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Abstract

This paper explores the unproductive procrastination behavior of patent examiners, probes

whether such behavior is caused by present-biased preferences, and estimates the magnitude. We

set out a quasihyperbolic discounting model where a patent examiner is assigned a biweekly quota

of patent application reviews and determines the level of effort by the deadline. We estimate the

present-bias factor of each patent examiner based on patent prosecution data in the U.S. and

find that the proportion of present-biased individuals exceeds the majority. We demonstrate that

the job separation rate is higher for less present-biased patent examiners, and a fragmented work

quota can improve patent examination quality and timeliness.

JEL classification: D03, J01, K29, O34

Keywords: Procrastination, Patent Examination, Present Bias, Quasihyperbolic Discounting

1 Introduction

Procrastination permeates various aspects of our daily lives (Steel 2007; Rozental and Carlbring 2014). We

often delay starting an unpleasant but important task until the deadline is close, only to find out we did

not complete the task by the deadline or that the task completed in a rush was poorly done. Consequently,

procrastination ends up being unproductive.

In economics, unproductive procrastination is understood in light of present-biased preferences (Akerlof

1991; O’Donoghue and Rabin 1999). Present-biased persons tend to overweight immediate cost over future

reward and defer actions, even when it would be better to act immediately. The lack of self-control in behavior

leads to procrastination (O’Donoghue and Rabin 1999). The theory of present-biased preferences is widely

accepted to explain procrastination behavior, but there is only limited experimental evidence supporting it.1

Even field evidence is rare.2

∗Demartment of Economics, Keio University; nakajima@econ.keio.ac.jp (corresponding author).
†Organization for Research Initiative and Promotion, Tottori University.
‡Faculty of International Studies and Regional Development, University of Niigata Prefecture.
1See the review by Frederick et al. (2002) or the more recent survey articles by Cohen et al. (2020).
2See, for example, DellaVigna (2018).
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An empirical difficulty arises because the intention-action gap is difficult, though not impossible, to

measure. To verify whether present bias causes procrastination, researchers must compare what an individual

planned to do (i.e., intention) with what he or she did (i.e., action): a more extensive gap implies a more

serious self-control problem, indicating a more substantial present bias. However, in the typical environment

of field studies, the data concerning intended actions is rarely available to empirical analysts.3

In this paper, we explore unproductive procrastination in a real work environment, probe whether such

procrastination is caused by present-biased preferences, and estimate the magnitude. We overcome the iden-

tification challenges by exploiting a unique feature of the U.S. patent examination process. We believe that

it provides a suitable empirical testing ground to prove present-bias-induced procrastination because detailed

and voluminous administrative data are available from the U.S. Patent and Trademark Office (USPTO).4 We

can learn not only the timing but also the exact content of the patent examination. More crucially, patent

examiners’ planned actions are institutionally determined and comparable to patent examiners’ actual actions.

The USPTO imposes on each patent examiner a quota of patent application reviews every two weeks. All

the patent examiners ought to steadily and adequately meet the biweekly quota, but some appear to deviate

from it and do poor work.

This paper focuses on patent examiners’ task performance rather than task completion timing to assess

present-biased time preferences. Previous economic studies using field data take task completion on or near

deadline as evidence for present-bias-induced procrastination (e.g. Martinez et al. 2017; Frakes and Wasser-

man 2020). However, people delay work until near the deadline if doing so has an option value (Dixit and

Pindyck 1994). Therefore, delayed task completion may not be attributed to present-biased preferences.5 By

construct, we use variation in task performance to enhance the power of identification. Intuitively, if a delay

is systematically accompanied by substandard performance, it will not be bolstered by option value theory

but rather by present-bias theory because postponed decisions become counterproductive.

A possible concern of our performance-based approach is unobserved patent examiners’ personal traits,

such as inadequate ability. To the extent that these traits are correlated with poor performance, they may

confound present bias. To circumvent this problem, we exploit exogenous variation in deadlines. Given that

the biweekly quota is constant, holiday-induced downtime reduces the time that patent examiners can use for

patent application reviews and thus effectively shortens the quota deadline.6 The shortened deadline affects

the task performance of exponential discounting patent examiners who opt for reduced work hours under the

limited timeframe. On the other hand, the deadline pressure has a negligible effect on the performance of

hyperbolic discounting patent examiners because they procrastinate and start a task later in any case. These

considerations lead us to exploit the differences in the deadline responsiveness of task performance to identify

present-biased preferences.

3A handful of experimental studies in controlled laboratory environments use this or similar strategies to identify
present-biased time preferences (Augenblick et al. 2015; Augenblick and Rabin 2019). A common strategy is to
systematically garner information on the actions that the subjects planned to choose before the experiment runs and
contrasting it with that on the actions they chose in the experiment.

4It has been argued that U.S. patent examiners may steep in the vice of procrastination. For example, the Com-
missioner of Patents at the USPTO acknowledged that the high volume of patent decisions made just before the
examination deadline could be attributed to patent examiners’ procrastination behavior by saying, “It can be a bad
habit, in some situations. It is procrastination. Moreover, in others, as I said, it could be misconduct if the work
is incomplete” (Joint Hearing before the Committee on the Judiciary and Committee on Oversight and Government
Reform, 2014). Nonetheless, much of the evidence is anecdotal rather than statistical.

5In recent work, Heidhues and Strack (2019) show formally, using a dynamic discrete choice framework, that time
preferences cannot be identified based on the pattern of task completion alone.

6The stability assumption on the biweekly patent examination quota is empirically tested in Section 3.3.
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Motivated by the abovementioned insight, we consider a simple quasihyperbolic discounting model, often

referred to as a β − δ model (Laibson 1997). We use a continuous version of the model, where an agent is

assigned a quota of tasks and determines their level of effort each day to complete the tasks (Fischer 1999,

2001; Herweg and Müller 2011). In the continuous effort allocation framework, a hyperbolic discounting agent

is characterized by more steeply increasing effort, less total effort, and reduced performance on completed

tasks compared to an exponential discounting agent.

We test the model’s predictions using data on patent prosecution activities in the U.S. By measuring

the degree of a patent examiner’s underperformance in terms of the log-odds that his or her initial patent

application review is unsuccessful, we implement regression analysis that allows for individual heterogeneity in

the level of task performance and in the difference in task performance concerning the deadline change. The

estimation results show that a poorly performed patent examiner task is less affected by deadline reduction,

which agrees with our present-bias-induced procrastination model.

We then proceed to estimate the time preference parameters of the quasihyperbolic discounting model.

The panel structure of the patent examination data allows us to follow the performance profile for each patent

examiner and thus enables us to estimate the individual-specific present-bias factor. Since the present-bias

factors are estimated as the number of patent examiners, the dimensionality problem occurs in the estimation

process. We address this issue by means of a Bayesian inference approach with the Markov chain Monte Carlo

(MCMC) method.

The estimation results provide strong evidence that present bias is widespread among patent examiners.

Specifically, more than half the patent examiners have a present-bias factor less than one. The findings are

shown to be robust against alternative specifications, including the prior distribution, utility curvature, and

reward setup. Additionally, we validate our empirical findings using an out-of-sample prediction method.

Finally, we relate our findings to policy issues on patent system reform (Jaffe and Lerner 2004; Lemley

and Shapiro 2005). We draw two policy implications from our analysis. First, given that attrition rates are

significantly higher for less present-biased patent examiners than for more present-biased patent examiners, the

employee retention policy should be targeted to the former group. Second, reducing the patent examination

quota can improve patent examination quality and timeliness. A simulation result shows that if the currently

adopted two-week quota is cut in half with a one-week deadline, initial patent examination failure may decline

by approximately 30 percent, and the patent term adjustment period may be reduced by approximately one

week. For a pharmaceutical patent, this reduction could yield substantial consumer benefits.

Our paper is connected to several strands of the literature. First, the studies relevant to our research

are those eliciting present-biased preferences from time-inconsistent behavior associated with a real-effort

task. Robust support for present bias has been provided by laboratory-based experiments, where experiment

participants perform unpleasant tasks and are paid upon completion (Augenblick et al. 2015; Augenblick and

Rabin 2019). A handful of field experiment studies also explore the time-inconsistent behavior of college

students assigned time-consuming tasks (Ariely and Wertenbroch 2002; Bisin and Hyndman 2020). Since the

information on intended actions is often not available in field experiments, the demand for a self-imposed

deadline is used as smoking-gun evidence for (sophisticated) present bias.

As stated earlier, little evidence has been provided by observational field studies to support the theory

of present-biased preferences on procrastination for real work effort, but some impressive results have been

obtained in recent work. For example, Martinez et al. (2017) explore procrastination behavior observed in

tax return filing and find substantial evidence of present bias. This finding is corroborated by an out-of-
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sample prediction, where a quasihyperbolic discounting model outperforms an exponential discounting model

in predicting people’s response to a policy change concerning tax return incentives.

Concerning the research subject, the study most closely related to ours is Frakes and Wasserman (2020).

The authors investigate the U.S. patent examination process and conclude that patent examiners’ uneven

spike-looking work pattern can be attributed to their present-biased preferences.7 Our paper differs in the

following ways: (i) we provide quantitative evidence for present-bias-induced procrastination by estimating

individual-specific present-bias factors, and (ii) we perform counterfactual simulations based on the estimated

parameters to evaluate whether some policies would improve patent examination efficiency.

Second, our paper complements studies that estimate the present-bias factor using observational data.8 In

this context, a wide range of intertemporal economic decisions have been studied, including consumption and

saving (Laibson et al. 2015), job search (Paserman 2008), medical examination (Fang and Wang 2015), labor

supply and welfare participation (Fang and Silverman 2009; Chan 2017), and tax return filing (Martinez

et al. 2017). These studies use a structural approach to estimate β − δ parameters in a dynamic discrete

choice model. The discrete choice-based approach, which is promising in certain situations, may not suit our

research needs.9 We propose a novel approach to estimate the present-bias factors based on a continuous

effort allocation model.

Third, our paper mirrors a batch of studies that attribute the variability in patent examination quality to

patent examiners’ traits and the patent examination environment(Cockburn et al. 2002; Lemley and Sampat

2012; Frakes and Wasserman 2017). Specifically, our finding that the patent examination deadline may impact

patent examination performance is consistent with Frakes and Wasserman (2017), who find that tighter patent

examiner time constraints result in low patent examination quality.

Finally, the results of our paper also have implications for the literature on the work performance of

“experts,” including juridical judges (Coviello et al. 2015), journal referees (Chetty et al. 2014), emergency

doctors (Chan 2018), and paramedics (Brachet et al. 2012). While the contexts and perspectives are diverse,

a common thread of these studies is that proper task management can enhance task productivity, which is in

line with our conclusion that task efficiency may improve if a task quota is appropriately subdivided.

This paper proceeds as follows. Section 2 provides institutional background on the patent examination

process in the U.S. The data and summary statistics are described in Section 3, and the regression-based

evidence for present-bias-induced procrastination is included in Section 4. Section 5 presents a behavioral

model of a patent examiner’s worktime allocation based on a β − δ framework and illustrates the qualita-

tive properties via simulation. Section 6 performs Bayesian inference for the model parameters to elicit the

individual-specific present-bias factor of each patent examiner. Section 7 presents policy simulations concern-

ing patent examination quality and patent pendency. Finally, Section 8 concludes.

7Frakes and Wasserman (2020) identify present-biased preferences of U.S. patent examiners by focusing on the
near-deadline clustering of their patent review completion. Of critical importance is the regression finding that the
clustering tendency is enhanced by the onset of the telecommuting program adopted by the USPTO, which is expected
to make patent examiners’ self-control ability more essential and further deter the actions of present-biased patent
examiners. They also provide additional empirical evidence that patent reviews made near the deadline tend to be
quick and of low quality, which can be attributed to present-bias-induced time crunch.

8Extensive surveys are provided by DellaVigna (2018) and Cohen et al. (2020).
9First, a single patent examination task involves multiple actions and is not a discrete once-for-all event. Second,

patent examiners may finish review tasks earlier than the deadline but submit them all at once on the deadline date,
as argued in Frakes and Wasserman (2020). Consequently, the information on task completion may be noisy in that
the completion time recorded in the patent examination data does not necessarily coincide with the actual completion
time.
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2 Institutional Background

2.1 Patent Examiners

Patent examiners are the gatekeepers protecting intellectual property rights. They review a patent appli-

cation to determine whether it satisfies the statutory requirements for patentability, including novelty and

nonobviousness.10

The examination of a patent application demands a high level of technical knowledge and expertise. Given

the highly technical nature of patent applications, the USPTO has nine Technology Centers (TCs) specializing

in specific fields of technology. Each TC is further divided into smaller workgroups, called Art Units, which

usually consist of 10 to 15 patent examiners reviewing patent applications in similar technological subfields.11

2.2 Patent Examination

The examination process is systematic and standardized.12 The supervisory patent examiner (SPE), who

heads the Art Unit, usually assigns the application to a patent examiner within the Art Unit in a random

manner.13 The applications allocated to a specific patent examiner are retained in a queue, called a “docket,”

from which he or she takes an application for examination on a first-in, first-out basis.14

A patent examiner’s decision on patentability is called an office action. There are two major types of

office actions: (1) a first office action is the initial examination of whether to allow or reject the claims, and

(2) a final office action is the ultimate decision on the patentability of the application. If the claims are

judged patentable in the first round of the review, the application is granted a patent. In most cases, however,

patent examiners initially reject some or all claims and cite all the possible grounds for rejection in the first

office action.15 Upon receiving the applicant’s response to the first office action’s rejection, patent examiners

issue the final office action, where the application is either allowed or rejected. Since patent examiners are

encouraged to address all the statutory issues in the first office action and complete application review within

two office actions, the second office action is usually final.16

2.3 Performance Appraisal

The patent office regularly tracks patent examiners’ work performance by several metrics. The most important

is the work output metric, referred to as the “count.” Patent examiners receive a count at two different times:

(i) when the first office action is issued for an application and (ii) when an application is disposed of by

10The U.S. Patent Act (Code 35) sets forth the general standards for patentability in Section 101.
11For example, TC 1600 handles patent applications in the category of Biotechnology and Organic Chemistry,

whereas Art Unit 1641, a subdivision of TC 1600, is a workgroup of examiners who review patent applications relating
to peptide or protein sequences.

12The process is documented in the Manual of Patent Examining and Procedure (MPEP).
13Lemley and Sampat (2012) mention this random assignment rule. Based on interviews with SPEs, they conclude

that there is no evidence of the deliberate selection or assignment of patent applications.
14See MPEP §708 regarding the order of patent examination.
15Marco et al. (2017) shows that only approximately 10 percent of patent applications are granted at the first stage

of examination in the U.S.
16The USPTO’s policy is called “compact prosecution.” MPEP §2173.06 stipulates that “Under the principles of

compact prosecution, the examiner should review each claim for compliance with every statutory requirement for
patentability in the initial review of the application and identify all of the applicable grounds of rejection in the first
office action to avoid unnecessary delays in the prosecution of the application.”
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allowance or abandonment. The patent office sets a productivity goal based on the count in the allotted

time. Specifically, patent examiners are required to meet a target count in a two-week period. The biweekly

quota is tailored individually and is determined based on a patent examiner’s position and the technological

complexity of applications.17

Patent examiners are scrutinized as to whether they meet the biweekly quota: noncompliance heightens

the risk of dismissal from the patent agency. If patent examiners meet the biweekly quota for an average of 10

percent or more of the year, they are eligible for a special bonus that adds to their base salary. According to a

report by the Office of the Inspector General (OIG), all tenured patent examiners had an annual productivity

goal of 100 percent in the early 2000s. Approximately 90 percent of them were in the target range of 110 to

119 percent of the annual quota attainment and received special bonuses. An extra reward is set for even

higher achievement levels—120 percent more on target—but fewer than 10 percent could attain this level.18

Another metric is used to evaluate examination quality. The SPEs or specialist reviewers conduct a

quality assessment of randomly selected office actions by checking whether patent examiners made “errors” in

the applications’ patentability decisions.19 The quality rating of a patent examiner affects his or her annual

compensation and promotion possibility to an upper position.20

Ostensibly, both the quantity and quality goals of the patent examination are assessed. However, the

quality aspect has been downplayed compared to the quantitative aspect.21 The USPTO monitoring policy

of prioritizing quantity over quality may provide room for patent examiners to game the system. It is widely

believed among practitioners and policymakers that patent examiners often knowingly issue incomplete office

actions to meet the productivity goal (Stephenson 2008). This ill-practice is known as “patent mortgaging.”22

Patent examiners, especially those in need of counts, tend to reject an application without sufficient review

in the first round. Such quick and baseless rejection is referred to as a “shotgun rejection” (Frakes and

Wasserman 2020).

