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ABSTRACT

There is a vast literature proposing non-Bayesian methods for making infer-
ences incorporating auxiliary information such as population-level marginal mo-
ments. However, it is not feasible to apply these methods directly to latent vari-
able models because the data augmentation approach, in which latent variables are
treated as incidental parameters and then generated, is not developed. In this paper,
we propose a Markov Chain Monte Carlo (MCMC) algorithm with data augmenta-
tion for latent variable models for cases in which we have both a sampled dataset
and additional information such as population level moments. The resulting quasi-
Bayesian inference with auxiliary information is very straightforwaed to implement,
and consistency and asymptotic variance of the quasi-Bayesian posterior mean esti-
mators from the MCMC outputs are shown in this paper. The proposed method is
especially useful when the dataset is biased but we have an unbiased large sample for
some variables or population marginal moments in which it is difficult to correctly
specify the sample selection model. For illustrative purposes, we apply the proposed
estimation method to generalized linear mixed models for biased data both in simu-
lation studies and in real data analysis. The proposed method can be used to make
inferences in non/semi-parametric latent variable models by incorporating the exist-
ing semi-parametric Bayesian algorithms such as the Blocked Gibbs sampler in the

MCMLC iteration.

Keywords: Generalized Linear Mixred Models; Latent Variable Modeling; Quasi-
Bayes; Population-Level Information; Dirichlet Process Mixture; Markov Chain Monte

Carlo; Data Augmentation



1 Introduction

Recently, quasi-Bayesian inference methods or the Bayesian GMM (Generalized
method of moments) method have been developed and applied in various studies
(Kim, 2002; Chernozhukov and Hong 2003; Hoshino 2008; Yin 2009; Yang and He
2012). Most existing applications of the quasi-Bayesian estimation method empha-
size the robust estimation without full model specification in contrast with traditional
Bayesian methods (e.g., Li and Jiang, 2016); however, various other semi-parametric
Bayesian estimation methods, such as the Dirichlet process mixtures model, have
been proposed and applied to weaken the parametric assumptions in various fields
(e.g., Hoshino, 2013). The distinct feature of (non-)Bayesian GMM methods is that
they can easily include external information such as population-level moments in the
estimation of parameters.

There is a vast literature proposing non-Bayesian methods for making an infer-
ence incorporating auxiliary information; these methods include the traditional GMM
methods (Hansen, 1982; Imbens and Lancaster, 1994; Nevo, 2003) and the com-
bined empirical likelihood method (Qin and Zhang, 2007; Chaudhuri et.al, 2008).
However, it is not feasible to apply these methods directly to latent variable models
because the data augmentation approach has not been considered. For inference in
latent variable models, especially with mixed outcomes and/or clustered/multilevel
data, MCMC algorithms with data augmentation by sampling latent variables as in-
cidental parameters have been developed and employed in various applied studies
because of the flexibility of the modeling framework and estimation procedure (e.g.,
Tanner and Wong 1987; Albert and Chib 1993; Dunson, 2000).

In this paper, we propose a Markov Chain Monte Carlo (MCMC) algorithm with
data augmentation for latent variable models for cases in which we have both a sam-
pled dataset and additional information, such as population-level moments. We show
consistency and asymptotic variance of the quasi-Bayesian posterior mean estima-
tors from the MCMC outputs. The proposed methods are especially useful when the
dataset used can be biased, but it is difficult to correctly specify the sample selection

model, and we have an unbiased large sample for some of the variables or population



moments. The existing semi-parametric Bayesian algorithms such as the Blocked
Gibbs sampler (Ishwaran and James, 2001) in the MCMC iteration do not easily in-
corporate auxiliary information, while the proposed method can be easily extended
to make inferences in non/semi-parametric latent variable models.

For illustrative purposes, we apply the proposed estimation method to general-
ized linear mixed models (GLMM) for biased data both in simulation studies and in
real data analysis. Several estimation methods for biased data specify the selection
mechanism model (e.g., Heckman, 1979), but it is difficult to correctly specify the
model. Other methods employ non-parametric model formulation for the selection
model (e.g., Lee and Berger, 2001; Hoshino, 2013). Instead, in this study, we use
marginal population-level information.

In medical sciences, a low degree of generalizability or external validity (Shadish
et.al. 2002) of the results obtained in randomized controlled trials due to biased
sampling of subjects has recently attracted significant attention (e.g., Cole and Stuart,
2010; van Poucke et.al. 2016), and some methods to deal with the problem have been
developed (e.g., Hartman et.al. 2015). The proposed method is especially useful
when the population-level moment information or a large sample dataset such as the
national medical database is available without the assumption of selection models.

