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The causal effects of long-term PM; s exposure on COVID-19 in India

1. Introduction

South Asia is at the epicenter of the global air pollution problem, which has become a
silent killer in the contemporary world. About 91% of the population in this region lives in places
where air quality fails to meet World Health Organization (WHO) guideline limits (WHO, 2005).
Such contaminated air impairs the functions of the respiratory organs and can lead to lung cancer,
obstructive pulmonary disease, and acute respiratory infections. Furthermore, ambient air
pollution and household air pollution cause millions of deaths globally, including 4.2 million and
2.8 million deaths, respectively, in 2015 (Cohen et al., 2017). India is no exception and has
recorded one of the highest levels of air pollution over the past decade. In addition to the severe
environmental contamination caused by air pollution, the ongoing COVID-19 pandemic has
created a dire situation in the country, which has seen one of the largest losses of life in the world
along with a record economic collapse, with a GDP growth rate between —9.6% and —10.3%
according to October 2020 projections of the World Bank and International Monetary Fund.

Although many scientific studies have confirmed the negative effects of air pollution on
respiratory diseases, cardiovascular diseases, pregnancy outcomes, and neurocognitive diseases
(e.g., Brook et al., 2004; Dominici et al., 2006; Puett et al., 2009; Wellenius, 2012; Di et al.,
2017), evidence on how air pollution impacts health outcomes, especially in developing
countries, remains scarce and has focused mainly on the effects of household air pollution (Duflo

et al.,, 2008; Hanna et al., 2016; Balietti and Datta, 2017; Kurata et al., 2020*). Moreover,

4 Kurata et al. (2020) simultaneously consider both ambient and indoor air pollution to investigate their effects on

child health outcomes in Bangladesh.



evidence obtained using causal inference frameworks that link ambient air pollution exposure
with COVID-19 is similarly scarce in both developed and developing country contexts; two such
studies focused on the US and the Netherlands, which are moderately polluted countries (Austin
et al., 2020; Cole et al., 2020). Given these gaps in the literature, our study examines the case of
India, one of the most polluted countries in the world in terms of air pollution exposure and also
one of the countries most severely affected by the COVID-19 pandemic, in order to investigate
associations between pollution and COVID-19. Specifically, we estimate the connection of long-
term PM> 5 exposure with COVID-19 deaths, fatality rates, and cases in India at the district level
by using an instrumental variables (IV) approach based on thermal inversion episodes to
represent exogenous variations in the level of PM,s. Thermal inversions are a meteorological
phenomenon that worsens air quality levels. Exploiting long-term thermal inversion variations
across districts in India, we find that those districts most severely affected by long-term exposure
to PM25 have an increase in COVID-19 deaths by 5.7 percentage points and an increase in the
fatality rate by 0.027 percentage points, but this exposure is not necessarily correlated with
COVID-19 cases. People with underlying health conditions such as respiratory illness caused by
exposure to air pollution might have a higher risk of death following SARS-CoV-2 infection.
Our findings might also apply to other countries where high levels of air pollution are a critical
issue in terms of development and public health.

This paper contributes to the literature in the following ways. First, building on the first
correlation study by Wu et al. (2020), this paper provides the first causal evidence in the context
of a developing country where air pollution is a critical development and public health issue,
linking exposure to air pollution with COVID-19 deaths, and the fatality rate, and cases. In the
recent literature, (i) preliminary findings are based mostly on correlations, (ii) there are few

investigations employing causal inference frameworks in either developed or developing country
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contexts, and (ii1) causal inference studies have focused on only moderately polluted countries,
such as the US and the Netherlands (Austin et al., 2020; Cole et al., 2020). Second, this paper
examines the case of India to add to the body of evidence on long-term exposure to PMy s in
order to demonstrate external validity. The critical hypothesis behind this is that underlying
health conditions such as respiratory illness caused by exposure to air pollution may increase the
risk of death following SARS-CoV-2 infection. To test this hypothesis, it would be reasonable
to use long-term exposure data, given that short-term exposure to air pollution does not
immediately cause health disorders; put simply, accumulated exposure matters. The use of long-
term PMb> s data would also be valid, particularly in the case of India, given that the mobility of
people there is exceptionally low; for example, the urban-rural migration rate for working-age
men between the ages of 25 and 49 years ranged from 4% to 5.4% in the period 1961-2001
(Munshi and Rosenzweig, 2016). This rate is critical for employing reduced-form econometric
identification as our empirical strategy, which is an approach that depends on the reduced form
regression model to regress COVID-19 indicators on the long-term lagged PM; 5 data.

The remainder of the paper is structured as follows. Section 2 describes the data and
methodology used. Section 3 discusses the main findings from the estimation results and the

potential mechanisms. Section 4 concludes the paper and suggests future areas of research.

