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Local risk-minimization for
Barndorff-Nielsen and Shephard models

Takuji Arai‘and Ryoichi Suzuki®
March 20, 2015

Abstract

We aim to obtain explicit representations of locally risk-minimizing
of call and put options for the Barndorff-Nielsen and Shephard models,
which are Ornstein-Uhlenbeck type stochastic volatility models. Arai and
Suzuki [1] obtained a formula of locally risk-minimizing for Lévy markets
under many additional conditions by using Malliavin calculus for Lévy
processes. In this paper, supposing mild conditions, we make sure that the
Barndorff-Nielsen and Shephard models satisfy all the conditions imposed
in [1]. Among others, we investigate the Malliavin differentiability of the
density of the minimal martingale measure.

Keywords: Local risk-minimization, Barndorff-Nielsen and Shephard models,
Stochastic volatility models, Malliavin calculus, Lévy processes.

1 Introduction

The aim of this paper is to obtain explicit representations of locally risk-
minimizing (LRM, for short) of call and put options for the Barndorff-Nielsen
and Shephard models (BNS model, for short). Here the BNS models are
Ornstein-Uhlenbeck (OU, for short) type stochastic volatility models under-
taken by Barndorff-Nielsen and Shephard [2], [3]. On the other hand, LRM is
a very well-known quadratic hedging method of contingent claims for incom-
plete financial markets. Although its theoretical aspects have been developed
well, little is known about its explicit representations. Accordingly, Arai and
Suzuki [1] have developed this problem for Lévy markets by using Malliavin
calculus for Lévy processes. They gave in Theorem 3.7 of their paper an ex-
plicit formula for LRM including some Malliavin derivatives. Now, Lévy mar-
kets mean models whose asset price process is described by a solution to the
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following stochastic differential equation (SDE, for short):
dS; = S;_ [zxtdt + ,Btth + / \ }’)/t,zﬁ(dt,dz) , So>0, (1.1)
R\{0

where W is a 1-dimensional Brownian motion, N is a compensated Poisson
random measure; and «, § and <y are predictable processes. If a, § and 7y are
deterministic, a representation of LRM is given simply under some mild condi-
tions. Indeed, [1] calculated explicitly LRM of call options, Asian options and
lookback options for the deterministic coefficients case. On the other hand, ac-
cording to Theorem 3.7 in [1], we need to impose many additional conditions
on models with random coefficients. Thus, they postponed concrete calcula-
tions for such models. Since the BNS model is one of typical examples of the
random coefficients case, we treat it in this paper.

Now, we introduce the BNS models. Many empirical studies say that the
BNS models capture many stylized facts of financial time series. The square
volatility process 0 of a BNS model is given as an OU process driven by a

subordinator, that is, a nondecreasing Lévy process. More precisely, 0 is given
as a solution to the following SDE:
do? = —Aofdt +dHy, of >0, (1.2)

where A > 0, H is a subordinator without drift. Now, the asset price process S
of a BNS model is described as

t 1 t
St = Spexp {/0 (y - 2052) ds —i—/o osdWs + pH,\t} , (1.3)

where Sy > 0, p < 0, p € R. Note that the last term pH,; accounts for the
leverage effect, which is a stylized fact such that the asset price declines at the
moment when the volatility increases. Moreover, defining |; := H,;, we denote
by N the Poisson random measure of ]. So that, we have J; = [;° xN([0, ], dx).

Denoting by v the Lévy measure of ], we have that N(dt,dx) := N(dt,dx) —
v(dx)dt is the compensated Poisson random measure. Then, the asset price
process S given in (1.3) is a solution to the following SDE:

dS; = Si_ {Dédt + oy dWr + / (pr — 1)N(dt, dx)} , (1.4)
0

where a := p + [~ (eP* — 1)v(dx). Thus, the BNS models are corresponding to
the case where  in (1.1) is random.

In this paper, we shall derive LRM for BNS models by using Theorem 3.7 of
[1]. Thus, the primal part of our discussion lies in confirmation of all the con-
ditions imposed on Theorem 3.7 of [1]. In particular, we need to investigate the
Malliavin differentiability of the density of the minimal martingale measure
(MMM, for short), which is an indispensable equivalent martingale measure
to discuss LRM. To the best of our knowledge, there is no literature on LRM



for BNS models. On the other hand, there are some preceding research on the
mean-variance hedging, which is an alternative quadratic hedging method, for
BNS models. Cont, Tankov and Voltchkova [6], and Kallsen and Pauwels [10]
studied this problem under the assumption that 5 is a martingale. Kallsen and
Vierthauer [11] treated the case where p = 0. Recently, Benth and Detering
[4] dealt with the BNS model framework to represent a future price process on
electricity under the assumption that S is a martingale and p = 0.

Outline of this paper is as follows. After giving preliminaries in Section 2,
we address the main results in Section 3. Theorem 3.1 gives an explicit rep-
resentation of LRM for put options. LRM for call options is provided as its
corollary. A proof of Theorem 3.1 is discussed in Section 4. Section 5 is devoted
to the Malliavin differentiability of the density of the MMM. Conclusions are
given in Section 6. Some additional calculations are provided in Appendix.

2 Preliminaries

We consider a financial market model in which only one risky asset and one
riskless asset are tradable. For simplicity, we assume that the interest rate is
given by 0. Let T > 0 be the finite time horizon. The fluctuation of the risky
asset is described as a process S given by (1.3). We adapt the same mathe-
matical framework as [1]. The structure of the underlying probability space
(Q), F,P) will be discussed in Subsection 2.3 below. Remark that the Poisson
random measure N and the Lévy measure v of | are defined on [0, T] x (0, o)
and (0, o), respectively. Remark that

/oo(x/\l)v(dx) <
0

by Proposition 3.10 of Cont and Tankov [5]. Letting v be the Lévy measure
of H, we have v(dx) = AvH(dx). Denoting A; := fot Ss_ads and M; = S; —
So — At, we have S; = Sg + M; + A, which is the canonical decomposition of
S. Further, we denote L; :=log(S;/Sp) for t € [0, T], that is,

t 1 t
L :/0 (y—zasz> ds—i—/o s dWs + ). @.1)

Remark 2.1 Noting that o;— = o a.s. for any t € [0,T), we can regard oy and o?
as predictable processes. For example, we may identify o:dW; in (1.4) with oy dWy, if
need be.

Next, we state our standing assumptions as follows:

Assumption 22 1. [T exp{2(B(T) V |p|)x}v(dx) < oo, where B(t) :=
1—e M
— fort € [0, T].

2. W > —1, where Cp := [~ (eP* — 1)?v(dx).



Remark 2.3 1. Item 1 in Assumption 2.2 ensures [y x*v(dx) < oo, which
means E[J3] < oo. In addition, we have [;°(e’* — 1)*v(dx) <
Jo~ p*x?v(dx) < oo, since 0 < 1 —ef* < —px.
2. As seen in Subsection 2.3 of [1], the so-called (SC) condition is satisfied under
Assumption 2.2. For more details on the (SC) condition, see Schweizer [15],
[16]. Moreover, Lemma 2.11 of [1] implies that E {supte[orﬂ |St|2} < co.

