)

}
p(γk) (28)

Because the posterior distribution of the logistic regression model is not any probability

distribution, we generate samples using the Metropolis-Hastings (MH) algorithm.

3.5.2 Sampling ymiss
i

We generate the ymiss
i (zi = 0) through MH data augmentation (Lee and Berger, 2001). The

posterior distribution is:

p(ymiss
i |zi = 0,xi,λ,γk, qi = k) =

p(ymiss
i |zi = 0,xi,λ)p(zi = 0|ymiss

i ,γk, qi = k)∫
p(ymiss

i |zi = 0,xi,λ)p(zi = 0|ymiss
i ,γk, qi = k)dymiss

i

.

(29)

We set the candidate distribution, c(ymiss
i |·). Then, the probability of accepting a new

candidate sample ymiss(cand) is as follows:

p(ymiss(old) → ymiss(cand)) = min

{
1,

p(zi = 0|ymiss(cand)
i ,γk, qi = k)c(y

miss(old)
i |ymiss(cand)

i )

p(zi = 0|ymiss(old)
i ,γk, qi = k)c(y

miss(cand)
i |ymiss(old)

i )

}
.

(30)

Then, we set ycomp =
(
(yobs)T , (ymiss)T

)T
and draw λ using them.

3.5.3 Sampling λ

The λ is drawn from the quasi-Bayesian posterior that incorporates a moment restriction

from auxiliary information. When we assume the multivariate normal distribution for p(λ),
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the quasi-Bayesian posterior is:

q(λ|ycomp) ∝ p(ycomp|x,λ)× exp
{
Q∗

n(λ)
}
× p(λ)

∝
n∏

i=1

{
p(yi|xi,λ)

}
× exp

{
− n

2

( 1
n

n∑
i=1

m∗(yi|λ)
)T

Ω∗−1
n (λ)

( 1
n

n∑
i=1

m∗(yi|λ)
)}

× exp

{
− 1

2
(λ− λ0)

TΛ−1
0 (λ− λ0)

}
(31)

where λ0 and Λ0 are the mean vector and variance-covariance matrix for p(λ).

We draw a new candidate sample using random walk MH:

λcand ∼ N(λold,Ψ) (32)

where λold is a sample in a previous MCMC iteration and Ψ is a diagonal variance parameter

for random walk MH.

Then, the probability of accepting a new candidate sample is:

p(λold → λcand) = min

{
1,

q(λcand|ycomp,x)

q(λold|ycomp,x)

}
. (33)

4 Simulation Study

4.1 Model

In the simulation study, we assume a linear regression model for p(y|x,λ):

yi = xT
i β + ϵi, ϵi ∼ N(0, σ2), (34)

where λ = (βT , σ2)T .

Then, the probability of zi = 1 is modeled using a logistic regression model:

logit[p(zi = 1|yi,γ)] = γ0 + yiγ1. (35)

However, if the missing mechanisms are misspecified, the estimated results are severely bi-

ased.

We consider that the true missing mechanism is expressed by the quadratic function of

yi:

logit[p∗(zi = 1|yi,γ∗)] = γ∗
0 + yiγ

∗
1 + y2i γ

∗
2 , (36)
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where γ∗ = (γ∗
0 , γ

∗
1 , γ

∗
2 , )

T are true parameters and p∗(zi = 1|yi,γ∗) is a true missing mech-

anism.

However, the estimated model (Equation (35)) is misspecified. Then, we use the DPM

in the selection mechanism p(z|y,γ) to avoid misspecification:

p(z|yi,γ) =
∞∑
k=1

πkp(z|yi,γk). (37)

4.2 Simulation Condition

Here, we show the performance of the proposed model using a simulation study for the

NMAR data using a semiparametric quasi-Bayesian selection model. Now, we explain the

method of generating the data. First, we generate independent variable xi and dependent

variable yi on the regression model using true parameters. Second, we create a missing

indicator zi using a logistic regression model based on the quadratic function of yi. To be

more concrete, we set the probability in which the dependent variable yi is missing as a

function of the value yi and y2i . Third, we let yi be missing when zi = 0.

We set the proportion of missing indicators to about 20 ∼ 30%. We compose the number

of moment restrictions (NMR = 3, 5, 7) from auxiliary information on the dependent variable

y among the range of the covariate x. We set the sample size n = 1000 and generate 1,000

datasets.

