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Local Asymptotic Normality of

Infinite-Dimensional Concave Extended Linear

Models

Kōsaku Takanashi
Faculty of Economics, Keio University

Abstract

We study local asymptotic normality of M-estimates of convex mini-
mization in an infinite dimensional parameter space. The objective func-
tion of M-estimates is not necessary differentiable and is possibly subject
to convex constraints. In the above circumstance, narrow convergence
with respect to uniform convergence fails to hold, because of the strength
of it’s topology. A new approach we propose to the lack-of-uniform-
convergence is based on Mosco-convergence that is weaker topology than
uniform convergence. By applying narrow convergence with respect to
Mosco topology, we develop an infinite-dimensional version of the convex-
ity argument and provide a proof of a local asymptotic normality. Our
new technique also provides a proof of an asymptotic distribution of the
likelihood ratio test statistic defined on real separable Hilbert spaces.

1 Introduction

We develop an infinite-dimensional version of local asymptotic normality and
convexity arguments with non-differentiable objective functions in M-estimation
of concave extended linear models. A new approach we propose is based on
Mosco convergence that is weaker than uniform convergence in the topological
sense. Because of the strength of uniform convergence, it does not fold in infinite
dimensional circumstances. In this paper, we give proofs of local asymptotic
normality on a real separable Hilbert space.

The basic set-up of the estimation problem we investigate is as follows. Let
H be a real separable Hilbert space with the identical dual H ∗ = H . We
denote the inner product and the associated norm in H by 〈·, ·〉 and ‖·‖ respec-
tively. Let θ be a parameter vector in a parameter set Θ such that Θ ⊆ H .
Suppose we have n observations Z1, . . . , Zn that are realizations of a random
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vector Z on a arbitrary set E, and consider an M-estimator of the unknown
parameter vector θ such that

θ̂n = arg min
θ∈Θ

1

n

n∑
i=1

ρ (θ, Zi) , (1)

where ρ : Θ × E → (−∞,∞] is a criterion function. Define the empirical
objective function in (1) as

Fn (θ) ,
1

n

n∑
i=1

ρ (θ, Zi) , (2)

and its population counterpart as

F0 (θ) , EZ [ρ (θ, Z)] . (3)

We further suppose the minimization problem in (1) is corresponding to a “con-
cave extended linear model”, that is,

1. ρ is a lower semi-continuous (l.s.c.) convex function with respect to θ (it
is not necessarily smooth, though),

2. F0 (θ) is strictly convex in θ (see, e.g. Huang (2001)) and is uniquely
minimized at a (pseudo-) true parameter θ0 ∈ Θ.

Compared to the rate of convergence of the the M-estimator for the concave
extended linear model, only a few studies have explored its asymptotic distri-
bution and most of them is on the least squares regression case (e.g. Newey
(1997), Huang (2003), Belloni et al. (2015)). Recently, Shang and Cheng (2013)
obtain a general result on point-wise asymptotic normality of the M-estimator
(1) based on functional Bahadur representation. In proving the asymptotic nor-
mality, however, they impose the smoothness condition on ρ so that it should
be three times continuously differentiable with respect to θ. On the other hand,
our new approach does not require the smoothness of ρ. The following is our
motivating example.

Example (L1 regression.). Consider a nonparametric regression model with
additive errors:

y = 〈x, θ〉+ ε, (4)

where the regressor x ∈ H and the error term ε are mutually independent
random variables; ε is assumed to be homoskedastic; and the conditional median
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of ε given x is zero, i.e., inf
{
q : Pε (q | x) ≥ 1

2

}
= 0 where Pε (· | x) is the

distribution function of ε conditional on x. We are interested in estimating
θ ∈ H . Suppose we have observations Zi = (yi, xi) : yi ∈ R, xi ∈ H , i =

1, . . . , n independently drawn from the regression model (4). With them, we
may estimate θ via L1 minimization with roughness penalty(see, for example
Koenker et al. (1994)):

θ̂n = arg min
θ∈Θ

1

n

n∑
i=1

|yi − 〈xi, θ〉|+
λ

2
‖θ‖ , (5)

where λ is the smoothing parameter that converges to zero as n → ∞. Obvi-
ously, this example gives the case in which the criterion function ρ = |·| is not
continuously differentiable.

Uniform convergence of the objective function in (1) to its population coun-
terpart:

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ρ (θ, Zi)− EZ [ρ (θ, Z)]

∣∣∣∣∣ p→ 0,

guarantees both consistency of of θ̂n and convergence of the optimal value of
the objective function. In order to make the objective function satisfy the
uniform convergence, we have to impose some compactness of the parameter
space. These assumptions are rather restrictive for fully nonparametric settings.
It is because of the theorem by Bakhvalov (Theorem 12.1.1. of Dudley (1999))
. When ρ = |·| and θ is in an infinite-dimensional space, we have

sup
θ

∣∣∣∣∣ 1n
n∑
i=1

ρ (θ, Zi)− EZ [ρ (θ, Z)]

∣∣∣∣∣ ≥ γn−1/∞.

The left-hand side of the inequality does not converge uniformly.
Since ρ is convex, it seems that we may use the convexity lemma (e.g., Pol-

lard (1991) and Kato (2009)) to ensure that point-wise convergence of convex
functions implies uniform convergence. In the infinite-dimensional case, how-
ever, this argument for uniform convergence may fail. Let πn, n = 1, 2, · · · be
the sequence of projection operators on H onto En ⊂ H where En $ Em>n.
Consider a quadratic form 〈πnθ, θ〉 for ∀θ ∈ H that is considered as a convex
function of θ. Then, as n → ∞, 〈πnθ, θ〉 converges point-wise to 〈θ, θ〉 but not
uniformly.

To solve the aforementioned lack-of-uniform-convergence issue, we shall pro-
pose to apply an alternative mode of convergence, Mosco convergence, which is
weaker than uniform convergence but still strong enough to enable statistical
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applications. Mosco convergence of the objective function ensures the conver-
gence of its minimizer (Attouch (1984)). We develop narrow convergence theory
with respect to the Mosco metric, see also Geyer (1994), Dupacava and Wets
(1988), Molchanov (2005), Knight (2003) and Bucher et al. (2014). There exist
alternative forms of convergence that is equivalent to Mosco convergence but
more easily verifiable. They include graph convergence (G-convergence) of subd-
ifferential operators and strong convergence of resolvent. We shall explain these
key concepts in Section 2. Using these equivalences, we can establish the con-
sistency and narrow convergence of an M-estimator in an infinite-dimensional
parameter space. Furthermore, Mosco convergence also ensures the invertibility
of the “Hessian” operator.