3. By (A.2) in Appendix, item 2 ensures that 021(: > —1forany t € [0,T|.
ttlp

Remark 2.4 As introduced in Nicolato and Venardos [12], there are two representa-
tive examples of o®. The first is the case where v is given as

vH(dx) = T=x T3 (14 e 10 g ) ()dx

a
2V2m
wherea > 0and b > 0. In this case, the invariant distribution of the squared volatility
process o2 follows an inverse-Gaussian distribution with parameters a > 0and b > 0.

o2 is called an IG-OU process. If % > 2(B(T) V |p|), then item 1 of Assumption
2.2 is satisfied. The second example is what we call Gamma-OU process, that is, the
case where the invariant distribution of o2 is given by a Gamma distribution with
parameters a > 0 and b > 0. In this case, vH is described as

vl (dx) = abe*bxl(oloo) (x)dx.

As well as the IG-OU case, item 1 of Assumption 2.2 is satisfied if b > 2(B(T) V |p]).
For more details on this topic, see also Schoutens [14].

2.1 Locally risk-minimizing

In this subsection, we give a definition of LRM based on Theorem 1.6 of [16].

Definition 2.5 1. ®g denotes the space of all R-valued predictable processes ¢
satisfying E [fOT E2d(M); + (fOT |§tdAt\)2} < 0.

2. An L?*-strategy is given by a pair ¢ = (¢, 1), where ¢ € Og and 1 is an
adapted process such that V(@) := ¢S + 1 is a right continuous process with
E[VZ(g)] < oo for every t € [0,T]. Note that & (resp. 1) represents the
amount of units of the risky asset (resp. the risk-free asset) an investor holds at
time t.

3. For claim F € L*(P), the process C*(¢) defined by Cf (¢) := Fly_7y +
Vi(@) — fot €sdSs is called the cost process of ¢ = (&, 1) for F.
4. An L2-strateqy ¢ is said locally risk-minimizing for claim F if Vr(¢) = 0

and CF () is a martingale orthogonal to M, that is, [CF (@), M] is a uniformly
integrable martingale.



5. An F € L2(IP) admits a Follmer-Schweizer decomposition (FS decomposition,
for short) if it can be described by

T
F=F+ /O eFds, + LE, 2.2)

where Fy € R, &F € @g and LF is a square-integrable martingale orthogonal to
M with L§ = 0.

For more details on LRM, see [15], [16]. Now, we introduce Proposition 5.2 of
[16].

Proposition 2.6 (Proposition 5.2 of [16]) Under Assumption 2.2, an LRM ¢ =
(&, n) for F exists if and only if F admits an FS decomposition; and its relationship is
given by

t
G=28, m=F+ /O ¢ldSs + Lf — Fly_ry — &i St.

Thus, it suffices to get a representation of &F in (2.2) in order to obtain LRM for
claim F. Henceforth, we identify & with LRM for F.

2.2 Minimal martingale measure

We need to study upon the MMM in order to discuss FS decomposition. A
probability measure IP* ~ PP is called the MMM, if S is a P*-martingale; and
any square-integrable IP-martingale orthogonal to M remains a martingale un-
der IP*. Now, we consider the following SDE:

AZy = —Zi_AdM;, Zo =1, 2.3)

L
St— o7+Cp
— Jo AtdM;. More precisely, denoting

where A; = The solution to (2.3) is a stochastic exponential of

a(ef* —1)

ao;
= AsSs_05 = 5+ d Osx:= AsSs—(eP¥ —1) =
us sOs US an S,X SYs (e ) 0.52+Cp

02+ Cp

fors € [0, T] and x € (0,00), we have AydM; = udW; + fooo Gt,zﬁ(dt, dz); and

Zt:exp{/;usdwsl/ 2ds+/ / log(1 —6sx) (ds,dx)
+/Ot /Owaoga—es,x)+95,x)v(dx)ds}. (24)

Now, remark that

/ / |log(1— Sx)\z—i—Gszx} (dxds<2TCp/ x*v(dx) < oo



by Lemma A.6. Noting that the boundedness of 15 by Lemma A.6, and

(1_95,x) log(l—es,x)+es,x < ( — 0 )( 95x)+95x _Gsxr

we have the martingale property of Z by Theorem 1.4 of Ishikawa [9]. Now,
we see the following proposition:

Proposition2.7 1. Zr € L*(P).
2. A probability measure IP* defined as d]P = Zr is the MMM.

Proof. We can see Item 2 immediately from item 1 and the martingale prop-
erty of Z. Then, we show item 1. Here (2.4) and Lemma A.6 imply that

T 1 /T T foo ~
73 = exp { — [ 2w — 5 [ auds+ [ [T og(1 - di.)N(ds, dx)
T foo ) T .
+ A ‘/0 [log(l — Os,x) +0sx + Gs,x} v(dx)ds + /0 usds}

T T T oo -
< exp { —/0 2usdWs — %/0 4u§ds+/0 /o log(1 — Jsx)N(ds,dx)

T [
n /0 /0 log (1 — 8s.x) + 8] v(dx)ds + T(CZC, +c§)}

where &, , := 20 » — 62 . That is, denoting

T
Y; = exp{ —/ 2usdWs — / 4u2ds+/ / log(1 N(ds, dx)
0
T poo
+ /0 /0 llog(1 — 6s,x) + Gss] v(dx)ds} 2.5)
for t € [0, T], we have
7% < Yrexp{T(C3C, + C2)}. (2.6)

Thus, we need only to show the process Y is a martingale. Lemma A.6 again
yields that

T (oo
/ / |log(1 — 851 )|*v(dx)ds < / / 4C20*x*v(dx)ds < oo;
0o Jo

and 62, = 62,(2 — 0sx)2 < C3p2x%(2 + Cy)?, thatis, [)| [ 62,v(dx)ds < co.In
addition, we have

// (1 —0sx)log(1—dsx) + s x|V dxds</ / 5 v(dx)ds < co.

Hence, all the conditions in Theorem 1.4 of [9] are satisfied, from which Y is a
martingale. This completes the proof of Proposition 2.7. O



2.3 Malliavin calculus

In this subsection, we prepare Malliavin calculus based on the canonical Lévy
space framework undertaken by Solé, Utzet and Vives [19]. The underly-
ing probability space (Q), F,P) is assumed to be given by (Qw x Qj, Fiy X
Fj, Py x Pj), where (Qw, Fw, Py ) is a 1-dimensional Wiener space on [0, T]
with coordinate mapping process W; and (€, },IPj) is the canonical Lévy
space for ], that is, Oy = U2 (([0, T] x (0,00))"; and Ji(wy) = Yiqzily<p
fort € [0,T] and wj = ((t1,21),...,(tn,zn)) € ([0,T] x (0,00))". Note that
([0, T] x (0,00))° represents an empty sequence. Let F = {Ft}iepo,r) be the
canonical filtration completed for IP. For more details, see Delong and Imkeller
[7], and [19].
First of all, we define measures g and Q on [0, T| x [0,c0) as

q(E) ::[Eéo(dz)dt—i-/}szzv(dz)dt,

and

Q(E) := /E(So(dz)dwt—f—/EzN(dt,dz),

where E € B([0,T] x [0,00)) and ¢y is the Dirac measure at 0. For n € NN,
we denote by LZT, g the set of product measurable, deterministic functions 7 :

([0, T] x [0,00))" — R satisfying

172172

Tqn

= h((tq, soee (Fn, Zn 2 dty,d gtz '
/([O,T]x[o,oo))n| ((t1,21) (tn,zn))|"q(dty, dz1) - q(tn, zn) <

Forne Nand h € Lleq,n, we define

Iy(h) := /([O,T]x[o,oo))" h((t,z1), -, (tn,2n))Q(dty, dz1) - - - Q(dty, dzy).

