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Abstract

In a basic model of search and match, thanks to the assumption that producer-sellers and

consumer-buyers pay constant search costs per one unit of a single type of goods, it suffices to

consider the retail transactions between producer-sellers and consumer-buyers. We extend this

model to allow for the possibilities of economies and diseconomies of scopes in search activities

over two types goods. We show that producer-sellers make wholesale transactions with one

another when the benefit of economies of scope is strong enough. But when the benefit of

economies of scope in search activities for buyers compensates the loss of diseconomies of scope

in search activities for sellers, there are multiple equilibria: Matched pairs of producer-sellers

always make wholesale transactions in one equilibrium. But they never make those in another,

so that there only are retail transactions.
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Sjöström, Makoto Yano and seminar participants of Search Theory Workshop at Osaka University for their comments.

Any errors are my own.

1



1 Introduction

In a market with search frictions between producers and consumers, it is natural that there is a

role for wholesalers to reduce these frictions. However in a basic model of search and match, no

wholesalers play such a role. In our point of view, this is due to the implicit assumption that there

are no economies of scale and/or scope in search activity. The purpose of our paper is to explore

how wholesalers play their role once we no longer impose this assumption.

In basic models of search and match, each transaction between producer-sellers and consumer-

buyers involves a single unit of goods and hence it never involves wholesale transactions among

sellers which enable them to keep inventory of goods and to sell multiple units of goods to consumer-

buyers. This setup is justified under the assumption of constant search cost per unit of goods. Under

this assumption, the search values for each unit of goods becomes the same for sellers with different

size of inventories. This implies that there is no need for a seller to keep a larger inventory by

buying goods from other sellers, i.e., there is no role played by wholesale transactions.1 However,

this is no longer the case if search cost per unit of goods is variable both for sellers and buyers, i.e.,

if there are (dis)economies of scope or scale in search activities. In such a case, the search values

per unit of goods for sellers depend on the amount and variety of goods they are endowed with.

Thus, to optimize its inventory size, each seller may buy or sell goods upon meeting other sellers.

This wholesale transaction should be explicitly taken into account once the model is extended to

allow for the cases where there are economies or diseconomies of scope (or scale) in search activities

for both sellers and buyers.

As a first step to these extensions, we consider a model of search and match in which there two

kinds of goods, which makes us possible to define the concept of economies and diseconomies of

scope in search activities for both sellers and buyers in section 2.2

1Basic models of search and match typically take up a following setup: being endowed with a single unit of goods,

each seller enters the market, sells it to a matched buyer who wants to consume just one unit of goods and then exits.

This standard setup of search and match is employed, for example, by Gale (1987) and Mortensen and Wright (2002).

This setup is justifiable when both sellers and buyers are assumed to incur constant search costs per unit of goods

at each moment of time while they search for their trading partners. As a result, any seller who is endowed with

multiple units of goods can be considered as a collection of sellers each being endowed with a single unit of goods.

This implies that inventory size has no influence on the resource allocation and hence it does not matter whether

wholesale transactions between sellers are discarded or not.
2Burdett and Mauleg (1981), Carlson and McAfee (1984) and Zhou (2012) also introduce economies of scope in

search activities but only those for buyers. Furthermore they consider an extreme case of degree of economies of

scope in which no more cost is required to search for wider varieties of goods.
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The main question we ask in the analysis of the model is the following one: How do economies

and diseconomies of scope in search actitivies affect the equilibrium probability of wholesale trans-

action? In section 3, we show the equilibrium probability of wholesale transaction as a mapping

from combinations of economies and diseconomies of scope in search activities for sellers and buy-

ers. This wholesale transaction, in our model, takes place only between a matched pair of sellers,

each of whom has one unit of different goods.3 Evidently, each seller has a higher (lower) incentive

to make a wholesale transaction if doing so reduces (raises) its own search cost per unit of goods,

i.e., if there are economies (diseconomies) of scope in search activities for sellers. We find that

a higher degree of economies of scope in search activities for sellers leads to a higher equilibrium

probability of wholesale transaction whenever there are diseconomies of scope in search activities

for buyers. But if there are economies of scope in search for buyers, a lower degree of diseconomies

of scope for sellers may not lead to a higher equilibrium probability of wholesale transaction. In

such a case, there exist multiple equilibria; the equilibrium probability of wholesale transaction can

be both zero and one. These results are summarized in Theorem and Corollary.

Lastly, in section 4, we discuss the implicit assumptions we made on search costs and then

we conclude by giving some implications of our theorem to the literature of middlemen. In the

literature, the gain from making wholesale transaction is due to either a reduction in search cost

for sellers (which we call wholesale gain) or expected reduction in search cost for buyers (which we

call retail gain). As a result of this setup, there always are wholesale transactions in equilibrium

and that such an equilibrium is unique. This fact is not well recognized in the literature and that

the case of multiple equilibria, in other words, the case where there are a wholesale loss and a retail

gain, has been ignored.

2 Model

To investigate how the equilibrium probability of wholesale transaction depends on economies and

diseconomies of scope in search activities, we extend a standard model of search and match in

which there is only one kind of goods to the one in which there are two kinds of goods called x and

y.4

3Matched sellers are indifferent between buying the other variety of goods and selling their own variety of goods if

they have incentive to make a wholesale transaction. What matters here is whether a wholesale transaction is made

or not by a pair of matched sellers.
4We consider a model with two kinds of goods to introduce the concept of economies and diseconomies of scope

in search activities. But the widening of goods’ variety is not the crucial point. Allowing for wholesale transaction
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Each potential seller is endowed with one unit of goods x or y. Upon entering the market, a

potential seller becomes either state x or y seller holding one unit of goods x or y as an inventory.

Each incurs a search cost cs(x) or cs(y) at each moment of continuous time while searching for its

trading partners. Upon being matched with a trading partner, a state x or y seller can sell the

goods and exit the market.

The point of departure from the standard setup is that, in addition to this sell-and-exit option,

we also allow both state x and y sellers to buy the other kind of good from matched sellers and

stay in the market. I.e., there is an option of making wholesale transaction. By making wholesale

transaction, a seller becomes a state xy seller who holds a pair of goods x and y as an inventory,

and incurs a search cost cs(xy) at each moment of time.

Buyers enter the market and become state xy buyers who want to consume both goods x and y.

Upon being matched with a state xy seller, a state xy buyer exits the market at once, by consuming

both goods and enjoying utility 2v. But upon being matched with a state x or y seller, a state xy

buyer buys and consumes only one kind of goods, and stays in the market as a state y or x buyer.

At this moment this buyer enjoys utility v. A state x or y buyer exits the market and enjoys utility

v by buying and consuming the goods upon being matched with a seller who has a wanted good.

　Each of all these state xy, x and y buyers respectively incurs a cost cb(xy), cb(x), and cb(y) at each

moment of time while searching for a seller.

Given these search cost parameters for sellers and buyers, we define the index of economies of

scope in search activities for sellers as ESS ≡ cs(x) + cs(y) − cs(xy) and that of economies of scope

in search activities for buyers as ESB ≡ cb(x) + cb(y) − cb(xy). If these are positive, we say that

there are economies of scope. If negative, there are diseconomies of scope. Economies of scope in

search activity is limited to the extent that it costs more if inventory is larger, i.e., cs(xy) > cs(i)

and cb(xy) > cb(i) for i ∈ {x, y}. The indices of economies of scope for sellers and buyers, ESS and

ESB, are bounded above by cs(x) and cb(x), if the search costs are symmetric so that cs(x) = cs(y)

and cb(x) = cb(y). We assume this symmetry for the rest of this paper.