Patent examiners’ readiness to opt for premature patent application reviews motivates us to focus on

the second office action to evaluate the quality of the first office action.23 If a patent examiner rejects an

17The specific calculation of the count is described in detail in Marco et al. (2017). Moreover, the biweekly quota was
unchanged from 1976 until 2010, according to a report published by the National Academy of Public Administration
(NAPA) in 2005 and a report published by the Government Accountability Office (GAO) in 2016.

18See the report by the OIG (2004) . The detailed figures are as follows: 41 percent of examiners were between 100
percent and 109 percent of their productivity goal; 51 percent met the target in the range between 110 percent and
119 percent; and 8 percent of patent examiners attained a target higher than 120 percent.

19An examination “error” is defined as a clear instance where a patent examiner does not comply with the examining
standards outlined in the Patent Examiner Performance Appraisal Plan, which is available from http://www.popa.

org/static/media/uploads/uploads/examiner-pap-guidelines-04_19_12-508.pdf (accessed August 4, 2020). The
quality assessment occurs at two different times: (i) after the first office action is issued on an application and before
the final office action (called in-process review) and (ii) after an allowance is granted (called allowance review).

20A patent examiner’s position is based on the General Schedule (GS) pay scale, which is the predominant pay scale
in the U.S. federal government. New hires usually enter between GS-7 and GS-9 and are promoted on the GS scale as
they accumulate experience. A patent examiner’s authority to sign off on his or her decision on a patent application,
referred to as signatory authority, depends on the GS level. “Junior” (secondary) examiners at GS-13 or below must
have their decisions checked and authorized by a “senior” (primary) examiner above GS-14. A senior examiner with
full signatory authority, on the other hand, may allow or reject a patent application without any additional check.

21NAPA (2005, 2015) discuss the appraisal procedures of patent examiners’ performance in detail. Furthermore, the
OIG (2015) provides detailed quantitative evidence that the actual error rate is systematically underreported in the
quality review.

22See OIG (2015) and NAPA (2015) for a detailed explanation.
23Frakes and Wasserman (2020) propose a nonfinal second office action as a proxy measure for the failure of the first

office action.
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application without sufficient grounds in the first round of review, the office action is deemed to contain an

error by the quality assessment. In that case, a patent examiner must redo a search of prior art to make up

for his or her prior baseless decision in the next round of review. The second office action will not be the final

action in that case.24 Therefore, a nonfinal second office action indicates a failed first office action.25

Finally, patent examiners have been given broad discretion in choosing their working time. They must

work eighty hours in two weeks but do not have to work eight hours a day.26 Furthermore, even though patent

examiners must self-report their work hours in a timekeeping system at the end of each biweekly period, there

is no mechanism to verify whether the reported hours were correct. The OIG (2015) alleged that lax work

monitoring might result in time and attendance abuse among patent examiners.

3 Data and Statistics

3.1 Data Construction

The primary data come from the USPTO Patent Examination Dataset based on information from the Public

Patent Application Information Retrieval (PAIR). The PAIR provides detailed information on all patent

applications filed with the USPTO that have been published.27 We limit our analysis to a sample in a specific

technical field because the original sample size is too large for a standard computing environment. In the

following, accordingly, the analysis is performed using patent applications handled by TC 1600: Biotechnology

and Organic Chemistry.

We consider only the first cycle of patent examination since patent applications are transacted through

a convoluted route.28 The cycle starts when an application is assigned to an examiner’s docket and ends

when a first office action is taken. We select applications with a first office action issuance between January

1, 2001, and December 31, 2009, because the USPTO management changed the patent examination rule

after 2010.29 We further restrict the sample along several other dimensions: we limit patent applications

to regular utility applications, we exclude those applied through the Patent Cooperation Treaty system, we

eliminate those reviewed by patent examiners with less than one year of experience, and we remove those

whose prosecution records are incoherent. Eventually, a sample of approximately eighteen hundred thousand

applications reviewed by 710 examiners in 55 Art Units remains.

We supplement our analysis using granted patent information available from the USPTO Patents View

24MPEP §707.07 (A) prescribes that “second or any subsequent actions on the merits shall be final, except where
a patent examiner introduces a new ground of rejection that is neither necessitated by applicant’s amendment of the
claims nor based on information submitted in an information disclosure statement.”

25Notably, a patent examiner does not receive any count when he or she issues a nonfinal second office action, for it
is neither the first office action nor the final office action that leads to any disposal actions.

26The majority of patent examiners participate in a flextime schedule that started in the early 2000s, called the
Increased Flextime Program (IFP). Under the IFP, they may vary the number of hours worked each day and the days
worked each week, as long as they (i) meet the eighty-hour requirement and (2) satisfy core hour requirements (NAPA
2015) .

27The URL of the data source is https://www.uspto.gov/learning-and-resources/electronic-data-products/
patent-examination-research-dataset-public-pair. Graham et al. (2015) provide information and supporting
documents about the dataset.

28For a detailed description of the patent examination process, see Marco et al. (2017).
29According to U.S. Government Accountability Office (GAO), the patent office adjusted the time allotted to

examiners between fiscal years 2010 and 2012 and gave all patent examiners a total of 2.5 additional hours per
application.
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website.30 The data are used to construct patent examiners’ characteristics, including years of experience and

positions, and to make quality-related patent application variables based on document-based information.31

32

3.2 Descriptive Statistics

Table 1 presents summary statistics. Panel A shows statistics on patent examiners. The number of patent

examiners in each year was between 400 and 600, and the number increased over time. The number of years

of experience also increased because the early 2000s experienced active recruitment, while turnover declined

over time. Panel B shows throughput statistics on the patent application reviews for a single patent examiner.

As presented in the previous section, a first office failure occurs when the subsequent office action is not final.

The number of first office actions issued by one examiner is relatively stable, and the failure rate of the first

action per patent examiner remains between 14 and 15 percent, except in the final year of the study.

We now turn to the association between the timing and quality of the first office actions. Figure 1 presents

(i) the distribution of the days that the first office actions are issued over weekdays in a biweekly quota period

and (ii) the time course of the first office action failure rate for the same period.33 Two findings emerge. First,

the first action dates tend to cluster near the deadline.34 Approximately half the first office action decisions

are made on the last day of a biweekly period. Second, the quality of examination declines as the deadline

approaches. At the end of the biweekly period, the rate of first office action failure is roughly 1.5 times greater

than that at the beginning. In other words, the patent examiner’s postponed actions do not appear to lead

to good results and are counterproductive.35

3.3 Assumption of Quota Stability

We now verify a premise concerning the biweekly patent examination quota. In the analysis that follows,

we assume that holidays do not alter the quota. Only patent office insiders know precisely how the quota is

determined or fine-tuned. Therefore, we assess the validity of the assumption on quota stability by scrutinizing

whether the number of first office actions in a biweekly period is affected by the existence of holidays; we let

the data speak for themselves.

As a preliminary step, we categorize the two-week quota period by whether it includes a U.S. federal

holiday. In the standard quota period, patent examiners use the full 10 weekdays to review patent applications.

On the other hand, in short quota periods that include at least one holiday, less than 10 weekdays are available.

30The URL of the data source is https://www.patentsview.org/download/.
31We calculate a patent examiner’s years of experience using the date of the earliest first office action issued by him

or her as a career starting point. Moreover, we determine an examiner’s position, either senior (primary examiner) or
junior (secondary examiner), based on the signatory authority recorded in the issued patent data.

32We use the number of patent claims, the number of words, and word types in the patent document.
33According to the patent examiner’s Docket Management Manual, all reviewed patent applications must be sub-

mitted on the first Monday after the two weeks given as the quota period. In this paper, we set that Monday, often
referred to as Count Monday, as the deadline for each biweekly quota. The Docket Management Manual is available
from http://popa.org/static/media/uploads/uploads/DocketManagementManualVersion5.pdf (accessed August 4,
2020).

34Figure G.1 in the Appendix shows the daily number of first office actions for TC 1600 for the period 2004-2009.
A biweekly cyclic trend with a sharp spike on the deadline date, or the Count Monday, represented by a solid circle in
the figure, is evident. The same patterns are observed for other years.

35Frakes and Wasserman (2020) have reported these features of patent examination.
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Let Sbt be a binary indicator of a short timeframe, which is one if biweekly period b in year t includes a holiday

and is zero otherwise.

We estimate the following regression model:

log

(
Num FOAbt

Num Exambt

)
= αb + αt + α1Sbt + α2 log(Backlogbt) + εbt (1)

where the subscript b indexes the biweekly period and subscript t indexes the year. The dependent variable is

constructed as the ratio of Num FOAbt, which represents the total number of first office actions, relative to

Num Exambt, which represents the total number of patent examiners. The explanatory variable of interest

is the short timeframe indicator Sbt. The variable Backlogbt represents the total number of pending patent

applications as of the beginning of biweekly period b in year t, which is further divided into those for new

applications and those for amended applications.36 We include a variable to account for the impact of backlogs

on patent examination capacity (Mitra-Kahn et al. 2013). Additionally, a biweekly period dummy αb and

year dummy αt are included to control for time trends, and εbt represents an error term.

Notably, the variation in the short timeframe indicator Sbt comes from the discrepancy between the quota

cycle and the calendar cycle. Since holidays are set on specific dates or specific weeks of the year, the same

biweekly period in different years could have a different number of holidays.37

Table 2 presents the estimation results. In column 1, we report estimates for the baseline specification.

In columns 2-5, we add an event dummy variable that takes a value of one if biweekly period b in year t is

on Thanksgiving. In columns 3-5, we allow the number of first office actions per patent examiner to vary

with the number of patent examiners. In columns 4 and 5, we add lead and lag variables of the short period

dummy. While several specifications are used, the estimated coefficients of the short timeframe dummy, Sbt,

are invariably not statistically significant.

The combined evidence indicates that patent examiners are given the same quota and issue the same

number of first office actions even in biweekly periods with holidays. Nothing can be said, however, about the

change in task performance in a short timeframe. Do patent examiners sacrifice their work quality to meet

the quota in such a time-scarce environment? We will investigate this question in the next section.

4 Regression Evidence

This section performs regression analysis to understand patent examiners’ task performance through the lens

of their present-biased preferences.

Our empirical strategy is based on the association between present bias and task performance. Notably,

the theory of present-biased preferences predicts that a present-biased person will delay the start of a quota

and complete the work near the deadline (O’Donoghue and Rabin 1999). Consequently, the task performance

of a present-biased person is substandard (Herweg and Müller 2011). How does the situation change when

the task deadline is shortened? The answer is not much. A present-biased person will continue to delay the

36These two types of the patent application “backlogs” are associated with first action pendency and post first action
pendency, respectively. See Mitra-Kahn et al. (2013) for a more detailed definition of patent backlogs and their impact
on growing examination pendency in the U.K. and U.S.

37The biweekly quota cycle does not start on the same day every year, so it shifts slightly each year. For example,
the second biweekly quota cycle period in 2005 (from January 11 to 24) includes Martin Luther King Jr. Day as
a federal holiday, but the same biweekly period in 2010 (from January 5 to 18) does not. Therefore, the former is
considered a short biweekly period, whereas the latter is not.
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task even in time-scarce circumstances. Therefore, the performance will not be sensitive to increased deadline

pressure. If we apply this intuition to the case of patent examination, we obtain the following predictions

concerning a present-biased patent examiner’s task performance: it will be (i) inadequate and (ii) insensitive

to the deadline.

4.1 Empirical Specification

To assess whether the predictions stated above are supported by the data, we set out the following regression

model:

log(Oddsaibt) = αb + αt + (ϕ0i + α0XX0,abt + α0WW0,ibt) +

(ϕ1i + α1XX1,abt + α1WW1,ibt)Sbt (2)

where a indexes the application, i indexes the patent examiner, b indexes the biweekly period, and t indexes

the year. The dependent variable log(Oddsaibt) is the log-odds that the first office action of patent application

a reviewed by patent examiner i in biweekly period b in year t is unsuccessful, which is referred to as the

log-failure odds in the following.38 The regressors include the short timeframe indicator Sbt, which takes a

value of one if biweekly period b in year t contains a holiday. The biweekly period dummy αb and year dummy

αt control for time trends.39 The variables X•,abt and W•,ibt represent the characteristic vectors regarding

application a and patent examiner i.40 The complete list of control variables in the regression is presented

in Table G.1 in the Appendix. We collect all coefficients of the time trend dummies and observed patent

examiner and application characteristics into a single vector α.

The patent examiner-specific parameters, ϕ0i and ϕ1i, are our parameters of interest. The parameter ϕ0i

is interpreted as the log-failure odds of patent examiner i after the effects of the observed factors are accounted

for. On the other hand, the parameter ϕ1i is interpreted as the ceteris paribus difference in the log-failure

odds of patent examiner i between the situations under a short timeframe (Sbt = 1) and standard timeframe

(Sbt = 0). Since the two parameters are estimated by an empirical model (as opposed to being predicted by

a theoretical model), we refer to them as the empirical log-failure odds in level and difference.

How are the empirical log-failure odds, ϕ0i, and ϕ1i, related? Recall the following predictions concerning

the association between present bias and task performance:

1. A patent examiner with higher present bias works shorter hours because of procrastination and therefore

has higher log-failure odds, implying that patent examiner i with higher present bias tends to have a

larger positive value of ϕ0i.

2. The shorter deadline will have a limited impact on a higher present-biased patent examiner’s task

performance, implying that patent examiner i with higher present bias tends to have a smaller positive

value of ϕ1i.

38To be more precise, a patent application reviewed by a patent examiner is unsuccessful if the first office action
fails or, equivalently, as explained in Section 2.3, the second office action is nonfinal.

39In practice, the regression includes trend dummy variables at the quarter and month levels and the Thanksgiving
dummy variable defined in the previous section.

40For ease of interpretation, they are both transformed as the deviation from the overall mean. We denote the
original variable as Xo

•,abt and the overall mean as X̄o
• for all applications. We then define X•,abt = Xo

•,abt − X̄o
• . The

same definition is applied to W•,ibt.
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Therefore, we predict that the two empirical log-failure odds parameters, ϕ0i and ϕ1i, are negatively correlated.

The prediction presented here is supported by a model analysis in the next section.

4.2 Baseline Evidence

We construe equation (2) as a multilevel logit model with a random intercept and a random coefficient.

Following the standard procedure of multilevel analysis (Gelman and Hill 2006; Snijders and Bosker 2011),

the random intercept-coefficient vector (ϕ0i, ϕ1i) is assumed to follow a bivariate normal distribution with

means (µ0, µ1), standard deviations (σ0, σ1), and correlation σ01. Let σ = (σ0, σ1, σ01) be the standard-

deviation-correlation matrix. The random vector (ϕ0i, ϕ1i) is further assumed to be uncorrelated with any of

the explanatory variables, X•,abt and W•,ibt.

We estimate the parameters α and σ by means of a maximum-likelihood method. Table 3 reports the

main results.41 Panel A presents the marginal effect of the short timeframe indicator Sbt on the first office

action failure, while panel B shows the estimates of the standard-deviation-correlation matrix σ. As measures

of goodness-of-fit, the Akaike information criterion (AIC), the Bayesian information criterion (BIC), and the

area under the receiver operating characteristic curve (AU.ROC) are presented in the last panel.42

For robustness considerations, we apply several specifications. We begin with a simple specification in

column 1, where neither application-specific nor patent examiner-specific observed heterogeneities are allowed

to interact with the short timeframe dummy.43 We then proceed to flexible models with more interaction

terms. In column 2, the interaction terms include the examiner characteristic variable vector, W1,ibt. In

column 3, the interaction terms are expanded to include both the application and examiner characteristic

vectors, X1,abt and W1,ibt.