Formally, we denote LZT’q,O := Rand [y(h) := h for h € R. Under this setting,
any F € L?(PP) has the unique representation F = Y% I;(h,,) with functions
h, € LZT,M that are symmetric in the n pairs (#;,z;),1 < i < n, and we have

E[F?] = =2 o n!||hn Hi% . We define a Malliavin derivative operator.
qn

Definition 2.8 1. Let ID? denote the set of F-measurable random variables F €
L*(P) with F = Y57 Ln(hn) satisfying Y5 q nn!|[ha |2, < co.
T.qn

2. For any F € D2, a Malliavin derivative DF : [0, T] x [0,00) x Q — Ris
defined as

[eo)

D;.F = Z ”In—l(hn((trz)/'))

n=1

for g-a.e. (t,z) € [0,T] x [0,00), IP-a.s.



3 Main results

In this section, we introduce explicit representations of LRM for call and put
options as the main results of this paper by using the framework of Theorem
3.7 of [1]. To this end, denoting by F the underlying contingent claim, we need
Z7F € L?(IP). When F is a call option, this condition is not necessarily satisfied
in our setting. On the other hand, since put options are bounded, we do not
need to care about any integrability condition for them. Thus, we treat put
options firstly; and derive LRM for call options from put-call parity. Due to
this idea, we can do without any additional assumption.

Theorem 3.1 For K > 0, LRM &(K=S1)" of put option (K — St)* is represented as

(K=S7)* _ 1

2

+AprKK—Sﬂ+UﬁZ—1y+ﬂﬁJ%AK—SﬂﬂfLKWZ—Dvwm},
3.1)
where Dy, (K — St) ™ is given by Proposition 4.1; and
Hy, := exp{zD;;log Zr —log(1 — 6:.)}
for (t,z) € [0, T] x (0, 00). Note that Dy, log Z is provided in Proposition A.10.

T)

— +
Remark 3.2 In order to obtain a more explicit representation of (_",‘t(K 1) we calcu-

late the conditional expectation in the second term of (3.1) as follows:
Ep-[(K—S7)" (Hf, —1) +zH;, Dy . (K — S7) " | F;_]
= [Ep+ [H;F,z{(K — ST)Jr + ZDt,Z(K — ST)Jr} — (K — ST)Jrl}_t_}
E|ZrHf K—ST)++ZDt, K—ST)Jr Fi_
_ [ t,z{( 7 Z( }| ] —IEI[)*[(K—ST)+‘-Ft—]
]E[ZTH* (K - ST ex {ZDt, LT})+|]:t—}
_ tz g — Ep:[(K— S7)* | Fi],
t—
where Dy, Lt is given explicitly by Proposition A.5.
Now, we calculate % Fort € [0,T], z € (0,00),s € [t,T] and x € (0,00),
we denote

wy/02 + ze=As—H)

- Diatis = fu (Vo2 +2e7 2671 = ,
s = Us T 2Diatls = fu ( Vo* + ze 02+ 200 4 C,

and

AV =05y + 2D 20 x = fo (/02 +ze M ) (eP¥ —1) = (e — 1)
t,z,8,x * S,X ,Z2Ys,x 0 3 (752 +Z€—A(s—t) + Cp

(3.2)

10



by Lemmas A.7 and A.8. We obtain then, by (2.4), Lemmas A.7-A.9 and Proposition
A.10,

ZrH; T 1T
Tj’z = exp { / (us + zDy zus)dWs — 5 /t (us + ZDt,zL‘S)zds

+ / / log(1— 6,.x) + zDy.» log(1 — 65.1)] N(ds, dx)

+/ / [log(1 —6sx) + 2Dt 1log(1l — 65 x) + 05 x + 2Dt 205 x| v (dx)ds}

:exp{ / Al AW — / ( t“,z,s)zds
+/ / log tzsx) (ds,dx)

+/t/0 log(1 — tzsx)+Atz5x} (dx)ds},

Note that A;‘Zs is  bounded. Moreover, (3.2) and (A.8)

imply  that
Jo (AL )Pv(dx) < C3Cpand A, <1 — ef*. We have then

_ 2 o P x2, ZfAt‘zsx >0,
|10g(1 tzsx)| { (A?zsx)zf otherwzse

which implies that [;° |log(1 tzs DIPv(dx) < oo. As a result, we have

ZrH;,
]E r
[ 7

_} =1 (3.3)
from the view of Theorem 1.4 in [9].

Corollary 3.3 LRM for call option (St — K)* is given as #51-K)" =1 4 g(K=Sn)*

Proof. Note that S is a IP*-martingale by Remark 2.3 and Proposition 2.7.
We have then

(St —K)" =Sy — K+ (K—S7)*
:SO+/OTd5t_K+]EP*[(K_ST)+]+/(JTCt(K_sT)+dSt+L(TK_ST)+
=Ep+ [St — K+ (K—S7)7] +/T . +€EK75T)+) dSt—f—L(TK*STﬁ
= Ep: [(S7—K +/ +CtK ) )ds 4 LS

where L(K=51)" s defined in (2.2). This is an FS decomposition of (Sp — K)*
since 1 € ®g by the (SC) condition. O

11



4 Proof of Theorem 3.1

We begin with the Malliavin derivatives of put options.
Proposition 4.1 For K > 0, we have (K — St)* € D'2 and

Dt,z (K — ST)+ = _l{ST<K}STDt,OLT . 1{0} (Z)
n (K = SpesPezlr)t — (K — §p)*
z

1(0,00) (Z) .

Proof. First of all, note that S = Spel7, and Lt € ID!? by Proposition A.5.
We now denote

F(r) = Spe’, if r <log(K/Sp),
K Kr + K(1 = log(K/Sy)), if r > log(K/So).

Then, f; € C}(R) and 0 < ff(r) < K for any r € R. We also note (K — St)* =
(K — fx(Lt))*. Proposition 2.6 in [18] implies that fx(Lt) € D"? and

)+ fx(Lt +zDt.Lt) — fx(LT)

Dy fx(Lt) = fi(L1)DioLr - 140y (2 Z

1(0,00) (2)-

The same argument as Theorem 4.1 of [1] implies that, for g-a.e. (t,z) € [0, T| x
[0,00),
Dtz(K—S1)" = Dyz(K — fx(L))"
= L) <ky Profi(Lr) - 1oy (2
(K— fx(Lr) — 2Dtz fi(Lr)) " — (K= fr (L))"

+ Z 1(0,00)(2)
= _1{5T<K}STDt,0LT : 1{0} (Z)
K— fx(Lt +2zDyzL7))" — (K — fx(L7)) ™"
L (K= fil(Lr e TZ)) (K— fx(Lt)) 100 (2)
= *1{5T<K}STD1‘,OLT . 1{0} (Z)
K — Sge?Puzlr)+ — (K — S7)*
+( T ; ( T) 1(0100)(2)'
O

Now, we show Theorem 3.1 through Theorem 3.7 of [1]. To this end, we
need only to make sure of all the conditions imposed there. Since Assumptions
2.1 and 2.6 in [1] are satisfied by Remark 2.3, Proposition 2.7 and the bounded-
ness of (K — Sp)™ =: F, it remains to see Assumption 3.4 and (3.1) in [1]. First
of all, we confirm Assumption 3.4 listed as below:

Cl u,u?c ]L[l)’z; and 2usD; zus + z(Dj zus)? € L?(q x P) fora.e. s € [0, T).