The remainder of the paper is organized as follows. Section 2 presents the model
setup. Section 3 describes the existing method which is not available in the model we
considered, and the proposed method. The algorithm and the asymptotic properties
are also shown in Section 3. In Section 4 we show the detaied algorithm for the
GLMM model, and provide a brief summary of the simulation study. A simple real

data analysis is also shown.

2 Model Setup: Latent Variable Models with External
Information

We consider the following latent variable models,

p18)= [ pOIf.0)p(f18)dS, 1)



where y is the dependent variable vector, f is the latent variable vector, and 0 is a
g % 1 parameter vector of interest in the data generating process.

This model includes various submodels such as factor analytic models (Kunda
and Dunson, 2014), random effect models, multilevel models (Goldstein, 2010),
and generalized random utility models (Walker and Ben-Akiva, 2002) for discrete
variables. In this study, we will focus on GLMMs, among others. Note that our
model specification is applicable not only to full parametric models but also to non-
parametric or semi-parametric models via the Dirichlet process mixture (DPM) mod-
els or Probit Stick-breaking Process mixture (PSBPM) models (Chung and Dunson,
2009; Kleinman and Ibrahim, 1998; Kyung et.al.2010; Hjort et.al.2010).

Consider that we have a sample, y;,---,y,, of n independent and identically dis-

tributed (i.i.d.) random vectors. The log-likelihood for the marginalized model is

L,(6) = Y. log [ p(yif:.0)p(£10)df . @
i=1
while the log-likelihood for MCMC methods with data augmentation is expressed as
n

i=1
and the distribution of the latent variables is treated as a prior distribution of inciden-

tal parameters, p(f|0) =[1", p(f;|0).
Moreover, consider that we have another source of information such as the r-

dimensional population-level information vector regarding moments of y
E[m"(y|@)] = 0. “)

Note that if the model of interest is the linear regression model E(y|6,x) = x76,
then the population-level information is expressed directly as the function of the pa-
rameter vector, and the target of inference will just be the reparameterized model.
However, this information is not easily utilized through reparametrization, param-
eter constraints, or prior distribution in a general model setup unless we use linear

regression models (see Section 4 for detail).



3 Quasi-Bayesian Inference for Latent Variable Mod-
els with External Information

For a marginalized model, p(y|0), the quasi-Bayesian posterior distribution is

0(6l) = o g~ e {L(0)}(6), ©)

where p(0) is a prior distribution for 8, @ is the parameter space of 6, and L,(0) is

an objective function for various estimation methods such as a GMM, M-estimator,
or empirical likelihood instead of a log-likelihood function. If we use the GMM-type
objective function, Q,(0) = L, (), the function is defined as follows.

nrl & r 1 &

0:(6) = =3 |, L m(xl®)] @[, Ym(yil0)]. (©)
where m(y;|0) is the unbiased moment restriction vector and , is a weight matrix
converging to E (m(y|6)m(y|6)T)_1. It is shown that under mild regularity con-
ditions, the posterior means are consistent and asymptotically normally distributed
(Kim, 2002; Chernozhukov and Hong 2003; Yin 2009; Yang and He 2012). The
quasi-Bayesian methods are mainly applied in order to weaken the model assump-
tion (Li and Jiang, 2016), but by using the GMM-type objective function, we can
incorporate population-level information as a subvector of m(y;|0) as Imbens and
Lancastor (1994) did in a non-Bayesian GMM estimation.

However, it is difficult to directly draw samples of parameters from Equation (5)
for latent variable models, such as GLMMs, in which computation of the likelihood
of marginalized models requires numerical integrations.

To be more concrete, in the estimation of latent variable models using marginal-
ized likelihood (Equation (2)) and external information (Equation (4)), the GMM-
type function should be employed, because the dimension of moments to be consid-
ered is g+ r and the dimension of parameters is g. Then, the quasi-Bayesian posterior
distribution in this setup is expressed as Equation (5), and the objective function is

Equation (6), where the g + r dimensional moment restriction vector is expressed as

n10) = (557 1ox [ pOIF,O)p(f10)as mT 1)) @)

It is very difficult to draw MCMC samples from the resulting quasi-Bayesian poste-

rior distribution, which is proportional to the exponential of the quadratic form of the



above function m containing high dimensional integrals.