2. Background

This section provides background on air pollution in India (Section 2.1), the
meteorological phenomenon known as thermal inversion that we rely on for identification in this
study (Section 2.2), the COVID-19 pandemic in India (Section 2.3), and emerging studies linking

COVID-19 cases, deaths, and fatality rates to air pollution exposure (Section 2.4).



2.1. Air pollution in India

India has recorded one of the world’s highest levels of air pollution over the past decade.
India State-Level Disease Burden Initiative Child Mortality Collaborators (2020) suggest that
air pollution contributes to 8.8% of the total deaths in India each year. Air pollution is also
identified as one of the most severe risk factors for public health in India (ICMR et al., 2017).
Around 1.04 million premature deaths and 31.4 million disability-adjusted life years (DALYSs)
are estimated to be attributable to household air pollution, whereas 627,000 premature deaths
and nearly 17.8 million DALY are attributable to ambient air pollution in the form of PMa s
(Balakrishnan et al., 2014). PM exposure levels in India are more than five times higher than
those in the US (Greenstone and Hanna, 2014). Air pollution is not limited to urban areas but
also affects rural areas owing to agricultural practices such as crop burning, emissions from
heavy application of fertilizers, and biomass burning for indoor cooking.

A multiplicity of sources and geographical source regions, modes of exposure, and a
range of impacts all add to the complexity of the air pollution problem in South Asia.
Topographic characteristics also influence the spatial variations of air pollution. For example,
air pollution can become trapped and stagnate relatively close to the ground across the Indo-

Gangetic Plain owing to India’s hilly and land-locked topography.

2.2. Thermal inversion

Thermal inversion is a meteorological phenomenon that occurs when a layer of warm
air passes between two layers of cold air. The warm air traps the bottom layer of cold air, causing
pollutants and particulates to concentrate near the Earth’s surface (e.g., Jacobson, 2002). To date,

few studies have used thermal inversion as an investigative tool. Some studies have proposed



using thermal inversion conditional on weather-related variables for the instrument of air
pollution. In the economics literature, Knittel et al. (2016) is one of the first studies to mention
the relationship between thermal inversion and air pollution level, and Arceo-Gomez et al. (2016)
use thermal inversion as an instrument for the concentration of air pollution.’ Thermal inversions
result from the combination of atmospheric forces and topographic characteristics. By
controlling for their effects, thermal inversions can be considered exogenous phenomena that are
suitable instruments for air pollution levels. That is, thermal inversions are highly correlated with
levels of PM; 5, affect outcome variables only through their effects on the level of PM» s (in our

case, COVID-19 indicators), and do not correlate with other omitted variables.

2.3. COVID-19 in India

Even as the rest of the world was beginning to feel the impact of the COVID-19
pandemic, few cases were observed in India until March 2020. The government was successful
in keeping the virus out of the country by restricting international travel and isolating individual
cases. Although this enabled India to buy some time and build the necessary internal response
capacity, it soon became apparent that the challenges involved in preventing domestic
transmission would be enormous. India has some of the largest population clusters in the world,
making it an ideal breeding ground for a contagion, especially among the those most vulnerable,

including slum dwellers and migrant workers.

5 See also Jans et al. (2018), Sager (2019), Cui et al. (2019), Molina (2020), and Tsaneva and Balakrishnan (2020).
As an alternative instrument, Deryugina et al. (2019) propose the use of changes in local wind direction to develop

a new approach that uses machine learning techniques to estimate life-years lost due to air pollution exposure.



According to the Ministry of Health and Family Welfare, as of November 20, 2020,
India had a total of 8,383,602 COVID-19 cases and 131,578 deaths, in line with the cumulative
numbers reported by the COVID-19 India Dashboard (8,999,049 cases and 132,133 deaths). As
of November 2020, the number of positive cases ranked second in the world according to Johns
Hopkins University, despite the Indian government’s relatively early decision to implement a
nationwide lockdown of its 1.3 billion people at midnight on March 24, 2020, when the total
reported cases had reached 568. Overcrowded cities and homes in the country are likely to have
facilitated the spread of the virus. Governments debated how to balance saving lives with
preserving livelihoods, concluding to ease lockdown restrictions in favor of returning people to
work, which naturally led to a rapid increase in the number of positive cases and deaths. In
addition, the relaxation of other restrictions also led to massive spikes in the number of cases
across India. A sustained exponential increase in the number of positive cases continued until
the end of September 2020, after which the curve mostly flattened (Appendix Figure 1).

Initially, cases and fatalities were observed mostly in urban centers such as Mumbai and
Delhi, but subsequently became more prevalent across the entire country. Part of the massive
spread of the contagion is attributable to the lockdown, which triggered a humanitarian crisis of
unprecedented proportions. Fearing for their own survival, millions of migrant workers fled the
city because of income loss, hunger, destitution, persecution from authorities policing
containment, and fear of communities not maintaining social distancing (Sengupta and Jha,
2020). As they made their long trek home, the migrants carried the virus with them to rural areas.
Lee et al. (2020) suggest that the initial wave of COVID-19 cases in India, Pakistan, and
Bangladesh could be explained more readily by the mass migration from city centers to
hometowns and rural areas driven by sudden job losses and the anticipation of India’s lockdown

restrictions.