C2 0 +log(1—0) € L%, and log(1 - ) € i~

12



C3 For g-a.e. (s,x) € [0,T] x (0,00), there is an €5 € (0,1) such that 6s, <
1—é5x.

zD Zlo Z
C4 ZT{Dt,OlogZTl{O}( )+wl( )( )} GLZ(qX]P).
C5 F € DY?;and Z7 Dy F + FDy.Z1 + zDt ,F - Dy . Z1 € L?(q x PP).

Cé6 FH;

i Hj,Di-F € L' (IP*) for g-a.e. (t,z) € [0, T] x (0,00).
Here ]L(l)’z, ]L%’2 and ]’I:%’Z are defined as follows:
o ILy* denotes the space of G : [0, T] x Q — R satisfying
(a) Gs € D fora.e. s € [0,T],
(b) E [fm |GS\2ds} < oo,
© E [ Jiotxi000) Jo |DezGs[Pdsq(dt, dz)| <

00,

—

o L1 is defined as the space of G : [0, T] x (0,00) x Q — R such that
(d) Gsx € D2 for g-ace. (s,x) € [0,T] x (0,00),
(©) B [ o 1) (000 [Gox PV (dx)ds] < oo,

© E | fio 1 f000) Jio1]x (09 |Dt,zcs,x\Zu(dx)dsq(dt,dz)} < 0.

. ]It%’z is defined as the space of G € ]L%’2 such that

r 2
(g) E (f[O,T]x(O,oo) |G5,x|v(dx)ds) } < o0,

[ 2
1) E | fio 11 000) (Siompx (000 1Dtz Goalv(d)ds) q(dt,dz)} < .

Condition C1: First, we see u € ]L(l]'z. To this end, we check items (a)-(c) in the

definition of ]L(l)’z. Lemmas A.7 and A.6 ensure items (a) and (b), respectively.
To see item (c), Lemma A.7 implies

Ch 2
E {/[0 - / |Dy Lus |2 dsq(dt, dz)] /[OT] [Ooo)(T_ t)?z v(dz)dt < oo,

from which u € lLé’2 follows.
Next, we see 2usD; ,us + z(D; ,us)? € Lz(q x IP) as

E {/[O,T] < [0,00) (2us Dy 215 + z( Dy 2us)?)?q(dt, dz)

4
<2k 2 4+1) Z2u(dz)dt 41
/[OT] [o,oo><z+ >”( 2t < oo @1
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by Lemmas A.6 and A.7.

Lastly, we see u? € ]L(l)’z. Item (b) holds by Lemma A.6. Since us € D! and
u? € L2(IP), Propositions 5.1 and 5.4 of [19], together with (4.1), imply item (a)
and D;;u? = 2usD; ;us + z(Dy zus)%. Moreover, a similar calculation with (4.1)
gives item (c) as follows:

T
E Dy ,u2)2dsq(dt,d
{/[O,T]x[o,oo)/o (Dyzu5) dsq(dt, dz)
' 2\2
=k [/[O,T]X[O,oo)/o (2usDy zus + z(Dy zus) ") “dsq(dt, dz) | < oo.

U
Condition C2: We see log(1 —0) € IL%’2 firstly. Items (d) and (e) in the defi-

nition of ]Li’2 are given by Lemmas A.9 and A.6, respectively. As for item (f),
Lemmas A.8 and A.9 imply

(Gp)?
|Dy 2 log(1 — 6s)|* < Teefzf”‘(l — eP¥)2,
Since [;° e 20%(1 — ef¥)2y(dx) < [} e 2px%u(dx) + [{¥e % v(dx) < oo by
Assumption 2.2, item (f) follows.

Next, we see 0 + log(1 —6) € I[:%g. Note that we can see 0 € ]L%’2 by the
same manner as the proof of condition C1. Thus, we see items (g) and (h) in

the definition of ]Ij%’z. Since (6« +1og(1 — 6sx)| < 2Cylp|x, item (g) follows.
Next, Lemmas A.9 and A.8, and Assumption 2.2 imply

Dt2(0s,x 4-1og(1 — s« dx)d
/[O,T}x(o,oo)‘ tz(0x + log( x))|v(dx)ds

< Dy 205 x|(1 + e P )v(dx)d
< o r1e e Do (1 € P u(a)ds

| G cT
= ~0(1— ) (1 + e P (dx)ds < —=
*./[o,r]x(o,oo) ﬁ( ) (1+e P )v(dx)ds <

Vz
for some C > 0, from which item (h) follows.
Condition C3: This is given by Lemma A.6.
Condition C4: Proposition A.10 implies that log Zr € D'?, and D;olog Zr =
uy, from which E UOT(ZTDLO log ZT)zdt} < oo follows by Lemma A.6 and

Proposition 2.7. Next, let ¥;, be the increment quoting operator defined in
[19]. Since Zt € D2 by Section 5, Proposition 5.4 of [19] yields that, for z > 0,

oo

Di.Zt =Y¥i.Z7 = Y1 exp{log Zr}

exp{log Zr(ww, w;’z)} — exp{log Zr(ww, wy) }
z
log ZT(wW,w;’Z)flog Zr(wy,wy)

exp{log Zr +z 2 } —exp{logZr}
z
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_exp{log Zr +z¥ . log Z7} — exp{log Zr}
B z
exp{log Zr +zD;,log Zr} — exp{log Zt}
z
exp(zDizlog Zr) — 1
=Zr - ,

4.2)

where wy € Qu and wj € Q). Here, when w; = ((t1,21),..., (tn, 2n)), we
denote wj’z :=((t,2),(t1,21), .., (tn,zn)). As a result, condition C4 follows. [J

Condition C5: Noting that |F + zD;.F| < K by Theorem 4.1, we have
FDy.Z1 + zDy.F - Di.Z1 € L?(q x IP), since Zr € IDV2. Thus, it suffices to

see ZrDy,F € L?(q x P). To this end, we prove that [E [fOT(ZTDt,OF)Zdt} < o
firstly. Since D;oF = —1{ST<1<}STDt,0LT = _1{ST<I<}ST‘7t by Propositions 4.1
and A.5, we have E UOT(ZTDt,oF)Zdt} < E [Z%KZ fOT (thdt] Thus, we have

only to show E[Z2]7] < oo from the view of (A.3). Now, as seen in the proof of
Proposition 2.7, Y defined in (2.5) is a positive martingale. Thus, we can define
a probability measure Py as dPy = Y7dIP; and we have

T (oo
E[Yr]r] = Ep,[J7] = Ep, [/0 /o (1 —5s,x)xv(dx)ds} < oo,
since (1 —6sx)x = (1 —0s4)%x < (1+ Cg)*x. Hence, (2.6) implies that

E[Z7]1] < co.
Next, we show E [fOT fOOO(ZTDt,ZF)Zzzv(dz)dt} < oo. Note that

/OT /loo (ZTIZ<>2zzv(dz)dt]

T (oo
< K’E [z% / / v(dz)dt} < oo,
0 1

E { /0 ! /1 m(zTDt,ZP)Zzzu(dz)dt] <E

Hence, we have only to show E UOT fol Z2| Dt,ZF|27:21/(dz)dt} < oo. If we have
Dt F| < K|Dy:L1|, (4.3)

there is C > 0 such that E {Z%|Dt,ZLT|2} < % foranyz € (0,1),  (4.4)

then we obtain

T 1 T A1
¥ {/0 /0 Z%lDt,ZHZZZV(dZ)dt] = KZ/O /0 E [Z%‘Dt,zLTF} sz(dz)dt

T /1
< KZC/ / zv(dz)dt < oo.
0o Jo

15



It remains to show (4.3) and (4.4). (4.3) is shown as
|(K— fx(LT +2zDyzL7))* — (K= fk(L7))"|
2|
< [fx(Lr +2DizL1)) — fx(L1)| _ K|zDi:zL7]

|| Tz

|Dt,zF| =

= K|Dy.Lr|.