If the parameter space is weakly compact, Mosco convergence of the convex
objective function Fn(θ) in M-estimation ensures that both empirical minimizer
θ̂n and empirical optimal value function Fn(θ̂n) will converges to the true param-
eter θ0 and the true optimal value function F0(θ0) respectively. This property
makes it possible to derive the asymptotic distribution of the optimal value
function Fn(θ̂n). Namely,

1. The convex objective function Fn (θ) is locally asymptotically normal at
θ0 in Mosco topology:

n

[
Fn

(
θ0 +

1√
n
t

)
− Fn (θ0)

]
 〈t,W 〉+

1

2
〈V t, t〉 ,

where W is a normal random vector in a Hilbert space and V = ∇2
θF0 is

the “Hessian” operator that is almost surely invertible.

2. The asymptotic distribution of the optimal value function Fn(θ̂n) is

n
[
Fn(θ̂n)− Fn (θ0)

]
 
〈
t̂,W

〉
+

1

2

〈
V t̂, t̂

〉
,

where t̂ =
√
n(θ̂n − θ0).

As a by-product, the asymptotic distribution of the likelihood ratio statistic can
be derived. These results are established in a fully nonparametric setting.

The rest of this paper is organized as follows. In Section 2, we describe the
Mosco convergence and introduce the narrow convergence in the Mosco topol-
ogy. In Section 3, we derive local asymptotic normality of an convex objective
function in an infinite-dimensional Hilbert space. We also provide the asymp-
totic distribution of the likelihood ratio statistic by using the local asymptotic
normality. Appendixes give some technical lemmas.
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Notations

Let  denote narrow convergence and P−→ denote convergence in probability.
We use empirical process notation: Gnρ = 1√

n

∑n
i=1 ρ (θ, Zi)− E [ρ (θ, Zi)]. We

denote ‖θ‖ as l2-norm or L2-norm of an element of Hilbert space θ ∈ H . Let
θn

s−→ θ0 denote convergence in strong topology, e,g,‖θn − θ0‖ → 0 and θn
w−→ θ0

denote convergence in weak topology, e,g, 〈θn, θ∗〉 → 〈θ0, θ
∗〉 for all identical

dual θ∗ ∈H ∗ (= H ). We denote the limit in weak topology as w- limn→∞ θn.

2 Mosco Convergence

First, we introduce a mode of convergence, Mosco convergence, for proper lower
semi-continuous (l.s.c.) convex functions on a real separable Hilbert space. For
l.s.c. convex functions on a finite dimensional Euclidean space, point-wise con-
vergence is equivalent to locally uniform convergence. For functions defined on
an infinite-dimensional space, however, this is not the case. Mosco convergence,
on the other hand, still ensures arg min convergence of l.s.c. convex functions
on an infinite-dimensional space, though it is weaker than locally uniform con-
vergence. In this section, we also provide preliminary results related to Mosco
convergence for later use.

Mosco convergence and similar concepts in a non-stochastic environment are
considered in Mosco (1969), Attouch (1984) and Beer (1993). Mosco conver-
gence is particularly useful in the context of functional optimization, making it
well suited to M-estimation.

Definition 1. [Mosco Convergence]
Let fn : H → (−∞,∞] , n = 1, 2, . . . be a sequence of proper l.s.c. convex
functions. fn is said to be Mosco-convergent to the l.s.c. convex function
f : H → (−∞,∞] if and only if the following two conditions hold.
(M1) For each θ ∈ H , there exist a convergent sequence θn

s→ θ such that
lim sup

n
fn (θn) ≤ f (θ).

(M2) lim inf
n

fn (θn) ≥ f (θ) whenever θn
w→ θ.

In this paper, we let “fn
M→ f ” denote “fn Mosco-converges to f .”

The variational properties of Mosco convergence are given by the following
theorem (Theorem 1.10 in Attouch (1984)), which ensures the convergence of
both empirical minimizer and empirical minimum value of the objective function
to the true ones. Suppose arg min fn 6= Ø, and existence of arg min fn and inf fn

are proved in Appendix A.3.
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Theorem 2. We assume the same definitions for f1, f2, · · · and f . If fn
M→ f ,

then

lim sup
n→∞

(arg min fn) ⊂ arg min f,

in the weak topology, e.g.,

〈arg min fn, h〉 → 〈arg min f, h〉 (∀h ∈H ∗) ,

where the lim sup is defined as

lim sup
n→∞

Fn ,
{
w- lim

n→∞
ynk : ynk ∈ Fnk for some nk →∞

}
.

If there is a weakly compact set K ⊂ H such that arg min fn ⊂ K for all n ,
then limn→∞ (inf fn) = inf f.

It is difficult to prove Mosco convergence directly in general settings. For-
tunately, several equivalence conditions for Mosco convergence are known in
the literature. One of the most convenient conditions for Mosco convergence is
point-wise convergence of subdifferentials of functions.

To deal with this mode of convergence, we introduce several basic tools in
convex analysis: subdifferential and resolvent. For more details and proofs on
these subjects, see Aubin and Frankowska (1990). For fixed Z ∈ E, we can
define a set-valued mapping ∂ρ (θ, Z) : Θ× E →H by

∂ρ (θ, Z) =
{
θ ∈H : ∀ζ ∈H , ρ (ζ, Z) ≥ ρ (θ, Z) + 〈ζ − θ, θ〉

}
.

Such ∂ρ (θ, ·) is said to be the subdifferential of ρ at θ. For each fixed θ, ∂ρ (θ, Z)

is considered as a possibly set-valued function of Z. We may regard ∂ρ (θ, Z) as
a generalized derivative of ρ at θ, for each fixed Z. If ρ is Gâteaux differentiable
at θ and has a continuous Gâteaux derivative ∇ρ (θ), then ∂ρ (θ, Z) = ∇ρ (θ, Z).

Example (L1 regression(continued)). The criterion function ρ (θ, Z) = |y − 〈x, θ〉|
is a proper l.s.c. convex function and has the subdifferential such that

∂ρ (θ, Z) =

sgn (y − 〈x, θ〉)x, if y − 〈x, θ〉 6= 0;

[−1, 1]x, if y − 〈x, θ〉 = 0,

where sgn (y − 〈x, θ〉) =

1, if (y − 〈x, θ〉) > 0

−1, if (y − 〈x, θ〉) < 0.