2.4. Emerging studies linking COVID-19 to air pollution exposure

Evidence suggests that older adults, particularly those with severe underlying health
conditions, might be at higher risk of severe COVID-19-related symptoms and death compared
with younger people. According to medical data from China, approximately 80% of COVID-19
deaths occurred among adults over the age of 60 years, whereas only one (0.1%) death occurred
in someone under the age of 19 years (CDC, 2020). However, there is still limited information
regarding the risk factors for COVID-19 backed by scientific evidence, although many studies
already underway are investigating these confounding factors. Among the various potential
COVID-19 risk factors, medical specialists and researchers are focusing initially on respiratory
ailments such as asthma and chronic lung disease. This is because, among those first hospitalized
with COVID-19, the most frequently encountered complications were pneumonia, sepsis,
respiratory failure, and acute respiratory distress syndrome. Various other risk factors for
COVID-19 have since been identified, most of which remain under investigation.® The US
Centers for Disease Control and Prevention (CDC) has published several potential risk factors
in order to raise awareness and encourage precautionary behaviors. These underlying ailments

include chronic lung disease, asthma, diabetes, and severe heart conditions.’

6 In addition to well-known breathing problems, blood clots pose a significant danger for COVID-19 patients. Clots
cause patients with COVID-19 to have heart attacks and strokes, form rashes on their skin, and develop red,

swollen wounds that resemble frostbite on their fingers and toes (Jose and Manuel, 2020).

7 The CDC also lists chronic kidney disease being treated with dialysis, severe obesity, age 65 years and older,
living in a nursing home or long-term care facility, immunocompromised, and liver disease as underlying health
conditions. For details, please see the following CDC webpage retrieved on April 27, 2020

(https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/groups-at-higher-risk.html).



One of the first quantitative investigations into the role of pollution in this context comes
from a correlation analysis in the US by Wu et al. (2020).® Surprisingly, their results indicate
that only a 1-pg/m? increase in PM3 5 is associated with an 8% increase in the COVID-19 fatality
rate. Their results were statistically significant and robust to secondary and sensitivity analyses.
Although representing the first evidence establishing a link between air pollution and COVID-
19 mortality, their study has potential estimation bias derived from endogeneity and omitted
variables. Air pollution likely plays an important role, but it might be through a different
mechanism, which could have very different policy implications. Likewise, most other studies
focus on moderately polluted countries, such as the US, Netherland, Italy, Spain, France, and
Germany (Andree, 2020; Conticini et al., 2020; Travaglio et al., 2020; Wu et al., 2020), and
suggest a positive relationship between the air pollution and COVID-19. Given this gap, Yamada
et al. (2020) examine the case of India, which is one of the most polluted countries in terms of
ambient air pollution and household air pollution, and use district-level data to investigate links
with the COVID-19 fatality rate. The results suggest a positive and statistically significant
association between exposure to household air pollution and the COVID-19 fatality rate.
However, the authors consider the estimation results as still premature, constrained by data
availability and possible estimation bias. Although the above-mentioned studies are useful as
preliminary estimates, they warrant more convincing and rigorous analysis beyond mere
correlation. Unlike other studies, Austin et al. (2020) use wind direction as an instrument for

PM: s in order to establish causality, whereas Cole et al. (2020) use the long lag of air pollution

8 Ogen (2020) suggests a link between COVID-19 deaths and nitrogen dioxide (NO») levels, but that study does

not control for any confounding factors.
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and commuting times as their instruments. Although the validity of the instruments using long
lag of air pollution and commuting times needs to be further clarified in terms of exclusion
restrictions (e.g., longer commuting times may be correlated with the increase in number of
COVID-19 infections), the wind direction instrument as employed by Deryugina et al. (2019) is

promising.

3. Empirical strategy

3.1. Data

Table 1 presents the summary statistics for our sample. The details of each variable are
described below. PM2 5 and all other climate variables use the values at the geographical centroid
of each district to reflect the representative value.

COVID-19

We compile the COVID-19 data as of November 1, 2020, including the number of cases
and deaths by district based on the COVID-19 India Dashboard, a website that tracks the spread
of COVID-19 in India. The COVID-19 India Dashboard collects data from multiple sources,
including CSSE at Johns Hopkins University, Covid-19-India, reliable news sources, and
government press releases.” We rely on this because the Ministry of Health and Family Welfare
does not make public its district-level COVID-19 data. The data from the Dashboard and the
Ministry are in close agreement, at least in terms of state-level COVID-19 indicators, with a

correlation 0of 0.9993 for cases and 1.0 for deaths. A sustained exponential increase in the number

o Please see further details at the COVID-19 India Dashboard website

(https://hisham2k9.pythonanywhere.com/aboutview).
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of positive cases was observed until the end of September 2020. However, the curve has been
mostly flat since then (Appendix Figure 1). All but three districts have had at least 1 case and 46
districts have not had any fatalities.