Next, in order to see (4.4), it suffices to show that Epy[|Dy.Lr|?] < Cz™! for
some C > 0. The process WY defined as dWY := dW; + 2usds is a Brownian

motion under PY. Noting that /02 4+ ze=As~t) — oy < (/z fors € [t, T], we

have

T /o2 +ze Mo—t) — g, 2C, (T — ¢t
IDyLr| < Ci + / i “awy| 4 26T =
7 t Z \/E

for some C; > 0 by Proposition A.5. Hence, we have

1 12C(T
Epy [| Dt 2L7|?] < 3C? 4 3Epy [/t Zds ] %

< ¢
zZ

for some C > 0,since 0 < z < 1. O
Condition C6: In order to see FH;, € L'(IP*) for g-a.e. (t,z) € [0, T] x (0,00),
it suffices to show E[Z7H},] < oo, since F is bounded. Now, we have

¢?Drzlog Zy _ zDiZr + Z7
1-6:  1-06

ZrH{, = Zr < Co{zDi.Z7 + Z1}

by (4.2) and item 5 of Lemma A.6. Since Z1 € D2 by Section 5, we have
D;.Zr € L'(P) for qae (t,z) € [0,T] x (0,00). Hence, E[Z7H},] < co.
Besides, since D;.F < X, we have H;,D:.F € L'(P*) for g-a.e. (t,z). O

Condition (3.1) in [1]: As the last part of the proof of Theorem 3.1, we make
sure of (3.1) in [1], which is given as follows:

IEUO {ho +/ (L, }dt] (4.5)

where h}z := Ep+[F(H{, — 1) + zH}, Dy . F| Fi—], and

1 = Epe [DtoF F[/ Dy oitsdWP +/ / Dfoe”Nﬂ’*(ds dfot]

SX

= _]EIP* [1{ST<K}ST0}’]:}—} .
Here dWF™ := dW; + wdt and N¥'(dt,dz) := N(dt,dz) + 6 ,v(dz)dt are a

Brownian motion and the compensated Poisson random measure of N under
IP*, respectively.

16



First of all, we have E [fOT(h?)zdt] < K’E [fOT (thdt] < o by (A3).

Next, we show E [fOT fow(hglz)zv(dz)dt} < oo. Noting that i} , = Ep-[(F +
zDy.F)Hy, — F|Fi—], we have

hi, < Ep:[(F+zDy.F)H;,|Fi-] < KEp«[H} | Fi-] = K,

since F and H;‘,Z are nonnegative, 0 < F 4 zD;,F < K by Proposition 4.1, and
Ep-+[H{,|Fi-] = 1 by (3.3). In addition, the following holds:

hi, > —Ep:[F|F-] > —K.

As aresult, h} , is bounded. Hence, we obtain [E { fOT flm(h},z)Zv(dz)dt} < oo,

Next, we shall see E [ fOT fol (h},z)Zv(dz)dt} < o0. To this end, we rewrite h{ ,
as
hi. = Ep+[(F 4+ zD:.F)(H;, — 1) + zD; . F| Fi].

Since |zD; . F| < K, we have (Ep+[zD;.F|F;-])? < K?. Thus, it suffices to see
T 1
E |:/0 /O {IE]P* KF + ZDt,zF)(Ht*,z — 1)|]'-t]}2v(dz)dt] < oo (4.6)

(3.3) implies

{Ep- [(F+2Dy2F) (Hi, = )| Fi-]

< K2Ep- [(H;jz - 1)2|ft,}

< K2 {Ep. [(H 21 F- | — 2Bpe[HE | Fr ] +1)

= K2 {IEIP* [(H;jz)ﬂft_} - 1}. 4.7)

Now, we calculate (H;,)?. By the definition of H;’, in Theorem 3.1, and Propo-
sition A.10, we have

T T T
(Hf,)* = exp { — Zz/ Dy zusdWs — 22/ usDy zusds — zz/ (Dy 2 us)*ds
, 0 0 0
T fpoo ~
422 / / D log(1 — 6,+)N(ds, dx)
0o JO
T joo
+ ZZ/O /0 [Dt,z log(l - 95,;() + Dt,zeslx]v(dx)ds}
T T 1 (T
= exp { — 22/ D ;usdWs — Zz/ us Dy zusds — E/ (ZZDt,ZuS)zds
0 0 0

T T [oo ~
+ /0 (2D 2uts)2ds + /0 /O 10g(1 — 71.5.+)N(ds, dx)
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T foo
—l—/o /0 [log(1 — Ytzsx) + Ttzsx]V(dx)ds

T oo T (oo 2
—/ / 'yt,z,s,x&,xv(dx)ds—i—/ / (ZDt’ZGS’x)v(dx)ds}, (4.8)
0 Jo 0 Jo 1—0sy

where = pDusbr _ (ZDizbon ’ R k that L A9 implies that
Ttzsx = 21-q,, 1-9,, ) - Remark that Lemma A.91mplies tha

2Dy, log(1 — 0sx) =1og(1 — 65 x —zD; .6 x) — log(1 — 6 x)

2Dy 205 x
—log (1 Z2tz0sx
Og ( 1 - GS,X ) !
that is, 2zD¢ ; log(1 — 05 ) = 10g(1 — Yt 2,sx). Now, we have that (zD;,us)? <
zC2 by Lemma A.7; and

. 2
/[ P () < z(c 20,
S,X

by Lemmas A.6 and A.8. Thus, we have
R.H.S. of (4.8)

T T 1 /T
< exp { — 22/ Dy ;usdWs — 22/ usDy zugds — E/ (ZZDf,Zus)zdS
0 0 0
T froo . T (oo
+ /0 /o log(1 — Yt z,sx)N(ds,dx) + /0 /0 log(1 — Yt zsx) + Vizsxv(dx)ds

_ /oT /Ooo Viz,5,20sxv(dx)ds + Cz} 4.9)
for some C > 0. Thus, Lemma 4.2 implies that
Ep- [(H;jz)2|ft,} < Ep: [XtT'Z|]-'t,} eC = xH2eC2 = (O,
Consequently, we have
R.H.S. of (4.7) < K2 (eCZ - 1) < K%z (eC - 1)

for any z € (0,1). Hence, (4.6) follows, from which we obtain (4.5). This com-
pletes the proof of Theorem 3.1. O

Lemma 4.2 Given (t,z) € [0, T] x (0, 00), we consider the following SDE:

dxt? = —x!# {Zth,Zudes + 2zus Dy zusds + / V252N (ds, dx)
0

+/0 ')’t,z,s,xes,xV(dx)ds}' (4.10)

Then, the solution X'* is a martingale under P* with X2* = 1 forany s € [0,t). In
particular, the right hand side of (4.9) is equal to X%Zecz.
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Proof. First of all, remark that zD; ;us and zu;D; ;us are bounded. In addi-

tion, we have
zD tz es,x

1—6s
by Lemmas A.6 and A.8. Thus, Lemma A.6 yields

/O ")/t,z,s,xes,xll/(dx) _ /O ZDt,zQs,x (2 . ZDt,zQs,x) 93,x

1—0sx 1—0sx
< 2CyCy(2 +2C4Co) -C9|p|/ x(dx) < co.
0

< 2CeCo(1 —eP¥) < 2C4Cy (4.11)

v(dx)

Moreover, (4.11) again implies

© 2 *© (ZDt,Zes,x)z ZDt,zes,x 2
dx) = / 2 d
A ’)’t,z,s,xv( x) 0 (1 — Gs,x)z 1— 6., 1/( x)

<4CGC3C,(2+2CoCy)2.