3.1 Hybrid Posterior Combining Likelihood and GMM-type Ob-
jective Function

It would be better to employ the data augmentation approach by treating latent vari-
ables as incidental parameters in a quasi-Bayesian computation. In this study, we
propose the following quasi-Bayesian joint posterior distribution for parameter vec-

tor @ and latent variable vector f

[T p(yilf - 8)p(:18)} x exp| 0;(8) | x p(6)
[ Ty il 8)p(£:18)} x exp| 05(8) | x p(8)df 6
to sample the random draws of 0 and f, where

0;(0) = 5[ Lo o] @[ Lo vie)]. ©

and Q is a matrix converging to E[m*(y|0)m*(y|0)T]~!.

q(6,fy)op: =

Note that the quasi-Bayesian posterior distribution (Equation (8)) is proportional
to the likelihood [T, p(y;|f;,0)p(f;|@) times the following quasi-Bayesian poste-

rior distribution, conditional on the external information of the moment m*(y|0),
exp|0;()] x p(0)
[{exp|0i(8)] x p(6)d6

q(0|m*)ops = (10)

3.2 Algorithm

In our augmentation approach, the algorithm to drawn samples of @ from Equation

(8) is very straightforward.

Sampling 6

The samples of @ are drawn from
{1 P £::0)p(£18)}  exp| 0;(8) | x p(6)
JATTL, p(3l£::8)p(£10)} x exp| 05(8)] x p(6)d®

In this setup it is difficult to draw samples 0 directly from the above distribution, then

q(0|f.y)op« = Y

we use the Metropolis-Hastings algorithm by drawing the candidate of 8, 8" from



the ordinal posterior distribution

{IT=, p(yilfi,0)p(fil0)} x p(6)
0f,y) = = , 12
PO = I, p(0ilf,.0)p(F10)) = p(8)d0 2
and accept the value with the following probability:
. (expQ;(67)
mm(m, 1), (13)

where 0° is the value obtained in the former iteration.

Sampling f

f is drawn from

_ {IT- 1 p(y:lf;,0)p(f:10)}
PU18-3) = T pioil £, 0)p(f: 001 F .

which is the ordinal full conditional posterior distribution of the latent variables.

See section 4 for the detailed algorithm in the case of generalized linear mixed mod-
els.

Note that for non/semi-parametric models via DPM or PSBPM, we can express
p(y|f,0)p(f|0) as the infinite mixtures and employ the related algorithms in our for-
mulation because the proposed quasi-Bayesian posterior distribution is proportional
to the product of the likelihood and the function regarding the auxiliary information,
whereas there is no algorithm in the existing quasi-Bayesian inference (Equation (5))
with external information.

When the external information is stochastic

We considered the case that has population-level information, and the proposed
method is easily generalized to deal with the case by using statistics from unbiased
external surveys. For such cases, we can combine the stochastic information obtained
in the external surveys by adding the statistics to function m in Equation (7) and its
variance matrix to the relevant part of Q,. To be more concrete, Equation (9) is

replaced with
sy = LY i io)] @ [ LY mes (.
0;(8) =3[, L ilo)] @[ Yo 316 (15)

where M is the sample size of the external information, M /N converges to some

constant k, m*(y| @) is the moment or estimating equation for solving 0 in the external



information source, and
*§ *T sT r
m™(3,10) = (mT (v18) mT(y]6))",

e ((Elm*(5]0)m (5]6)7]! 0
,}%ﬂn—( 0 kE[mS(y\mmS(yre)T]—%) (16)

3.3 Asymptotic Properties

We define the quasi-Bayesian posterior mean estimator as

80s. = [ [ 04(8.£Iy)0s.d0df. (7
where ¢(0, f|y)oa« is defined as Equation (8). We can easily obtain the following

theorem.

Theorem 1. éQB* is consistent for estimating 0 and is asymptotically normally dis-

tributed as

A '72(80)B(80)[V'N(B 5. — 80)] % N(0,1), (18)
where 0 is true value of the parameter vector,
1,0 d T
An(09) = - [%Rn(OO)] [%Rn(GO)] : (19)
and
Ba(80) =2 k(80 o)
n\Y0) — n ae&eT n\90/,
where
R.(8) =) logp(y|6)+Q;(8). @1
i=1
Proof. See Appendix. O

4 Application to the Generalized Linear Mixed Model
We apply the proposed method to the GLMM for biased data.

4.1 Generalized Linear Mixed Model

The GLMM, which includes latent variables in a generalized linear model (GLM), is
a major model that can express various types of responses, such as linear, binomial,

count, and multinomial.