Although we use the best available COVID-19 data from India, there are ongoing
discussions about their reliability. Some experts claim that the number of deaths is underreported,
casting doubt on the strikingly low fatality rate (about 1.5 as of November 2020). Those experts
suggest the following factors as contributing to the underreporting of the real number of COVID-
19 deaths: fear of reporting, lack of timely access to health facilities, and cultural or religious
cremation practices that limit the time available to perform autopsies for determining the cause
of death. In contrast, others explain that India’s low fatality rate is accurate, reflecting the reality
of India’s relatively young population. Still others (e.g., Philip et al., 2020) argue that India’s
fatality rate is, if anything, too high, and predict that India’s fatality rate is actually much lower
than that reported by the government.
PM: s
We use the mean value of PMa5 in each district from 2007 to 2016 to represent long-term
exposure. The estimated PM; 5 data is based on high-resolution satellite images captured by the
Global Annual PM 5 Grids of MODIS, MISR, and the SeaWiFS Aerosol Optical Depth with
GWR, v1 (1998-2016), which detail the annual concentrations (micrograms per cubic meter) of
ground-level PM» s with dust and sea salt removed. The resolution is per 0.01-degree grid cells
(about 1 km?). The simple two-way scatter plots show the positive correlations of the mean PMa s
from 2007 to 2016 with COVID-19 (Appendix Figure 2).
Thermal inversions

We generate data on thermal inversions by using the temperature data of the two

different layers at 1000 hPa and 925 hPa (about 100 m and 750 m above sea level, respectively)
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from the NCEP/NCAR dataset, which has a resolution of 2.5° x 2.5° (roughly 250 x 250 km)'°.
These two pressure levels are the closest to the ground available in the NCEP/NCAR dataset.
Thermal inversions occur when a layer of warm air passes between two layers of cold air. To
derive the instrument for long-term exposure to PM» s, we first calculate the mean temperature
of each pressure level for the 10 years from 2006 to 2017 by district. Then, we identify thermal
inversions when the temperature difference D is negative by using the following formula: D =
(temperature at 1000 hPa) — (temperature at 925 hPa). Here, we use the temperature data at
midnight (00:00) in line with previous studies (Jans et al., 2018; Molina, 2020; Tsaneva and
Balakrishnan, 2020) in order to hold the exogeneity because daytime temperatures are deemed
to be more susceptible to economic activities.
Control variables

As additional controls, we use wind velocity, humidity, precipitation, temperature,
humidity squared, and temperature squared in order to mitigate concerns about the exclusion
restrictions of the IV approach given that they could potentially affect the occurrence of thermal
inversions. The quadratic terms of humidity and temperature consider the potential nonlinearity
between COVID-19 and explanatory variables. In each variable, we use either daily or monthly
mean values to compute the mean yearly values of 2007-2016.

Wind velocity data are from ERAS, the fifth-generation ECMWF reanalysis dataset on
global climate and weather for the past 4 to 7 decades. The data values show the wind velocity

at a height of 10 m above the surface of the Earth with a resolution 0.5° % 0.5°. Humidity data

10 The use of NCEP/NCAR data is supported by past literature to provide consistent best-estimate of weather at
grid-level (e.g., Garg et al. 2018; Hansen-Leiws, 2018; Tsaneva and Balakrishnan, 2020). With the resolution of
NCEP/NCAR at 2.5°x2.5°, the variation is deemed to be large enough to use it as the instrument for PM2.5.
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are from the NCEP/NCAR dataset Reanalysis 1: Surface, which is a grid-level dataset from near

the surface level (0.995 sigma level) with a resolution 2.5° x 2.5°. Precipitation and temperature

data are from the Terrestrial Air Temperature and Terrestrial Precipitation of Version 5.01

Gridded Monthly Time Series 1900-2017; both of these datasets are interpolated and

documented by Kenji Matsuura and Cort J. Willmott from the University of Delaware (e.g.,

Willmott and Matsuura, 1995). The monthly averages of station temperature (degrees) and

precipitation (mm) are interpolated to a latitude/longitude grid with a resolution of 0.5° x 0.5°.

Table 1: Summary statistics

Std.