The states of sellers and buyers other than those described above are not allowed in our model by

implicitly assuming that they incur prohibitively high search costs. Moreover, we assume symmetry

of agents so that our focus can be set on the search activities of representative sellers and buyers

in state x, y, and xy, which we denote by s(i) and b(i) where i ∈ {x, y, xy}. The set of these

representative agents is defined as A ≡ {s(x), s(y), s(xy), b(x), b(y), b(xy)}.

over different kinds of goods between sellers is the most crucial point in our extension of the standard model.
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The search value for an agent a ∈ A is determined as follows. While searching for a trading

partner, the agent has possibilities of meeting another agent a′ ∈ A according to a Poisson process

whose arrival rate is identical to its population denoted by πa′ ≥ 0. Upon meeting a trading

partner, the agent a chooses a probability to agree on the terms of trade determined as a result of

bargaining, which we denote by σa(a
′) ∈ [0, 1]. The vector of these probabilities σa ≡ (σa(b(xy)),

σa(b(x)), σa(b(y)), σa(s(x)), σa(s(y)), σa(s(xy))) is called a stationary strategy for agent a ∈ A.

Once they reach an agreement in bargaining, there are changes in search values for both agents

from their state changes. And if one of them consumes goods, he enjoys utility. The sum of these

changes in search values and the utility is defined as a surplus, Saa′ for a matched pair of agents a

and a′. The surplus is equally divided between the two agents. Engaging in the above described

search activities and given a profile of stationary strategies for all agents σ ≡ {σa}a∈A, an agent

a ∈ A has the search value Va(σ), which is defined as

rVa(σ) = −ca +
∑
a′∈A

πa′σa(a
′)σa′(a) ·

1

2
Saa′(σ), (1)

where r is the discount rate common to all agents.

With these search values, we can specify surpluses for all matched pair of agents. The surplus

for a matched pair of state x and y sellers is just the sum of changes in search values from their

state changes since consumption never takes place with wholesale transaction,

Ss(x)s(y)(σ) = Ss(y)s(x)(σ) = Vs(xy)(σ)− Vs(x)(σ)− Vs(y)(σ). (2)

It is clear, from the definition of search values (1), that this surplus is positive (negative) if the

degree of economies (diseconomies) of scope in search activities for sellers is large enough. But if

the degree is not so large, it is not clear whether the sign of this surplus is positive or negative.

The purpose of our investigation is to show how the sign of this surplus depends also on the degree

of economies and diseconomies of scope in search activities for buyers in equilibrium.

Since the surpluses for pairs of a seller and a buyer are the sum of utility from consumption
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and the gains from their state changes, they are specified as,

Ss(xy)b(xy)(σ) = Sb(xy)s(xy)(σ) = v + v − Vs(xy)(σ)− Vb(xy)(σ), (3)

Ss(x)b(xy)(σ) = Sb(xy)s(x)(σ) = v + Vb(y)(σ)− Vs(x)(σ)− Vb(xy)(σ), (4)

Ss(y)b(xy)(σ) = Sb(xy)s(y)(σ) = v + Vb(x)(σ)− Vs(y)(σ)− Vb(xy)(σ), (5)

Ss(xy)b(x)(σ) = Sb(x)s(xy)(σ) = v + Vs(y)(σ)− Vs(xy)(σ)− Vb(x)(σ), (6)

Ss(xy)b(y)(σ) = Sb(y)s(xy)(σ) = v + Vs(x)(σ)− Vs(xy)(σ)− Vb(y)(σ), (7)

Ss(x)b(x)(σ) = Sb(x)s(x)(σ) = v − Vs(x)(σ)− Vb(x)(σ), and (8)

Ss(y)b(y)(σ) = Sb(y)s(y)(σ) = v − Vs(y)(σ)− Vb(y)(σ). (9)

All other surpluses for matched pairs of agents are negative since we implicitly assume that

their search costs are prohibitively high.

In defining the search values above, we presumed a stationary state. In order to maintain a

stationary state, the inflows into and the outflows from the population of each agents must balance.

For state x sellers, there are two inflows of agents. The one is an inflow of type x producers who

enter the market. They enter at rate µx, which is determined endogenously by the free entry

condition,

Vs(x)(σ) = 0. (10)

The other is an inflow of state xy sellers who sold goods y. The sum of these inflows of agents must

balance with the outflux of state x sellers,

µx + πs(xy)πb(y) · σs(xy)(b(y)) · σb(y)(s(xy)) = πs(x)πs(y) · σs(x)(s(y)) · σs(y)(s(x))

+ πs(x)πb(xy) · σs(x)(b(xy)) · σb(xy)(s(x))

+ πs(x)πb(x) · σs(x)(b(x)) · σb(x)(s(x)). (11)

The first term of the right hand side is the outflux of state x sellers who either bought a unit of

goods y or sold goods x to state y sellers. The second and the third terms are those of state x

sellers who sold goods x to state xy and x buyers respectively.

Similarly for the population of state y sellers, we must have the free entry condition for type y

producers,

Vs(y)(σ) = 0, (12)

6



which determines their rate of entry µy, and a stationary state condition,

µy + πs(xy)πb(x) · σs(xy)(b(x)) · σb(x)(s(xy)) = πs(y)πs(x) · σs(y)(s(x)) · σs(x)(s(y))

+ πs(y)πb(xy) · σs(y)(b(xy)) · σb(xy)(s(y))

+ πs(y)πb(y) · σs(y)(b(y)) · σb(y)(s(y)). (13)

For state xy sellers, state x and y sellers flows in upon making wholesale transactions. This

must balance with an outflux of state xy sellers who sold both or one of their goods;

πs(x)πs(y) · σs(x)(s(y)) · σs(y)(s(x)) = πs(xy)πb(xy) · σs(xy)(b(xy)) · σb(xy)(s(xy))

+ πs(xy)πb(x) · σs(xy)(b(x)) · σb(x)(s(xy))

+ πs(xy)πb(y) · σs(xy)(b(y)) · σb(y)(s(xy)). (14)

Unlike producers who enter the market at the endogenously determined rates, consumers enter

the market at an exogenous rate µ. In order for this to be consistent with consumers’ incentives to

enter the market and become state xy buyers, the following participation constraint for state xy

buyers must be satisfied:

Vb(xy)(σ) ≥ 0. (15)

The inflow of these entrants must balance with an outflow of state xy buyers who bought either

one or both goods from sellers,

µ = πb(xy)πs(xy) · σb(xy)(s(xy)) · σs(xy)(b(xy))

+ πb(xy)πs(x) · σb(xy)(s(x)) · σs(x)(b(xy))

+ πb(xy)πs(y) · σb(xy)(s(y)) · σs(y)(b(xy)). (16)

For the population of state x buyers, the inflow of the state xy buyers who bought goods y must

balance with an outflux of state x buyers who bought goods x from state xy or state x sellers,

πb(xy)πs(y) · σb(xy)(s(y)) · σs(y)(b(xy)) = πb(x)πs(xy) · σb(x)(s(xy)) · σs(xy)(b(x))

+ πb(x)πs(x) · σb(x)(s(x)) · σs(x)(b(x)). (17)

Similarly and lastly, for the population of state y buyers, we must have

πb(xy)πs(x) · σb(xy)(s(x)) · σs(x)(b(xy)) = πb(y)πs(xy) · σb(y)(s(xy)) · σs(xy)(b(y))

+ πb(y)πs(y) · σb(y)(s(y)) · σs(y)(b(y)), (18)
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which completes the description of our model.