For the model comparison, we estimate six models:

(1) Ignoring Missingness (list-wise case deletion) without Moment

(2) Selection Model without Moment

(3) DPM Selection Model without Moment (Lee and Berger, 2001)

(4) Ignoring Missingness (list-wise case deletion) with Moment (Bayesian alternative to Im-

bens and Lancastor, 1994)

(5) Selection Model with Moment

(6) DPM Selection Model with Moment (Proposed Model)

In the MCMC procedure, we draw 4,000 MCMC samples after 2,000 burn-in phases and

confirm the convergence of the parameters using the method in Geweke (1992).

4.3 Results

We show in Table.1 the MSE (×102) and the ratio of the MSE in which the MSEs of model.6

are fixed to one, and in Table.2 coverage from a 99% Bayesian credible interval. From Table.1,
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results of model.6 (=proposed model) perform the best for all parameters and conditions. In

contrast, from Table.2, the coverages of model.6 (=proposed model) also perform the best

for all parameters and conditions. In particular, the coverages of variance parameter σ2 are

bad in all models except for those of the proposed model.

Next, we show the boxplot of each parameter in the cases 1, 000 when NMR = 5 in

Figure.3. From them, we understand that the proposed models can appropriately reproduce

the true parameters; however, those from the other models have large biases.

Table 1: Simulation Result (MSE)
MSE×102 MSE Ratio

Model.1 Model.2 Model.3 Model.4 Model.5 Model.6 Model.1 Model.2 Model.3 Model.4 Model.5 Model.6

NMR=3

β0 16.160 1.503 1.376 0.192 1.042 0.018 906.3 84.3 77.1 10.7 58.4 -

β1 37.533 25.624 11.062 0.162 4.897 0.032 1176.7 803.3 346.8 5.1 153.5 -

σ

2 66.272 44.221 33.045 23.376 32.061 0.802 82.6 55.1 41.2 29.2 40.0 -

NMR=5

β0 16.187 1.482 1.370 0.023 0.303 0.009 1892.8 173.3 160.2 2.7 35.4 -

β1 37.511 25.556 11.062 0.104 1.055 0.026 1445.5 984.8 426.3 4.0 40.6 -

σ

2 66.100 43.887 32.852 23.071 22.033 0.907 72.9 48.4 36.2 25.4 24.3 -

NMR=7

β0 16.126 1.427 1.308 0.058 9.752 0.027 605.0 53.5 49.1 2.2 365.9 -

β1 37.545 25.503 10.955 0.151 24.874 0.064 586.7 398.5 171.2 2.4 388.7 -

σ

2 66.379 43.997 32.896 23.919 88.300 1.090 60.9 40.4 30.2 21.9 81.0 -

Table 2: Simulation Result (Coverage)

Model.1 Model.2 Model.3 Model.4 Model.5 Model.6

NMR=3

β0 0.000 0.745 0.735 0.902 0.986 1.000

β1 0.000 0.000 0.001 0.990 0.001 1.000

σ

2 0.000 0.008 0.007 0.021 0.040 0.989

NMR=5

β0 0.000 0.767 0.750 0.998 0.997 1.000

β1 0.000 0.000 0.000 0.984 0.071 1.000

σ

2 0.000 0.007 0.004 0.015 0.083 0.989

NMR=7

β0 0.000 0.774 0.768 1.000 0.894 1.000

β1 0.000 0.000 0.004 0.999 0.861 1.000

σ

2 0.000 0.008 0.004 0.012 0.143 0.992

Next, we show the trace plot of the proposed model in Figure.4. The trace plot of the
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Figure 1: Boxplots of β0 (NMR=5)

MCMC is stable and convergence is confirmed using the method by Geweke (1992).

5 Conclusion

In this paper, we propose a semiparametric quasi-Bayesian inference with Dirichlet process

priors using Hoshino and Igari (2017) and Igari and Hoshino (2017). The proposed method

can estimate parameters using a blocked Gibbs sampler, which is one of the major algorithms

in the DPM, with incorporating external information into the objective function. For illus-

trative purposes, we apply the proposed estimation method to missing data analysis with

not missing random (NMAR) data. We show the performance of the proposed models using

a simulation study. From these studies, the existing models such as the selection model or

the semiparametric Bayesian selection model cannot work appropriately when the missing

mechanisms are misspecified.

Although we apply our method to the selection models in which moment restrictions from

external information are composed only on the p(y|x,λ), the proposed method can be easily

generalized to consider the internal function of the Dirichlet process mixture (Equation. (1)).

Then, the method and algorithms introduced in Section 2.3 can be applicable. We can easily
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Figure 2: Boxplots of β1 (NMR=5)

apply our approaches to propensity score adjustments, shared parameter models, pattern

mixture models, and sample selection models in a similar manner.
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