Obs Mean Dev. Min Max
Fatality rate from COVID-19 636 0.01 0.01 0 0.06
Number of deaths from COVID-19 per km? 639 0.30 5.38 0 133.96
Number of cases from COVID-19 per km? 639 11.80 141.96 0 3354.86
PM, s, 2007-2016 (average, pg/m?) 640 40.51 20.52 2.8 100.6
Thermal inversion dummy, 2007-2016 (average) 640 0.11 0.31 0 1
Wind velocity, 2007-2016 (average, meter per
second) 640 2.52 0.62 1.43 5.61
Humidity, 2007-2016 (average, %) 640 62.11 13.32 29.32 90.16
Precipitation, 2007-2016 (monthly average, mm) 637 112.76 60.18 9.1 381.4
Temperature, 2007-2016 (monthly average,
degree) 637 24.39 4.52 -3.1 29.2
Humidity?, 2007-2016 (average, %) 640 4655.03 1680.85  986.68 8738.33
Temperature?, 2007-2016 (monthly average,
degree) 640 617.98 260.16 0.33  983.70

Source: COVID-19 India Dashboard, NASA, NCEP/NCAR, ERAS5, NCEP/NCAR Reanalysis 1: Surface,

Terrestrial Air Temperature and Terrestrial Precipitation of Version 5.01
Note: COVID-19 indicators are as of November 11, 2020.

3.2. Methods

14



We conducted our analysis at the district level, using the 640 administrative districts
surveyed in the 2011 Census of India. An econometric analysis employing concentration of
PM3: s as a primary regressor is limited for multiple reasons: (i) the non-random spatial and inter-
temporal variations of PM; s; (i1) endogeneity, such as individuals and households living in areas
with cleaner air possibly having different unobservable socio-economic characteristics compared
with their counterparts living in more polluted areas; and (iii) measurement errors such as
ambient particles captured by satellite images and air pollution observation stations. To address

these issues, we use the following two-stage identification formula.

COVIDdt =a+ bPMz-SdT + deT + f:g + Har
PMys,,, = e + fINVERSIONgr + f; + @ar

Here, COVID,; is the number of COVID-19 cases or deaths in district d at time ¢ (as of
November 1, 2020); PM; 5 ;. is the mean exposure level to PMz s during time period 7 (2007—
2016); ozr is a vector of district-specific climate indicators, including temperature,
temperature?, precipitation, wind velocity, humidity, and humidity?; f; is state-fixed effects to
control for the time-invariant state-level heterogeneity such as state-level containment policies
against COVID-19; and pgr (@qr in the first stage) is the error term. This identification strategy
relies on the spatial variation of PMa s across districts, which are not fully controlled by state
fixed effects (see Appendix Table 1). For the instrument of PM; 5, we use the inversion dummy,
INVERSION 7. Importantly, we build the inversion data using the values at midnight in order
to hold the exogeneity given that inversion episodes based on daytime temperatures are
susceptible to economic activities. The weather-related controls are also important to assure that
the exclusion restriction holds, given that the weather controls may independently affect health

outcomes, such as the link between temperature and mortality (Deschenes and Greenstone, 2011).
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4. Results and discussion

4.1. Estimating the causal effects of long-term PM: 5 exposure on COVID-19

Table 3 presents the relationship between long-term PMz s exposure and COVID-19
based on an IV approach. As previously discussed, we use the IV approach to mitigate the
estimation biases from endogeneity and measurement errors. The first-stage estimation results
show a strong link between the thermal inversion instrument and the levels of PM> s in Table 2.
Also, based on the conventional threshold for the weak instrument test formalized by Staiger and
Stock (1997), the Kleibergen-Paap (2006) rk statistic has sufficient values across all the

specifications in Table 3.

Table 2: First-stage estimation results

(1 2) 3)
Mean PM, s, 2007-2016 (log)

Mean thermal inversions dummy, 2007-2016 0.378%*** 0.223%** 0.144***
(0.0426) (0.0415) (0.0335)
Controls \ \
State fixed effects \
Observations 640 637 637
R-squared 0.078 0.586 0.766

Source: NASA, NCEP/NCAR, ERAS, NCEP/NCAR Reanalysis 1: Surface, Terrestrial Air Temperature and
Terrestrial Precipitation of Version 5.01

Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses. Estimations are based on a robust
variance estimator.

As shown in columns 1 to 6 in Table 3, exposure to PMz s is positively correlated with

COVID-19 deaths, the fatality rate and cases. The statistical relationships are robust for deaths
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and the fatality rate at the 1% significance level (columns 1 to 4), but COVID-19 cases are not
necessarily significant (columns 5 and 6). Variations in the levels of PM2 5 could be proxied in
part by state fixed effects. However, the results in columns 2, 4, and 6, which reflect the added
state fixed effects and controls, do not reveal any significant change in magnitude and p-values
from the results without state fixed effects in columns 1, 3, and 5.

In India, the estimation results indicated that a 1% increase in long-term exposure to
PM: s leads to an increase in COVID-19 deaths by 5.7 percentage points (column 2) and an
increase in the COVID-19 fatality rate by 0.027 percentage points (column 4), but this exposure
is not necessarily correlated with COVID-19 cases (column 6). These results imply that people
with underlying health disorders such as respiratory illness caused by exposure to air pollution
might have a higher risk of death following SARS-CoV-2 infection. However, the increase in

COVID-19 cases in India might also be explained more readily by other factors.!!