In order for the stationary state conditions (11), (13), (14), (16), (17), and (18) to be consistent,

we must have a condition that both consumers and producers enter the market at the same rate,

µx = µy = µ. (19)

Under this symmetric entry rates condition (19), two equations, for example the equations (11)

and (13), among the stationary state conditions become redundant. Using this representation of

stationary state conditions, a state equilibrium strategy of our model is defined as follows:

Definition. A stationary strategy profile σ∗ = {σ∗
a}a∈A ∈ [0, 1]6×6 is called a stationary equilibrium

strategy if it is a fixed point of the best response mapping σBR(·) = {σBR
a (·)}a∈A from [0, 1]6×6 to

[0, 1]6×6, in which σBR
a (·) for all a ∈ A is defined as

σBR
a (σ) ≡ arg max

σ̂a∈[0,1]6

∑
a′∈A

πa′ σ̂a(a
′)σa′(a) ·

1

2
Saa′(σ), for all σ ∈ [0, 1]6×6 (20)

subject to the participation constraint for buyers (15),

in which the stationary populations πa for all a ∈ A and entry rates µx and µy are determined by

the free entry conditions for producers and the stationary state conditions, (10), (12), (14), (16),

(17), and (18), where the search values and the surpluses are defined by equations (1) and (2) - (9),

given the symmetric entry rates conditions (19).

The objective of our paper is to characterize σ∗
s(x)(s(y))·σ

∗
s(y)(s(x)), which we call the equilibrium

probability of wholesale transaction.

3 Characterization of Equilibrium Probability of Wholesale Trans-

action

To answer our main question of the paper, we characterize the equilibrium in terms of the equilib-

rium probability of wholesale transaction under possible combinations of ESS and ESB. To do so,

we set our focus to the case where retail transactions are always made. This is assured if v is large

enough. In this case, together with the symmetry assumptions, it turns out that in classifying the

equilibrium probability of wholesale transactions we only need to pay attention to ESS and ESB

among various parameters of the model.
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Theorem. Suppose cs(xy) > cs(x) = cs(y) and cb(xy) > cb(x) = cb(y). If v is sufficiently large, then

the equilibrium probability of wholesale transaction under a stationary equilibrium strategy σ∗ is

given by

σ∗
s(x)(s(y)) · σ

∗
s(y)(s(x)) =



1 if ESS ≥ max{−k̂ESB,−ǩESB},

{0, ρ, 1} if − k̂ESB < ESS < −ǩESB < 0,

ρ if − k̂ESB > ESS > −ǩESB > 0,

0 if ESS ≤ min{−k̂ESB,−ǩESB}, or

[0, 1] if ESS = ESB = 0,

(21)

where k̂ and ǩ > 0 are fixed numbers such that k̂ ≥ ǩ > 0 and ρ is a differentiable function

ρ(ESS,ESB) : R2 → (0, 1).

Proof. See Appendix A.
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Figure: Classification of ESS and ESB by equilibrium probabilities of wholesale transaction

The straightforward point of the theorem is that matched sellers always make the wholesale

transaction when overall economies of scope in search activities for sellers and buyers together is

large enough and vice versa. And between these two straightforward cases there always is a mixed
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strategy equilibrium in which matched sellers are indifferent between trading and not trading. The

main point of the theorem is that this mixed strategy equilibrium is a unique equilibrium when

ESB < 0 and that it is one of multiple equilibria when ESB > 0. It is unique when economies

of scope in search activities for sellers are cancelled by diseconomies of scope in search activities

for buyers. But in addition to this mixed strategy equilibrium there are two other pure strategy

equilibria in which a matched pair of sellers always trade or never trade, when diseconomies of scope

in search activities for sellers are cancelled by economies of scope in search activities for buyers.

This result can be intuitively understood by considering the stability of the mixed strategy

equilibrium: In case of ESB < 0, the mixed strategy equilibrium is stable in a sense that the

equilibrium probability of wholesale transaction is maintained even when a measurable number of

sellers simultaneously deviate from the stationary equilibrium strategy. If they deviate from this

mixed strategy, other sellers would take counter actions. As a result, their initial effect on the equi-

librium probability of wholesale transaction should be offset by the counter actions of other sellers.

Other sellers should take these counter actions when a seller’s gain from the wholesale transaction

becomes smaller with an increase in the number of the wholesale transaction in the market, i.e.

when these mixed actions in equilibrium are strategic substitutes. On the other hand, in case of

ESB > 0, the mixed strategy equilibrium is unstable in a sense that the equilibrium probability of

wholesale transaction cannot be maintained because deviations from the equilibrium strategy will

be followed by all sellers. All sellers should follow these deviations when a seller’s gain from the

wholesale transaction becomes larger with an increase in the number of the wholesale transaction

in the market, i.e. if these mixed actions at the equilibrium point are strategic complements.

To see why the mixed actions at the equilibrium are strategic complement when ESB > 0,

let us examine how it ensures that an increase in the number of the wholesale transaction in the

market raises a seller’s marginal gain from raising the the probability of the wholesale transaction.

A seller’s marginal gain from raising the probability of the wholesale transaction is a sum of the

wholesale gain which is a reduction in search costs for these sellers and the retail gain which is an

expected reduction in a search cost for a buyer who buys both goods from one of these sellers.5

This seller’s marginal gain from raising the probability of the wholesale transaction can only be

5The retail gain is a difference of search costs for state xy buyers between two cases in which state x and y sellers

trade or not. If they do not trade and remain to be state x and y sellers, each of them reduces search costs of a state

xy buyer by the amounts cb(xy) − cb(x) and cb(xy) − cb(y) respectively. If they trade, one exits and the other stays

as a state xy seller who reduces a search cost of a state xy buyer by the amount cb(xy). Hence the difference in the

reductions of buyers’ search cost between these two cases is cb(x) − cb(y) − cb(xy), which is ESB.
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increased with an increase in the population of state xy buyers when ESB > 0. And this increase

in the population of state xy buyers is induced by the increase in the number of the wholesale

transaction in the market.

These stability features are reflected in the comparative statics results on the equilibrium prob-

ability of wholesale transaction with respect to economies of scope in search activities for sellers.

Corollary. The equilibrium probability of wholesale transaction under mixed strategy, ρ, defined in

the Theorem has a following property:

∂ρ

∂ESS
< 0 iff −k̂ESB < ESS < −ǩESB < 0, and (22)

∂ρ

∂ESS
> 0 iff −k̂ESB > ESS > −ǩESB > 0. (23)

Proof. See Appendix B.

4 Discussions

From the view point of our model, the standard model of search and match between buyers and

sellers can be considered as a special case in which ESS = 0 and ESB = 0 or in other words both

wholesale gain and retail gain are zero. We characterized equilibrium of our model in the simplest

possible case in which various values of ESS and ESB are allowed.

One of the most simplifying assumption of our model is that the search costs are prohibitively

high for sellers who try to sell more than a unit of the same goods. Because of this assumption, we

are able to characterize the equilibrium outcomes just by classifying the equilibrium probabilities

of the wholesale transaction in terms of the indices of economies and diseconomies of scope. But if

search costs are reasonably low for sellers who try to sell more than a unit of the same goods, then

we also need to take into account economies and diseconomies of scale in search activities as well.

The relaxation of our implicit assumption opens up the possibility of explaining various inventory

sizes of sellers, which is beyond the scope of this paper.

In our model, sellers who buy goods in trades between matched sellers can be interpreted as

a version of middlemen. While our model takes into account both wholesale and retail gains (and

losses) from such a trade, the models in the literature of middlemen assumes the cases in which

only a wholesale gain or a retail gain exists. For example, the search cost assumption taken up in

Rubinstein and Wolinsky (1987) can be considered as a case in which only a wholesale gain exists.
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In their model, middlemen have only a wholesale gain in a sense that they can find buyers faster

than sellers. On the other hand, in the model of Johri and Leach (2002) only a retail gain exists. In

their model, middlemen have a retail gain in a sense that it is easier for a buyer to buy his favorite

goods from middlemen than to do so from sellers because middlemen can hold wider varieties of

heterogeneous goods as an inventory.
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Appendix

A Proof of Theorem

To show that equation (21) is the equilibrium probability of wholesale transaction, we need to find the

necessary and sufficient conditions for the parameters given each of possible equilibrium stationary strategy

profiles. The possible equilibrium stationary strategy profiles reduce to just three cases (matched pairs of

sellers trade, not trade or take mixed actions) under the assumption of v being large, cs(x) = cs(y) and

cb(x) = cb(y).