Let individual i(1,...,n)’s (1, ..., T;)-th event response be y;;; then, the probability

density function (pdf) is as follows.

p0ul.1) = exp MBI ety 0 @)
8(6i) = a+x/ B+wiy+ i (23)

Here, x; is individual i’s covariate vector; w;, is individual i’s z-th time-varying co-
variate vector; o is an intercept; B and 7 are coefficients, which are common among
individuals, and we set 8 = [ ﬁT '}'T]T; fi 1s a latent variable that differs for each in-
dividual. Besides, a(), b(), and ¢() are known functions; ¢ is a dispersion parameter
that may or may not be known; and g() is a known link function.

Let the latent variable f; follow normal distribution with mean 0 and variance ¢2.
fi~N(0,0%) 24)

The GLMM covers various models such as linear regression, logistic regression,
Poisson regression, or parametric hazard models by setting an error function and link

structure.

4.2 Simulation Study

Here, we will show the performance of the proposed model by simulation study for

biased data using a logistic regression model with random effects.

p(il8, f;) = p(vi =118, £;)" p(yir = 0|0, fi)' (25)
logit [p(yir = 110, fi)] = ot +xi +wi Y+ f; (26)

In MCMC procedure, we set the parameters @ = [« 8 7]7. The quasi-bayesian
joint posterior distribution is

q(0,6%, f1y)op:
{1 0 T POl 00} exo 03:0)]  (0) % ()

T O sl .00} | < x0[0;-(0)] < p(8) x p(c)d 0™
(27)



where

0, (0)= -2 [ LY Y m(ulo)] @[ LY Y m(ule).  @®)
L L P
and n* is the total number of data size, n* = i:12/=11~ The moment restriction
m*(yi|0) is
. . . exp(a+xif+wpy+ fi)
m*(yi|0) =y —E(yi = 1|xit,0) =y" — i)dfi.
(vie|@) =y — E(yir = 1]x1,0) =y 1+exp(a+x,~/3+w,-,y+ﬁ)p(f) fi
(29)

Here, y* is the r-dimensional population-level proportion of y = 1.
Sampling 6
The quasi-bayesian conditional distribution of 0 is

q(6ly,0 ,fQB*«{HHpmf,, )} x exp| Q1 (8)] xp(8).  (30)

i=1t=
It is difficult to draw samples 6 dlrectly from the above distribution, then we use

the Metropolis-Hastings algorithm. We redefine the conditional posterior of 8 except
the part of moment restriction,

p(Bly,o*, f) = {Hprnlfz, )} x p(8)

i=1t=

broexpla+xiB+wiy+ fi) v 1 1=y
{HH [1 +exp(o+xiP3 +w,t}/—|—f,)] [1 +exp(o+xif3 —l—w,-,'y—{—f,-)} }

i=1t

X exp{ — 5(9 —I-le)TVEI(e _“0)}’

3D
where 11 g and Vj are the mean vector and variance matrix of prior distribution p(0).
Then, we use the Metropolis-Hastings algorithm by drawing the candidate of 0, 8"

from the ordinal candidate distribution,

0*|y,c%,f ~N(6°+H(0°)T(0°),H(6°)), (32)
where,
_ dlogp(8ly,0* f) _[9dlogp(Bly.c%, )1

7(0) = ZEES 22l H(e) = - | RS2l )

and accept the value with the following probability:

. Q(e*b’: Gz?f)QB*n(eo|0*ay7 7.f)

min P 34
(Q(eob’sz? )QB*TC(G |0 ,y,GZ f) ) ( )

where 7() is pdf of candidate distribution.



Sampling f

The conditional distribution of f; is

T;
p(fi|y79762) o< p(ﬁlgz){up(yltlfho)}

1
:exp{—ﬁfl {

T

[ exp(a+xiB+wipy+ f;) 71V

l+exp(a+xif+wiy+fi) (35

t=1

1 L—yi
x| |
14exp(o+xiB +wi Y+ fi)
which is the ordinal full conditional posterior distribution of the latent variables. We

draw new candidate sample from

fily, 0% ~N(f?,7%), (36)

2 is a variance parameter of random-walk Metropolis-Hastings algorithm,

where T

and accept the value with the following probability:

(p(f1y,0,07)
Sampling ¢
o7 is drawn from
| 2 2
(6210, f.y) = {IT=, p(filo”)} x p(07) 38)

JHITZ, p(filo?)} x p(c?)do?’

which is widely known as the ordinal full conditional posterior distribution of the

variance parameters like linear regression model.