Proof. Proof is given in Appendix A.1.
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Lemma 3 (“Optimization Theory” Indicator Function). The indicator function
ΨA is defined by

ΨA (θ) =

0 (θ ∈ A)

∞ (θ /∈ A)

where the set A is a convex subset of Θ. The normal cone NA (a) is defined by

NA (a) = {θ? ∈H : 〈θ − a, θ?〉 5 0, ∀θ ∈ A} .

Then, NA (a) = ∂ΨA (a), where NA (a) is such that 0 ∈ NA (a).

Proof. a

θ? ∈ ∂ΨA (a)⇔ ΨA (a) + 〈θ − a, θ?〉 5 ΨA (θ) (∀θ ∈ A)

⇔ 〈θ − a, θ?〉 5 ΨA (θ) (∀θ ∈ A)

⇔ 〈θ − a, θ?〉 5 0 (∀θ ∈ A)

⇔ θ? ∈ NA (a)

Then, NA (a) = ∂ΨA (a).

Subdifferential operator for proper l.s.c. convex funtions holds distributive
law:

∂ (f1 + f2) = ∂f1 + ∂f2

where f1 and f2 are proper l.s.c. convex functions on H (see Theorem 3.16.
in Phelps (1992)). When H is real separable, subdifferential operator is ex-
changeable with respect to integral (Clarke (1983) page 76.):

∂f (θ) = ∂

ˆ
E

f (θ, Z)PZ (dZ)=

ˆ
E

∂f (θ, Z)PZ (dZ) .

Example (L1 regression (continued).). The limit criterion E [|y − 〈x, θ〉|] is con-
vex function and has the subdifferential

∂E [|y − 〈x, θ〉|] = E [∂ |y − 〈x, θ〉|] ,

and
E [∂ |y − 〈x, θ〉|] = E [x · sgn (y − 〈x, θ〉)]

= E [E [x {1− 2I (y − 〈x, θ〉 ≤ 0)} |x ]]

= E [x {1− 2Pε (q − 〈x, θ〉 |x )}] .

(6)
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where Pε (· | x) is the distribution function of ε conditional on x.

In this paper, we assume that the subdifferential ∂ρ is selected and mea-
surable in Z. In general, because ∂ρ is a set-valued mapping, the selection is
not unique. Nonetheless, we can show that not only such measurable selections
exists but also the set of all measurable selector S∂ρ is identical to ∂ρ.

Proposition 4. There exists a measurable selector of the subdifferential ∂f ,
i.e., S∂f 6= ∅. Moreover, S∂f = ∂f .

Proof. Proof is given in Appendix A.2.

Consider a map

J∂fλ θ = {z ∈H : z + λ∂f (z) 3 θ} .

Such a map should be single-valued (on Proposition 3.5.3 in Aubin and Frankowska
(1990)). Such J∂fλ , λ > 0 are called resolvents of ∂f and denoted by

∀λ > 0, J∂fλ = (I + λ∂f)
−1
.

The following theorem states the equivalence between Mosco convergence
and strong convergence of resolvents and G-convergence of subdifferential oper-
ators. The proofs are given in Theorem 3.26. and Theorem 3.66. of Attouch
(1984).

Theorem 5. Let H be a real separable Hilbert space. Let (fn)n∈N, fn : H →
(−∞,∞] , ∀n ∈ N be a proper l.s.c. convex function. The following statements
are equivalent.
(1) fn

M−→ f0.
(2) ∀λ > 0, ∀θ ∈H , J∂fnλ θ → J∂fλ θ strongly in H as n goes to ∞.

(3)

∂fn
G→ ∂f0,

∃ (θ0, η0) ∈ ∂f0
∃ (θn, ηn) ∈ ∂fn such that θn

s→ θ0, ηn
s→ η0, fn (θn)→ f0 (θ0) ,

where ∂fn
G→ ∂f0 means that, for every (θ0, η0) ∈ ∂f0, there exists a se-

quence (θn, ηn) ∈ ∂fn such that θn → θ0 strongly in H , ηn → η0 strongly
in H ∗ (= H ).

Statement (3) in Theorem 5 is called G-convergence of monotone operators.
This states that point-wise convergence of all measurable selectors of subdiffer-
ential operators is equivalent to Mosco convergence of functionals. When the
subdifferential is calculable, point-wise convergence of measurable selectors are
easy to verify.
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Example (L1 regression(continued)). From the foregoing theorems, it will be
seen that the law of large numbers(LLN) of subdifferential ∂ρ (θ) implies the
Mosco convergence. From Lemma 10 and the LLN in Banach spaces for each se-
quence of mesurable selectors of ∂ρ (θ), we have the LLN of subdirrential ∂ρ (θ):

1

n

n∑
i=1

∂ρ (θ, Zi)
P−→ E [∂ρ (θ, Z)]

= ∂E [ρ (θ, Z)] .

Thus this fact establish the consistency of local functional estimation.

(2) in the above theorem give a metric that induces the Mosco convergence.
Based on resolvet, Attouch (1984) (p. 365) gives a metric that induces graph
convergence on the space of subdifferential operators:

dG (∂f, ∂g) ,
∑
k∈N

1

2k
inf
{

1,
∥∥∥J∂fλ0

θk − J∂gλ0
θk

∥∥∥} ,
for any subdifferential operators ∂f and ∂g where λ0 is taken strictly positive
and {θk; k ∈ N} is a dense subset of H . This metric dG induces the Mosco
convergence topology and is complete. Convergence in dG are equivalent to the
convergence results in (1)∼(3) in Theorem 5.

Hoffman-Jørgensen weak convergence theory performs in a metric space.
Generally, epi-convergence does not usually work with a metric but a semi-
metric. Even if functions f, g are different each other, it is possible f epi-
converge to g (see, Section 3 in Bucher et al. (2014)). Fortunately in the case
where the functional space is constituted by convex functions, we can obtain
a metric space as described above. We shall define a weak convergence in the
following way.

Definition 6. [Mosco Convergence in Distribution]
A sequence of random elements fn in the space of proper l.s.c. convex functions
H → (−∞,∞] is said to be Mosco converges in distribution to the random
element f0 in the space of proper l.s.c. convex functions if fn  f0 with metric
dG. We use the notation fn

M
 f0.