The estimation results reveal several findings. First, the results are qualitatively unchanged under the

different specifications. Nonetheless, the specification in column 3 appears to be overfit because it contains

264 regressors, 1.5 times as many as the specifications in column 1 and 2, but it does not exhibit substantial

improvement in the goodness-of-fit measures. Therefore, we consider the model in column 2 as the preferred

specification in what follows. Second, the marginal effects of the short timeframe on examination failure are

positive and statistically significant (p-value of 0.008 in the preferred specification). As an overall average,

the failure odds increase approximately one percent if an application is reviewed in a short biweekly period

rather than in a standard biweekly period. Third, the estimates of σ0 and σ1 are positive and statistically

significant (both p-values are 0.000 in the preferred specification), which indicates that substantial unobserved

heterogeneity exists in the log-failure odds in both levels and differences. Last, and most importantly, the esti-

mate of correlation σ01 is negative and statistically significant (p-value of 0.009 in the preferred specification),

which strongly corroborates our prediction of the empirical log-failure odds.

41Estimates of the coefficients for variables other than those shown in Table 3 are reported in Table G.2 in the
Appendix. However, the estimates for the time trend dummies (i.e., year, quarter, month, Thanksgiving), biweekly
period dummies, art unit dummies, and technological class dummies are not provided. The estimates on the interaction
term of Sbt and (X1,abt,W1,ibt) are not also reported in Table 3. The estimation results are available from the authors
upon request.

42AU.ROC, which ranges from zero to one, is a measure of a model’s ability to discriminate the binary outcomes
of the observation (Hosmer and Lemeshow 2000). A higher AU.ROC value indicates better discriminatory power of
the model. In particular, a value of 0.5 indicates no more discriminative power than a coin flip, while a value of 1.0
indicates perfect discrimination. Since the calculated AU.ROC value exceeds 0.7 for our estimates, the model’s fit is
considered satisfactory in terms of discriminatory power.

43This situation corresponds to the case where the set of interaction variables {X1,abt,W1,ibt} is empty.
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4.3 Additional Evidence

There are several concerns in interpreting the baseline regression results as evidence of present-biased prefer-

ences.

The first concern is that the regression model may be misspecified. The assumption of the random

parameters’ joint normality or the assumption of no correlation between the random parameters and the

covariates may not hold. To address this issue, we estimate the logit regression, where the intercept-coefficient

parameters, (ϕ0i, ϕ1i), are treated as fixed effects. While the fixed-effect estimates become less precise than

the random-effect estimates in general, the distribution assumption is much weaker than that for random

effects. The results are reported in column 4 of Table 3. No evidence is provided to refute the interpretation

of the results stated above.

The second concern regards the endogeneity of the regressors. In the baseline specification, it is assumed

that the short timeframe dummy, Sbt, is exogenous in the sense that it is uncorrelated with unobserved

factors that could influence the log-failure odds. However, this assumption may be violated if the examiners

intentionally manipulate the order of examination or conduct application sorting.44 For instance, patent

examiners may prefer reviewing an “easy” application in a time-crunch situation.45 This scenario is considered

a typical omitted variable problem because the regression model fails to control for application characteristics

by which patent examiners are guided to arrange the order of patent review but are unobserved by researchers.

One general way to mitigate the omitted-variable problem is to include as many attributes as believed

to be appropriate. We exploit the dataset of granted patents, which includes detailed information on the

patent contents.46 The estimation results are presented in column 5 of Table 3. Reassuringly, the estimated

association between ϕ0i and ϕ1i is negative and significant at the 10 percent level (p-value of 0.075).

As a further check on application sorting, we run a regression that controls for the lead and lag effects of

the shortened deadline. The lead and lag variables of the short timeframe dummy are denoted by Sb−1t and

Sb+1t, respectively. The model is then restated as

log(Oddsaibt) = αb + αt + (ϕ0i + α0XX0,abt + α0WW0,ibt) +

(ϕ1i + α1XX1,abt + α1WW1,ibt)Sbt + ϕ2iSb−1,t + ϕ3iSb+1,t (3)

This specification is motivated by a scenario that we believe may occur in the patent examination process.47

Suppose that a patent examiner reviews easy applications in short biweekly periods and difficult applications

in the rest of the biweekly periods. If application sorting is allowed, he or she may review difficult patent

applications in the biweekly period before or after a short biweekly period. Consequently, the task performance

before or after a short biweekly period decreases because the task load is transmitted from one period to

another. Such “burden-shift effects” are captured by the parameters ϕ2i and ϕ3i in the augmented regression

44Review order manipulation is not permitted, in principle, in the patent examination process. MPEP §708 stipulates
that, as a general rule, “Each examiner will give priority to that application in his or her docket, whether amended or
new, which has the oldest effective U.S. filing date.” However, it is not guaranteed that the examiners conform to the
rule in actual operations.

45We consider an application to be “easy” if it is technically simple and easily understandable so that patent
examiners can decide its patentability without much prior search. On the other hand, if an application is “difficult,”
it is technically complex and takes a long time for patent examiners to review.

46While less than 60 percent of the total number of applications were granted patents, we believe that the limited
data coverage is compensated by in-depth knowledge of the patent characteristics.

47In this scenario, patent examiners are assumed to know in advance what applications are in their task list (or
“docket” using patent lingo) and can judge the level of their technical difficulty before the actual examination begins.
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model.

The estimation result is presented in column 6 of Table 3, which shows that the marginal effects of Sb−1t

and Sb+1t are not statistically significant (p-values of 0.399 and 0.613, respectively). Furthermore, even if the

burden-shift effects are considered, the parameter σ01, which represents the correlation between ϕ0i and ϕ0i,

remains negative and statistically significant (p-value is 0.000).48 Since no affirmative support for application

sorting is observed, in the following analysis, we assume that the endogeneity of the short timeframe indicator

is not severe.

As a final concern, one may worry that the empirical log-failure odds, ϕ̂0i and ϕ̂1i, are confounded by

unobserved patent examiner characteristics, such as inability or incompetency for tasks. However, the view is

difficult to explain coherently with the data. One would expect a patent examiner with less task competency

to issue more examination failures in a standard timeframe (i.e., a high value of ϕ0i). However, at the same

time, one would expect that the individual, because of inferior capability, would be even more likely to fail

in a short timeframe (i.e., a high value of ϕ1i). This predicted positive association between ϕ0i and ϕ0i is not

compatible with the evidence of a negative correlation consistently found in the estimated results in Table 3.

4.4 Graphical Summary

It is worthwhile to summarize the regression results graphically. Figure 2 presents a scatterplot of the estimated

empirical log-failure odds (ϕ̂0i, ϕ̂1i), which are calculated via empirical Bayes inference.49 Visual inspection

of the figure confirms that the association of the pair of empirical log-failure odds is negative. Figure 2 shows

a fitting curve where the estimated parameter, ϕ̂0i, is regressed on the other estimated parameter, ϕ̂1i, with

the first- and second-order terms. We find that the relationship is negative and convex.50

However, it remains unclear whether a behavioral theory can rationalize the observed pattern in the

empirical log-failure odds. In the next section, we address this issue in detail.

5 A Model of Procrastination

We present a behavioral model of procrastination based on the theory of present-biased preferences. To

elucidate the mechanism behind the reduced-form findings in the previous section, we focus on the effort

allocation of a representative patent examiner who reviews patent applications in two weeks. To formalize time

inconsistency in the decision making, we adopt a quasihyperbolic discounting model to describe continuous

work time allocation (Fischer 1999, 2001; Herweg and Müller 2011).

48We estimate the standard deviations and correlation matrix of the parameters ϕ0i, ϕ1i, ϕ2i and ϕ3i. We denote
by σk and σkk′ the standard deviation of parameter ϕki and the correlation of parameterϕki and ϕk′i, respectively, for
k, k′ = 0, 1, 2, 3. The estimation results are presented in Table G.3 in the Appendix.

49There is a close link between random coefficient models and Bayesian statistical models. The random coefficients
used in the multilevel regression model are analogous to random parameters modeled in Bayesian frameworks. See
Snijders and Bosker (2011) for a detailed discussion and the formula used to obtain the empirical Bayesian estimates
of the random intercept and coefficients.

50The estimated relationship is given by ϕ̂0i = −1.665− 3.88ϕ̂1i + 2.528ϕ̂2
1i.
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5.1 Basic Model

Recall that every patent examiner must review a certain number of patent applications in two weeks.51 Since

patent application review demands laborious effort, the tasks are rarely completed in one day; therefore, the

labor is allocated over a sequence of days.

The specific timeline is as follows. On the first day of a biweekly period, a patent examiner is assigned

a quota of patent application reviews. Then, he or she dynamically allocates work time to perform the task.

Note that under a flexible work arrangement policy, the patent examiner can work any day and any number of

hours a day within the two weeks.52 At the end of the biweekly period, the patent examiner must submit all

the assigned work to the patent office.53 If the patent office assesses the submitted task to be of satisfactory

quality, the patent examiner receives a reward. The biweekly schedule is then repeated.

Let us assume that every patent examiner must complete the assigned task by the two-week deadline

and is therefore given no chance to work on the task before or after the designated two-week period. Since

the rules forbid patent examiners from allocating the quota across biweekly periods, the terminal time of the

dynamic optimal allocation problem is in the finite time domain of two-week period.54

5.1.1 Work Time Allocation Decision

Suppose that a patent examiner has an assigned task to complete before deadline day D and determines

work hours wd for each day d = 1, · · · , D. Assuming no work on weekends and holidays, there are D = 10

days available under the standard timeframe and D = 9 days under the short timeframe. In the following

paragraphs, we set D = 10 unless stated otherwise. Let an increasing and concave function u(l) denote

the instantaneous utility function of a patent examiner who uses l hours for leisure. Working wd hours

on day d brings utility for ld hours of leisure, which is given by u(ld) = u(24 − wd). Let SD =
∑D

d=1 wd

denote the accumulated or total work hours on the final day D, and let R(SD) denote a reward for SD hours

of accumulated work. We assume that the reward function R(SD) is increasing and concave in SD. An

intertemporal tradeoff—a smaller-sooner reward vs. a larger-later reward—exists. Since the task deprives a

patent examiner of leisure time, today’s work depletes a small amount of utility. However, the hard work is

compensated by a large chance of receiving a future reward.

In line with previous studies on procrastination (O’Donoghue and Rabin 1999), we use the β-δ quasi-

hyperbolic discount function proposed by Laibson (1997), where the discount factor on day d is given by

βδd. The parameter β represents the present-bias factor—that is, the degree to which the patent examiner

51To be precise, every patent examiner must review patent applications and take office actions on whether they are
patentable in a biweekly period. A patent examiner’s quota is set by the number of counts that he or she receives when
issuing first office actions or disposing of patent applications, as explained in Section 2.3. For simplicity, we assume
that the number of applications that a patent examiner reviews is the same as the number of office actions he or she
issues.

52As explained in footnote 26, a flextime schedule, the IFP, is available to patent examiners.
53Figure 1 shows that the examiners submit approximately half their decisions before the deadline. However, for

expositional brevity, we assume that the agent submits all completed reviews on the last day of a biweekly period.
This simplification does not change the central insight of the model since our focus is not on the timing of submission
but on the quality of the submitted task.

54We acknowledge that the finite-horizon model is restrictive and that it would be more realistic to formulate the
time allocation problem for a longer horizon than two weeks. It is nonetheless true that the assumption of a constant
quota on which the model is based does not appear to contradict the data, as was shown by regression analysis in
Section 3.3. Therefore, in favor of tractability, we proceed with the empirical analysis by adopting the finite-horizon
framework.
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favors the present over the future—whereas δ represents the standard discount factor. Given the form of time

preferences, the total utility function of the agent on day d is given by

Ud = u(24− wd) + β

{
D−d−1∑
k=1

δku(24− wk+d) + δD−dR

(
D∑

k=1

wk

)}
(4)

We model a single patent examiner as a composite of intertemporal selves. Each self on day d decides

how many hours he or she will work beyond that day until the final day D to maximize the total utility

function Ud, which is given by equation (4). In the literature, two extreme kinds of different agents, in terms

of future beliefs, have appeared: a naive agent who fails to predict future behavior and a sophisticated agent

who recognizes his or her present bias. The behavior of naive agents is far more numerically tractable than

that of sophisticated agents.55 Hence, while it might oversimplify reality, the assumption of a naive agent is

widely adopted by empirical studies analyzing time-inconsistent behavior (DellaVigna 2018). We thus follow

previous studies and assume naivety in the rest of this analysis.

The decision making of a naive patent examiner proceeds in the following way. The self on day d determines

a particular path of working time {w∗
d, wd+1, · · · , wD−1,D } that maximizes the total utility function Ud.

However, when the next day d + 1 arrives, the new self does not comply with the working time allocation

chosen by the old self but updates it to the new time allocation path {w∗
d+1, wd+1, · · · , wD}, which is optimally

based on the current total utility Ud+1 at that period. Notably, the planned work time wd+1 and the actual

work time w∗
d+1 do not coincide in general. We denote by S∗

D =
∑D

d=1 w
∗
d the corresponding total work time

on the final day D.

5.1.2 Functional Form Specification

To solve the behavioral model presented above in practice, we must determine the shape of the instantaneous

utility function u(l) and the reward function R(S). For the utility function, we assume the constant relative

risk aversion (CRRA) form with γ being the relative risk aversion coefficient. To simplify the argument, we

set the value at γ = 1 and consider a log utility form. Later, we discuss the robustness of the results against

other values of the relative risk aversion coefficient.

For the reward function, we specify the function form considering the institutional features of the patent

examination process. Let r be a fixed reward for a patent examination quota.56 As stated in Section 2.3, a

patent examiner receives a reward if the completed reviews are judged to be satisfactory. Suppose that the

patent office assesses the patent examiner’s task as unsuccessful if the work hours that he or she spent on the

task fall short of a particular stochastic threshold, denoted by S̄. Assume for simplicity that random variable

S̄ follows an exponential distribution with shape parameter τ . We denote the cumulative distribution function

of S̄ by Prob(S̄ < S|τ) = GS̄(S|τ) = 1− exp
(

log τ
80 S

)
. Given the examination failure likelihood, the expected

reward that a patent examiner who works S hours receives is R(S) = rProb(S > S̄) = r − r exp
(

log τ
80 S

)
.

The shape parameter τ has a straightforward interpretation. Even if a patent examiner works the standard

eighty hours for two weeks, he or she may commit an examination error by chance and not be rewarded. The

55This characteristic has been noted by previous studies (Laibson et al. 2015; DellaVigna 2018). Indeed, under the
assumption of a sophisticated patent examiner, we encounter computational fragility in the dynamic decision system,
but we observe no such problem under the assumption of naivety.

56More specifically, the reward r is the utility value that a patent examiner perceives for the “counts” that he or she
receives when issuing the first office actions for two weeks.
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probability that this situation occurs Prob(S̄ < 80) = τ . Therefore, the parameter τ represents the admissible

patent examination failure rate—i.e., the admissible failure rate. This value captures some allowable degree

of patent examination error because a certain amount of human error is inevitable.

We are now ready to characterize the work time decision of the patent examiner as a function of parameters

(β, δ, τ, r). Let us denote the total utility function by Ud(β, δ, τ, r). Similarly, we denote the single-day work

time and the total work time that the patent examiner chooses by w∗
d(β, δ, τ, r) and S

∗
D(β, δ, τ, r), respectively.

5.1.3 Reward Specification

We are interested in specifying the parameters (β, δ, τ, r) of the behavioral model. However, insufficient

information is available to identify them all. In particular, little information about the reward r that the

patent office pays each patent examiner is disclosed. Therefore, we impose an additional restriction on possible

values of the reward r and assume that it is determined at the level under which a time-consistent patent

examiner works the standard eighty hours in two weeks.57 In Appendix A, we present a simple principal-agent

model to interpret the reward in light of an incentive scheme.