Now, we explain the method of generating biased datasets. First, we generate
artificial data sets for the usual GLMM using true parameters. Second, we create a
biased dataset. To be more concrete, we set the probability of missing to be a decreas-
ing function of the expectation value, E(yj;|0;,,.). The resulting missing mechanism
is not ignorable, and we do not use the missing mechanism (or selection) model.

We set the missing rate to be around 40%. Third, we estimate and compare the
accuracy of the estimated parameters of the unconstrained (existing) and constrained
(proposed) models for biased data using GLMM, in which we do not consider the
missing indicator or selection biases. We show the results of the logistic and Poisson

regressions.

10



In this simulation study, we set the sample size, n = 500, and average number
of events, T; = (5,7,10), and estimate the parameters of the unconstrained and con-
strained models. We draw 2,000 MCMC samples after a 2,000 burn-in phase, and
confirm the convergence of MCMC using Geweke (1992)’s method. We generate
1,000 datasets for each situation. We consider one covariate, x, and one time-varying
covariate, w, and obtain a total of 11 moment restrictions on x and w.

We show the mean squared errors (MSEs) and coverage from the 95% credible
interval in Table 1. Table 1 also shows the average MSEs and the ratio of MSEs that
are scaled based on the proposed model. The proposed model outperforms the un-
constrained models without population-level information and is the only model that
yields unbiased estimates. Next, we show the box plots of each parameter in Figure
1. From this, we can show the reproducibility of parameters. In the unconstrained
model, parameters cannot be estimated appropriately, and the results show that analy-
sis using biased data will lead to biased estimates. On the other hand, the constrained
model can estimate parameters appropriately, and it performs better than the uncon-
strained model. From this, we can understand that the quasi-Bayesian method with

latent variables works appropriately.

4.3 Real Data Analysis

In the empirical analysis, we analyze the economic panel data on quantity of purchase
goods using a Poisson regression model. In the economics and marketing fields, this
model is used for modeling purchase quantities. The Poisson regression model also
is widely used for analyzing count data in biostatistics and medical statistics (e.g.,
Agresti & Kateri 2013; Dobson & Barnett 2008). The Poisson regression model is a

GLM in which the error function is the Poisson distribution and the link function is

the logarithm.
exp(—Ai ) A"
p(yil6, fi) = Ij(—,t)” (39)
Vit
log(Air) = a+x] B+wjy+f; (40)

11



Table 1: Simulation results of Logistic regression for biased data

MSE x 10? Coverage(95%)

Proposed Existing Ratio Proposed Existing

Mean=5
o 0.024  12.843 539.333 1.000 0.010
B 0.092 1.277 13914 0.990 0.790
Y 0.096 0971  10.086 0.985 0.756
c? 8.822  21.019 2.383 0.920 0.596

Mean=7
o 0.016 10.767 666.655 0.999 0.016
B 0.068 1.141  16.783 0.994 0.793
Y 0.066 0.749  11.313 0.990 0.758
c? 6.119  18.855 3.082 0.926 0.512

Mean=10

o 0.012 8.239 694.965 1.000 0.027
B 0.055 1.031  18.895 0.998 0.776
Y 0.047 0.540  11.540 0.996 0.752
o’ 4744  15.540 3.276 0.886 0.457

In each condition, we generated 10,000 sets.

12
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Here, the moment restriction for y is as follows.

o 0416) =3 ~E0ul8) =y~ [exp{ @il Bwly e fpiian @)
Sampling each parameters of Poisson regression model is the same as those of logis-

tic regression model.

In the empirical analysis, we use the Survey of Consumer Index (SCI) data pro-
vided by Intage Inc. in Japan. The SCI data is the de facto standard for purchase panel
data in the Japanese marketing field. The SCI records the purchase incidence, pur-
chased products, number of products purchased by consumers, amounts and prices of
products, and stores in which the purchase occurred with dates and times. Although
the scanner panel data record purchase histories for all the stores, we used purchase
histories from particular stores and regard it to be a complete dataset, which can yield
severely biased results. Here, we utilize purchase histories of corner stores. That is,
we assume that, although the purchase incidences of each store type are observed,
the purchase incidence of other competing stores cannot be observed. This situation
is very popular in real data analysis by marketing managers of retail companies. We
show the summary statistics in Table 2. We select a sample size (n = 3,316) and total
number of events (= 36,978) for the estimation of parameters, which is limited to
the purchase histories of corner stores. Corner stores have obvious purchase behavior
tendencies, especially regarding quantities and independent variables such as price,
compared with other stores. The average purchase quantity of a corner store is lower
than that of total stores. On the other hand, the price is higher than that of the total
stores, and analysis using this limited information should lead to a biased estimator.
To make inferences from this incomplete data, we utilize auxiliary information by
aggregating the complete data.