3 Local Asymptotic Normality

First, we show that the reparametrized objective function admits a certain
quadratic expansion. A common starting point in developing an asymptotic
distribution theory for an M-estimator is to define a centered stochastic process

9



based on the objective function. Recall that Fn(θ) = 1
n

∑
i ρ (θ, Zi) is the objec-

tive function for the M-estimator (1). We may define such a centered stochastic
process as

Hn (θ, t) , n

[
Fn

(
θ +

1√
n
t

)
− Fn (θ)

]
, (7)

Q0 (t) , 〈t,W 〉+
1

2
〈V t, t〉 , (8)

where W is an N (0, A) random vector in a Hilbert space and V is a “Hessian”
operator. Hn (θ0, t) is interpreted as the log likelihood ratio for hypothesis
testing against the local alternative, i.e., H0 : θ = θ0; H1 : θ = θ0 + 1√

n
t.

Define the locally asymptotically quadratic (LAQ) as follows.

Definition 7 (LAQ LeCum and Yang (2000)(p. 120))). The convex objective
function Fn (θ) is said to be locally asymptotically quadratic at θ if there exists
a random matrix Vn,θ and a random vector ∆n,θ such that

Hn (θ, t) = 〈t,∆n,θ〉+
1

2
〈Vn,θt, t〉+ opn,θ (1) ,

and the matrix Vn,θ and their limit (Vn,θ  )Vθ are almost surely invertible.

Remark. Recall that locally asymptotically mixed normality (LAMN) is equiv-
alent to LAQ with a restriction: ∆n,θ, Vn,θ converge to normal distributions.
Locally asymptotically normality (LAN) is equivalent to LAMN with the limit-
ing matrix Vθ is deterministic.

3.1 Second Order Differentiability

In typical situations, we assume that the function F0 has a quadratic expansion
at θ0 and their Hessian is often supposed to be continuously invertible (Theorem
3.3.1. of van der Vaart and Wellner (1996)). In an infinite-dimensional case,
the assumption that the Hessian operator is continuously invertible is harder
to ascertain. However, if the convex function F0 has a generalized second order
differentiability (defined later), its “generalized Hessian” is continuously invert-
ible.

Define the Young-Fenchel conjugate f∗ of convex function f as

f∗ (η) , sup
θ

(〈η, θ〉 − f (θ)) .

The conjugate f∗ has a strong link between a convex function f in the second
order differentiability. Recall the case of a convex function defined on finite
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dimensional parameters. A convex function f defined on the Euclid space Rd is
second order differentiable and the Hessian ∇2f (θ) of f at θ is nondegererate.
Then the conjugate function f∗ is second order differentiable at y = ∇f (θ),
and its Hessian ∇2f∗ (η) at y is the inverse of ∇2f (θ), i.e.,

∇2f (θ) =
(
∇2f∗ (η)

)−1
.

In order to maintain a duality-type of this relation in an infinite-dimensional
space, we shall define the second order differential concepts based on Mosco con-
vergence. Mosco convergence ensures the continuity of this type of conjugation
(Kato (1989) and Borwein and Noll (1994)).

Define second difference quotient of f at θ ∈H relative to η∗ ∈ ∂f (θ) as

∆f,θ,η,t (h) ,
f (θ + th)− f (θ)− t 〈η?, h〉

t2

and define a purely quadratic continuous convex function as

q (h) ,
1

2
〈V h, h〉 ,

where V is a closed symmetric positive linear operator. f is said to have gen-
eralized second order differentiability at θ relative to η? ∈ ∂f (θ) if there exists
a purely quadratic function q such that the second order difference quotient
∆f,θ,η,t (·) converges to q (·) in the Mosco sense, i.e.,

∆f,θ,η,t (h)
M−→
t↓0

q (h) .

The closed symmetric positive linear operator V is called the generalized Hessian
of f at θ relative to η ∈ ∂f (θ).

Mosco convergence is invariant under Young-Fenchel conjugation, so that
Mosco convergence of ∆f,θ,η,t (h) is equivalent to Mosco convergence of (∆f,θ,η,t (h))

∗
=

∆f∗,η,θ,t (h). And generalized Hessian of f∗ at η relative to θ ∈ ∂f∗ (η) is V −1.
Next, we derive sufficient conditions under which the objective function of

M-estimation has generalized second order differentiability. ∂f is called weak*
Gâteaux differentiable at θ if there exists a bounded linear operator T : H →
H ∗ such that

lim
t→0

1

t
(η∗t − η∗) = V h,

in the weak* sense for any fixed h ∈ H and all η∗t ∈ ∂f (θ + th), η∗ ∈ ∂f (θ)

where ∂f (θ) must consist of a single element η∗ . We use the notation T =

∇∂f (θ) for the operator T . For the generalized differentiability, we quote the
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following result of Borwein and Noll (1994).

Theorem 8. (a variant of Propotion 6.4. of Borwein and Noll (1994))
Let (Z,Z,PZ) be a probability space and Θ ⊆ H be a separable Hilbert space.
Suppose ρ : Θ × Z → (−∞,∞] is measurable on (Z,Z,PZ) and convex at any
θ ∈ Θ and define a closed convex integral functional f on Θ ⊂H as

f (θ) =

ˆ
Z

ρ (θ, z) dPZ (z) .

Then f is generalized second order differentiable at θ if and only if ∂ρ is weak*
Gâteaux differentiable and

ess sup
z∈Z
|∇∂ρ (θ, z)| <∞.

Example (L1 regression(continued)). Let Z = (Y,X) be a random vector,
where Y is real-valued while X is the covariate and X ∈H . Note that objective
function of L1 regression is

F (θ) = E [|Y − 〈x, θ〉|]

= E [E [|Y − 〈x, θ〉| |X ]] .

Then, L1 regression objective function F (θ) is generalized second order differ-
entialbe at θ if and only if ∂E [|Y − 〈x, θ〉| |X ] is weak* Ĝateaux differentiable
and

ess sup
x∈X
|∇∂E [|Y − 〈x, θ〉| |X ]| <∞.

From (6), weak* Gâteaux differentiability of ∂E [|Y − 〈x, θ〉| |X ] at θ is equiva-
lent to the Gâteaux differentiability of the distribution function Fe (q − 〈x, θ〉 |x )

at θ. If the distribution function Fe (q − 〈x, θ〉 |x ) is Gâteaux differentiable at
θ, essential boundedness of ess supx∈X |∇∂E [|Y − 〈x, θ〉| |X ]| < ∞ will be au-
tomatically satisfied.