As a result, we can apply Theorem 117 of Situ [17] to (4.10); and then we con-
clude that (4.10) has a solution X" satisfying E |:Supt§s§T | XL* |2} < oo, which
implies Ep+ [sup; < |XY#|] < oo by the L2(IP)-property of Zr. Now, X! is a

local martingale under IP*, since we can rewrite (4.10) as

dX;’Z = —Xé'i {ZZDt,zude;P* “F/ ’)’t,z,s,xN]P* (dS, dx)} :
0

Consequently, Theorem 1.51 of Protter [13] implies that X" is a P*-martingale
satisfying X, = 1 for any s € [0, t). Moreover, by Example 9.6 of Di Nunno et
al. [8], the right hand side of (4.9) is expressed by X%Zecz. (|

5 Malliavin differentiability of Z

This section is devoted to show Z; € D2 for any t € [0, T|. To this end, for
t € [0, T], we define Zt(o) :=1and

ot 't oo ~
Zt(n+1) =1 /0 Zs(i)uSdWs _/0 /0 Zs(i)GS/xN(ds’ dx)

for n > 0. Besides, we denote, for n > 0,

Pn(t) = E [ /[O,t]x[O,OO) (D,,zz§”>)2q(dr, dz)] .

Note that ¢g(t) = 0.

19



Lemma 5.1 We have Zt(") € D2 for every n > 0 and any t € [0, T]. Moreover,
there exist constants k1 > 0 and ky > 0 such that

t
Pna(t) < ka +k2/0 Pn(s)ds

foreveryn > 0andany t € [0, T).

Under Lemma 5.1, we have

t t s
Pura(t) < k1+k2/0 b (5)ds §k1+k2/o <k1+k2/0 ¢n1(sl)dsl> ds

¢ k]étj kot
S"'SklZT<kle .
=0 I’

for any t € [0, T]. Thus, sup,,~.; ¢n(t) < o holds. Since we have Zt(”) — Z;in
L?(P), Lemma 17.1 of [8] implies that Z; € D2 for t € [0, T|]. Remark that the
MalAliavin derivative in [8] is defined in a different way from ours. Denoting
by D the Malliavin derivative operator in [8], we have D; ,F = zD; ,F forz # 0
and F € D2,

Proof of Lemma 5.1. We take an integer n > 0 arbitrarily. Suppose that
Zt(n) € D'? and fo ¢n(s)ds < oo for any t € [0,T]. Lemma 5.2 below and
(n+1)

Lemma 3.3 of [7] imply that Z;
t € [r,T] and any z € (0, 00),

€ D2 for any t € [0,T]; and, for any

(n+1) _ (n) s,
D02 = Dy /m oy 2110y (0 2110 (0 10 () QU )

/D ") s)AWs — // ,0< s”) xN(ds, dx)

_ - (n) (n) &
=—Z,"uy — Dy oZ;"'dWs — ; 9s,xDr,oZS, N(ds,dx)

(5.1)
and
D,z = —zﬁ@% /D,Z<Z( V) dW, - // Dm< E)G”)xﬁ(ds,dx).
T
(5.2)

Now, we fix t € [0, T| arbitrarily. We have then

Pnit(t) = E [/Ot (Dr/OZt("H))Zdr} +E Uot /Ooo (Dr,zzt(”“))zzzv(dz)dr] .

(5.3)
(5.1) implies

The first term of (5.3)
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< 3E Uot (Z,(f)ur)Zdr}+3]E /Ot (/t D, oZ" )dws>2dr]
r
/0 t ( [ t /0 ~ 95,XD,,Oz§i>N(ds,dx)>2dr] . (5.4)

We evaluate each term in the right hand side of (5.4). Lemma A.6 implies

+ 3E

t 2 t 2 2
() > () 2 ()
]E[/O (z"w) dr} < C2E Uo (z) dr} < CITE | sup. (! )]
and
t t t t 2
a < e )dws) ar| < | E[ [ (proz) ds} dr.
0 r 0 r

The same argument implies that

/ot ( / t / " 0.D,02 " N (ds, dx)>2 dr]
b 0D 2" ) vldxis| ar < 3, [ E | [ (Dy0z) as| ar.
Bl L (o) LS (P2t

As a result, we obtain

E

The first term of (5.3)
2 t t 2
<3CITE | sup (ZI")7| +3(C2+ C3cy) / E [ / (Do) ds} dr.
0<s<T 0 r
(5.5)
Next, (5.2) yields
The second term of (5.3)
< 3E / / ( 9”) z v(dz)dr]
2
+ 3E / / (/ DrZ Z(”)us> dWs> zzv(dz)dr]
2
+ 3E / / (/ / D,Z< - >xN(ds dx)) zzv(dz)dr] . (5.6)

Now, we calculate each term of the right hand side of (5.6).

, 2 L 7m)\? 2
The first term of (5.6) < 3GGGE | [ (7)) dr| <3C3C,TE
0

r

e (7).
SSS
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Next, Lemma A.7 implies

The second term of (5.6)

2
—3// {/ Drz 5(_)us>) ds} Z?v(dz)dr
2
= 3/ / E |:/ usDr,zZs(i) + Zs(i) Dr,zus + ZDV,ZZSEi) . Drrzus> ds:| zzy(dz)dr
2 t 2
< 9/ / {C2 V (Dr-2") ds} + g [/ (2" ds}
r z ,
2
+ (CZL)ZIE {/ (Dr,zzgz)) ds} }sz<d2)d}’

(n))?
su Z
O<sET( ’ )

+9 C2 / / [/ D,ZZ( )) ds} 22v(dz)dr. (5.8)

Moreover, we evaluate the third term of (5.6). By Lemma A.8, we obtain

< 9C5/ zv(dz)T?E

The third term of (5.6)

:3/0/ {// {Drzz —+Z<>Drzex

+ zDr,ZZS@ D, 9;x } x v(dx)ds] z2v(dz)dr

<o [ [ {eee ][/ (o ] + 7 [ (27) o

,4C3 Co t 2
P T 3 [/ (D,/ZZS@) ds} }z2v(dz)dr
z2 r

;)G [ () TE | sup (7))
0<s<T
+45C2CP/ / [/ DrzZ( )) ds} Z2v(dz)dr. (5.9)

Consequently, by (5.3), (5.5)—(5.9) and Lemma 5.3 below, there are constants
k1 > 0 and k, > 0 such that