Under this scenario, the patent office sets an appropriate level of reward to achieve an examination failure

rate as low as the admissible failure rate τ , assuming the patent examiner behaves in a time-consistent manner.

The reward chosen by the patent office, denoted by r∗, must satisfy the equation S∗
D(1, δ, τ, r∗) = 80, where

the left-hand side represents the total work hours for an exponential discounting patent examiner with β = 1.

Since the total work hours S∗
D(β, δ, τ, r) are increasing in the reward r, the target reward r∗, if it exists, is

uniquely determined.58 To consider its dependency on the other parameters, we denote the reward by r∗(δ, τ).

Using the notations defined above, the total work time that a patent examiner chooses is given by

S∗
D (β, δ, τ, r∗(δ, τ)). For notational convenience, we collect the set of parameters (β, δ, τ) into a single vector

of the structural parameters θ and reparametrize the total work time as S∗
D(θ). In general, the total work

time S∗
D(θ) is different from eighty hours, except for the case where a patent examiner is an exponential dis-

counter with β = 1. The disagreement stems from a misbelief by the patent office about the patent examiner’s

present-biased preferences.

5.1.4 Task Performance

To conclude the model’s description, we formulate a patent examiner’s task performance as a function of

the structural parameters θ. The model predicts that the rate of examination failure is τ exp
(

S∗
D(θ)
80

)
. The

theoretical log-failure odds, denoted by LOD(θ), are therefore given by

LOD(θ) = log

 τ exp
(

S∗
D(θ)
80

)
1− τ exp

(
S∗
D(θ)

80

)
 . (5)

We assume that the parameter θ of the model is exogenous and out of the patent office’s and patent examiner’s

control. In the following, we determine the value of θ at which the model best fits the data.

57We adopt this method of determining the reward following Fischer (1999).
58The proof is presented in Appendix A.
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5.2 Calibration Exercise

In this subsection, we perform a numerical calibration. We find that the empirical log-failure odds in the

level and difference exhibit negative correlation across examiners. Therefore, we expect the corresponding

theoretical log-failure odds to have the same association pattern.

The calibration procedure is straightforward. We consider a representative patent examiner and calculate

the optimal work load under the standard timeframe for various values of the parameters θ. Since equation

(5) does not have a closed-form solution, we solve it numerically for the deadline period of D = 10 (which

is the workdays under the standard timeframe) and calculate the log-failure odds of LO10(θ). We repeat

the same simulation procedure for short timeframes with a deadline period of D = 9 (which is the workdays

under the short timeframe) and obtain the related log-failure odds LO9(θ). We denote the difference in the

log-failure odds by DLO(θ) = LO10(θ) − LO9(θ). In what follows, when mentioning the log-failure odds

under the standard timeframe, LO10(θ), we ignore the subscript and write it as LO(θ) to avoid notational

clutter. Accordingly, we denote by (LO(θ), DLO(θ)) the theoretical log-failure odds in level and difference.

We explore the trajectories of the log-failure odds of a pool of hypothetical examiners who differ in the

present-bias factors.59 Denote by βi the present-bias factor of patent examiner i. We let the individual value

of βi take values from 0.1 to 1.1 with a step size of 0.1. On the other hand, we assume that the discount factor

is the same for all examiners at δ = 0.95 and let the admissible failure rate take a value of τ = 0.05, 0.10 or

0.15.60 We define a vector θi = (βi, δ, τ) and denote by LO(θi) and DLO(θi) the theoretical log-failure odds

of patent examiner i in the level and the difference, respectively.

Figure 3 presents the simulation results. The leftmost panel shows, for reference purposes, a scatterplot

of the empirical log-failure odds, which is the same graph as Figure 2, while the panels in the second to the

rightmost columns show scatterplots of the theoretical log-failure odds for different values of the admissible

failure rate. A darker color indicates a higher degree of present-biased preference (i.e., a lower value of the

present-bias factor). While the log-failure odds trajectory is perfectly inelastic for highly present-biased patent

examiners, the association between the level and difference becomes negative as a patent examiner’s present-

biased preferences become mild. Thus, we can conclude that the theoretical log-failure odds can accommodate

the observed negative correlation of the empirical log-failure odds when individual present-bias factors are

heterogeneous and distributed in the middle range.

6 Structural Model Estimation

We proceed to estimate the patent examiner-specific present-bias factor. This section consists of several parts.

The first part is devoted to derivation of the likelihood function for the key parameters. The second part

briefly explains a Bayesian estimation method. In the third part, the baseline results are presented, and a

sensitivity analysis is performed. The final part shows the out-of-sample model validation.

59Appendix B provides simulated work patterns of patent examiners with distinct values of present-bias factor β.
We find that the outcomes are generally consistent with the findings on time allocation in previous theoretical papers
(Herweg and Müller 2011).

60We choose the values for the admissible failure rate of τ to cover the actual failure rate of 0.15. See the prior
distribution settings of the parameter described in the next section.
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6.1 Likelihood Function

We start by deriving the likelihood function. We substitute the empirical log-failure odds, (ϕ0i, ϕ1i) for the

theoretical log-failure odds (LO(θi), DLO(θi)) in the log-failure odds given by equation (2).

Accordingly, the log-likelihood that examination failure occurs takes the following form:

ℓ(θ,α) =
∑
i∈N

∑
t∈Ti

∑
b∈Bt

∑
a∈Aibt

log Λ

{
αb + αt + LO(θi) + α0XX0,abt + α0WW0,ibt +

DLO(θi)Sbt + (α1XX1,abt + α1WW1,ibt)Sbt

}
where Λ represents the cumulative distribution function of the logistic distribution, N represents the set of

patent examiners, Ti represents the set of years in which patent examiner i is in the patent office, Bt represents

the set of biweekly periods in year t, and Aibt represents the set of applications reviewed by patent examiner

i in biweekly period b in year t. We abuse the notation and denote by N the number of patent examiners.

For ease of exposition, we consolidate the main parameters into a vector θ = (β, δ, τ) and β = (β1, · · · , βN ).

We also include the remaining “incidental” parameters in a vector α = (αb, αt, α0X , α0W , α1X , α1W ).

6.2 Estimation Method

There are two computational aspects to consider. First, no analytical form is available for the theoretical

log-failure odds LO(θi) and DLO(θi) or the log-likelihood ℓ(θ,α). Therefore, a simulation-and-estimation

procedure is required to obtain the maximum-likelihood estimates of the parameter θ. Since the simulated

likelihood is not smooth in the parameter, derivative-based methods, such as quasi-Newton methods, are

not suitable for maximizing the likelihood function. Second, the log-likelihood function is of high dimen-

sionality. Indeed, since there are approximately seven hundred patent examiners, we must specify as many

individual-specific present-bias factors β = (β1, · · · , βN ). Furthermore, since the model incorporates hundreds

of explanatory variables, including time trend dummies and technological group dummies, the total number of

incidental parameters is substantial in the full specification. Such high dimensionality of the parameter space

further increases the computational cost because non-derivative-based optimization algorithms are inefficient

and likely to become stuck in local optima.

This paper adopts a Bayesian approach to circumvent the computational challenges. In the structural

model context, particularly when simulation-estimation exercise is called for, previous studies have noted

several advantages of Bayesian methods over classical estimation methods.61

According to Bayes’ rule, the marginal joint posterior for the key parameter θ is given by

π(θ) =

∫
exp ℓ(θ,α)π0(θ,α)dα∫ ∫
exp ℓ(θ,α)π0(θ,α)dθdα

(6)

where π0(θ,α) represents the prior distribution. Since the multiple integrals in the equation above cannot be

61The following three points are considered advantages of Bayesian methods over classical methods. First, since
Bayesian methods rely on integration instead of optimization, inference works well even when the likelihood function is
neither smooth nor unimodal. Second, the posterior integration is less computationally expensive than maximizing the
likelihood function. Third, although the Bayesian estimator has the same asymptotic behavior as the classical estimator,
it can have desirable estimation properties, such as consistency and efficiency, under less restrictive conditions. See
Train (2009) for more details on this issue. Jiang et al. (2009) argue the advantage of Bayesian methods with MCMC
over standard GMM estimation methods for random-coefficient logit models.
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evaluated analytically, we use MCMC algorithms for the integrals. However, if the parameter space is of high

dimensions, it is still unwieldy for MCMC algorithms to compute the posterior distribution with sufficient

accuracy. For high-dimensional models, Markov chains do not mix sufficiently fast over the parameter space

(Jackman 2009). If we let an MCMC algorithm run for a sufficiently long time, it will eventually reach an

equilibrium distribution; however, the computational cost will be prohibitively high.

To lessen the computational burden and make the Bayesian inference practically tractable, we adopt a

pragmatic approach to reduce the dimensions of the parameter space. We concentrate the posterior distribu-

tion for the key parameter θ by conditioning it on the incidental parameter α̂:

π(θ|α̂) =
exp {ℓ(θ, α̂)}π0(θ)∫
exp {ℓ(θ, α̂)}π0(θ)dθ

(7)

where α̂ represents the estimates of the incidental parameters obtained from the reduced-form estimation in

Section 4, and π0(θ) represents the prior distribution.

We acknowledge that the concentrated posterior distribution (7) may misspecify the true marginal poste-

rior distribution (6). However, the latter is also considered an approximation of the complex reality concerning

the patent examination.62 Therefore, our approach is considered a constructive way to reach reasonable con-

clusions about the parameters of interest.

We assign uniform distributions for the prior π0(θ) with sufficiently wide supports to cover most of the

estimates in previous studies. The specific choices are as follows. First, the present-bias parameter β is

assumed to span the interval [0.1, 1.1]. We allow the value to exceed 1.0 to consider the possibility of future

bias (Takeuchi 2011). Second, the annual discount factor parameter δ is in the interval [0.9, 1.0]. Note that

since the model assumes daily decision making, we convert the annual discount factor to a daily discount

factor. Third, the parameter of the admissible failure rate, τ , is assumed to lie in the range [0.01, 0.20]. Since

it is interpreted as an unavoidable chance of examination failure for patent examiners, we choose a sufficiently

broad interval to cover the actual failure rate of 0.15. We impose a prior independence assumption such that

the priors’ distributions are assumed independent for all the parameters.

Table 4 reports the Bayesian statistical results of the concentrated posterior distribution π(θ|α̂) given

by equation (7). Computations are performed using an MCMC method based on the Metropolis-Hastings

algorithm. We present the detailed procedure in Appendix C. Panel A of Table 4 summarizes the estimates

for the key parameters. The point estimates are the means of the marginal posterior distributions. The

values in parentheses represent the lower and upper limits of the 95 percent highest density interval (HDI) of

the marginal posterior distribution. The quantile points of the distribution of the mean individual present-

bias factors are reported. Panel B of Table 4 provides the goodness-of-fit measures. The widely applicable

information criterion (WAIC) is an information criterion similar to the AIC and BIC but is based on Bayesian

statistics (Watanabe 2013; Gelman et al. 2014). As previously stated, AUC.ROC provides a measure of the

models’ discriminatory accuracy. Panel C reports the percentage of present-biased patent examiners. We

label a patent examiner as present biased if the upper limit of the 95 percent HDI of his or her present-bias

factor does not reach the value of one.

Several features emerge from the baseline estimates shown in column 1. First, and most important, is

that the majority of patent examiners have present-biased preferences: the median patent examiner has a

62For example, the regression model assumes that the patent examiner and application-specific characteristics affect
the examination outcome in a linear and additive way. Furthermore, the distribution of the error term is assumed
logistic. These assumptions are standard but have never been tested.

19



present-bias factor of 0.60. Furthermore, the percentage of present-biased patent examiners is approximately

70 percent. The second feature of the estimates is that the discount factor δ is imprecisely estimated with an

extensive 95 percent HDI. The posterior distribution is as flat as the prior distribution, implying that the data

are not sufficiently informative to be conclusive about the discount factor.63 Last, the posterior uncertainty

of the admissible failure rate of τ is reasonably small. The probability that the true value lies in an interval

with a width of 0.005 centered at the estimated mean of 0.044 is higher than 95 percent. Since the parameter

is construed as the “target” rate of examination failure, it seems reasonable that the estimated value is below

the actual examination failure rate of 0.15.

Figure 4 presents the marginal posterior distributions of the present-bias factor for patent examiners.

The vertical line segment corresponds to the 95 percent HDI of individual patent examiners, where patent

examiners are sorted in ascending order according to the mean represented by a black line. We use a darker

color for present-biased patent examiners and a lighter color for other patent examiners. While present-bias

factors are broadly distributed across patent examiners, a substantial fraction of patent examiners are present

biased.

6.3 Robustness Checks

We begin by examining the sensitivity of the results to prior assumptions. Although it is possible to formulate

numerous priors, we focus on changes in the prior of the discount factor δ since it is imprecisely estimated under

the baseline setup. Column 2 of Table 4 presents the estimation results when we use an interval [0.1, 1.0] as the

support of the discount factor prior. Although the point estimate of the discount factor δ drops significantly,

the credible interval remains wide, indicating that the estimated value is not accurate. More importantly, the

estimated posterior distributions of the present-bias factors and the admissible failure rate are similar to those

in the baseline. Similar results are obtained when the supports of the prior distributions of the present-bias

factor and the admissible failure rate are widened. Table G.4 in the Appendix reports the estimation results

with the support of the uniform prior of the parameter β set to [0.1, 1.2] or that of the parameter τ set to

[0.01, 0.30].

Next, we perform a robustness check by changing the CRRA utility function, where the default value of

the relative risk aversion coefficient is set to γ = 1.0, (i.e., the log utility function). Columns 3-4 of Table 4

report the results for changing values of γ. Encouragingly, the median values of the estimated mean of the

posterior distributions do not change substantially. Table G.5 in the Appendix reports the estimation results

for a wide range of γ values from 0.0 to 6.0. The percentage of present-biased patent examiners tends to

decline as the curvature degree increases; however, the goodness-of-fit measure also decreases. Therefore, in

terms of model fit, the default choice of γ = 1.0 appears reasonable.

To further confirm the robustness of the baseline results, we explore different assumptions concerning the

reward setup. In Section 5.1, we assume that the patent office sets the reward at a level where the average

examination failure rate is τ for a time-consistent patent examiner. What if the reward is targeted to a

time-inconsistent patent examiner? Columns 5-6 of Table 4 report the results under the assumption that

the reward is determined for patent examiners whose present-bias factor is β = 0.4 or 0.8. Table G.6 in the

Appendix shows more detailed results, where the parameter range is extended to between 0.1 and 0.9. In all

cases, the estimated posterior distribution of the present-bias factors does not change significantly from the

63This is evident from the marginal posterior distribution of δ presented in Figure C.3 in Appendix C.
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baseline. Furthermore, the goodness-of-fit measures of the alternative specifications are no better than the

benchmark specification.

Finally, we examine the heterogeneity assumption on time discounting. Throughout the analysis, patent

examiners are assumed to have the same discount factor, while the present-bias factors are individual specific.

What if patent examiners are exponential discounters with individual-specific discount factors? Should the

task performance variation across patent examiners be attributed to discount factor differences rather than

present-bias factor differences? To assess this possibility, we estimate an exponential discounting model with

β = 1, allowing the discount factor to be individual specific, δi, for patent examiner i.64 We then modify the

assumptions concerning the reward scheme. Specifically, let us assume that the patent office has a common

belief about the patent examiner’s discounting factor, which we denote by ζ. Since the patent office’s belief

is not necessarily correct, the belief parameter ζ ̸= δi for some patent examiner i.

We estimate the posterior distributions of the key parameters (δ, ζ, τ), where δ = (δ1, · · · , δn) is a vector

of individual discount factors. Table 5 reports the results. Column 1 provides a summary of the estimates

when assuming uniform priors on [0.1, 1.0] for the discount-factor-related parameters δ and ζ and a uniform

prior on [0.01, 0.20] for the admissible failure rate τ . Since the discount factors are individual specific, the

quantile points of the distribution of the mean individual discount factors are reported.