Therefore, in order to obtain invertiblity of “generalized Hessian”, we impose
the following assumption on ρ:

Assumption. A
∂ρ (·) is weak* Gâteaux differentiable at θ0 and

ess sup
z∈E
|∇∂ρ (θ0, z)| <∞.

This assumption is a “low-level” condition which are sufficient for locally

12



asymptotically quadratic at θ0 than that of Geyer (1994). Of course, this result
is attributed to the convexity of the objective function.

3.2 LAN

Define auxiliary stochastic process as

Gn (t) , n

〈
1√
n
t, ∂Fn (θ0)

〉
+ n

[
F0

(
θ0 +

1√
n
t

)
− F0 (θ0)

]
,

G′n (t) , n

〈
1√
n
t, ∂Fn (θ0)

〉
+

1

2
〈V t, t〉 .

We also impose the following assumption. Considering Proposition 4 : the
set of all mesurable selectors of a subdifferential coincides with its own subdif-
ferential, we denote any measurable selector of ∂ρ (·) as itself.

Assumption. B
Every mesurable selector in ∂ρ (θ, Z) has a bounded variance: ∀θ ∈ Θ, E

[
‖∂ρ (θ, Z)‖2

]
<

∞, and there is a sequence of mesurable selectors satisfying a central limit the-
orem in the Hilbert space:

Gn∂ρ (θ0, Z) N (0, A) ,

for some trace class covariance operator A.

Proposition 9. LAN

1. Hn (t) Mosco-converges to G′n (t) in probability.

2. G′n (t) converges in law to Q0 (t). Then, Hn (t) Mosco-converge in law to
Q0 (t).

Proof. We shall prove the first statement. In order that Hn (t) converges in
Mosco to Gn (t), we will apply Theorem 5 to Hn (t) and Gn (t) . All we have to
do is to show the graph convergence of the subdifferential ∂Hn (t) to ∂Gn (t)

in probability. Considering proposition 4, we denote any measurable selector of
∂ρ (·) as itself in the following proof below. Calculate subdifferential of Hn, Gn

13



with respect to t, we obtain

∂Hn (t) =
√
n∂Fn

(
θ0 +

1√
n
t

)
=

1√
n

n∑
i=1

∂ρ

(
θ0 +

1√
n
t

)
,

∂Gn (t) =
√
n∂Fn (θ0) +

√
n∂F0

(
θ0 +

1√
n
t

)
=

1√
n

n∑
i=1

∂ρ (θ0, Zi) +
√
nE
[
∂ρ

(
θ0 +

1√
n
t, Z

)]
.

Recall ∂fn
G→ ∂f0 means that for every (θ0, η0) ∈ ∂f0, there exists a se-

quence (θn, ηn) ∈ ∂fn such that θn → θ0 strongly in H , ηn → η0 strongly
in H ∗ (= H ). ∂Hn

G→ ∂Gn means that there exists a sequence of measurable
selectors of 1√

n

∑n
i=1 ∂ρ

(
θ0 + 1√

n
t, Zi

)
such that

1√
n

n∑
i=1

∂ρ

(
θ0 +

1√
n
t, Zi

)
→ 1√

n

n∑
i=1

∂ρ (θ0, Zi) +
√
nE
[
∂ρ

(
θ0 +

1√
n
t, Z

)]
,

strongly in H .
The random variable

∂ρ

(
θ0 +

1√
n
t, Zi

)
− ∂ρ (θ, Zi) ,

converges monotonically to non-negative random variable. Because F0 (θ) =

E [ρ (θ)] is second order differentiable in the generalized sense,

E
[

lim
n→∞

∂ρ

(
θ0 +

1√
n
t, Zi

)
− ∂ρ (θ0, Zi)

]
= 0,

so,

lim
n→∞

∂ρ

(
xθ +

1√
n
t, Zi

)
− ∂ρ (θ0, Zi) = 0 a.s..

Fix t and define a (selected) random variable ξni by

ξni =
1√
n
∂ρ

(
θ0 +

1√
n
t, Zi

)
− 1√

n
∂ρ (θ0, Zi) .

Note that

E
[

1√
n
∂ρ

(
θ0 +

1√
n
t, Z

)
− 1√

n
∂ρ (θ0, Z)

]
= E

[
1√
n
∂ρ

(
θ0 +

1√
n
t, Z

)]
,

14



where E
[

1√
n
∂ρ
(
θ0 + 1√

n
t, Z
)]

is singleton. Therefore, for any selected ξni,

n∑
i=1

ξni = ∂Hn (t)− ∂Gn (t) +
√
nE
[
∂ρ

(
θ0 +

1√
n
t, Z

)]
,

and

Var

[
n∑
i=1

ξni

]
= E

[
(∂Hn (t)− ∂Gn (t))

2
]
.

Since ξn1, . . . , ξnn are i.i.d., we have

Var

[
n∑
i=1

ξni

]
≤

n∑
i=1

E
[
ξ2
ni

]
,

for any selected ξni. We have the equality

n∑
i=1

E
[
ξ2
ni

]
= nE

[{
1√
n
∂ρ

(
θ0 +

1√
n
t, Zi

)
− 1√

n
∂ρ (θ0, Zi)

}2
]

= E

[{
∂ρ

(
θ0 +

1√
n
t, Zi

)
− ∂ρ (θ0, Zi)

}2
]
.

By weak* differentiability of E [∂ρ] at θ0, the limit of any measurable selector
of ∂ρ

(
θ0 + 1√

n
t, Zi

)
− ∂ρ (θ0, Zi) has expectation zero. From the Assumption

B : for every measurable selector E
[
{∂ρ (θ, Zi)}2

]
<∞ for each θ in the neigh-

borhood of θ0 and from Lebesgue dominated convergence theorem, we have

E

[{
∂ρ

(
θ0 +

1√
n
t, Zi

)
− ∂ρ (θ0, Zi)

}2
]
→ 0, (n→∞) .

Thus, Var

[
n∑
i=1

ξni

]
≤

n∑
i=1

E
[
ξ2
ni

]
→ 0. By Chebyshev inequality, we have

∂Hn (t)− ∂Gn (t)
P→ 0,

for fixed t. Then, Hn (t) converges in Mosco to Gn (t) in probability.
From Assumption A, F0 is second order differentiable in generalized sense:{

F0

(
θ0 + 1√

n
t
)
− F0 (θ0)− 1√

n
〈∂F0 (θ0) , t〉

}
(

1√
n

)2

M−→ 1

2
〈V t, t〉 .