In the analysis, we use purchase data of the cola category from January 2015 to

29 ¢

June 2016. We use “gender (male=1),” “age,” and “family size” for individual-level
covariates, x;; the logarithm of “unit price” for time-varying covariates, w;;; and four
about “unit price”: (1) all, (2) under 100 yen, (3) 100 ~ 120 yen, and (4) over 120

yen.

14



The coefficients of price should be negative, because consumers are likely to pur-
chase more products when price discounts are available. In economics and marketing
fields, since the effects of price discounts are very important, we compare the coeffi-

cients of price with the unconstrained (existing) model.

Table 2: Summary statistics for purchase quantity

complete data selected data

(corner store)

purchase quantity 1.379 1.105
unit price 101.531 122.093
age 39.373 38.403
gender(male 1) 0.519 0.696
child 0.423 0.378
family size 3.090 3.063

In each model, we draw 10,000 MCMC iterations after a 2,000 burn-in phase and
confirm the convergence of MCMC using Geweke (1992)s method. We show the
95% credible intervals of “unit price” in Figure 2 and trace the plots of MCMC in
Figure 3. From this, it is obvious that the effects of “unit price” are underestimated
in the unconstrained model with respect to the complete data model. The results may
cause marketing managers to disregard price discounts for consumers because the
effects of price discounts are underestimated. On the other hand, the trace of MCMC
in the constrained model is stable compared with the complete data and unconstrained

model, which justifies the proposed method.
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Figure 3: Trace of 7.
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5 Conclusion

In this study, we proposed an MCMC algorithm with data augmentation for latent
variable models with auxiliary information. We showed consistency and asymptotic
variance of the quasi-Bayesian posterior mean estimators from the MCMC outputs.
As we illustrated in simulaton studies and real data analysis, the proposed method
is especially useful when our dataset is biased. It is usually difficult to correctly
specify the sample selection model, while we have an unbiased large sample for
some variables or population moments.

The proposed method can be easily generalized to consider non/semi-parametric
latent variable models by incorporating the existing semi-parametric Bayesian al-
gorithms such as the Blocked Gibbs sampler in the MCMC iteration, because the
proposed quasi-Bayesian posterior distribution is proportional to the product of the
likelihood and the function regarding the auxiliary information.

In this paper we focus on GLMMs, among others, but the method can be useful in
various important model setups. For example, we can apply the proposed method to
data combination of expetimental with observational studies to estimate population
treatment effects to enhance generalizability or external validity (Shadish et.al. 2002)
of the results obtained in randomized controlled trials due to biased sampling of sub-
jects. In medical sciences, a low degree of generalizability of the results obtained in
randomized controlled trials due to biased sampling of subjects has been questioned,
and the proposed method will provide valid results without the assumption of selec-
tion models when the population-level moment information or a large sample dataset
such as the national medical database is available (e.g., Hartman ez al. 2015).

For another example, consider duration analysis for repeated events (Andersen
and Gill 1982; Sinha and Dey 1997; Bijwaard et al. 2006), such as clinical tri-
als, unemployment or interpurchase-timing. In many application settings, missing
indicators that reveal the presence of missing events between two observed events
(intermittent missingness) are not observed. For such cases, simple analyses without
considering that some distinct true durations may be summed up to one observed

duration can yield severely biased estimates especially in duration analysis. For ex-
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ample, in medical statistics, researchers often use longitudinal data about clinical trial
for patients, but such data often record histories within the limited medical institution
and patients may go to another clinic or take over-the-counter drugs. In this situation,
researchers may underestimate the effects of therapy programs, since there exists un-
observed events between observed events. Additionally, in economics, researchers
use panel data on factors such as job employment, marriage, and wages. Here, in-
complete data problems can occur in the same way. We can strengthen incomplete
observed data using population-level information from government statistics, large
databases or other research institutes.

Despite its importance in application studies, the intermittent missingness in re-
peated duration analysis is not adequately considered and studied. In this study, we
focus on the intermittent missingness in duration analysis with repeated measure-
ments.

In the next coming paper we will propose a duration model with repeated events,
which has unobserved intermittent missingness using hybrid posterior incorporating
population-level information regarding intermittent missingness. For such models it
is not possible to obtain valid estimates to make use of auxiliary information and

employ data augmentation approach by using the proposed method.