Overall, the results direct us not to use the exponential discounting model. There are at least three

reasons for this. First, the posterior of the individual-specific discount factor is neither precisely estimated

nor sufficiently discriminative to separate patent examiners with higher discounting factors from those with

lower discounting factors. 65 Second, the median of the mean marginal posterior distribution of the discount

factor is 0.55 in the annual term and is thus implausibly low. It should be noted, however, that the result

depends on the prior assumption. Column 2 shows the estimation results where the priors of the discount-

factor-related parameters, δ and ζ, are uniform on [0.9, 1.0]. While the estimated range of the discount factors

appears plausible in this case, it is considered an artifact of the restrictive priors. Finally, notwithstanding

the priors, the goodness-of-fit values, measured in terms of the WAIC and AUC.ROC, are substantially lower

than those for the hyperbolic discounting model.

6.4 Model Verification

In this subsection, we attempt to validate our behavioral model based on out-of-sample prediction. We adopt

an out-of-sample validation approach in line with previous studies (e.g., Fehr and Goette 2007).66 The idea

is straightforward. We examine whether our estimate of present-bias factors will accurately forecast patent

examination delays.

The model prediction is based on a sample not used for estimation. While the present-bias factors are

estimated from the data on patent examination performance in the initial review process, the predictability of

the model on which we focus is assessed by the information on patent examination delay in the entire review

64To deepen our understanding of the estimated results, we perform a calibration exercise under the assumption
that all patent examiners are exponential discounters with heterogeneous discount factors. The results are presented
in Appendix D. As demonstrated, the model prediction fits the empirical data very poorly. The statistical inference
performed in this section corroborates the qualitative findings of the calibration results.

65The inaccuracy of the posterior estimates is also evident from Figure G.2 in the Appendix, where the 95 percent

HDI of the marginal posterior distribution of the individual discount factor,
¯̂
δi, is presented for each patent examiner

i.
66See DellaVigna (2018) for other out-of-sample validation exercises in behavioral economics.

21



process. Since the “double use” of data for estimation and prediction is avoided, our validation approach can

be considered out-of-sample rather than within-sample.

To garner information on whether the examination of an issued patent is delayed, we focus on the length-

ened patent term, referred to as patent term adjustment (PTA). Under U.S. patent law, a patent is eligible

for day-for-day adjustment of the standard twenty-year patent term, and the length of the extension is based

on delays caused by the fault of the patent office. Among several reasons for which a patent term may be

extended, one is that the patent examiners fail to meet specified timeframes.67 Therefore, we employ the

PTA period as a reasonable proxy for delayed patent examination.

We regress the PTA period of an issued patent on the present-bias measure of the patent examiner who

reviewed the patent.68 We consider a negative value of the standardized estimated present-bias factor of

patent examiner i and refer to it as PresentBiasMeasurei.
69 A higher value indicates that patent examiner

i has a lower present-bias factor βi.

The regression requires special considerations because the distributional pattern of the PTA period is

limited in a way that the support of the distribution is a set of nonnegative integers characterized by a massive

spike at zero.70 While we could consider several regression models that accommodate such distributional

features, we adopt tobit regression because it exhibits a better fit to the data than alternative specifications.71

The tobit regression model can be stated as

PTA∗
ait = αt + αXXat + αWWit + ρPresentBiasMasurei + εait

PTAait = PTA∗
ait if PTA

∗
ait ≥ 0, and PTAait = 0if PTA∗

ait < 0, (8)

where a indexes the patent application, i indexes the patent examiner, and t indexes the year. The left-

hand side variable, PTAait, is the actual days of the extended patent term associated with the “latent”

variable PTA∗
ait. The primary explanatory variable is the present-bias measure PresentBiasi. As additional

explanatory variables, we include the year dummies αt and the application and patent examiner characteristics

variables, (Xat,Wit), which are the same as those used in the regression analysis in Section 4.2. The unobserved

error term εait is assumed to be normally distributed.

Table 6 reports the main results from the tobit regression.72 We focus on the estimated marginal effect

of the present-bias measure on the PTA period. The baseline results in column 1 show that the estimated

marginal effect is statistically significant (p-value of 0.000), which implies that an application reviewed by a

patent examiner classified as more heavily present-focused tends to be subject to longer days of PTA.

The specification in column 2 includes a dummy variable, Failureait, that represents whether the first

office action of patent application a reviewed by patent examiner i is judged unsuccessful. The estimated

coefficient is positive and statistically significant (p-value of 0.000). This result is not surprising because a

first office action failure calls for additional examination rounds (i.e., the second office action is nonfinal) and

67PTA due to patent office delay is provided under 35 U.S.C. §154 (b) 1.
68The sample consists of applications that were granted patents because unapproved patent applications do not have

PTA records.
69To be more precise, we definePresentBiasi ≡ −

{
¯̂
βi −Avg(

¯̂
βi)

}
/SD(

¯̂
βi), where the mean of the marginal posterior

distribution of the present-bias factor
¯̂
βi is taken from the baseline estimates reported in column 1 of Table 4.

70The histogram of the PTA period is presented in Figure G.3 in the Appendix.
71We use count regression models, including Poisson, negative binomial, zero-inflated Poison, and zero-inflated

negative binomial models. The specifications and estimation results are presented in Appendix E.
72Table G.7 in the Appendix reports the marginal effects of the variables that are not presented in Table 6.
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is thus likely to extend the patent adjustment term. More importantly, the estimated marginal effect of the

present-bias measure on the PTA period remains positive and statistically significant (p-value of 0.000).

To isolate the effect of the present-bias factor from potential confounding factors, we estimate a random-

effect tobit model that incorporates a normally distributed patent examiner-specific error term. Column 3

indicates that even after patent examiner-specific unobserved heterogeneity is controlled for, the present-bias

measure correctly predicts delayed examination.

Finally, in column 4, we re-estimate the tobit regression for patent applications examined from 2010

to 2018. Note that the present-bias factors were estimated using a sample of patent applications reviewed

between 2001 and 2009. The use of samples from different periods for estimation and prediction allows for

a more robust out-of-sample validation. We find that the patterns of estimates are quite similar to those

depicted above.73

All the regression results presented above demonstrate that our present-bias measure exhibits good out-of-

sample predictive performance for patent examination delay. Therefore, we conclude that the results support

the validity of the model and the assumptions embedded in the model.

7 Policy Implications

This section brings behavioral insights into policy issues concerning the patent examination process. We

explore the topic from two angles: (i) the attrition of patent examiners and (ii) the structure of the patent

examination quota.

7.1 Patent Examiner Attrition

Public administration experts have expressed broad concern regarding the high attrition rate of patent exam-

iners in the U.S. (NAPA 2005). For example, in the early 2000s, approximately 70 percent of patent examiners

left the patent office within five years of joining, causing substantial loss of training investment and human

capital. While the patent agency had made several efforts to hire and retain qualified patent examiners, they

were not considered sufficient (GAO 2007).

In this context, we investigate whether behavioral factors could affect the job separation of patent ex-

aminers. We focus on the subgroup of patent examiners who entered the patent office as junior examiners

between 2001 and 200974. We further categorize those who left the position within five years after the first

date they issued their first office action as the leaver group and the remaining as the stayer group.75

Figure 5 compares histograms of the present-bias measure defined in the previous section between the

leaver and stayer groups. The two distributions are noticeably different. The distributions differ significantly

according to the Mann-Whitney test (p-value of 0.039), and the distribution of the stayer group first-order

stochastically dominates the distribution of the leaver group according to Somers’ D statistic (p-value of 0.031).

73We test the predictive performance of the present-bias measures for patent examiners included in the pre-2010
sample and the post-2010 sample, which is approximately 60 percent of the original sample.

74The target group of patent examiners consists of 38 percent of all patent examiners in the original sample
75We define a patent examiner as having left the patent office when his or her patent examination record has been

disrupted for more than a year. Therefore, it cannot be ruled out that a patent examiner is mistakenly judged as a
leaver when promoted from a primary examiner position (GS-14) to a more senior and managerial position, such as
supervisory patent examiner or technology center director (GS-15 or above). While such possibilities are likely rare,
it should be considered that our attrition data contain some measurement errors.
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Therefore, patent examiners with less present-biased preferences are more likely to leave the position.76

This finding enables us to better understand the implications on the efficiency of the patent examination

process. The intense turnover at the U.S. patent agency was once described as “churning of so many new

patent examiners” (GAO 2007) . A more suitable phrase suggested by the estimation results above would be

cream skimming of new patent examiners: the less present-biased patent examiners who perform high-quality

reviews are more likely to leave, while more present-biased patent examiners who tend to delay reviews are

more likely to remain.

Based on these analyses, we suggest that the patent office adopt a strategy to mitigate the higher job

separation of the less present-biased patent examiners. The Patents Hoteling Program (PHP) introduced in

the mid-2000s was one effort taken by the USPTO to increase the patent examiner retention rate by providing

greater work flexibility (NAPA 2005, 2015). Nevertheless, the telework environment, which limits the patent

office’s ability to monitor the patent examiners, might encourage the heavily present-biased patent examiners

to procrastinate and therefore would result in a counterproductive effect. Therefore, it is recommended that

the telework program be made available only to patent examiners with less present-biased preferences. Our

elicited measure of present-biased preference may help separate the wheat from the chaff.

7.2 Examination Quota

What work quota would best enhance patent examiner task performance? Since present-biased patent exam-

iners are prone to squander the allotted time, shortening the deadline would improve their time management

and consequently increase their task performance. We verify this intuition by means of a counterfactual

simulation.

Suppose that the patent office cuts the patent examination quota in half from the original amount and

shortens the deadline from 10 days (the number of workdays in a biweekly period) to 5 days (the number of

workdays in a weekly period). To measure the impact of this potential quota reform, we simulate a model

in which the time discounting function of examiner i is based on (
¯̂
βi,

¯̂
δ), which are the mean values of the

marginal posterior distributions estimated by the baseline model reported in Table 4. Furthermore, the reward

under the hypothetical quota rule is set to the level under which the failure rate of a time-consistent patent

examiner who works forty hours a week is equal to ¯̂τ , which is the mean value of the estimated posterior

distribution of the admissible failure rate.

Table 7 reports the differences in patent examination accuracy and patent pendency between the current

and hypothetical quota rules for the whole sample (row 1) and for the bottom and top quintile groups based

on the present-bias measure (rows 2-3). Column 1 shows the predicted average reduction in the first office

action failure rate. In column 2, the predicted decrease in the PTA period is presented.77 The values in

the brackets are the percentage changes relative to the original magnitudes. The fragmented task quota

substantially improves patent examination accuracy and timeliness, with a more significant impact for patent

examiners with a higher degree of present bias.

76In Appendix F, we perform a survival analysis of patent examiners’ job duration using a Cox proportional hazard
regression. As expected, we find less present-biased patent examiners have a higher hazard of leaving the patent office.

77The quota structure alters the PTA length through a change in the first office action failure probability. Specifically,
if first office action failure becomes less likely, the number of office actions required before a patent is issued decreases.
The effect of the quota change on the first office action failure is reported in column 1 of Table 7, and the effect of the
first office action failure on the PTA period is reported in column 2 of Table 6 in the previous section. The synthesis
of the two effects yields the predicted decrease in PTA, as shown in column 2 of Table 7.
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How large is the monetary benefit gained from the quota reform? A back-of-the-envelope calculation can

approximate the amount. Considering that we have analyzed the patent prosecution process in the fields of

Biotechnology and Organic Chemistry, let us take the case of a hypothetical blockbuster drug with $1 billion

in annual sales in the U.S.78 If a pharmaceutical patent protects the brand-name drug, no one except the

patentee can manufacture and sell the drug, except in licensed production. However, once the patent expires,

low-price bioequivalent generic drugs can be produced and will flood the market. Therefore, the drug’s original

manufacturer could earn more profit for the extended patent term. The situation would be changed, however,

if it were given a shorter PTA period.

Based on the results presented in Table 7, the shorter deadline reduces PTA by 6.62 days, on average,

allowing the entry of a generic drug as early as that number of days. If 90 percent of consumers switch

from the brand-name drug to a generic drug, the patent holder’s sales loss caused by the entry of a generic

substitute would amount to approximately $ 16.3 million.7980 If the generic drug is sold for 75 percent less

than the brand-name drug, the potential consumer gains are estimated at $ 12.2 million.81

We can obtain more detailed estimates of consumer benefits for a specific brand drug. Let us take

SPRYCEL, a blockbuster cancer drug with approximately $1.2 billion in annual sales in the U.S. market.82

The drug is protected by patents held by Bristol-Myers Squibb, one of which is due to expire in 2020. Among

the patents, the one with the longest PTA is U.S. Patent 7,491,725, whose patent term has been extended by

417 days.83

Table 8 presents the results of counterfactual experiments for the patent under the following three scenar-

ios: (i) The original patent examiner reviews under the hypothetical one-week quota rule. (ii) A hypothetical

exponential discounting patent examiner reviews under the original two-week quota rule. (iii) A hypothetical

discounting patent examiner reviews under the hypothetical one-week quota rule. The quota reforms result

in a reduction in PTAs and can create enormous consumer benefits.84

8 Conclusion

The majority of people procrastinate: our analysis shows that patent examiners are no exception. We fit a

quasihyperbolic discounting model with patent examiners’ task performance data and find that present-biased

preferences are widespread among patent examiners. The result implies that present-focused patent examiners

may have a consequential negative impact on patent examination quality because they may review patent

applications incompletely in situations wherein there are time constraints. We demonstrate that overall patent

examination quality may deteriorate due to the attrition of less present-biased patent examiners. We show

by simulation that patent quality and pendency may be improved by reducing the quota and shortening the

deadline.

78The definition of a “blockbuster” drug follows from Cutler (2007). Munos (2009) showed that approximately 20
percent of new drugs approved between 1950 and 2008 in the U.S. achieved blockbuster status expressed in year-2000
equivalent dollars.

79According to GAO (2012), the rate at which a generic drug is substituted for a brand-name drug is 93 percent.
80The estimated amount is based on the following formula: 1000 million dollars/(365days)× (6.62days)× 0.90.
81The information on generic drug prices comes from a report published by the U.S. Congressional Budget Office

(CBO) .
82The sales figure is for 2019, as presented in the annual (10-K) report of Bristol-Myers Squibb.
83Lajeunesse, DiMarco, Galella and Chidambaram (2009) “Process for Preparing 2-Aminothiazole-5-Aromatic Car-

boxamides as Kinase Inhibitors,” U.S. Patent No. 7,491,725.
84The calculation is based on the generic-to-brand substitution and price ratios shown above.
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Our paper has several limitations. First, some model assumptions are not directly verified. They may be

overly restrictive or even false to describe complex decision making in the real-work environment of patent

examiners. For example, one may consider the dynamic setting of our behavioral model unjustified. We

formulate a patent examiner’s intertemporal worktime allocation over two weeks. However, the actual patent

examiners may be more far-sighted and allocate their work effort considering future events that would occur

beyond the biweekly timeline. To relax the restriction regarding the time horizon, one may need a more

flexible but more complicated dynamic programming model. However, this is not the goal we pursue here.

We leave the development of a more situationally relevant model to future research.

Second, our research focus is on present-biased preferences in isolation to understand procrastination be-

havior. However, a recent experimental study suggests that procrastination can be associated with limited

memory or forgetfulness (Taubinsky and Rees-Jones 2018). Moreover, if such factors play roles in intertem-

poral decision making, the present-biased factors may be estimated with a bias (Ericson 2017). Therefore,

the sheer size of our estimates on the patent examiner-specific present-biased factors should be interpreted

with caution.

Third, we find a somewhat puzzling behavioral pattern based on our procrastination model. Notably, the

reduced-form regression results in Section 4.2 indicate that some, though not many, patent examiners improve

their task performance when the quota period is shortened. As the second quadrant of Figure 2 illustrates,

the log-odds differences are negative for those patent examiners, suggesting that the odds that the initial

examination fails may decline in a tight-time situation. The estimates are not consistent with our model,

where constant or increasing failure odds are predicted. Additionally, it remains an open question why the

attrition rate is significantly higher for less present-biased patent examiners than more present-biased patent

examiners. Further research should be pursued to better understand these behavioral patterns.