Therefore, combining aforementioned result, we obtain the result that Hn (t)
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Mosco-converges to G′n (t) in probability.
The second statement of Proposition 9 is derived from Assumption B and

a.s. representation theorem (Theorem 1.10.4. of van der Vaart and Wellner
(1996)). We get

ξn

(
=

1√
n

n∑
i=1

∂ρ (θ0, Xi)

)
 ξ,

and an almost sure representation ξ̃n → ξ̃ a.s., where ξ̃n has the same law as ξn
and ξ̃ the same law as ξ. This provide the Mosco convergence in distribution of
G′n to Q0.

The aforementioned proposition achieves mosco convergence of Hn to its
limit Q0. Note that t =

√
n (θ − θ0) minimizes Hn (t).

Next, we will also show convergence of the minimizer of Hn to that of Q0,
provided that the minimizer is almost surely unique. This follows from the
following lemma.

Lemma 10. The minimizer of the function Q0 (t) = 〈t,W 〉+ 1
2 〈V t, t〉 is single

valued.

Proof. Let t0 = arg mintQ0 (t). Suppose there exists t1 (6= t0) such that

〈t1,W 〉+
1

2
〈V t1, t1〉 = 〈t0,W 〉+

1

2
〈V t0, t0〉 = α.

Then, 〈
t1 + t0

2
,W

〉
+

1

2

〈
V
t1 + t0

2
,
t1 + t0

2

〉
<

1

2
〈t1,W 〉+

1

2
〈t0,W 〉+

1

2

(
1

2
〈V t1, t1〉+

1

2
〈V t0, t0〉

)
=

1

2
α+

1

2
α = α.

This means Q0

(
t1+t0

2

)
< α, which is contradiction.

We apply the previous results to consider the asymptotic distribution of
√
n
〈
θ̂ − θ0, θ

∗
〉
in the weak topology.

Corollary 11. Asymptotic Normality
Let W be an N (0, A) distribution. Under Assumption A and B, we obtain the
asymptotic distribution of

√
n
〈
θ̂n − θ0, θ

∗
〉
as following;

√
n
〈
θ̂n − θ0, θ

∗
〉
 
〈
V −1W, θ∗

〉
∀θ∗ ∈ Θ
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where V −1 is generalized Hessian of Young-Fenchel conjugate of F0 (θ).

Proof. From Proposition 9, Hn

(
θ0, t̂

)
converges weakly toQ0 (t) in Mosco topol-

ogy. Applying a.s. representation theorem(Theorem1.10.4 in van der Vaart and
Wellner (1996)) we get an almost sure representation Hn

M−→ Q0 a.s.. By
Theorem 5 we have

lim
n→∞

(arg minHn)→ arg minQN a.s.

in the weak topology. This provide

√
n
〈
θ̂n − θ0, θ

∗
〉
 
〈
V −1W, θ∗

〉
∀θ∗ ∈ Θ.

Example (L1 regression (continued).). Suppose the distribution function Fe (q − 〈x, θ〉 |x )

is Gâteaux differentiable at θ and denote their differential as operator V . Under
Assumption A and B, for any x0 ∈H ,

√
n
〈
x0, θ̂n − θ0

〉
 N

(
0, V −1A

)
.

For the implement, we need a consistent estimators of the generalized Hes-
sian. From the fact of the properties of the generalized differential, the natural
candidates are

lim
hn→0

1

kn

(
η̂?kn − η̂

?
)

in the weak* sense for any fixed h ∈H and all η̂?kn ∈ ∂f
(
θ̂ + knh

)
, η̂? ∈ ∂f

(
θ̂
)

.

3.3 Likelihood Ratio Test Statistic

Using the previous LAN result, we derives the asymptotic distribution of the
likelihood ratio statistic. Let An =

√
n (Θ− θ0) and An,0 =

√
n (Θ0 − θ0). The

likelihood ratio statistic is written by the form

Λn = inf
t∈An

Hn (θ0, t)− inf
t∈An,0

H (θ0, t) .

By the previous LAN result, for large n, the likelihood ratio process is similar to
the same as in the normal experiment. And by the Mosco convergence argument
in theorem 5, if the parameter space is weakly compact, the empirical optimal
value of convex function achieve the true optimal.
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Assumption. C
The parameter set Θ is weakly compact. In a Hilbert space setting Θ ⊂ H ,
weakly compactness is equal to boundedness: for all θ ∈ Θ,there exists constant
C such that ‖θ‖ ≤ C.

Lemma 12. Let W be an N (0, A) distribution and repeat (7);

Hn (θ, t) = n

[
Fn

(
θ +

1√
n
t

)
− Fn (θ)

]
.

Let t̂ =
√
n
(
θ̂n − θ0

)
denote this minimizer. Under Assumption A-C, the

asymptotic distribution of the optimal value function

Hn

(
θ0, t̂

)
= n

[
Fn

(
θ̂n

)
− Fn (θ0)

]
is the distribution of QN

(
t̂
)
.

Proof. From Proposition 9, Hn

(
θ0, t̂

)
converges weakly to QN (t) in Mosco

topology. Applying a.s. representation theorem(Theorem1.10.4 in van der Vaart
and Wellner (1996)) we get an almost sure representation Hn

Mosco−→ QN a.s..
By Theorem 2 and Assumption C, we have

lim
n→∞

(inf Hn) = inf QN .

This provide the optimal value of function Hn converges weakly to QN .

Define an objective function with convex constraintG (θ) from H to (−∞,∞]

by

Gn (θ) = Fn (θ) + ΨA (θ)

where ΨA is defined by

ΨA (θ) =

0 (θ ∈ A)

∞ (θ /∈ A)

and A is convex. Because Fn and ΨA are convex function, Gn (θ) are also convex
function with respect to θ for all n. Redefine (7), (8) as

HAn,0
n (θ, t) , n

[
Fn

(
θ +

1√
n
t

)
− Fn (θ)

]
+ ΨAn,0 (t)

QA0 (t) , 〈t, Z〉+
1

2
〈V t, t〉+ ΨTA0

(θ0) (t)
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where TA (θ) is tangent cone:

TA0 (θ) = lim sup
τ↓0

Θ0 − θ0

τ
.