Due to cs(x) = cs(y) and cb(x) = cb(y), we focus on the symmetric equilibrium in which

πs(x) = πs(y),

πb(x) = πb(y),

Vs(x)(σ
∗) = Vs(y)(σ

∗), (A.0)

Vb(x)(σ
∗) = Vb(y)(σ

∗).

The assumption of large enough v makes matched pairs of sellers and buyers trade so that we set σ∗
b(xy)(s(x)) =

σ∗
b(xy)(s(y)) = σ∗

b(xy)(s(xy)) = σ∗
b(x)(s(x)) = σ∗

b(x)(s(xy)) = σ∗
b(y)(s(y)) = σ∗

b(y)(s(xy)) = σ∗
s(x)(b(xy)) =

σ∗
s(x)(b(x)) = σ∗

s(y)(b(xy)) = σ∗
s(y)(b(y)) = σ∗

s(xy)(b(xy)) = 1. As a result, the system of equations (1) -

(9), (10), (12), (14), (16), (17), (18) and (A.0), determines the search values and populations for a given

stationary strategy profile.

Furthermore, the best response requirement, equation (20), put conditions on the system of equations.

If their equilibrium actions are to trade, the conditions are σ∗
s(x)(s(y)) = σ∗

s(x)(s(y)) = 1 and the surplus for

a matched pair of state x and y sellers is non-negative. If their equilibrium actions are not to trade, the

conditions are σ∗
s(x)(s(y))·σ

∗
s(x)(s(y)) = 0 and the surplus for a matched pair of state x and y sellers to be non-

positive. And if their equilibrium actions are the mixed ones, the conditions are 0 < σ∗
s(x)(s(y))·σ

∗
s(x)(s(y)) <

1 and the surplus for a matched pair of state x and y sellers to be zero.

A.1 Derivation of conditions that the equilibrium actions are to trade for all

matched pairs of state x and y sellers

Supposing that all matched pairs of state x and y sellers trade, we prove that their surpluses are non-negative

if and only if ESS ≥ −k̂ESB, where k̂ is a fixed number defined below.

Let σ̂ be a candidate equilibrium strategy in which all matched pairs of state x and y sellers trade. Then,
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it should satisfy the followings:

σ̂∗
s(x)(s(y)) = σ̂∗

s(y)(s(x)) = 1,

σ̂∗
s(x)(b(xy)) · σ̂

∗
b(xy)(s(x)) = 1,

σ̂∗
s(x)(b(x)) · σ̂

∗
b(x)(s(x)) = 1,

σ̂∗
s(xy)(b(x)) · σ̂

∗
s(xy)(b(x)) = 1,

σ̂∗
s(xy)(b(xy)) · σ̂

∗
s(xy)(b(xy)) = 1.

Substituting these into the definition of the search values, the stationary state conditions and the free entry

condition, we can define the candidate equilibrium search values and populations, which we denote as V̂a

and π̂a for all a ∈ A. They should satisfy the followings:

rV̂s(x) =− cs(x) + π̂s(x) · 0.5(V̂s(xy) − 2V̂s(x))

+ π̂b(xy) · 0.5(v + V̂b(x) − V̂b(xy) − V̂s(x)) + π̂b(x) · 0.5(v − V̂b(x) − V̂s(x)), (A.1.1)

rV̂s(xy) =− cs(xy) + π̂b(xy) · 0.5(2v − V̂b(xy) − V̂s(xy))

+ 2 · π̂b(x) · 0.5(v + V̂s(x) − V̂b(x) − V̂s(xy)), (A.1.2)

rV̂b(xy) =− cb(xy) + π̂s(xy) · 0.5(2v − V̂b(xy) − V̂s(xy)) + 2 · π̂s(x) · 0.5(v + V̂b(x) − V̂b(xy) − V̂s(x)), (A.1.3)

rV̂b(x) =− cb(x) + π̂s(xy) · 0.5(v + V̂s(x) − V̂b(x) − V̂s(xy)) + π̂s(x) · 0.5(v − V̂b(x) − V̂s(x)), (A.1.4)

π̂s(x) · π̂s(x) = π̂s(xy) · π̂b(xy) + 2 · π̂s(xy) · π̂b(x). (A.1.5)

µ = π̂b(xy) · π̂s(xy) + 2 · π̂b(xy) · π̂s(x), (A.1.6)

π̂b(xy) · π̂s(x) = π̂b(x) · π̂s(xy) + π̂b(x) · π̂s(x), (A.1.7)

and

V̂s(x) = 0. (A.1.8)

In the rest of this subsection, we first prove that the system of equations (A.1.1) - (A.1.8) has a solution

in which the population of each state of sellers and buyers is positive (Claim A.1.1). Given this solution,

we define k̂ and prove that the surplus for a matched pair of state x and y sellers is zero if and only if

ESS = −k̂ESB (Claim A.1.2), and that the surplus for a matched pair of state x and y sellers is positive

if and only if ESS > −k̂ESB (Claim A.1.3).

Claim A.1.1. Under cb(xy) > cb(x), the system of equations (A.1.1) - (A.1.8) has a solution in which π̂b(xy),

π̂b(x), π̂s(xy), π̂s(x) > 0.

We will prove this in the following manner: Given a population of state xy buyers, the populations

of all other agents are given as a solution to the system of equations (A.1.5) - (A.1.7). Lemma A.1.1 will
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show that these populations are all positive if π̂b(xy) > 0 . With this result, we only need to show that

there exists a π̂b(xy) > 0 which satisfies the free entry condition (A.1.8), where all other search values are

determined by the system of equations (A.1.1) to (A.1.4). The left hand side of equation (A.1.8), V̂s(x), can

be expressed in terms of the populations, the surplus for a matched pair of state x and y sellers in addition to

the parameters of the model by arranging the equations (A.1.1) to (A.1.4). We view this V̂s(x) as a function

of π̂b(xy) and apply the intermediate value theorem to show that there is a π̂b(xy) > 0 which satisfies the

condition V̂s(x) = 0 by using Lemmas A.1.2 and A.1.3.

Lemma A.1.1 Given π̂b(xy) > 0, there are positive values π̂s(x), π̂s(xy), and π̂b(x) which satisfy the system

of equations (A.1.5) - (A.1.7).

Proof. From equations (A.1.6) and (A.1.7), we obtain

π̂s(x) =
µ− π̂b(xy)π̂s(xy)

2π̂b(xy)
, (A.1.6’)

π̂b(x) =
π̂s(x)

π̂s(x) + π̂s(xy)
π̂b(xy). (A.1.7’)

By substituting these equations into equation (A.1.5), we obtain(
µ− π̂b(xy)π̂s(xy)

2π̂b(xy)

)2

= π̂s(xy)

π̂b(xy) +
2
µ−π̂b(xy)π̂s(xy)

2π̂b(xy)

µ−π̂b(xy)π̂s(xy)

2π̂b(xy)
+ π̂s(xy)

π̂b(xy)

 .

The left hand side continuously changes from a positive value to zero as π̂s(xy) changes from 0 to µ/π̂b(xy).

The right hand side continuously changes from zero to a positive value as π̂s(xy) changes from 0 to µ/π̂b(xy).

By the intermediate value theorem, there exists a value of π̂s(xy) ∈ (0, µ/π̂b(xy)) which satisfies this equation.

This result together with equations (A.1.6’) and (A.1.7’) gives us the desired result. ■

Lemma A.1.2. If π̂b(xy) → ∞, then we have

(i) π̂s(x) → 0,

(ii) π̂s(xy) → 0,

(iii) V̂s(xy) − 2V̂s(x) → π̂b(xy)

2π̂b(x) + π̂b(xy)

2cb(x) − cb(xy)
r .