Finally, our conclusions on unproductive procrastination are drawn from the analysis of a subset of patent

examiners. In this regard, they may not be generalizable to the broad population of patent examiners. We opt

to focus on patent examiners in TC 1600 because the requirement of computational resources is prohibitively

high if the scope of the analysis is expanded to the whole set of U.S. patent examiners. While supplemental

analysis using the data for patent examiners in other technological fields yields qualitatively similar results,

more extensive research should be conducted to understand the whole picture of unproductive procrastination

of U.S. patent examiners.85

Notwithstanding these limitations, this paper provides firsthand measurable evidence of patent examiners’

present-bias-induced procrastination, which helps us understand whether or to what extent present-biased

preferences hinder efficient patent prosecution and make policy suggestions on how to redesign the system.

85We reproduce the analysis using data of patent examiners in TC 2100: Computer Architecture and Software.
The main estimation results of the present-biased factors are presented in Table G.8 in the Appendix. Although the
results vary with the value of the utility curvature parameter, the conclusion that a majority of patent examiners have
present-biased preferences remains unchanged.
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Chetty, Raj, Emmanuel Saez, and László Sándor, “What Policies Increase Prosocial Behavior? An

Experiment with Referees at the Journal of Public Economics,” Journal of Economic Perspectives, 2014,

28 (3), 169–88.

Cockburn, Iain M, Samuel Kortum, and Scott Stern, “Are All Patent Examiners Equal? The Impact

of Examiner Characteristics,” Technical Report, NBER Working Paper No. 8980 2002.

Cohen, Jonathan, Keith Marzilli Ericson, David Laibson, and John Myles White, “Measuring

Time Preferences,” Journal of Economic Literature, 2020, 58 (2), 299–347.

Coviello, Decio, Andrea Ichino, and Nicola Persico, “The Inefficiency of Worker Time Use,” Journal

of the European Economic Association, 2015, 13 (5), 906–947.

Cutler, David M, “The Demise of the Blockbuster?,” New England Journal of Medicine, 2007, 356 (13),

1292–1293.

DellaVigna, Stefano, “Structural Behavioral Economics,” in “Handbook of Behavioral Economics: Appli-

cations and Foundations 1,” Vol. 1, Elsevier, 2018, pp. 613–723.

Dixit, Avinash K and Robert S Pindyck, Investment under Uncertainty, Princeton university press,

1994.

Ericson, Keith Marzilli, “On the Interaction of Memory and Procrastination: Implications for Reminders,

Deadlines, and Empirical Estimation,” Journal of the European Economic Association, 2017, 15 (3), 692–

719.

27



Fang, Hanming and Dan Silverman, “Time-Inconsistency and Welfare Program Participation: Evidence

from the NLSY,” International Economic Review, 2009, 50 (4), 1043–1077.

and Yang Wang, “Estimating Dynamic Discrete Choice Models with Hyperbolic Discounting, with an

Application to Mammography Decisions,” International Economic Review, 2015, 56 (2), 565–596.

Fehr, Ernst and Lorenz Goette, “Do Workers Work More If Wages Are High? Evidence from a Random-

ized Field Experiment,” The American Economic Review, 2007, 97 (1), 298–317.

Fischer, Carolyn, “Read This Paper Even Later: Procrastination with Time-Inconsistent Preferences,”

1999. mimeo.

, “Read This Paper Later: Procrastination with Time-Consistent Preferences,” Journal of Economic Be-

havior & Organization, 2001, 46 (3), 249–269.

Frakes, Michael D and Melissa F Wasserman, “Is the Time Allocated to Review Patent Applications

Inducing Examiners to Grant Invalid Patents? Evidence from Microlevel Application Data,” Review of

Economics and Statistics, 2017, 99 (3), 550–563.

and , “Procrastination at the Patent Office?,” Journal of Public Economics, 2020, 183, 104140.

Frederick, Shane, George Loewenstein, and Ted O’donoghue, “Time Discounting and Time Prefer-

ence: A Critical Review,” Journal of Economic Literature, 2002, 40 (2), 351–401.

Gelman, Andrew and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models,

Cambridge University Press, 2006.

, Jessica Hwang, and Aki Vehtari, “Understanding Predictive Information Criteria for Bayesian Mod-

els,” Statistics and Computing, 2014, 24 (6), 997–1016.

Graham, Stuart JH, Alan C Marco, and Richard Miller, “The USPTO Patent Examination Research

Dataset: A Window on the Process of Patent Examination,” 2015. mimeo, USPTO Economic Working

Paper No. 2015-4.

Heidhues, Paul and Philipp Strack, “Identifying Present-Bias from the Timing of Choices,” 2019. mimeo.

Herweg, Fabian and Daniel Müller, “Performance of Procrastinators: on the Value of Deadlines,” Theory

and Decision, 2011, 70 (3), 329–366.

Hosmer, David W and Stanley Lemeshow, Applied Logistic Regression, 2 ed., Wiley-Interscience, 2000.

Jackman, Simon, Bayesian Analysis for the Social Sciences, John Wiley & Sons, 2009.

Jaffe, Adam B and Josh Lerner, Innovation and Its Discontents: How Our Broken Patent System Is

Endangering Innovation and Progress, and What to Do About It, Princeton, NJ: Princeton University

Press, 2004.

Jiang, Renna, Puneet Manchanda, and Peter E Rossi, “Bayesian Analysis of Random Coefficient

Logit Models Using Aggregate Data,” Journal of Econometrics, 2009, 149 (2), 136–148.

28



Joint Hearing before the Committee on the Judiciary and Committee on Oversight and Govern-

ment Reform, “Abuse of USPTO’s Telework Program: Ensuring Oversight, Accountability and Quality,”

Technical Report, House of Representatives (113-117 and 113-150), 113th Cong. 2014.

Laibson, David, “Golden Eggs and Hyperbolic Discounting,” The Quarterly Journal of Economics, 1997,

112 (2), 443–478.

, Peter Maxted, Andrea Repetto, and Jeremy Tobacman, “Estimating Discount Functions with

Consumption Choices over the Lifecycle,” 2015. mimeo.

Lemley, Mark A and Bhaven Sampat, “Examiner Characteristics and Patent Office Outcomes,” Review

of Economics and Statistics, 2012, 94 (3), 817–827.

and Carl Shapiro, “Probabilistic Patents,” Journal of Economic Perspectives, 2005, 19 (2), 75–98.

Marco, Alan C, Andrew A Toole, Richard Miller, and Jesse Frumkin, “USPTO Patent Prosecution

and Examiner Performance Appraisal,” 2017. mimeo, USPTO Economic Working Paper 2017-08.

Martinez, Seung-Keun, Stephan Meier, and Charles Sprenger, “Procrastination in the Field: Evi-

dence from Tax Filing,” 2017. mimeo.

Mitra-Kahn, B, A Marco, M Carley, P D’Agostino, P Evans, C Frey, and N Sultan, “Patent

Backlogs, Inventories and Pendency: An International Framework,” 2013. mimeo, A joint UK Intellectual

Property Office and US Patent and Trademark Office Report.

Munos, Bernard, “Lessons from 60 Years of Pharmaceutical Innovation,” Nature Reviews Drug Discovery,

2009, 8 (12), 959–968.

National Academy of Public Administration (NAPA), “US Patent and Trademark Office: Transform-

ing to Meet the Challenges of the 21st Century,” Technical Report 2005.

, “The United States Patent and Trademark Office: A Telework Internal Control and Program Review,”

Technical Report 2015.

O’Donoghue, Ted and Matthew Rabin, “Doing It Now or Later,” The American Economic Review,

1999, 89 (1), 103–124.

Paserman, M Daniele, “Job Search and Hyperbolic Discounting: Structural Estimation and Policy Eval-

uation,” The Economic Journal, 2008, 118 (531), 1418–1452.

Rozental, Alexander and Per Carlbring, “Understanding and Treating Procrastination: A Review of a

Common Self-Regulatory Failure,” Psychology, 2014, 5 (13), 1488.

Snijders, Tom AB and Roel J Bosker, Multilevel Analysis: An Introduction to Basic and Advanced

Multilevel Modeling, Sage, 2011.

Steel, Piers, “The Nature of Procrastination: A Meta-Analytic and Theoretical Review of Quintessential

Self-Regulatory Failure.,” Psychological bulletin, 2007, 133 (1), 65.

29



Takeuchi, Kan, “Non-parametric Test of Time Consistency: Present Bias and Future Bias,” Games and

Economic Behavior, 2011, 71 (2), 456–478.

Taubinsky, Dmitry and Alex Rees-Jones, “Attention Variation and Welfare: Theory and Evidence from

a Tax Salience Experiment,” The Review of Economic Studies, 2018, 85 (4), 2462–2496.

Train, Kenneth E, Discrete Choice Methods with Simulation, Cambridge University Press, 2009.

U.S. Congressional Budget Office (CBO), “Effects of Using Generic Drugs on Medicare’s Prescription

Drug Spending,” Technical Report Pub. No. 4043 2012.

U.S. DEPARTMENT OF COMMERCE Office of Inspector General (OIG), “United States Patent

and Trademark Office: USPTO Should Reassess How Examiner Goals, Performance Appraisal Plans, and

The Award System Stimulate and Reward Examiner Production,” Technical Report IPE-15722 2004.

, “United States Patent and Trademark Office: USPTO Needs to Strengthen Patent Quality Assurance

Practices,” Technical Report OIG-15-026-A 2015.

U.S. Government Accountability Office (GAO), “The United States Patent and Trademark Office:

Hiring Efforts Are Not Sufficient to Reduce the Patent Application Backlog,” Technical Report GAO-07-

1102 2007.

, “DRUG PRICING: Research on Savings from Generic Drug Use,” Technical Report GAO-12-371R 2012.

, “Intellectual Property: Patent Office Should Define Quality, Reassess Incentives, and Improve Clarity,”

Technical Report GAO-16-490 2016.

Watanabe, Sumio, “A Widely Applicable Bayesian Information Criterion,” Journal of Machine Learning

Research, 2013, 14 (Mar), 867–897.

30



Tables and Figures

Table 1: Summary statistics

year average
2001 2002 2003 2004 2005 2006 2007 2008 2009

(A) Patent Examiner Statistics
number of patent examiners 432 447 473 514 563 573 595 599 636 536.89
experience year 5.64 6.13 6.58 6.73 6.84 7.22 7.64 8.24 8.60 7.07
entry rate 12.92 9.98 9.39 11.17 11.71 7.36 7.40 5.74 4.03 8.86
exit rate 6.36 5.70 3.52 4.86 3.18 5.92 4.25 4.03 2.55 4.49

(B) Throughput Statistics
number of first office actions 1.80 1.81 1.68 1.47 1.62 1.87 1.96 1.84 1.77 1.76
failure rate of first office action 0.16 0.14 0.15 0.16 0.16 0.15 0.15 0.14 0.10 0.15

Notes: This table reports summary statistics on patent examiners and patent examination throughput. For the
statistics on patent examiners, all values are annual averages. For the statistics on patent examination throughput,
the average values per patent examiners per biweekly period are presented.

31



Table 2: The impact of a short timeframe on the number of first office actions per two weeks

Variable names (1) (2) (3) (4) (5)

(A) Parameter estimates
Short timeframe
Sb for reference period -0.068 -0.051 -0.054 -0.052 0.002

[0.113] [0.218] [0.192] [0.184] [0.975]
Sb+1 for lag period 0.054

[0.219]
Sb−1 for lead period -0.054

[0.219]
log(Backlog) for new applications 0.046 0.047 -0.085 -0.116 -0.116

[0.681] [0.676] [0.557] [0.433] [0.433]
log(Backlog) for amend applications -0.385 -0.373 -0.376 -0.353 -0.353

[0.010] [0.008] [0.011] [0.014] [0.014]
Num Examiners 1.115 1.335 1.335

[0.285] [0.199] [0.199]
Thanksgiving Dummy -0.203 -0.201 -0.22 -0.22

[0.006] [0.005] [0.001] [0.001]
(B) Measures of goodness-of-fit

Adj. R-squared 0.66 0.672 0.674 0.68 0.68
No. of observations 234 234 234 233 233

Notes: This table reports the main estimation results for the regression model (1). The estimated
coefficients of the variables except for the year and biweekly period dummies are presented. The p-values
in brackets are calculated based on robust standard errors clustered at the art unit level. The adjusted
R-squared (Adj. R-squared) values are presented.
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Table 3: Reduced-form regression evidence for present-bias-induced procrastination.

(1) (2) (3) (4) (5) (6)

(A) Marginal effect of the short timeframe
Sb for reference period 0.010 0.010 0.009 0.011 0.007 0.009

[0.007] [0.008] [0.011] [0.001] [0.152] [0.026]
Sb+1 for lag period -0.002

[0.613]
Sb−1 for lead period -0.003

[0.349]
(B) Standard deviation-correlation matrix
σ0 0.674 0.674 0.674 0.957 0.679 0.688

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
σ1 0.205 0.206 0.171 0.658 0.220 0.190

[0.000] [0.000] [0.001] [0.000] [0.000] [0.000]
σ01 -0.267 -0.271 -0.292 -0.286 -0.234 -0.372

[0.008] [0.009] [0.023] [0.000] [0.075] [0.000]
(C) Measures of goodness-of-fit

AIC 0.763 0.772 0.764 0.751 0.779 0.763
BIC 0.772 0.773 0.779 0.762 0.796 0.773
AUC.ROC 0.700 0.700 0.701 0.704 0.726 0.704

No. of observations 176797 176797 176797 175163 98357 176,797

Notes: This table reports the main estimation results for the regression model (2). We construe the model as a
multi-level logit model with a random intercept and random coefficients and estimate the parameters, α and σ by
a maximum likelihood method, except for the results in column 5, where a fixed-effects approach is used. Panel
A presents the marginal effect of the short timeframe indicator Sbt on the first office action failure, while panel B
shows the estimates of the standard deviation-correlation matrix σ. The p-values in brackets are calculated based on
robust standard errors clustered at the art unit level. As measures of goodness-of-fit, the Akaike information criterion
(AIC), the Bayesian information criterion (BIC), and the area under the ROC curve (AU.ROC) from the receiver
operating characteristics (ROC) analysis are presented in panel C. The AIC and BIC are normalized by the number
of observations.
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Table 4: The estimation results for the key parameters of the present-bias-induced procrastination model.

baseline wide prior utility curvature reward target
(1) (2) (3) (4) (5) (6)

δ ∈ [0.1, 1.0] γ = 0 γ = 2.0 β = 0.4 β = 0.8

(A) Marginal posterior means

Present bias factors
¯̂
βi

1st Qt. 0.430 0.432 0.353 0.407 0.465 0.549
(0.282, 0.619) (0.312, 0.570) (0.286, 0.435) (0.316, 0.517) (0.377, 0.557) (0.442, 0.662)

2nd Qt. 0.600 0.599 0.556 0.585 0.603 0.733
(0.495, 0.716) (0.495, 0.714) (0.423, 0.715) (0.463, 0.748) (0.317, 0.930) (0.449, 1.030)

3rd Qt. 0.792 0.792 0.790 0.802 0.732 0.902
(0.642, 0.966) (0.574, 1.045) (0.395, 1.085) (0.584, 1.053) (0.567, 0.903) (0.653, 1.088)

Discount factor
¯̂
δ 0.949 0.321 0.950 0.949 0.949 0.949

(0.902, 0.997) (0.104, 0.904) (0.903, 0.997) (0.902, 0.997) (0.902, 0.997) (0.902, 0.999)

Admissible failure rate ¯̂τ 0.044 0.044 0.055 0.050 0.033 0.063
(0.040, 0.047) (0.041, 0.046) (0.053, 0.057) (0.047, 0.052) (0.030, 0.037) (0.062, 0.065)

(B) Measures of goodness-of-fit
WAIC 0.756 0.756 0.756 0.756 0.767 0.757
AUC. ROC 0.692 0.692 0.692 0.692 0.692 0.690

(C) Present-biased patent examiners (%)
69.014 70.000 62.113 63.380 85.493 54.789

Notes: This table reports the Bayesian estimation results based on the posterior distribution given by equation
(7). The means of the marginal posterior distributions are presented for the key parameters. For the individual-
specific present bias factors, the first to third quartiles of the marginal posterior means’ distribution are presented.
The values in parentheses represent the lower and upper limits of the 95 percent highest density interval (HDI)
of the marginal posterior distribution. As goodness-fit-measures, we report the widely applicable information
criterion (WAIC), which is normalized by the number of observations, and the area under the ROC curve (AU.
ROC) from the receiver operating characteristics (ROC) analysis. A patent examiner is defined as present biased
if the upper limit of 95 percent HDI of his or her present-bias factor does not reach the value of 1.0.