0 (2) | 42 [ oo B (0re22) ] gttt

sup (ZS@)Z +ka /Ot]E [/[O,s]x[o,oo) (DV,ZZ&)Yq(dr,dz)} ds

0<s<T

Pn+1 (t) <klE

<kysupE
n>1
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sup (Zg”))z

0<s<T

=kysupE
n>1

t
<k +k2/0 n(s)ds

+ ko /Ot]E [/[O,s]x[o,oo) (DV,ZZ§")>2q(dr,dz)} ds

where ki and kp may vary from line to line. g
Lemma 5.2 Fix n > 0 arbitrarily. Assume that Z") € D'2 and s pu(s)ds < oo
forany t € [0, T]. We have zMy e IL(%’2 and 2" € ]Li 2,

Proof. We show Z@u S IL(l)’z. Since we can see that Zs@Dt,zus +
usDy . Z" + 2Dy, Z\"™ . Dyus € 12(q x P) for any s € [0,T] by z"™ € D2,
and Lemmas A.6 and A.7. Thus, item (a) in the definition of ]L(l)’2 is given

by Propositions 5.1 and 5.4 of [19]. Next, item (b) is satisfied by Lemma
A.6. As for item (c), there exist two constants C; > 0 and C, > 0 such that

(DtZ(Z( Mug))? < Cl(Z( "2 —I—Cz(thZ( ))2. In addition, we have

E [/[ 1 (000) ./T (Dt,zZs(f))zdsq(dt, dz)]
— / [/0 o1 l0) (Dt,ZZS(f))Zq(dt, dz)] ds = /OT Pu(s)ds < 0.

As a result, item (c) follows. This completes the proof of zMy e lLé’z. zMg e
]L%’2 is also shown similarly. g

(m)?
Lemma 5.3 sup,.q E |supy,<r (Zs ) < oo,

Proof. First of all, we can see inductively that Z(") is a martingale with
2
Z(Tn) € L?(P). Denoting {,(t) := E [sup0<s<t (Zs(n)) } for t € [0,T] and

n > 1, we have

{n(T) < 4E

{1—/ 20Dy aw, — //Z(" Vg, N (ds, dx)ﬂ
§4{1+1EU0 (Z) {u +/ 02, } ”

< 4+4(C2+C2C,) /0 Cu1(s)ds < dexp{4(C2 + C2C,)T}

by Doob’s inequality and Lemma A.6. g
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6 Conclusions

We obtain explicit representations of LRM of call and put options for the BNS
models given by (1.2) and (1.3). We impose only Assumption 2.2 as the stand-
ing assumptions. Recall that Assumption 2.2 does not exclude the two impor-
tant examples, IG-OU and Gamma-OU, although parameters are restricted.
Our discussion is based on the framework of [1]. We spend many pages to
make sure of the additional conditions imposed in [1]. Above all, we need
some integrability conditions on the underlying contingent claim F. For exam-
ple, we need ZrF € L2(IP), which is almost equivalent to ZrSt € L?(IP) if F is
a call option. However, Z1St is not in L?(IP) in our setting, which means that
an additional condition is needed in order to treat call options directly in the
framework of [1]. Thus, we consider put options first in this paper, since they
are bounded. LRM for call options are given as a corollary. By this small idea,
we do not need to impose any additional condition.

Moreover, in order to see condition C4, we need to investigate the Malliavin
differentiability of the process Z. Note that Z is a solution to the SDE (2.3). [8]
showed the Malliavin differentiability of solutions to Markovian type SDEs
with the Lipschitz condition. However, the SDE (2.3) is not the case, since u;
and 6; , are random. In Section 5, as an extension of Section 17 in [8], we show
that Z; € DY2. This result should be a valuable mathematical contribution
in its own right. Recall that u; and 6; are bounded by Lemma A.6; and the
Malliavin derivatives of us and 65, are equivalent to O(1/z) and O(1/+/z)
simultaneously by Lemmas A.7 and A.8. These facts play a vital role to see the
Malliavin differentiability of Z.

We consider, throughout the paper, the BNS models whose asset price pro-
cess is given by (1.3). Actually, the general form of the BNS models is as fol-
lows:

t t
Sy = Soexp{/o (y—i—,[%crsz)ds—l—/o adeS—l—p]t},

where the parameter B € R is called the volatility risk premium. In other
words, we restrict § to —1/2. When § # —1/2, the boundedness of us and 6; »
no longer hold, from which it is not easy to show that Zr € D!2. Thus, we
need some new ideas to generalize our results. It remains to future research.
Moreover, we put off comparison with delta hedge, and development of nu-
merical scheme for future work.

A Appendix

A.1 Properties of 03, and related Malliavin derivatives

The squared volatility process 07, given as a solution to the SDE (1.2), is repre-
sented as

t
ot =e Mog +/ e ME=s)g). (A1)
0
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Remark that we have

0',32 > e_)‘taé > e‘”a&

’ (A.2)
and

>\>—‘

t

Next, we calculate some related Malliavin derivatives

Lemma A.1 Forany s € [0, T|, we have o> € D'?; and

Di202 = e M1 g () (1,2) (A4)
for (t,z) € [0,T] x [0, 00).

Proof. We can rewrite (A.1) as

— e 2+/ / e M5 xy (dx)du

+/[0T]><[Ooo) e M 0 (000 (14, %) Q(du, dx).
Moreover, we have f[O,T] [0,00) e_ZA(S_”)l[O/S}X(O,OO)(u, x)q(du,dx) < co. By Def-
inition 2.8, the lemma follows. Ul

Lemma A.2 Forany s € [0, T|, we have o5 € DY2; and

02+ ze= A1) — g

z l[O,S]X(O,oo) (t, Z)

Dt,zo's =

for (t,z) € [0, T] x

[0, 00). Moreover, we have 0 < Dy 05 < \%1[0,5] (t) forz > 0.
Proof.  Taking a C!-function f such that f’ is bounded; and f(r) = +/r for

r > e o2, we have 0, = f(0?) by (A.2). Proposition 2.6 in [18] implies
0s € D2, Dygos = f'(02)D; 902 = 0; and

F(02 +2Dy202) — f(0?) /o3 Hze M — oy
Dt,zo's = - =

. . 10,6 (t)

for z > 0, since D; .02 is nonnegative by (A.4). In addition, we have D; .05 <
—A(s—t)
Ze 1[05]( ) < %1[0,5](1') for z > 0.

(|
Lemma A.3 We have fOT o2ds € DY?; and

T
D /0 02ds = B(T = t)1(g0) (2)

[0, c0), where the function B is defined in Assumption 2.2.

for (t,z) € [0,T] x
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Proof. First of all, we have

T
/Uszds:cfg/ Asds—I—// Ms=1) g, ds
0 0
21_8 Als—u
+// Jdsd], = o2B( +/ T —1)d],.

From the view of Definition 2.8, we obtain that fOT (Tszds € D!%; and
Dz [y 02ds = B(T — 1)1(g,)(2) for (t,2) € [0, T] x (0, c0). O

Lemma A.4 We have fOT s dW, € DY2; and
T T /02 +ze= A=) — gy
Di. /O 0udW, = o1 ) (2) + / AW,

for (t,z) € [0,T] x [0, ).