Proof. It is clear that we need (i) and (ii) since we have (A.1.6) with positive values of π̂s(x) and π̂s(xy).

To see (iii), we express V̂s(xy) − 2V̂s(x) in terms of the parameters and the populations by rearranging

equations (A.1.1) - (A.1.4),[
r + π̂s(x) + 2π̂b(x) · 0.5 + π̂b(xy) · 0.5

r + π̂s(x)

r + 0.5(2π̂s(x) + π̂s(xy))

]
(V̂s(xy) − 2V̂s(x)) = 2cs(x) − cs(xy)

+π̂b(xy)0.5
2cb(x) − cb(xy)

r + 0.5(2π̂s(x) + π̂s(xy))
.

Applying (i) and (ii) to this equation, we obtain the desired result. ■
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Lemma A.1.3. If π̂b(xy) ↓ 0, then we have

(i) π̂b(x) → 0,

(ii) V̂s(xy) − 2V̂s(x) → 2cs(x) − cs(xy)
r + π̂s(x)

.

Proof. The part (i) is clear since we have (A.1.7’). The part (ii) can be obtained in a similar manner to the

proof of part (iii) of Lemma A.1.2. ■

To complete the proof of Claim A.1.1., we first derive an expression for V̂s(x), which can be seen as a

continuous function of π̂b(xy). Then we apply the intermediate value theorem to it in order to show that

there is π̂b(xy) > 0 which satisfies V̂s(x) = 0.

By substituting equations (A.1.3) and (A.1.4) into equation (A.1.1) and rearranging it, V̂s(x) can be

expressed as,

V̂s(x) =

[
− (2cs(x) − cs(xy))− (cs(xy) − cs(x))

+ π̂s(x) · 0.5 · (V̂s(xy) − 2V̂s(x))

− π̂b(xy) · 0.5
(2cb(x) − cb(xy)) + π̂s(xy) · 0.5(V̂s(xy) − 2V̂s(x))

r + θ(2π̂s(x) + π̂s(xy))

+ (π̂b(x) + π̂b(xy))(1− θ)
rv + cb(x) + π̂s(xy)θ(V̂s(xy) − 2V̂s(x))

r + (π̂s(x) + π̂s(xy))θ

]
·
[
r + (π̂b(x) + π̂b(xy))(1− θ)

r + π̂s(x)θ

r + (π̂s(x) + π̂s(xy))θ

]−1

. (A.1.9)

By Lemma A.1.1, we can view the right hand side of this equation as a continuous function of π̂b(xy). If

it becomes positive as π̂b(xy) → ∞ and if it becomes negative as π̂b(xy) → 0, then the intermediate value

theorem tells us that there exists a π̂b(xy) > 0 which makes the right hand side of this equation zero.

By using Lemma A.1.2, it is clear that as π̂b(xy) goes to ∞, the right hand side of equation (A.1.9) goes

to [
π̂b(xy)

cb(xy) − cb(x)

r
+ π̂b(xy)v + π̂b(x)v + π̂b(x)

cb(x)

r

]
(π̂b(x) + π̂b(xy))

−1,

which is positive by Assumption cb(xy) > cb(x).

Moreover, by using Lemma A.1.4, it is clear that as π̂b(xy) goes to 0, the right hand side of equation

(A.1.9) goes to [
−
(
1−

πs(x)

r + π̂s(x)

)
cs(x) − π̂s(x) · 0.5 ·

cs(xy)

r + π̂s(x)

]
/r,

which is negative. This completes the proof of Claim A.1.1.
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Claim A.1.2. Suppose that assumption cs(xy) > cs(x) holds. Then, V̂s(xy) − 2V̂s(x) = 0 if and only if

(2cs(x) − cs(xy)) = −k̂(2cb(x) − cb(xy)), where k̂ is defined as follows:

k̂ ≡ 0.5π̂b(xy)/(r + 0.5µ/π̂b(xy)),

where (π̂b(xy), π̂b(x), π̂s(xy), π̂s(x)) is the solution to the system of equations,

cs(xy) − cs(x) = 0.5(π̂b(xy) + π̂b(x))
rv + cb(x)

r + 0.5µ/(π̂b(xy) + π̂b(x))
,

µ = π̂b(xy)(π̂s(xy) + 2π̂s(x)),

π̂b(xy)π̂s(x) = π̂b(x)(π̂s(xy) + π̂s(x)),

π̂s(x)π̂s(x) = π̂s(xy)(π̂b(xy) + 2π̂b(x)).

Proof. From equations (A.1.1) - (A.1.4), the surplus for a matched pair of state x and y sellers, V̂s(xy)−2V̂s(x),

can be expressed in terms of the parameters and the populations,[
r + π̂s(x) + 2 · 0.5π̂b(x) + 0.5π̂b(xy)

r + 2 · 0.5π̂s(x)

r + 0.5(2π̂s(x) + π̂s(xy))

]
(V̂s(xy) − 2V̂s(x))

= (2cs(x) − cs(xy)) +
0.5π̂b(xy)

r + 0.5(2π̂s(x) + π̂s(xy))
(2cb(x) − cb(xy)). (A.1.10)

Thus,

sign of
(
V̂s(xy) − 2V̂s(x)

)
= sign of

(
(2cs(x) − cs(xy)) + 0.5π̂b(xy)

(2cb(x) − cb(xy))

r + 0.5(π̂s(xy) + 2π̂s(x))

)
. (A.1.10’)

Since π̂s(x), π̂s(xy) and π̂b(xy) are determined by the system of equations (A.1.1) - (A.1.8), we have V̂s(xy) −

2V̂s(x) = 0 if and only if

0 =(2cs(x) − cs(xy)) +
0.5π̂b(xy)

r + 0.5(π̂s(xy) + 2π̂s(x))
(2cb(x) − cb(xy)), (A.1.11)

cs(xy) − cs(x) =0.5(π̂b(xy) + π̂b(x))
rv + cb(x)

r + 0.5(π̂s(x) + π̂s(xy))
, (A.1.12)

µ =π̂b(xy)(π̂s(xy) + 2π̂s(x)), (A.1.13)

π̂b(xy)π̂s(x) =π̂b(x)(π̂s(xy) + π̂s(x)), (A.1.14)

π̂s(x)π̂s(x) =π̂s(xy)(π̂b(xy) + 2π̂b(x)). (A.1.15)

Equation (A.1.11) is a requirement from the sign condition (A.1.10’) when V̂s(xy) − 2V̂s(x) = 0. It is

clear from this equation that V̂s(xy) − 2V̂s(x) = 0 if only if (2cs(x) − cs(xy)) = −k̂(2cb(x) − cb(xy)) where

k̂ ≡ 0.5π̂b(xy)/[r + 0.5µ/π̂b(xy)]. We can easily see that this k̂ equals to the coefficient of the second term of

the right hand side of equation (A.1.10’) by substituting (A.1.12) into it. Moreover, equation (A.1.12) is the

free entry condition which is an (A.1.9) set to zero. Notice that assumption cs(xy) > cs(x) is necessary for

the equation (A.1.12) to hold. ■

Claim A.1.3. Suppose that assumption cs(xy) > cs(x) holds. Then, for any cs(xy) − cs(x) and cb(x),

V̂s(xy) − 2V̂s(x) > 0 if and only if (2cs(x) − cs(xy)) > −k̂(2cb(x) − cb(xy)).