34



Table 5: The estimation results for the key parameters of the time-
consistent procrastination model.

(1) (2)
δi, ζ ∈ [0.1, 1.0] δi, ζ ∈ [0.9, 1.0]

(A) Marginal posterior means

Discount factor
¯̂
δi

1st Qt. 0.537 0.950
(0.129, 0.963) (0.904, 0.996)

2nd Qt. 0.554 0.950
(0.140, 0.965) (0.904, 0.996)

3rd Qt. 0.570 0.950
(0.141, 0.967) (0.904, 0.996)

Patent office’s belief
¯̂
ζ 0.552 0.950

(0.123, 0.977) (0.903, 0.997)

Admissible failure rate ¯̂τ 0.131 0.131
(0.129, 0.133) (0.129, 0.132)

(B) Measures of goodness-of-fit
WAIC 0.799 0.800
AUC. ROC 0.592 0.592

Notes: This table reports the Bayesian estimation results under the
assumption that patent examiners are exponential discounters having
individual-specific discount factors. The means of the marginal posterior
distributions are presented for the key parameters. For the individual-
specific discount factors, the first to third quartiles of the marginal poste-
rior means’ distribution are presented. The values in parentheses represent
the lower and upper limits of the 95 percent highest density interval (HDI)
of the marginal posterior distribution. We assume different priors for the
discount-factor-related parameters: uniform priors on [0.1, 1.0] for the re-
sults in column 1 and uniform priors on [0.9, 1.0] for the results in column
2.
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Table 6: The effect of the present bias measure on the PTA period using a tobit
regression model

(1) (2) (3) (4)

(A) Marginal effect estimates
PresentBiasMeasure 31.815 18.777 30.222 32.266

[0.000] [0.000] [0.007] [0.000]
Failure 150.293 145.673 110.855

[0.000] [0.000] [0.000]
(B) Measures of goodness-of-fit

AIC 9.477 9.466 9.410 8.192
BIC 9.488 9.476 9.421 8.203

No. of observations 97951 97951 97951 101740

Notes: This table reports the marginal effects on the PTA period of a patent application
based on the regression model (8). The p-values in brackets are calculated based on
robust standard errors clustered at the art unit level. Akaike information criteria (AIC)
and Bayesian information criteria (BIC) are given for each specification. The AIC and
BIC are normalized by the number of observations. The sample consists of applications
that were granted patents because unapproved patent applications do not have PTA
records. The sample period is 2001-2009 for the estimates in columns 1-3, and the
sample period is 2010-2017 for the estimates in column 4. We include the random
effects for the regression specification presented in column 3.
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Table 7: The results of counterfactual simulation

Failure rate reduction (%) PTA reduction (days)

the whole sample 0.07 6.62
[30.44] [2.66]

the bottom quintile group (the least present-biased) 0.02 1.07
[17.02] [0.58]

the top quintile group (the most present-biased) 0.12 0.12
[30.28] [4.41]

Notes: This table demonstrates the differences in patent examination accuracy (column 1) and patent
pendency (column 2) between the current and hypothetical quota rules. The values in the brackets are
the percentage changes relative to the original magnitudes. We assume the patent office cuts the patent
examination quota in half from the original amount and shortens the deadline from 10 days to 5 days.
The percentage reductions of the first office action failure, presented in column 1, are predicted by the
behavioral model of present-bias-induced procrastination, whose key parameter values are given by the
mean values of the posterior distributions reported in Table 4. To obtain the predicted values of the
PTA reduction, which are reported in column 2, we combine the values of the predicted change of the
first office action failure probability reported in column 1, with the marginal effects of the first office
action failure on the PTA reported in Table 6.
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Table 8: The impacts of patent examiner change and the quota structure change on a pharmaceutical
patent

Counterfactual scenarios PTA reduction (days) Consumer benefits ($1M)

(i) The original patent examiner reviews under the
hypothetical one-week quota rule.

12.66 28.10

(ii) A hypothetical exponential discounting patent
examiner review under the original two-week quota rule.

43.24 95.95

(iii) A hypothetical discounting patent examiner
reviews under the hypothetical one-week quota rule.

54.28 120.46

Notes: This table shows the change in the PTA period for a pharmaceutical patent and the associated increase
in consumer benefits under hypothetical scenarios. We take U.S. patent 7,491,725, related to a blockbuster
cancer drug, called SPRYCEL, whose annual sales are approximately $1.2 billion. To predict the values of the
PTA reduction, we base our model on the behavioral model of present-bias-induced procrastination, whose
key parameter values are given by the mean values of the posterior distributions reported in Table 4. The
consumer benefits are calculated based on the following assumptions: (i) the longer patent term delays the
introduction of a generic drug of SPRYCEL to the market, (ii) 90 percent of consumers switch when a generic
drug appears on the market, and (iii) the generic drug is sold for 75% less than the brand-name drug.
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Figure 1: A distribution of the first office action (FOA) submission rates (bar graph) and the time
course of the FOA failure rate (line graph). The horizontal axis represents the number of weekdays for
the biweekly quota period.
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Figure 2: A scatterplot of the estimated empirical log-failure odds. The vertical axis represents the
empirical log-failure odds in the level, ϕ̂0, and the horizontal axis represents the empirical log-failure odds
in the difference, ϕ̂1. Both first- and second-order polynomial fits are shown.
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Figure 3: The empirical log-failure odds and the simulated theoretical log-failure odds. The vertical
axis represents the log-failure odds in the level, and the horizontal axis represents the log-failure odds in
the difference. A darker color indicates a higher degree of present-biased preference.
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Figure 4: Estimated marginal posterior distributions of the present bias factor for patent examiners.
The bar represents the 95% HDI of the marginal posterior distribution of the present bias factor of a
patent examiner. A darker color is for the present-biased patent examiners, while a lighter color is for
the other patent examiners.
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Figure 5: Histograms of the present bias measure between the leaver group (top) and the stayer group
(bottom). The present bias measure is defined by a negative value of the standardized present bias factor.
The mean and median of the distribution are inset in the figure.
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Appendix A Reward Scheme

Suppose that a contract is signed between the patent office (the principal) and a patent examiner (agent)

specifying a reward that is paid at the time a task quota is completed. As in the standard principal-agent

model, the principal cannot observe the agent’s work time and thus controls the reward to make the agent

work to the level considered desirable.

The decision processes of the patent office and patent examiner are modeled as a sequential game. The

timing of events is as follows.

1. The patent office offers a reward scheme to the patent examiner.

2. If the patent examiner accepts the reward scheme, he or she dynamically allocates his or her work time

to complete the quota by the deadline.

3. The patent office evaluates the submitted work and pays the patent examiner according to the reward

scheme.

The game is solved in a backward manner. The analysis in Section 5 provides the solution for the process

shown in 2 and 3 above. To be more concrete, under a scheme in which the probability of receiving a reward

r for working the standard eighty hours in two weeks is τ , a patent examiner with time preference parameters

(β, δ) chooses to work S∗
D(β, δ, τ, r) hours in two weeks.

We now turn to the patent office’s decision. How does it determine the reward r∗? To answer this question,

we must know the patent office’s goals. However, the agency’s publicized policy goals are too general and do

not provide sufficient information to determine the reward for the individual patent examination process.86

Therefore, we presume that the patent office’s goal is to keep the failure rate below the admissible failure rate

τ . Under this policy target, the patent office lets the patent examiner work the standard eighty hours for two

weeks, while the patent office cannot directly observe if the patent examiner is working that many hours.

We further assume that the admissible failure rate τ is common knowledge. If the patent office correctly

knew the patent examiner’s time preferences (β, δ), it could achieve the intended goal concerning the patent

examination failure. However, in the real work environment, it is challenging for the patent agency to obtain

private information on the time preferences for every patent examiner. Therefore, we assume that the patent

office has partial knowledge of the patent examiner’s time preferences. Concretely, we assume that the patent

office perfectly knows the value of the discount factor δ but believes that the patent examiner is an exponential

discounter with present-bias factor β = 1.

Under the reward determination scheme presented above, the reward r∗ that the patent office selects

satisfies the following equation: S∗
D(1, δ, τ, r∗) = 80. The next proposition ensures that the number of rewards

r∗ that solves the equation is no greater than one.

Proposition 1. The total work time S∗
D(1, δ, τ, r) of a time-consistent patent examiner is increasing in the

reward r for any values of δ and τ . In other words, when two schemes with different rewards r1 < r2

are given, the exponential discounting patent examiner works more under the higher reward scheme so that

S∗
D(1, δ, τ, r1) < S∗

D(1, δ, τ, r2).

86According to NAPA (2005), the USPTO has announced strategic goals, including to “optimize the quality and
timeliness of the patents and trademarks, and to provide leadership to improve intellectual property right in the United
States and the World.”
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Proof. We prove the result for the case where the instantaneous utility takes the CRRA form.

The time allocation problem for an exponential discounting patent examiner is formulated as

max
w1,··· ,wD

{
D∑

d=1

δd−1u(24− wd) + δDR

(
D∑

d=1

wd

)}

The first-order condition is given by

u′(24− w∗
d) = δD+1−dR′

(
D∑

k=1

w∗
k

)

for d = 1, · · · , D
We can immediately see from the condition that u′(24−w∗

d) = δu′(24−w∗
d+1). Knowing that u′(24−w) =

−(24− w)−γ for the CRRA utility function u, we have the following recursive equation:

(24− w∗
d+1) = δ1/γ(24− w∗

d)

Consequently, the optimal total work time can be written as

S∗
D =

D∑
k=1

w∗
k =

{
1− δ

D+1
γ

1− δ
1
γ

}
(w∗

1 − 24) + 24D

To avoid notational clutter, we use the following expression:

S∗
D = A(δ)w∗

1 +B(δ)

where A(δ) = (1− δ
D+1

γ )/(1− δ
1
γ ) and B(δ) = 24(D −A(δ)).

By substituting the equation above into the first-order condition for the first day d = 1, we obtain the

following equation:

γ

(24− w∗
1)

1+γ
+ rδD

(
log τ

80

)
exp

{
log τ

80

(
A(δ)w∗

1 +B(δ)
)}

= 0

The last term on the left-hand side of the equation above follows because R′(SD) = − r log τ
80 exp

(
log τ
80 SD

)
Let F (w1, δ, τ, r) denote the function that appears in the left-hand side of the equation above. The optimal

first day work time w∗
1 then satisfies F (w∗

1 , r, δ, τ, r) = 0. The partial derivatives of the function have the

following signs:

F1(w1, r) =
γ(1 + γ)

(24− w1)2+γ
+ rδDA(δ)

(
log τ

80

)2

exp

{
log τ

80

(
A(δ)w∗

1 +B(δ)
)}

> 0

F2(w1, r) = δD
(
log τ

80

)
exp

{
log τ

80

(
A(δ)w∗

1 +B(δ)
)}

< 0

since γ > 0, δ ∈ [0, 1], τ ∈ [0, 1] and A(δ) > 0. To establish the result of the proposition, we first turn to the

work time that the patent examiner chooses at the initial day and show that it is increasing in the reward to

be received.

Consider two rewards r1 < r2, and denote the corresponding optimal work time on day one by w∗
1(r1) and
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w∗
1(r2). By construction, these values satisfy F

(
w∗

1(r1), δ, τ, r1
)
= F

(
w∗

1(r2), δ, τ, r2
)
= 0. Since the function

F
(
w1, δ, τ, r

)
is decreasing in r, we know that 0 = F

(
w∗

1(r1), δ, τ, r1
)
> F

(
w∗

1(r1), δ, τ, r2
)
. This result implies

that 0 = F
(
w∗

1(r2), δ, τ, r2
)
> F

(
w∗

1(r1), δ, τ, r2
)
. Given that the function F

(
w1, δ, τ, r

)
is increasing in w1, we

can say that w∗
1(r1) < w∗

1(r2).

The same relationship between the work time and reward holds for any day in a biweekly period. To see

this, it should be noted that

w∗
d(r) = 24− δ

d−1
γ {24− w∗

1(r)}

where w∗
d(r) represents the optimal work time on day d as a function of reward r. Therefore, w∗

d(r1) < w∗
d(r2)

implies w∗
d(r1) > w∗

d(r2) for day d ≥ 2. The patent examiner increases the work time overall for all days in a

biweekly period if offered a higher reward scheme.

Now, it is straightforward to show that the total work time, S∗
D(1, δ, τ, r), is increasing in the success-

contingent reward r. Given that it is the sum of the single-day work time that the patent examiner chooses,

w∗
d(r1) < w∗

d(r2) for any d = 1, · · · , D implies S∗
D(1, δ, τ, r1) < S∗

D(1, δ, τ, r2).

Figure A.1 demonstrates that the target reward r∗(δ, τ) is decreasing in the admissible failure rate τ for

given values of discount factor δ. The result has a clear intuition. If the patent office wishes to achieve a lower

error rate, it must pay a higher reward to the patent examiner, if all other conditions are kept constant.

Figure A.1: Simulated values of the reward for various combinations of discount factors and admissible
failure rates. The value of the reward takes the natural logarithm.
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Appendix B Simulated Work Pattern

Tables B.1 and B.2 provide the calibration exercise results concerning a patent examiner’s work pattern. The

start day of work, total work hours, and log-failure odds are simulated for five distinct values of present-bias

factor β ranging from 0.2 to 1.0 with a step size of 0.2. We set the annual discount factor δ = 0.95 in both

tables but change the values of the admissible failure rate in each table. We set τ = 0.15 for the results

given in Table B.1 and τ = 0.10 for those given in Table B.2. The results are reported under the standard

timeframe case and the short timeframe case. In the rightmost column, the differences in the log-failure odds

between the timeframes are reported.

The outcomes are generally consistent with the findings on time allocation that the previous theoretical

papers have proved (Herweg and Müller 2011). Namely, patent examiners with lower present-bias factor β

tend to start the assigned tasks later and work less than those with high values of β. Furthermore, the higher

the present-bias factor (i.e., the less present-biased the preferences), the larger the log-failure odds difference.

Table B.1: Simulated work pattern of a patent examiner (τ = 0.15)

standard (10 business days) short (9 business days) log-failure odds
diferenceβ start day total hours log-failure odds start day total hours log-failure odds

0.20 8 11.507 1.159 7 11.507 1.159 0.000
0.40 5 31.232 -0.093 4 31.232 -0.093 0.000
0.60 3 49.304 -0.797 2 49.304 -0.797 0.000
0.80 1 66.494 -1.345 1 65.614 -1.319 0.026
1.00 1 80.000 -1.735 1 78.161 -1.684 0.052
1.20 1 90.914 -2.033 1 88.236 -1.961 0.072

Notes: This table describes the relationship between the present-bias factor β and the work pattern of a
patent examiner. We set the discount factor δ = 0.95 and the admissible failure rate τ = 0.15.

Table B.2: Simulated work pattern of a patent examiner (τ = 0.10)

standard (10 business days) short (9 business days) log-failure odds
diferenceβ start day total hours log-failure odds start day total hours log-failure odds

0.20 8 17.434 0.428 7 17.434 0.428 0.000
0.40 6 36.572 -0.623 5 36.572 -0.623 0.000
0.60 2 52.731 -1.270 1 52.731 -1.270 0.000
0.80 1 67.958 -1.803 1 67.199 -1.778 0.025
1.00 1 80.000 -2.197 1 78.419 -2.146 0.051
1.20 1 89.790 -2.506 1 87.491 -2.434 0.072

Notes: This table describes the relationship between the present-bias factor β and the work pattern of a
patent examiner. We set the discount factor δ = 0.95 and the admissible failure rate τ = 0.10.
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Appendix C Bayesian Inference Procedure

We compute the posterior distribution, given by equation (7), in two stages. In the first stage, we perform

a grid computation of the posterior distribution. Although the computation method explores the probability

distribution at only a limited point in the parameter space, it provides information on the approximate location

and shape of the distribution. In the second stage, we compute the posterior density at high resolution using

an MCMC method based on the Metropolis-Hastings (MH) algorithm. The MCMC approach outperforms

the grid computation because it is designed to search more intensively for higher-probability regions than

lower ones in the parameter space.