Appendix: Sketch of Proof of the Theorem 1

In this paper, we assume that the assumptions for GMM type objective function for
the marginalized model (Equations (6) and (7) ) holds true as in Proposition 1 of
Chernozhukov and Hong (2003), which is sufficient for consistency and asymptotic
normality of the quasi-Bayesian posterior mean estimator using the (practically in-
feasible) GMM type objective function for the marginalized model.

First, we show that the mean of the following quasi-Bayesian posterior distribu-

tion under marginal model p(y|0), ¢(0|y)os-.

q(01y) s < exp {R4(8)} x p(0), (42)
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where

— Y logp(y]0) +03(8) = 1,(8) + 0(6) “3)

i=1
is constant and asymptotically normally distributed.

To avoid rigorous mathematical formulation, we use the expectation of the op-
timal weight matrix as Q,,, but the following argument applies to the case with the
estimated weight matrix.

The covariance between the log likelihood and the moment conditions is zero,

d
E[ 55 102p(y(8) m"(+/8)" / S p(y10)m (v18) dy=0.  (44)

Then,

) 0
E[m(yi|e>m(yi|6) ] = ( 0 E(m*(yle)m*(y|9)T)_l, ) (45)

where 1(0) is the Fisher information matrix.

By using the expectation of the optimal weight matrix, the GMM objective func-

tion (Equation(6)) is expressed as

0,(0) =5,(0)+ 05 (0) = (5,(0 —1,(0)) +R,(0), (46)

where
n

)
Y. 7 oerl0)]1(6) [Z logp(y10)].  @7)

From similar arguments of equivalence of the asymptotic distributions of the like-

n

$,0)=—5 ]

lihood ratio test statistics and score test statistics (e.g., Serfling, 1980), for 8 in an

open neighborhood of 0,
$1(8) — |1n(8) —1,(89)| 0. (48)

Then the asymptotic properties of the quasi-Bayesian posterior mean estimator using
a GMM-type objective function Q,(0) as L,(0) in Equation (5) apply to the quasi-
Bayesian posterior mean estimatior using R,(0).

The objective function R, (0) satisfies the assumptions required for Theorem 2
(consistency and asymptotic normality of the quasi-Bayesian estimator) in Cher-
nozhukov and Hong (2003) to hold true, and the limiting distribution is equivalent to
that of the corresponding extremum estimator.

Next, by integrating the latent variables, we obtain the quasi-Bayesian posterior
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distribution of 0 as
(T, p(3:18)} x exp| 0;(8) | x p(6)
T p(3:18)} x exp | 0;(6)| x p(8)d6

which is equivalent to the quasi-Bayesian posterior distribution under the marginal

[ a(6.fl)on-df = (49)

model, p(y|0), ¢(0|y)gs«. This shows the consistency and asymptotic normality of

the estimator éQB*.

References

AGRESTI, A. & KATERI, M. (2011). Categorical data analysis 3rd. Springer Berlin
Heidelberg.

ALBERT, J. H. & CHIB, S. (1993). Bayesian analysis of binary and polychotomous
response data. J. R. Statist. Soc. A. 88, 669—679.

ANDERSEN, P.K. & GILL, R.D. (1982). Cox’s regression model for counting pro-

cesses: a large sample study.Ann. Statist, 10, 1100-1120.

BUUWAARD, G.E., FRANSES, P.H. & PAAP, R. (2006). Modeling Purchases as
Repeated Eventsa. J. Bus. Econ. Stat 24, 487-502.

CHAUDHURI, S. , HANDCOCK, M. & RENDALL, M. S. (2008). Generalized linear
models incorporating population level information: an empirical-likelihood-based

approach. J. R. Statist. Soc. B. 70, 311-328.

CHERNOZHUKOV, V. & HONG, H. (2003). An MCMC approach to classical esti-
mation. J. Econom. 115, 293-346.

CHUNG, Y. & DUNSON, D. B. (2009). Nonparametric Bayes conditional distribu-
tion modeling with variable selection. J. Am. Statist. Ass. 104, 1646—-1660.

COLE, S. R. & STUART, E. A. (2010). Generalizing evidence from randomized

clinical trials to target populations the actg 320 trial.. Am. J. Epidemiol. 172, 107-
115.

21



DOBSON, A. J. & BARNETT, A. (2008). An introduction to generalized linear mod-
els. CRC press.