18



Proof. In the case where the equilibrium actions for all matched pairs of state x and y sellers are to trade, the

surplus V̂s(xy) − 2V̂s(x) and the equilibrium populations are determined by the system of equations (A.1.10),

(A.1.13), (A.1.14), (A.1.15) and an entry condition (A.1.8) which can be rewritten as a condition that the

right hand side of equation (A.1.9) equals to zero,

0 =

[
− (2cs(x) − cs(xy))− (cs(xy) − cs(x))

+ 0.5π̂s(x)(V̂s(xy) − 2V̂s(x))

− 0.5π̂b(xy)

(2cb(x) − cb(xy)) + 0.5π̂s(xy)(V̂s(xy) − 2V̂s(x))

r + 0.5(2π̂s(x) + π̂s(xy))

+ 0.5(π̂b(x) + π̂b(xy))
rv + cb(x) + 0.5π̂s(xy)(V̂s(xy) − 2V̂s(x))

r + 0.5(π̂s(x) + π̂s(xy))

]
·
[
r + 0.5(π̂b(x) + π̂b(xy))

r + 0.5π̂s(x)

r + 0.5(π̂s(x) + π̂s(xy))

]−1

. (A.1.9’)

The system of equations above can be reduced to the system of two equations (A.1.10) and (A.1.9’),

which determine the surplus and πb(xy), because all other populations are determined by equations (A.1.13),

(A.1.14), and (A.1.15).

For any given pair of parameters cs(xy) − cs(x) and cb(x), the surplus V̂s(xy) − 2V̂s(x) and the population

πb(xy) can be viewed as a continuous function of ESS = (2cs(x) − cs(xy)) and ESB = (2cb(x) − cb(xy)). And

note that k̂ is fixed for a given pair of parameters cs(xy) − cs(x) and cb(x). Moreover, since we have Claim

A.1.1, we know that there is a solution to the system of equations with positive values of populations. All

we need to show is that the surplus V̂s(xy) − 2V̂s(x) is positive if and only if ESS > −k̂ESB.

We show that V̂s(xy) − 2V̂s(x) is positive if ESS > −k̂ESB. Consider a point (ESB,ESS) where

ESS > −k̂ESB. Then the surplus must not be zero under this combination of (ESB,ESS) since we have

Claim A.1.2. If the surplus is positive under this (ESB,ESS), then under all other points (ESS′, ESB′)

such that ESS′ > −k̂ESB′, the surplus must also be positive. If not and the surplus is negative, then

there exists a convex combination of these two points (ESS′′, ESB′′) under which the surplus is zero and

ESS′′ > −k̂ESB′′. This contradicts Claim A.1.2. It is clear from equation (A.1.10) that the surplus is

positive if both ESS and ESB are positive.

We can also show that V̂s(xy)−2V̂s(x) is negative if ESS < −k̂ESB. This can be done by making similar

arguments as above. ■

A.2 Derivation of conditions that the equilibrium actions are not to trade for

all matched pairs of state x and y sellers

Supposing that all matched pairs of state x and y sellers do not trade, we show that their surplus is non-

positive if and only if ESS ≤ −ǩESB, where ǩ is a fixed number defined below.

Let σ̌ be a candidate equilibrium strategy in which all matched pairs of state x and y sellers trade. Then,
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it should satisfy the followings:

σ̌∗
s(x)(s(y)) = σ̌∗

s(y)(s(x)) = 0,

σ̌∗
s(x)(b(xy)) · σ̌

∗
b(xy)(s(x)) = 1,

σ̌∗
s(x)(b(x)) · σ̌

∗
b(x)(s(x)) = 1,

σ̌∗
s(xy)(b(x)) · σ̌

∗
s(xy)(b(x)) = 1,

σ̌∗
s(xy)(b(xy)) · σ̌

∗
s(xy)(b(xy)) = 1.

By substituting these into the definition of search values, the stationary state conditions and the free entry

condition, we define the candidate equilibrium search values and populations. They are denoted as V̌a and

π̌a for all a ∈ A and satisfy the following:

rV̌s(x) = −cs(x) + 0.5π̌b(xy)(v + V̌b(x) − V̌b(xy) − V̌s(x)) + 0.5π̌b(x)(v − V̌b(x) − V̌s(x)), (A.2.1)

rV̌b(xy) = −cb(xy) + 2 · 0.5 · π̌s(x)(v + V̌b(x) − V̌b(xy) − V̌s(x)), (A.2.2)

rV̌b(x) = −cb(x) + 0.5π̌s(x)(v − V̌b(x) − V̌s(x)), (A.2.3)

rV̌s(xy) = −cs(xy) + 0.5π̌b(xy)(2v − V̌b(xy) − V̌s(xy))

+ 2 · 0.5 · π̌b(x)(v + V̌s(x) − V̌b(x) − V̌s(xy)), (A.2.4)

0 = π̌s(xy)(π̌b(xy) + 2π̌b(x)) (A.2.5)

µ = π̌b(xy) · π̌s(xy) + 2 · π̌b(xy) · π̌s(x), (A.2.6)

π̌b(xy) · π̌s(x) = π̌b(x) · π̌s(xy) + π̌b(x) · π̌s(x), (A.2.7)

and

V̌s(x) = 0. (A.2.8)

In the rest of this subsection, we first prove that the system of equations (A.2.1) - (A.2.8) has a solution

in which π̌b(xy), π̌b(x), π̌s(x) > 0 and π̌s(xy) = 0 (Claim A.2.1). Given this solution, we define ǩ and prove

that the surplus for a matched pair of state x and y sellers is non-positive if and only if ESS ≤ −ǩESB

(Claim A.2.2).

Claim A.2.1. The system of equations (A.2.1) - (A.2.8) has a solution in which π̌b(xy), π̌b(x), π̌s(x) > 0

and π̌s(xy) = 0.

Proof. Given a population of state xy buyers, it is clear that the populations of all other agents are determined

as a solution to the system of equations (A.2.5) - (A.2.7). We can see that π̌b(x), π̌s(x) > 0 and π̌s(xy) = 0

if π̂b(xy) > 0. And given these populations, the search values are determined as a solution to the system of

equations (A.2.1) to (A.2.4). We only need to show that this solution satisfies the condition (A.2.8) for a

positive value of π̌b(xy) > 0.
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By rearranging equation (A.2.1) - (A.2.7), the left hand side of equation (A.2.8) can be expressed as

V̌s(x) =

[
−cs(x) + 2 · 0.5 · π̌b(xy)

rv + cb(x)

r + 0.5µ/2π̌b(xy)
− 0.5π̌b(xy)

2cb(x) − cb(xy)

r + 0.5µ/π̌b(xy)

][
r + r

2 · 0.5 · π̌b(xy)

r + 0.5µ/2π̌b(xy)

]−1

.

(A.2.9)

The right hand side of this equation becomes positive as π̌b(xy) → ∞ and becomes negative as π̌b(xy) → 0.

Thus, by the intermediate value theorem, there exists π̌b(xy) > 0 such that V̌s(x) = 0 which can be expressed

as

0 = −cs(x) + 2 · 0.5 · π̌b(xy)

rv + cb(x)

r + 0.5µ/2π̌b(xy)
− 0.5π̌b(xy)

2cb(x) − cb(xy)

r + 0.5µ/π̌b(xy)
. (A.2.10)

■

Claim A.2.2. Suppose that assumption cs(xy) > cs(x) holds. For any cs(xy) − cs(x) and cb(x),

Vs(xy) − 2Vs(x) ≤ 0 if and only if (2cs(x) − cs(xy)) ≤ −ǩ(2cb(x) − cb(xy)),

where ǩ is defined as follows:

ǩ ≡ 0.5π̌b(xy)/(r + 0.5µ/π̌b(xy)) > 0,

where π̌b(xy) is the solution to the equation,

cs(xy) − cs(x) = 2 · 0.5 · π̌b(xy)

rv + cb(x)

r + 0.5µ/2π̌b(xy)
.