11 For example, Austin et al. (2020) show that recent PM; 5 levels are associated with the incidence of COVID-19
in the US. Lee et al. (2020) suggest that the initial increase in cases in India, roughly by the second quarter of 2020,
is partly explained by mass migration from city centers to hometowns and rural areas due to job losses and

anticipation of lockdowns.
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Table 3: Effects of exposure to PM» s on COVID-19

(1) 2) (3) @) (5) ©6)
COVID-19 deaths COVID-19 fatality rate COVID-19 cases
IV/2SLS IV/2SLS IV/2SLS IV/2SLS IV/2SLS IV/2SLS
Mean PM3 5, 2007-2016 (log) 4.3507%%* 5.710%** 0.01827%** 0.0267*** 0.871 1.258
(1.185) (1.771) (0.00659) (0.0102) (0.692) (1.035)
Control variables \ \ V \ \ V
State fixed effects \ \ V
Kleibergen-Paap (2006) rk
statistic 19.2 15.2 28.0 18.6 28.0 18.6
Observations 593 593 635 635 635 635

Source: COVID-19 India Dashboard, NASA, NCEP/NCAR, ERAS5, NCEP/NCAR Reanalysis 1: Surface, Terrestrial Air Temperature and

Terrestrial Precipitation of Version 5.01
Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are shown in parentheses. Estimations are based on a robust variance estimator.

“COVID-19 deaths” in columns 1 and 2 denotes the number of deaths from COVID-19 per km? in the log term. “COVID-19 cases” in columns
5 and 6 denotes the number of COVID-19 cases per km? in the log term.
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4.2. Robustness test: Exclusion of Delhi, Assam, and Goa

To check the robustness of the estimation results shown in Table 3, we run the same
specifications using the IV approach while excluding about 5%—10% of the observations, which
include the three states with the largest number of attritions of COVID-19 cases (i.e., Delhi,
Assam, and Goa). As shown in Appendix Table 2, those states have many cases that cannot be
assigned to a specific district within the state. The estimation results are robust for columns 1
and 2, which employ COVID-19 deaths and the fatality rate, respectively, as the dependent
variable, but not for column 3, which uses COVID-19 cases as the outcome. Column 3 in Table
4 shows that a 1% increase in long-term exposure to PMa s increases the number of COVID-19
cases by 2.2 percentage points at the 10% significance level. Also, it is worth noting that all the
results indicate larger coefficients of mean PMas in 20072016 compared with that shown in
Table 3, implying that the elasticity of COVID-19 to PM; s exposure in Delhi, Assam, and Goa

is relatively small compared with other states.

Table 4: Effects of exposure to PM» s on COVID-19, excluding Delhi, Assam and Goa

(1) ) 3
COVID-19 fatality
COVID-19 deaths rate COVID-19 cases

IV/2SLS IV/2SLS IV/2SLS

Mean PM; s, 2007-2016 (log) 6.090%** 0.0379%** 2.203*
(1.784) (0.0129) (1.200)

Control variables \ \ \
State fixed effects \ \ \
Excluding Delhi, Assam, and Goa \ \/ \
Kleibergen-Paap (2006) rk
statistic 15.6 14.0 14.0
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Observations 563 597 597

Source: COVID-19 India Dashboard, NASA, NCEP/NCAR, ERAS5, NCEP/NCAR Reanalysis 1: Surface,
Terrestrial Air Temperature and Terrestrial Precipitation of Version 5.01

Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are shown in parentheses. Estimations are based on
a robust variance estimator. “COVID-19 deaths” in columns 1 and 2 denotes the number of deaths from COVID-19
per km? in the log term. “COVID-19 cases” in columns 5 and 6 denotes the number of COVID-19 cases per km?in
the log term.

4.3. Discussions of the mechanism: The link between exposure to PM2 s and COVID-19

Exposure to air pollution adversely affects one’s respiratory and cardiovascular systems.
This impact could exacerbate the severity of COVID-19 symptoms and may increase the risk of
fatality in COVID-19 patients. In the case of India, this possibility is based on long-term
exposure to toxic PMys. It has been reported that the risk of severe COVID-19 increases with
age (e.g., 8 out of 10 COVID-19 deaths reported in the US have been in adults aged 65 years and
older, according to the CDC). As new studies emerge and our understanding progresses day by
day, we are learning about other risk factors that might increase the severity of COVID-19. The
CDC has suggested that adults of any age with the following conditions are at increased risk of
severe COVID-19: chronic obstructive pulmonary disease (COPD), cancer, chronic kidney
disease, and heart conditions, among others.!? Furthermore, the CDC has also noted that adults
of any age with underlying conditions, such as asthma, cerebrovascular disease, and cystic

fibrosis, might also be at increased risk for severe COVID-19.