From the result of lemma (3) and lemma (12), we obtain the asymptotic distri-
bution of the optimal value function

HA
n

(
θ0, t̂

)
 QN

(
t̂
)
.

The above result yeilds the asymptotic distribution of the likelihood ratio statis-
tics Λn. The proof strategy is based on van der Vaart (1998), Chapter 16,
Theorem 16.7.

Proposition 13. Assume the parameter spaces Θ and Θ0 is convex. And as-
sume Assumption A-C. If the sets An and An,0 converge to sets A and A0,
then the sequence of likelihood ratio statistics Λn converges under θ0 + t√

n
in

distribution to∥∥∥V − 1
2W + V

1
2 t (∈ An,0)

∥∥∥2

−
∥∥∥V − 1

2W + V
1
2 t (∈ An)

∥∥∥2

where W is an N (0, A) random vector.

Proof. By Lemma 12 and simple algebra

Λn = inf
t∈An

Hn (θ0, t)− inf
t∈An,0

H (θ0, t)

=2 inf
t∈An

(
n

〈
1√
n
t, ∂Fn (θ0)

〉
+

1

2
〈V t, t〉

)
− 2 inf

t∈An,0

(
n

〈
1√
n
t, ∂Fn (θ0)

〉
+

1

2
〈V t, t〉

)
+ oP (1)

=
∥∥∥V − 1

2Gn∂ρ (θ0) + V
1
2 t̂ (∈ An,0)

∥∥∥2

−
∥∥∥V − 1

2Gn∂ρ (θ0) + V
1
2 t̂ (∈ An)

∥∥∥2

+ oP (1)

the proposition follows by the continuous mapping theorem.

Example (L1 regression(continued)). Consider a likelihood ratio statistics for
testing the value of 〈θ0, x0〉 at any x0 ∈ E. For some prespecified point (x0, c),
we consider the following hypothesis:

H0 : 〈θ0, x0〉 ≤ 0 vs. H1 : 〈θ0, x0〉 > 0.
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The objective function under the null constrained is defined as

Fn
(
θH0

)
=

1

n

n∑
i=1

∣∣yi − 〈xi, θH0
〉∣∣+

λ

2

∥∥θH0
∥∥

where θH0 ∈ H0 = {θ ∈ Θ : 〈θ0, x0〉 ≤ 0}. Note that the set H0 is convex. We
define the generalized likelihood ratio test statistic as

Λn =Fn

(
θ̂H0

)
− Fn

(
θ̂n

)
,

where θ̂H0 is the M-estimator under convex constraint:

θ̂H0 = arg min
θH0∈H0

Fn
(
θH0

)
.

If the null the interior of the hypothesis H0 contains the true parameter θ0, the
sequence of Λn converges to zero in distribution. This means that an error of
the first kind converges to zero under that the null hypothesis is true. If the
true parameter θ0 belongs to the boundary: 〈θ0, x0〉 = 0, the sets

√
n (Θ0 − θ0)

converge to the H0 = {θ : 〈θ, x0〉 ≤ 0}. The sequence of Λn converges in dis-
tribution to the distribution of the square distance of a standard normal vector
to the half-space V

1
2H0 =

{
θ :

〈
θ, V −

1
2x0

〉
≤ 0
}
, that is the distribution of

(W ∨ 0)
2.

A Appendix

A.1 Proof of Subdifferential Calculus of ρ = |y − 〈x, θ〉|

Here we show the subdifferential calculus of ρ = |y − 〈x, θ〉|. We use the follow-
ing lemma.

Lemma 14. The subdifferential of ‖θ‖ = 〈θ, θ〉 is ∂ ‖θ‖ = {θ} , θ ∈H .

Proof. For θ ∈H ,

〈η, θ〉 − 〈θ, θ〉 = 〈η − θ, θ〉 , η ∈H ,

then ∂ ‖θ‖ = {θ}.

Proposition (Subdifferential Calculus of ρ = |y − 〈x, θ〉|). The criterion func-
tion ρ (θ, Z) = |y − 〈x, θ〉| is a proper l.s.c. convex function and has the subdif-
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ferential such that

∂ρ (θ, Z) =

sgn (y − 〈x, θ〉)x, if y − 〈x, θ〉 6= 0;

[−1, 1]x, if y − 〈x, θ〉 = 0.

Proof. Let t ∈ [−1, 1], θ = tx. For all ζ ∈H ,

〈tx, ζ − θ〉 = t 〈x, ζ〉 − ty≤ t |〈x, ζ〉 − y| ≤ |t| |〈x, ζ〉 − y| ≤ |〈x, ζ〉 − y| .

Then, θ = tx ∈ ∂ρ (y − 〈x, θ〉 = 0) and [−1, 1]x ⊂ ∂ρ (y − 〈x, θ〉 = 0).
Next, we shall show the inverse inclusion: ∂ρ (y − 〈x, θ〉 = 0) ⊂ [−1, 1]x.

Let θ ∈ ∂ρ (y − 〈x, θ〉 = 0) and assume θ 6= x. From θ ∈ ∂ρ (y − 〈x, θ〉 = 0), we
have

|y − 〈x, ζ〉| ≥ 〈ζ − θ, θ〉 , ∀ζ ∈H . (9)

From now on, setH = {η ∈H : 〈x, η〉 = y} andG = {η ∈H : 〈η, θ〉 = 〈θ, θ〉},
we shall show that H = G. When dim (X ) = 1, H = G =

{
y
x∗

}
. Assume

dim {H } > 2. First η ∈ H ⇒ η ∈ G, pick η ∈ H: 〈x, η〉 = y we have η = θ, so
〈η, θ〉 = 〈θ, θ〉. Then, H ⊂ G. We shall show the inverse inclusion G ⊂ H. As-
sume η ∈ G and η /∈ H. Because θ 6= x, there exists u ∈H such that 〈θ, u〉 6= y.
Put p = 〈x, η〉u − 〈x, u〉 η + θ, because u and η are linear independent, p 6= θ.
On the other hand

〈x, p〉 = 〈x, 〈x, η〉u− 〈x, u〉 η + θ〉

= 〈x, η〉 〈x, u〉 − 〈x, u〉 〈x, η〉+ y

= y.