Proof : We first show that

Vs(xy) − 2Vs(x) = 0 if and only if (2cs(x) − cs(xy)) = −ǩ(2cb(x) − cb(xy)), (A.2.11)

which can be straightforwardly seen by rearranging equations (A.2.1) and (A.2.4),

[r + 0.5(π̌b(xy) + 2π̌b(x))](Vs(xy) − 2Vs(x)) = (2cs(x) − cs(xy)) +
0.5π̌b(xy)

r + 0.5µ/π̌b(xy)
(2cb(x) − cb(xy)). (A.2.12)

Substituting (A.2.10) into (A.2.11), we obtain the following equation

cs(xy) − cs(x) = 2 · 0.5 · π̌b(xy)

rv + cb(x)

r + 0.5µ/2π̌b(xy)
, (A.2.13)

which determines π̌b(xy). Note here that all populations and ǩ are fixed once parameter values cs(xy) − cs(x)

and cb(x) are fixed. Notice that assumption cs(xy) > cs(x) is necessary for this equation to hold.

Given these fixed values of populations and equation (A.2.12), the value of surplus Vs(xy) − 2Vs(x) can

now be considered as a continuous function of 2cs(x)−cs(xy) and 2cb(x)−cb(xy). At this point, using property

(A.2.11) and equation (A.2.12), we can take a procedure similar to the one we have taken in the proof of

Claim A.1.3 to show that

Vs(xy) − 2Vs(x) ≤ 0 ⇐⇒ 2cs(x) − cs(xy) +
0.5π̌b(xy)

r + 0.5µ/π̌b(xy)
(2cb(x) − cb(xy)) ≤ 0.

■
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A.3 Derivation of conditions that the equilibrium actions are mixed ones for

all matched pairs of state x and y sellers

Supposing that the equilibrium actions are mixed ones for all matched pairs of state x and y sellers, we show

that their surpluses is zero if and only if either −ǩ(2cb(x) − cb(xy)) > (2cs(x) − cs(xy)) > −k̂(2cb(x) − cb(xy))

or −k̂(2cb(x) − cb(xy)) > (2cs(x) − cs(xy)) > −ǩ(2cb(x) − cb(xy)).

Let σ̃ be a candidate equilibrium strategy in which matched pairs of state x and y sellers trade with

probability ρ. Then, it should satisfy the following:

σ̃∗
s(x)(s(y)) = σ̃∗

s(y)(s(x)) =
√
ρ,

σ̃∗
s(x)(b(xy)) · σ̃

∗
b(xy)(s(x)) = 1,

σ̃∗
s(x)(b(x)) · σ̃

∗
b(x)(s(x)) = 1,

σ̃∗
s(xy)(b(x)) · σ̃

∗
s(xy)(b(x)) = 1,

σ̃∗
s(xy)(b(xy)) · σ̃

∗
s(xy)(b(xy)) = 1.

By substituting these into the definition of search values, the stationary state conditions and the free entry

condition, we define the candidate equilibrium probability, search values and populations. They are denoted

as ρ, Ṽa and π̃a for all a ∈ A and satisfy the followings:

rṼs(x) =− cs(x) + 0.5π̃s(x)ρ(Ṽs(xy) − 2Ṽs(x))

+ 0.5π̃b(xy)(v + Ṽb(x) − Ṽb(xy) − Ṽs(x)) + 0.5π̃b(x)(v − Ṽb(x) − Ṽs(x)), (A.3.1)

rṼs(xy) =− cs(xy) + 0.5π̃b(xy)(2v − Ṽb(xy) − Ṽs(xy))

+ 2 · 0.5 · π̃b(x)(v + Ṽs(x) − Ṽb(x) − Ṽs(xy)), (A.3.2)

rṼb(xy) =− cb(xy) + 0.5π̃s(xy)(2v − Ṽb(xy) − Ṽs(xy)) + 2 · 0.5 · π̃s(x)(v + Ṽb(x) − Ṽb(xy) − Ṽs(x)), (A.3.3)

rṼb(x) =− cb(x) + 0.5π̃s(xy)(v + Ṽs(x) − Ṽb(x) − Ṽs(xy)) + 0.5π̃s(x)(v − Ṽb(x) − Ṽs(x)), (A.3.4)

ρ · π̃s(x) · π̃s(x) = π̃s(xy) · π̃b(xy) + 2 · π̃s(xy) · π̃b(x). (A.3.5)

µ = π̃b(xy) · π̃s(xy) + 2 · π̃b(xy) · π̃s(x), (A.3.6)

π̃b(xy) · π̃s(x) = π̃b(x) · π̃s(xy) + π̃b(x) · π̃s(x), (A.3.7)

and

Ṽs(x) = 0. (A.3.8)

Following a procedure similar to that we have taken in Claim A.1.1, under assumption cb(xy) > cb(x), we

can prove that the system of equations (A.3.1) - (A.3.8) has a solution in which the population of each state

of sellers and buyers is positive. Thus, in the rest of this subsection, we prove that there exists a unique

ρ ∈ (0, 1) such that Ṽs(xy)−2Ṽs(x) = 0 if and only if −ǩ(2cb(x)−cb(xy)) > (2cs(x)−cs(xy)) > −k̂(2cb(x)−cb(xy))
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or −k̂(2cb(x) − cb(xy)) > (2cs(x) − cs(xy)) > −ǩ(2cb(x) − cb(xy)) (Claim A.3.1). The uniqueness of ρ is shown

in Lemma A.3.1.

Lemma A.3.1. Suppose that assumption cs(xy) > cs(x) holds. For any cs(xy) − cs(x) and cb(x), the system

of equations (A.3.1) - (A.3.8) and Ṽs(xy) − 2Ṽs(x) = 0 has a unique solution. And the equilibrium probability

of wholesale transaction and the equilibrium populations under this solution (ρ, π̃b(xy), π̃b(x), π̃s(xy), π̃s(x)) can

be considered as a function of (2cs(x) − cs(xy), 2cb(x) − cb(xy)).

Proof. By rearranging equations (A.3.1) - (A.3.8) and Ṽs(xy) − 2Ṽs(x) = 0 as we did in Claim A.1.2, we see

that (ρ, π̃b(xy), π̃b(x), π̃s(xy), π̃s(x)) is a solution to the following system of equations:

0 = (2cs(x) − cs(xy)) + (2cb(x) − cb(xy)) · 0.5π̃b(xy)/(r + 0.5µ/π̃b(xy)), (A.3.9)

ρπ̃s(x)π̃s(x) = π̃s(xy)(π̃b(xy) + 2π̃b(x)), (A.3.10)

cs(xy) − cs(x) = 0.5(π̃b(xy) + π̃b(x))
rv + cb(x)

r + 0.5µ/(π̃b(xy) + π̃b(x))
, (A.3.11)

µ = π̃b(xy)(π̃s(xy) + 2π̃s(x)), (A.3.12)

π̃b(xy)π̃s(x) = π̃b(x)(π̃s(xy) + π̃s(x)). (A.3.13)

We show that this system of equations (A.3.9) - (A.3.13) has a unique solution. To see this, we first notice

that equation (A.3.9) determines a unique value of π̃b(xy). Then, equation (A.3.11) determines a unique value

of π̃b(xy) + π̃b(x) under assumption cs(xy) > cs(x). From this, we obtain a unique value of π̃b(x) because we

already obtained the unique value of π̃b(xy). Given these π̃b(xy) and π̃b(x), equations (A.3.12) and (A.3.13)

determine unique values of π̃s(xy) and π̃s(x). Since we obtained unique values of (π̃b(xy), π̃b(x), π̃s(xy), π̃s(x)),

equation (A.3.10) determines a unique value of ρ. Once (ρ, π̃b(xy), π̃b(x), π̃s(xy), π̃s(x)) is determined, the

search values are uniquely obtained from equations (A.3.1) - (A.3.4). ■

Claim A.3.1. Suppose that assumption cs(xy) > cs(x) holds. For any cs(xy) − cs(x) and cb(x), there exists

a ρ ∈ (0, 1) such that Ṽs(xy) − 2Ṽs(x) = 0 if and only if either −ǩ(2cb(x) − cb(xy)) > (2cs(x) − cs(xy)) >

−k̂(2cb(x) − cb(xy)) or −k̂(2cb(x) − cb(xy)) > (2cs(x) − cs(xy)) > −ǩ(2cb(x) − cb(xy)).