12 Based on information published on the CDC website, retrieved November 17, 2020
(https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-
conditions.html?CDC_AA_refVal=https%3 A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fneed-

extra-precautions%2Fgroups-at-higher-risk.html).
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Of these (possible) underlying conditions, we test the relationship between the level of
PMb s and respiratory diseases, that is, the cases of COPD and asthma and their related deaths
estimated from the Global Burden of Disease Study 1990-2016 by Salvi et al. (2018). COPD is
a group of diseases that cause breathing-related issues along with symptoms such as frequent
coughing or wheezing, shortness of breath, and difficulty in taking a deep breath. Similarly,
asthma causes repeated wheezing episodes, breathlessness, chest tightness, and nighttime or
early morning coughing. In the case of India, the two-way scatter plots in Figure 1 show strong
positive correlations (ranging from 0.49 to 0.52) between the mean level of PM» 5 in 2007-2016
and the incidence of COPD, asthma, and their related deaths for each state in India in 2016. The
positive relationship between exposure to air pollution and onset of chronic respiratory disease
is inconclusive (Shin et al., 2020), but this link would be plausible in many cases, as other studies
have suggested (e.g., Andersen et al., 2012; Hendryx et al., 2019; Schraufnagel et al., 2019). This
implies that exposure to PM> s might impair or worsen respiratory functions. Those who reside
in areas with high levels of PM»s might have a higher risk of death following SARS-CoV-2

infection, which is consistent with our estimation results (Table 3).
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Figure 1: Correlation between mean PM; 5 levels in 2007-2016 and respiratory diseases in each state in India in 2016
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The potential mechanism of the link between exposure to air pollution and incidence of
COVID-19 remains to be clarified. Thus far, only a few studies have shown a positive causal
link between these phenomena, in the Netherlands and the US (Austin et al., 2020; Cole et al.,
2020), where recorded air pollution levels are modest compared with those in India according to
WHO standards. However, the number of fatalities is increasing worldwide. Austin et al. (2020)
use wind direction as an instrument for PM> 5, whereas Cole et al. (2020) use the long lag of air
pollution and commuting times as their instruments. The wind direction instrument has also been
employed by Deryugina et al. (2019), but its validity would need to be clarified further in terms
of exclusion restriction (e.g., longer commuting times might also be correlated with the increased
number of COVID-19 infections). Even if the two studies by Austin et al. (2020) and Cole et al.
(2020) are scientifically verified through a peer-review process, it would still be crucial to
confirm their external validity and ascertain precisely why air pollution leads to an increase in
the number of COVID-19 cases. For example, does a higher level of air pollution prolong the
time the virus remains airborne, or are there any other mechanisms? This is an open policy
question that should be addressed to save lives. At present, policies designed to limit the spread
of COVID-19, including a phased approach of gradually increasing the capacity limit of
restaurants and bars, rely on the assumption that COVID-19 is not airborne—that is, that 6 feet
(~2 m) of social distancing would be sufficient to prevent transmission. The principal stance of
the WHO is that COVID-19 is not airborne and is instead spread primarily from person to person

through small droplets from the nose or mouth.!* These droplets are relatively heavy, do not

13 According to the latest scientific brief by WHO (2020), (i) airborne transmission of SARS-CoV-2, the virus that
causes COVID-19, can occur during medical procedures that generate aerosols; and (ii) the WHO, together with the
scientific community, has been actively discussing and evaluating whether SARS-CoV-2 might also spread through

aerosols in the absence of aerosol generating procedures in indoor settings with poor ventilation.
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travel very far, and quickly fall to the ground. Future studies could examine this conventional
wisdom to determine what additional measures to take to potentially mitigate the catastrophic

damage from the ongoing crisis.

5. Conclusion

In addition to the severe environmental contamination caused by air pollution, the
ongoing COVID-19 pandemic has created a dire situation in India, which has seen one of the
largest losses of life worldwide along with a record economic collapse. Despite the urgent need
to address issues related to development and public health, evidence on how ambient air pollution
impacts health outcomes is still scarce, especially in developing countries. A few emerging
causal studies linking air pollution exposure and COVID-19 have focused on only moderately
polluted countries. Given these gaps, this study sought to investigate the causal effects of long-
term PMz s exposure on COVID-19 cases, deaths, and fatality rates in India by using an IV
approach based on thermal inversion episodes.

The estimation results indicate that a 1% increase in long-term exposure to PM 5 leads
to an increase in COVID-19 deaths by 5.7 percentage points and an increase in the COVID-19
fatality rate by 0.027 percentage points, but this exposure is not necessarily correlated with
COVID-19 cases. These results imply that people with underlying health conditions such as
respiratory illness caused by exposure to air pollution might have a higher risk of death
followingSARS-CoV-2 infection. The two-way scatter plots in Figure 1 show a strong positive
correlation between the mean level of PM»s in 2007-2016 and the incidence of COPD and
asthma and their related deaths in each state in India in 2016. Although the positive relationship
between exposure to air pollution and onset of chronic respiratory disease is inconclusive (Shin

et al., 2020), this link would be plausible in many cases, as other studies have suggested (e.g.,
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Andersen et al., 2012; Hendryx et al., 2019; Schraufnagel et al., 2019). This implies that exposure
to PM2 .5 might impair or worsen respiratory functions. Those who reside in areas with high levels
of PM2 .5 might have a risk of death following SARS-CoV-2 infection.