This is contradiction, therefore G ⊂ H. Finally, we have G = H.
Now, set

x′ , ζ − y − 〈x, ζ〉
y − 〈x, v〉

(v − θ) , ∀ζ ∈H ,

Then, we have

〈x, x′〉 = 〈x, ζ〉 − y − 〈x, ζ〉
y − 〈x, v〉

〈x, v − θ〉

= 〈x, ζ〉 − y − 〈x, ζ〉
y − 〈x, v〉

(〈x, v〉 − y)

= 〈x, ζ〉+ y − 〈x, ζ〉

= y.
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Furthermore x′ ∈ H ⇒ x′ ∈ G. Therefore,

〈θ, θ〉 = 〈θ, x′〉

= 〈θ, ζ〉 − y − 〈x, ζ〉
y − 〈x, v〉

〈θ, v − θ〉

= 〈θ, ζ〉 − 〈θ, v − θ〉
y − 〈x, v〉

(y − 〈x, ζ〉)

= 〈θ, ζ − θ〉 − 〈θ, v − θ〉
y − 〈x, v〉

(y − 〈x, ζ〉)

= 〈θ, ζ − θ〉 − 〈θ, v − θ〉
y − 〈x, v〉

(〈x, θ〉 − 〈x, ζ〉) ,

and we get 〈θ, ζ − θ〉 = t 〈x, ζ − θ〉 where t = 〈θ, v−θ〉
y−〈x,v〉 6= 0. Because of (9),

〈θ, v − θ〉 ≤ |y − 〈x, v〉| and

−〈θ, v − θ〉 = 〈θ, θ − v〉 ≤ |− 〈x, θ − v〉|

= |〈x, v〉 − y|

= |y − 〈x, v〉| ,

Since 〈θ, ζ − θ〉 6= 0,〈x, ζ − θ〉 6= 0. We have |〈θ, v − θ〉| ≤ |y − 〈x, v〉|, |t| ≤ 1.
Therefor, ∂ρ (y − 〈x, θ〉 = 0) ⊂ [−1, 1]x.

A.2 Proof of Proposition 4

Set the following notation;
(Ω,F ,P): probability triple
(H ,H): real separable Hilbert space with Borel σ-field
2H : the family of all nonempty subsets of H

F : Ω→ 2H : set-valued function.
The inverse image F−1 (X) is defined by

F−1 (X) = {ω ∈ Ω : F (ω) ∩X 6= Ø} .

A set-valued function F : Ω→ 2X is called measurable if F−1 (X) is measurable
for every closed subset X of X . For 1 ≤ p ≤ ∞ define a selection of F by

SpF = {f ∈ Lp [Ω,F , µ] : f (ω) ∈ F (ω) a.e. (µ)} .

The key notion of set-valued mesurable mapping is decomposability.

Definition 15. Decomposability [Section3 in Hiai and Umegaki (1977)]
Let M be a set of measurable functions f : Ω 7→H . M is called decomposable
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with respect to F if f1, f2 ∈M and A ∈ F implies

IAf1 + IΩ\Af2 ∈M.

For proof of Proposition 4, we need lemmas from Hiai and Umegaki (1977).

Lemma 16. [Lemma1.1. in Hiai and Umegaki (1977)}
Let F be measurable set-valued function. If SpF is nonempty, then there exists a
sequence {fn} ∈ SpF such that F (ω) = cl {fn (ω)} for all ω ∈ Ω.

Lemma 17. [Lemma 2.1. in Hiai and Umegaki (1977)]
Let φ : Ω×H be F ⊗H-measurable. Assume (Ω,F ,P) is complete and φ (ω, θ)

is l.s.c. in θ for every fixed ω. Then the function

ω 7→ inf {φ (ω, θ) : θ ∈ F (ω)} ,

is measurable.

Lemma 18. [Theorem 3.1. in Hiai and Umegaki (1977)}
M = SF if and only if M is decomposable.

For the set-valued random variables the following Theorem and definition
were given by Hiai and Umegaki

Proposition. 4 There is a measurable selector of subdifferential ∂f i.e., S∂f 6=
∅. And the set of all measurable selector is identical to subdifferential ∂f : S∂f =

∂f .

Proof. Let h (γ, z) as

h (γ, z) = inf
|β−α|≤1

{f (β, z)− f (α, z)− 〈β − α, γ〉} .

Fix α. γ is a subdifferential of f (·, z) at α iff h (γ, z) ≥ 0. For every z, h (γ, ·)
is measurable. From Lemma 17 γ (·) is measurable.

Let γ1 (·) and γ2 (·) be measurable selector of subdifferential ∂f (α, ·) satis-
fying

f (β, ·) ≥ f (α, ·)− 〈β − α, γ1 (·)〉 ,

f (β, ·) ≥ f (α, ·)− 〈β − α, γ2 (·)〉 .

From the following inequality

f (β, ·) ≥ f (α, ·)−
〈
β − α, IA (·) γ1 (·) + IΩ\A (·) γ2 (·)

〉
,
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∂f (α, ·) is decomposable. Therefore, from Lemma 18 and Lemma 16, S∂f =

∂f .

A.3 A Existence of Minimum

Proposition. Existence of Minimum
Suppose f : Θ → (−∞,∞] is a lower semi-continuous convex (l.s.c.) func-
tional and its domain Θ is bounded. Then there exists arg minθ f (ω, θ) and
infθ f (ω, θ).

Proof. Let C be a convex subset of a Banach space. From the separation the-
orem, C is closed in norm topology if and only if C is closed in the weak
topology(Correspondence of closedness). f is lsc on Θ in the norm topology if
and only if f is lsc in the weak topology.

For each a ∈ R put

Ga = {θ ∈ Θ : f (θ) > a} .

Ga is open in the weak topology and Θ =
⋃
a∈RGa. Since Θ is weakly compact,

there is finite subcover such that

Θ =

n⋃
i=1

Gai .

Putting a0 = min {a1, · · · , an}, we have f (θ) > a0 for all θ ∈ Θ. There exists a
real number b = inf {f (θ) : θ ∈ Θ}.
Suppose f (θ) > b for all θ ∈ Θ, then

Θ =

∞⋃
n=1

{
θ : f (θ) > b+

1

n

}
.

Since Θ is weakly compact,

Θ =

m⋃
i=1

{
θ : f (θ) > b+

1

ni

}
.

Put b0 = min
{
b+ 1

n1
, · · · , b+ 1

nm

}
, we have f (θ) > b0 for all θ. Therefore we

have

b = inf {f (θ) : θ ∈ Θ} ≥ b0 > b.

This is a contradiction.
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