DunsoN, D.B. (2000). Bayesian latent variable models for clustered mixed out-
comes. J. R. Statist. Soc. B. 62, 355-366.

GEWEKE, J. (1992). Evaluating the accuracy of sampling-based approaches to the
calculation of posterior moments, Bernardo, J. M., J. O. Berger, A. P. Dawid, A.

FE. M. Smith (ed.). Oxford University Press.
GOLDSTEIN, H. (2010). Multilevel Statistical Models, 4th ed.. Wiley.

HANSEN, L. P. (1982). Large sample properties of generalized method of moments
estimators. Econometrica 50, 1029-1054.

HARTMAN, E., GRIEVE, R. , RAMSAHAI, R. & SEKHON, J.S. (2015). From sam-
ple average treatment effect to population average treatment effect on the treated:

combining experimental with observational studies to estimate population treat-

ment effects. J. R. Statist. Soc. A. 178, 757-778.

HECKMAN, J. J. (1979). Sample selection bias as a specification error. Economet-
rica 47, 153-161.

HiorT, N. L., HOLMES, C., MULLER, P. & WALKER, S. G. (2010). Bayesian

nonparametrics. Cambridge University Press.

HosHINO, T. (2008). A Bayesian propensity score adjustment for latent variable
modeling and MCMC algorithm. Comput. Stat. Data. Anal. 52, 1413-1429.

HosHINO, T. (2013). Semiparametric Bayesian estimation for marginal parametric
potential outcome modeling: application to causal inference. J. Am. Statist. Ass.
108, 1189-1204.

IMBENS, G. & LANCASTER, T. (1994). Combining micro and macro data in mi-

croeconometric models. Rev. Econ. Stud. 61, 655-680.

22



ISHWARAN, H. & JAMES, L. F. (2001). Gibbs sampling methods for stick-breaking
priors. J. Am. Statist. Ass. 96, 161-173.

Kim, J. Y. (2002). Limited information likelihood and Bayesian analysis. J.
Econom. 107, 175-193.

KLEINMAN, K. P. & IBRAHIM, J. G. (1998). A semiparametric Bayesian approach

to the random effects model. Biometrics 54, 921-938.

KUNDU, S. & DUNSON, D.B. (2014). Latent factor models for density estimation.
Biometrika. 101, 641-654.

KYUNG, M. , GILL, J. & CASELLA, G. (2010). Are randomized controlled trials

the (G) old Standard? From clinical intelligence to prescriptive analytics.. Ann.

Statist. 38, 979-10009.

LEE, J. & BERGER, J. O. (2001). Semiparametric Bayesian Analysis of Selection
Models. J. Am. Statist. Ass. 96, 1397-1409.

L1, C. & JIANG, W. (2016). On oracle property and asymptotic validity of Bayesian
generalized method of moments. J. Multivar. Anal. 52, 132—-147.

NEVO, A. (2003). Using weights to adjust for sample selection when auxiliary in-
formation is available. J. Bus. Econ. Stat. 21, 43-52.

QIN, J. & ZHANG, B. (2007). Empiricallikelihoodbased inference in missing re-

sponse problems and its application in observational studies. J. R. Statist. Soc. B.
69, 101-122.

SERFLING, R.J. (1980). Approximation Theorems of Mathematical Statistics John
Willey & Sons, New York, NY.

SHADISH, W.R., CooK, T.D. & CAMPBELL, D.T. (2002). Experimental and
Quasi-Experimental Design for Generalized Causal Inference Houghton Mifflin,
Boston, MA.

23



SINHA, D. & DEY, D. K. (1997). Semiparametric Bayesian analysis of survival dat.
J. Am. Statist. Ass. 92, 1195-1212.

TANNER, M. A. & WONG, W. H. (1987). The calculation of posterior distributions
by data augmentation.. J. Am. Statist. Ass. 82, 528-540.

VAN POUCKE, S., THOMEER, M. , HEATH, J. & VUKICEVIC, M. (2016). Are
randomized controlled trials the (G) old Standard? From clinical intelligence to

prescriptive analytics.. J Med Internet Res 18, 4—14.

WALKER, J. & BEN-AKIVA, M. (2002). Generalized Random Ulitlity Model.
Mathematical Social Sciences. 43, 303-343.

YANG, Y. & HE, X. (2012). Bayesian empirical likelihood for quantile regression.
Ann. Statist. 40, 1102—-1131.

YIN, G. (2009). Bayesian generalized method of moments. Bayesian. Anal. 4, 191—
207.

24