These findings could have profound implications for governments as they decide
whether to ease lockdowns and how to deal with the aftermath of the COVID-19 pandemic. A
scientific consensus seems to be emerging that improving air quality may play an important role
in overcoming or at least reducing the impacts of the pandemic. Although at an early stage,
research implies that pollution must be limited as much as possible when lockdowns are lifted
in order to minimize the impact of subsequent waves of infections. These emerging findings also
afford us an opportunity to not only enforce existing air pollution regulations to protect human
health (both during and after COVID-19), but also increase investments, implement policy
reforms, and enhance institutional capacity to improve air quality management on a more urgent
basis. Countries could promote cleaner fuels and adopt more environmentally friendly
transportation and energy technologies. For example, India could prioritize air pollution and
strengthen its capacity to manage air quality based on a broader state and multi-jurisdictional

airshed approach.
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Appendix

Appendix Figure 1: Daily COVID-19 cases and deaths

Daily COVID-19 cases and deaths from 3/2 to 11/1, 2020
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Source: COVID-19 India Dashboard
Note: Ten-day moving average. The correlation between cases and deaths is 0.9439.
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Appendix Figure 2: Correlations between COVID-19 indicators and mean PM; s from 2007 to

2016
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Appendix Table 1: Summary statistics of mean PM> s from 2007 to 2016 by state/territory

State/Territory Mean S.D. Min Max
Delhi 94.3 2.8 89 97.3
Uttar Pradesh 74.2 13.9 43.3 100.6
Haryana 69.1 13.9 47.1 93.9
Bihar 63.4 6.9 50 76.9
Chandigarh 54.2 . 54.2 54.2
Punjab 53.4 4.6 42.3 62.9
Jharkhand 46.0 4.8 37.8 54.1
West Bengal 45.4 5.6 36.2 55.6
Tripura 40.6 53 353 47.1
Madhya Pradesh 39.9 9.1 29.7 73.3
Rajasthan 39.5 12.4 22.3 73.7
Chhattisgarh 38.0 7.2 26.9 52.6
Meghalaya 35.0 6.0 27.8 42.8
Maharashtra 34.0 3.9 24.2 41.3
Odisha 33.2 4.1 25.5 38.6
Uttarakhand 329 15.8 15.3 58.2
Assam 30.2 5.8 20.1 41.9
Himachal Pradesh 28.6 12.1 10 42.9
Gujarat 28.4 4.8 18.9 36.2
Andhra Pradesh 27.6 2.5 23 32.8
Dadra & Nagar Ha 26.3 . 26.3 26.3
Jammu and Kashmir 25.5 8.5 2.8 38.8
Daman & Diu 24.7 2.1 23.2 26.2
Puducherry 24.2 4.8 18.6 29.4
Mizoram 22.9 3.5 18.6 28.5
Tamil Nadu 22.5 32 13.9 26.6
Karnataka 22.4 3.7 16.7 30.4
Goa 22.2 1.1 214 23
Sikkim 21.5 5.3 13.8 253
Manipur 20.9 23 17.4 25
Nagaland 19.4 2.1 16.4 22
Kerala 17.2 1.4 14.9 19.6
Lakshadweep 13.8 . 13.8 13.8
Arunachal Pradesh 12.8 3.7 6 18.7
Andaman & Nicobar 8.8 4.4 4.1 12.8

Source: NASA
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Appendix Table 2: COVID-19 cases that cannot be assigned to specific districts in India

State / Territory Cases Deaths Note
Delhi 391,582 6,561 Unknown
Assam 94,863 245 Unknown
Goa 37,389 417 Unknown
Odisha 7,508 0 State Pool
Andaman & Nicobar Islands 4,288 60 Unknown
Andhra Pradesh 2,461 0 Other State
Maharashtra 2,172 147 Other State
Manipur 2,074 2 CAPF Personnel
Sikkim 1,949 66 Unknown
Tamil Nadu 1,907 2 Airport Quarantine
Manipur 1,744 32 Unknown
Telangana 496 1,311 Unknown
Andhra Pradesh 434 0 Foreign Evacuees
Tamil Nadu 428 0 Railway Quarantine
Chhattisgarh 255 32 Other State
Telangana 250 0 Other State
Goa 200 1 Other State
Rajasthan 189 39 Other State
Gujarat 162 3 Other State
Rajasthan 85 0 BSF Camp
West Bengal 66 3 Other State
Rajasthan 61 0 Evacuees
Karnataka 36 3 Other State
Telangana 33 0 Foreign Evacuees
Assam 13 0 Airport Quarantine
Rajasthan 2 0 Italians
Assam 1 0 Other State
Tamil Nadu 0 3 Other State
Ladakh 0 2 Unknown

Source: COVID-19 India Dashboard
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