Proof. By rearranging equations (A.3.1) - (A.3.4), the surplus Ṽs(xy) − 2Ṽs(x) can be expressed as,

Ṽs(xy) − 2Ṽs(x)

=

[
(2cs(x) − cs(xy)) +

0.5π̃b(xy)

r + 0.5µ/π̃b(xy)
(2cb(x) − cb(xy))

]
·
[
r + ρπ̃s(x) + 2 · 0.5 · π̃b(x) + 0.5π̃b(xy)

r + 2θπ̃s(x)

r + 0.5µ/π̃b(xy)

]−1

, (A.3.14)

which can be considered as a function of (2cs(x) − cs(xy), 2cb(x) − cb(xy)) for a fixed pair of cs(xy) − cs(x)

and cb(x) since we have Lemma A.3.1. The question we now ask is under what value of (2cs(x) − cs(xy),

2cb(x) − cb(xy)), ρ is in between 0 and 1.
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To check this, we divide possible values of (2cs(x) − cs(xy), 2cb(x) − cb(xy)) into the following four cases

since we have fixed values of k̂ and ǩ for a fixed pair of cs(xy)− cs(x) and cb(x): Case (i) −ǩ(2cb(x)− cb(xy)) >

(2cs(x) − cs(xy)) > −k̂(2cb(x) − cb(xy)), Case (ii) −k̂(2cb(x) − cb(xy)) > (2cs(x) − cs(xy)) > −ǩ(2cb(x) − cb(xy)),

Case (iii) (2cs(x) − cs(xy)) ≥ max{−k̂(2cb(x) − cb(xy)),−ǩ(2cb(x) − cb(xy))} and Case (iv) (2cs(x) − cs(xy)) ≤

min{−k̂(2cb(x) − cb(xy)),−ǩ(2cb(x) − cb(xy))}.

In case (i), we show that there exists a ρ ∈ (0, 1) such that the right hand side of equation (A.3.14) equals

zero. When ρ goes to 1, the system of equations (A.3.1) - (A.3.8) becomes the same as the system of equation

(A.1.1) - (A.1.8). Thus, when ρ goes to 1, the right hand side of equation (A.3.14) goes to V̂s(xy) − 2V̂s(x),

which is positive if (2cs(x)−cs(xy)) > −k̂(2cb(x)−cb(xy)) (Claim A.1.3). Similarly, when ρ goes to 0, the system

of equations (A.3.1) - (A.3.8) becomes the same as the system of equation (A.2.1) - (A.2.8) so that the right

hand side of equation (A.3.14) goes to V̌s(xy)−2V̌s(x) which is negative if (2cs(x)−cs(xy)) < −ǩ(2cb(x)−cb(xy))

(Claim A.2.2). Since the right hand side of equation (A.3.14) is a continuous function of ρ, we can apply

the intermediate value theorem to it and obtain the desired result.

Similarly, in case (ii), we can show that there exists a ρ ∈ (0, 1) such that the right hand side of equation

(A.3.14) equals zero. When ρ goes to 1, Claim A.1.3 tells us that the right hand side of equation (A.3.14)

is negative since (2cs(x) − cs(xy)) < −k̂(2cb(x) − cb(xy)). When ρ goes to 0, Claim A.2.2 tells us the right

hand side of equation (A.3.14) is positive since (2cs(x) − cs(xy)) > −ǩ(2cb(x) − cb(xy)). Again by using the

intermediate value theorem, we obtain the desired result.

On the other hand, in case (iii), we can show that there exists no ρ ∈ (0, 1) such that the right hand

side of equation (A.3.14) equals zero. When ρ goes to 1, Claims A.1.2 and A.1.3 tell us the right hand side

of equation (A.3.14) is non-negative since (2cs(x) − cs(xy)) ≥ −k̂(2cb(x) − cb(xy)). When ρ goes to 0, Claim

A.2.2 tells us it is non-negative since (2cs(x) − cs(xy)) ≥ −ǩ(2cb(x) − cb(xy)). These imply what we wanted to

show since ρ is unique (Lemma A.3.1).

Similarly, in case (iv), we can show that there exists no ρ ∈ (0, 1) such that the right hand side of

equation (A.3.14) is zero. In this case, when ρ goes to either zero or one, the right hand side of equation

(A.3.14) goes to non-positive. ■

A.4 Proof of Theorem

We notice that all Claims in Appendix A hold for any given cs(xy)−cs(x) and cb(x). By combining all Claims,

the Theorem is established once we show k̂ ≥ ǩ. Showing this is equivalent to showing π̂b(xy) ≥ π̌b(xy) due

to the definitions of k̂ and ǩ.

We show π̂b(xy) ≥ π̌b(xy) as follows: From equations (A.1.12) and (A.2.13),

2 · 0.5 · π̌b(xy)

rv + cb(x)

r + 0.5µ/2π̌b(xy)
= cs(xy) − cs(x) = 0.5(π̂b(xy) + π̂b(x))

rv + cb(x)

r + 0.5µ/(π̂b(xy) + π̂b(x))
.

This equation implies π̂b(xy) + π̂b(x) = 2π̌b(xy). Also, we have π̂b(xy) ≥ π̂b(x) since π̂b(xy)π̂s(x) = π̂b(x)(π̂s(xy) +

π̂s(x)). These results imply π̂b(xy) ≥ π̌b(xy).
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B Proof of Corollary 1

In Appendix B, under equations (A.3.9) - (A.3.13), we show that ∂ρ/∂ESS > 0 if ESB < 0 and that

∂ρ/∂ESS < 0 if ESB > 0. We write ∂ρ/∂ESS > 0 as follows:

∂ρ

∂ESS
=

∂ρ

∂π̃s(x)

∂π̃s(x)

∂π̃b(xy)

∂π̃b(xy)

∂ESS
.

We look at the sign of ∂ρ/∂ESS by looking at the sign of each term on the right hand side.

First, we look at the sign of ∂π̃b(xy)/∂ESS. From equation (A.3.9), the sign is positive if ESB < 0, and

negative if ESB > 0.

Second, we look at the sign of ∂π̃s(x)/∂π̃b(xy). To investigate the sign, we note that π̃b ≡ π̃b(xy) + π̃b(x)

is constant by equation (A.3.11). We also note that π̃s ≡ π̃s(xy) + π̃s(x) is constant because it can be shown

µ = (π̃s(xy) + π̃s(x))(π̃b(xy) + π̃b(x)) as we did in Claim A.1.2. With these results, equation (A.3.13) can be

rewritten as

π̃b(x) =
π̃bπ̃s(x)

π̃s + π̃s(x)
π̃b. (B.1)

This implies that ∂π̃s(x)/∂π̃b(xy) = ∂π̃s(x)/∂(π̃b − π̃b(x)) < 0.

Finally, we look at the sign of ∂ρ/∂π̃s(x). By substituting equation (B.1), π̃b = π̃b(xy) + π̃b(x) and

π̃s = π̃s(xy) + π̃s(x) into equation (A.3.10), we obtain

ρ =
π̃s − π̃s(x)

π̃s(x)π̃s(x)

π̃s + 2π̃s(x)

π̃s + π̃s(x)
π̃b. (B.2)

This equation implies ∂ρ/∂π̃s(x) < 0.
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