1(0,00) (Z)

Proof. First of all, we show o € lLé’z. Lemma A.2 implies o5 € D' for any
s € [0, T]. We have E { fOT (Tszds} < o0 by (A.3) and the integrability of J1. Since
| Dy 20 1> < % by Lemma A .2, item (c) of the definition of ]L(l)'2 is satisfied. Thus,
Lemma 3.3 in [7] provides that fOT osdW; € D2 and

T T
Dt,z/o osdWs = Dt,z /[‘0 T [0,09) Os * 1{0} (x)Q(dS/dx) = Utl{O} (Z) +/0 Dt,zasdws

\/02+ze A=t — g,
+/ W1

for (t,z) € [0, T] x [0,00) by Lemma A.2. O
Lastly, we calculate D; ;L1 as follows:

= 01140y (z (0,00)(2)

Proposition A.5 Lt € D2 and, for (t,z) € [0, T] x [0, ), we have

1 T \/02 +ze= =1 — g
Dy, Lt = 0}1{0} (z)+ _EB(T —t) + /t = dWs +p 1(0,00) (z).

Proof. By (2.1), we have LT = uT — % OT o2ds + fOT 0sdWs + pJ. Since |1 €
D!? and Dy Jr = 1(0,00)(2), we can see this proposition by Lemmas A.3 and
A4 O
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A.2 Properties of us and 6; ,, and related Malliavin derivatives
We begin with the definition of two constants as follows:
2l Ja] ]
C, := max {UO’C,D}; and Cp := max {Cp'l} .
The next lemma is referred throughout the paper over and over again.

Lemma A.6 Foranys € [0, T) and any x € (0, 00), the following hold:
1. |us| < Cy,
2. |6sx| < Cy;and |0sx| < Cp(1 —el*) < Cylplx,
3. O <1—ef,
4. log(1-6,.)] < Colpl,

5. ﬁ < Cgfor some Cg > 0.

AT
Proof. 1. We have |u,| < ‘%' < ‘“'(5702 forany s € [0, T] by (A.2).
2. 165 x| < %(l —efY) < Cg;and 1 — eP* < |p|x for any x > 0.

3. As seen in Remark 2.3, ﬁ > —1 for any s € [0, T|. We have then 60, , <
s+Co
1 — efx,

4. When 6; x > 0, we have 0 > log(1 — 605 x) > log(1 — (1 —ef*)) = px > Cypx.
On the other hand, if 6 x < 0, then 0 < log(1 — 65 x) < —05x < Cylp|x.

5 If 65 < 0, then 1_19” < 1. Else if 65, > 0, equivalently « < 0, then

1=0sx=1+ gszicp (1—ef*) =1+ Uszicp > 1+ % > 0 by Assumption
2.2. This completes the proof. 0

Next, we calculate some Malliavin derivatives related to us and 6; .

Lemma A.7 Foranys € [0, T, we have us € DV?; and

u(0s + 2Dy z05) — fu(0os
Dy zus = ful tZ )~ ) ( )l[O,s]X(O,oo)(trZ)

(o) o)

z

1[0,5] % (0,00) (t/ Z) (A.5)

for (t,z) € [0, T] x [0,00), where f,(r) := erCp for r € R. Moreover, we have

!/

C C
|Dt,2us| S (t) and \Dtrzus\ S ?ul[O,s](t)

7”51[0,4

for some C;, > 0.
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Co—1? :
Proof.  Note that f;(r) = zxﬁ and |f},(r)| < % < Cy. Since us = f,(05)
and o, € D2, Proposition 2.6 in [18], together with Lemma A.2, implies u;s €
D!? and (A.5). In particular, we have D;gus = f; (05)D;gos = 0. On the other
hand, Lemma A.2 again yields that |D;.us| < %|th,ZUS\Cu < %1[015](1‘)@,.

!
Moreover, since f, () is bounded, we can find a C], > 0 such that | D; zus| < %
O

Lemma A.8 Forany (s,x) € [0, T] x (0, 0), we have 05, € DV2; and

D; .0, = fQ(‘TS +ZDt,z(7—s) _fQ(Us)

s = Z (" = 1)Lig5x (0,00 (£ 2)

- fo ( o2 +Z€A(St)> — fo(0s)

Z

for (t,z) € [0, T] x [0, 00), where fo(r) := ¢ forr € R. Moreover, we have
(g

(@ = D1pgu o) (tz) (A6

C, 2C
|Dt205,x| < 792(1 — e )1gq(t) and [Dizbsx| < 79(1 =) q(t) (A7)
for some Cjy > 0.

Proof.  Note that 65 = fy(0s)(ef* —1); and fj(r) = _Uzi%‘ So that,
0

|fo(r)] is bounded. Thus, the same argument as Lemma A.7 implies (A.6). In
addition, (A.7) is given by the boundedness of f and f}.

Lemma A.9 Forany (s,x) € [0, T] x (0,0), we have log(1 — 65 ) € DV?; and

log(1 — 05 x —zD; .05 ) —log(1 —6
Dyzlog(1 — 0,) = OBt = 2Duau) Bl =Bl )

for (t,z) € [0, T] x [0, 00). Moreover, we have | Dt 1log(1 — 6sx)| < |Dt20sx|eF*.

Proof. For x > 0, we denote
(r) = log(1—r), r<1—e,
S = 0 —e P r e PX — 14 px, r>1—ef*,

Note that gy is a C!-function satisfying |g%(r)| < e ** for all € R. Since
0s,x € D2 and log(1 — 6sx) = gx(6sx) by item 3 of Lemma A.6, we have
- gx(es,x + ZDt,zes,x) - gx(gs x)

Dy, log(1l—6syx) = - =10,00) (2)-

Lemma A.8 implies, for t € [0,s] and z € (0, c0),

Os,x + 2Dy 2055 = fo (m) (eP* —1)
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B a(ef* —1)
02 +ze Ms=H 4+ C,
We have then gy (6s x + zD; 205 x) = log(1 — s x — zD; 205 ). O

<1— e~ (A.8)

A3 OnD;;logZr
We show log Z7 € ID'2 and calculate Dy ; log Z7. (2.4) implies that

logZTz—/O usdWs — 2/ 2ds+/ / log(1 N(ds, dx)
+ / / log(1 — 6sx) + Bs.x]v(dx)ds. (A9)

We discuss each term of (A.9) separately. As seen in Section 4, we have
u € Ly% Thus, Lemma 3.3 of [7] implies that Dy [} usdWs = u; +
fOT Dy ousdWs = uy, and Dy, fOT usdW, = fOT Dy usdWs for z > 0. Similarly,
we have D; fOT Jo~ log(1 — 6, )N(ds,dx) = 0, and

//logl Osx) (dsd) log( —Ohe) +/ / Dy log(1—6sx)N (ds dx)

forz > 0. As for Dy, fo usds, since u? € ]L(l)’2 by Section 4, Lemma 3.2 of [7]
yields

T T T T
Dt,z/ u?ds = / Dt,zugds = 2/ us Dy ugds + Z/ (Dt,zus)zds
0 0 0 0

for z > 0. In particular, D;g fOT u%ds = 0. For the fourth term of (A.9), since
log(1—0)+6¢€ H:%/z, Proposition 3.5 of [18] implies

T foo T foo
Dy /0 /0 [log(1—0sx) + 05 x|v(dx)ds = /0 /0 [Dylog(1—6sx) + Dy 2605 x|v(dx)ds
for z > 0. Collectively, we conclude the following:

Proposition A.10 We have log ZT € D!?2, Diglog Z1 = uy; and
T T z T
Di,logZt = —/ Dy ;usdWs —/ usDy zusds — 5/ (Dtlzus)zds

0 0 0

T poo ~
n / / D log(1 — 6,,)N(ds, dx)
0 JO
6:2)

e log(1 —
+ /(; /O [Dt,z IOg(l — Qs,x) + Dtrzes/x]l/(dx)ds + %

forz > 0.
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