We start with a grid approximation of the posterior distribution via the following brute force method: (i)

define a grid in the parameter space, (ii) for each grid point, calculate the values of the likelihood function and

the prior density and multiply them, and (iii) normalize the multiplied values in the previous step. Finally,

divide the results at each point by the sum of those of all points.

One should be careful about the grid choice because a massive number of grid points makes the com-

putation virtually intractable. For example, suppose that we use 100 grid points for each of the structural

parameters θ when the number of examiners is N = 719. Although the number of required evaluation

points is reduced due to the multiplicative nature of the likelihood function for independent data, there are

100 × 100 × 100 × 719 ≃ 7.19 × 108 grid points to be evaluated, which requires formidable computational

resources.

To avoid the computational burden, we focus on grid points for the parameters of the individual present-

bias factors β and the admissible failure rate τ , while we fix the value of the discount factor at δ = 0.95.

Furthermore, we keep up to 80 grid points for each parameter. Consequently, the total number of grid points

is 80 × 80 × 719 ≃ 4.60 × 106, a manageable size for our workstation computer to process.87 To achieve

a dense evaluation of the parameter space, we interpolate the likelihood for a nongrid point based on the

already-computed values of the adjacent grid points.

Figure C.1 presents graphs of the marginal posterior densities of the present-bias factors for the first seven

examiners and the admissible failure rate estimated via grid computation. 88

We then estimate the posterior distribution using the Metropolis-Hastings sampler by means of the fol-

lowing steps:

1. Choose an initial value of the key parameter θ(0).

2. Choose a proposal parameter value θ(j+1) sampled from a probability distribution dependent on the

previous value, θ(j).

3. Update the parameter value θ(j) by θ(j+1) with the following probability

rMH = min

[
1, exp

{
ℓ(θ(j+1), ϕ̂)

}/
exp

{
ℓ(θ(j), ϕ̂)

}]

In practice, in iteration step j, we adopt the proposed value θ(j+1) if the value, rMH , which is often called

the Metropolis-Hastings criterion, is larger than the value taken from a uniform distribution on the interval

87The calculations were performed on a workstation with an 18-core Intel Xeon processor and 128 GB of memory
using the computer language Julia 1.0.

88The results presented are for the baseline case, and the results from alternative specifications are available upon
request.
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of [0 1]; otherwise, we keep the old parameter value θ(j).

Several remarks are in order.

• We run R = 106 iterations of the two independent chains from the MH sampling algorithm, with ten

percent of the total iterations used for the burn-in period.

• The sampler’s initial values are determined based on the location information obtained from the grid

approximation method. They are set to be the means of the grid-approximated posterior distributions

of the corresponding parameters.

• A “random walk” method is used to propose a new parameter value in the sampler. Specifically, let θ be

a single parameter. The proposed value θ(j+1) is then generated from the current value θ(j) according

to the following normal distribution: θ(j+1) ∼ N
(
θ(j), κθσ̂

2
θ

)
where σ̂2

θ represents the variance of the

grid-approximated posterior distribution, and κθ represents a “tuning” parameter, which is calibrated

such that the acceptance rate of the sampler is approximately 25 percent.

• Block-wise sampling is implemented. A detailed description is as follows: the set of the vector parame-

ters θ is partitioned into three blocks consisting of β, δ and τ . The values are updated simultaneously

within the first block, followed by the next block.

• The samples are “thinned” to save memory and disk space. All but the th = 100th observations are

discarded to construct the inference.

Figures C.2 and C.3 present trace plots (plots of the value generated from the sample against the number

of simulations) and histograms of the marginal posterior densities. For the individual-specific present-bias

factors, those of the first seven examiners are reported. Note that the results indicated by different colors in

each figure correspond to independent MH chains.

To assess the sampler’s convergence, we perform two popular tests of nonconvergence: the Geweke test

and the Heidelberger-Welch test.89 The results are graphically summarized in Figure C.4, where the greater

of the p-values from the tests performed on two independent samplers are plotted against the parameter set.

To increase the visibility, we let solid circles represent the cases where the p-value is less than five percent,

indicating that the null hypothesis is rejected. As demonstrated, the diagnostic test results vary widely by

parameter, yet there is little evidence against stationarity. Indeed, the tests detect nonstationarity for less

than 3 percent of all the parameters. Therefore, the MH sampling algorithm successfully generates an accurate

characterization of the parameters’ posterior distributions.

89The Geweke test compares values in the early part of the sampler to those in the latter part of the sampler to
detect convergence failure. The Heidelberger-Welch test uses the Cramer-von-Mises statistics to assess evidence of
stationarity. For a detailed explanation of the tests, see Jackman (2009). For implementation, we use the functions
gewekediag and heideldiag in the Mamba package in the computer language Julia 1.0.
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1

Figure C.1: Marginal posterior densities of the present-bias factors for the first seven examiners and
the admissible failure rate estimated by grid computation. The marginal posterior density of the discount
factor is not presented because it is not estimated.
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Figure C.2: Trace plots of the parameters obtained via Bayesian estimation and MCMC simulation.
For the individual-specific present-bias factors, those of the first seven patent examiners are reported.
Different colors in each figure correspond to independent MH chains.
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Figure C.3: Estimated marginal posterior densities for a portion of the parameters. The densities are
for the present-bias factors of the first seven examiners, the discount factor, and the admissible failure
rate, respectively. Different colors in each figure correspond to independent MH chains.
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Figure C.4: The results of the Geweke test (left) and the Heidelberger-Welch test (right). The p-values
from the tests performed on two independent samplers are plotted against the parameter set. Solid
circles represent the cases where the p-value is less than five percent, indicating that the null hypothesis
is rejected.
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Appendix D Calibration Results for Exponential Discounters

The calibration results reported in Section 5 show that the assumption on the patent examiner’s time pref-

erences is consonant with the empirical data. However, an alternative assumption might be possible. One

can think that heterogeneity in the standard discount factor δ, not in the present-bias factor β, is responsible

for the observed heterogeneity in the empirical log-failure odds across examiners. In this appendix, we per-

form another calibration run to validate the alternative explanation, but this time, we assume exponential

discounting examiners with various discounting factors.

The calibration procedure is the same as that in the main text. We modify a part of the assumptions

concerning the reward scheme presented in Appendix A while keeping the core intact. Specifically, let us

assume that the patent office has an incorrect belief in the discounting factor of the examiner. To distinguish

it from the discount factor δ that the patent examiner has, we denote it by ζ. We assume that the patent

office determined the target reward r∗ under the belief that the examiner is an exponential discounter with

discount factor ζ = 0.95.

Figure D.1 provides scatterplots of the empirical and theoretical log-failure odds, which are parallel with

those presented in Figure 3. In this case, hypothetical patent examiners differ in the discount factor: the

individual-specific discount factor, δ, ranges from 0.9 to 1.0 by intervals of 0.1.

Remarkably, the calibrated theoretical log-failure odds exhibit distributions far narrower than those of

the empirical log-failure odds. Given the poor fit of the calibrated model to the empirical pattern, the

time-consistent hypothesis does not appear to be plausible.

Figure D.1: The empirical log-failure odds and the simulated theoretical log-failure odds for the expo-
nential discounting model. The vertical axis represents the log-failure odds in the level, and the horizontal
axis represents the log-failure odds in the difference.
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Appendix E Count Data Model for PTA Period

The generic regression model for the PTA period is given by

E (PTAait|Xat,Wit) =

exp (α1t + α1XXat + α1WWit + ρ1PresentBiasMeasurei) = µait, (E.1)

where a indexes the patent application, i indexes the patent examiner, and t indexes the year. We denote

by µait the conditional mean of the PTA period presented above and assume it is linked to the application

and patent examiner characteristics. The left-hand side variable, PTAait, is the actual days of the extended

patent term. The control variables include a measure of present-biased preferences, PresentBiasMeasurei,

the application characteristics Xat, and the patent examiner characteristics Wit.

The Poisson model assumes that the conditional probability of PTAiat is governed by a Poisson process.

The probability function at nonnegative integer values k = 0, 1, 2, · · · is given by

fPO(k|µait) =
exp(−µait)µ

k
ait

k!

The negative binomial regression model incorporates an additional random term exp(εait) into the Poisson

model in a multiplicative manner

E (PTAait|Xat,Wit) =

exp (α1t + α1XXat + α1WWit + ρ1PresentBiasMeasurei) exp(εait)

where the distribution of exp(εait) follows a gamma distribution with parameter αε. The probability function

at nonnegative integer values k is given by

fNB(k|µait) =
Γ(y + α−1

ε )

Γ(α−1
ε )Γ(k + 1)

(
1

1 + αεµait

)α−1
ε
(

αεµait

1 + αεµait

)k

The zero-inflated models account for excess zeros by allowing two separate models—a binary model gener-

ating zero values and a zero truncated model for the remaining counts. In the context of patent examination,

we assume that patent applications are classified into two categories—easy applications and difficult applica-

tions. We assume that the PTA is enforced only for difficult applications. Let ϕait represent the probability

that patent application a reviewed by patent examiner i is easy, and assume that it is given by

ϕait = Λ(α1t + α1XXat + α1WWit + ρ1PresentBiasMeasurei)

where Λ represents the logistic distribution function. The probability function of PTAait at nonnegative

integer values k for the zero-inflated Poisson (ZIP) regression model is

fZIP (k|µait, ϕiat) =

ϕait + (1− ϕait)fPO(0|µait) if k = 0

(1− ϕait)fPO(k|µait) if k > 0

On the other hand, the probability of PTAait at nonnegative integer values k for the zero-inflated negative
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binomial (ZINB) regression model is

fZINB(k|µait, ϕiat) =

ϕait + (1− ϕait)fNB(0|µait) if k = 0

(1− ϕait)fNB(k|µait) if k > 0

The estimation results of the count-data regression models are presented in Table E.1. All the reported

values are marginal effects with robust standard errors. According to AIC and BIC, the ZINB regression has

the best fit for the data. Nonetheless, it should be noted that in all the specifications, the estimated coefficients

of the present-bias measure exhibit qualitatively the same features as those from the tobit regression model.

Specifically, while the magnitude of the marginal effect varies from specification to specification for the count

data regression models, they all are positive and statistically significant. It is therefore suggested that the

conclusions drawn from the tobit regression do not change.
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Table E.1: The effect of the present-bias measure on the PTA period using count data
regression models

Poission Neg. Bin. Zero-
Inflated

Zero-
Inflated

Poisson Neg. Bin.

((A) Marginal effect estimates
small entityr -13.62 -12.82 -18.55 -14.16

[0.000] [0.000] [0.000] [0.000]
parent -12.32 -9.987 -6.825 -8.978

[0.000] [0.000] [0.070] [0.000]
cip 26.6 28.17 36.94 29.79

[0.000] [0.000] [0.000] [0.000]
cont -64.26 -51.54 -46.8 -44.41

[0.000] [0.000] [0.000] [0.000]
div -83.22 -69.55 -69.49 -64.66

[0.000] [0.000] [0.000] [0.000]
foreign priority 4.231 0.229 -8.037 -1.47

[0.058] [0.916] [0.036] [0.520]
ctrs 87.18 80.31 82.6 75.84

[0.000] [0.000] [0.000] [0.000]
accel -158.1 -124.1 -152.6 -122.1

[0.000] [0.000] [0.000] [0.000]
fam root 23.27 24.25 27.49 22.15

[0.000] [0.000] [0.000] [0.000]
PresentBiasMeasure 15.06 15.56 22.45 15.67

[0.000] [0.000] [0.000] [0.000]
Failure 88.04 89.54 110.7 92.81

[0.000] [0.000] [0.000] [0.000]
(B) Measures of goodness-of-fit
AIC 307.942 145.930 10.155 9.380
BIC 307.953 145.951 10.166 9.402

(C) No. of observations 97951 97951 97951 97951

Notes: This table reports the marginal effects on the PTA period of a patent application
based on the regression model (E.1). The sample consists of applications that were granted
patents because unapproved patent applications do not have PTA records. The specifications
are (i) Poisson, (ii) negative binomial (Neg. Bin.), (iii) zero-inflated Poisson, and (iv) zero-
inflated negative binomial (Zero-Inflated Neg. Bin.). The p-values in brackets are calculated
based on robust standard errors clustered at the art unit level. Akaike information criteria
(AIC) and Bayesian information criteria (BIC) are given for each specification. The AIC and
BIC are normalized by the number of observations.
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Appendix F A Survival Analysis of Patent Examiner Job Duration

To add quantitative evidence of the relationship between job separation and present-biased preferences, we

perform a survival analysis of patent examiner job duration using a Cox proportional hazard regression.

Let hit be the hazard ratio that patent examiner i left the patent office at time t since joining. We estimate

regression models of the form:

hit = h0t exp (ArtUniti + EntryY eari + ψPresentBiasMeasurei) , (F.1)

and of the form:

hit = h0 exp

(
ArtUniti + EntryY eari +

5∑
k=2

ψkPresentBiasDummyk

)
, (F.2)

where h0t represents the baseline hazard, ArtUniti represents an art unit dummy variable, and EntryY eari

represents an entry year dummy variable. We denote by PresentBiasDummyk the k- th quintile group

dummy based on PresentBiasMasure for k = 2, 3, 4, 5

Table F.1 reports the estimation results of Cox regression models, where ψ̂ from the former specification

is in column 1, and (ψ̂2, ψ̂3, ψ̂4, ψ̂5) from the latter specification are in column 2.

Table F.1: The relationship between patent examiners’ present-biased pref-
erences and their tendency to separate from the patent office

(1) (2)

(A) Parameter estimates

　 ψ̂ -0.885
[0.001]

　 ψ̂2 0.048
[0.922]

　 ψ̂3 -1.177
[0.046]

　 ψ̂4 -1.704
[0.044]

　 ψ̂5 -2.262
[0.003]

(B) Measures of goodness-of-fit
　 AIC 2.352 2.213
　 BIC 2.967 2.614

(C) No. of observations 269 269

Notes: This table reports the estimated coefficients of the Cox regression
models (F.1) and (F.2). The p-values in brackets are calculated based on
robust standard errors clustered at the art unit level. Akaike information
criteria (AIC) and Bayesian information criteria (BIC) are given for each
specification. The AIC and BIC are normalized by the number of observations.
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Appendix G Appendix Tables and Figures

Table G.1: Definition of variables

variable name type no of

dummies

granted

data

description

art unit dummy 55 The art unit to which the examiner who issued

the first office action on the patent application

belongs, as a dummy variable.

uspc class dummy 31 The technology class to which the patent appli-

cation belongs, as a dummy variable for United

States Patent Classification(USPC) system.

year dummy 9 The year in which the first office action was issued

on the patent application, as a dummy variable.

qx str dummy 4 A dummy variable that takes 1if the week in which

the first office action was issued on the patent

application is the start of the x th quarter (for

x=1,2,3,4).

qx end dummy 4 A dummy variable that takes 1 if the week in

which the first office action was issued on the

patent application is the end of the x th quarter

(for x=1,2,3,4).

month dummy 12 The month in which the first office action was is-

sued on the patent application, as a dummy vari-

able.

biweek dummy 26 The biweekly period in which the first office action

was issued on the patent application, as a dummy

variable.

bw thnks dummy 1 A dummy variable that takes 1 if the biweekly

period in which the first office action was issued on

the patent application is the Thanksgiving holiday

period.

exam exp year numeric 30 The number of experience years of the examiner

who issued the first office action for the patent

application

exam rank dummy 1 A dummy variabe that takes 1 if the examiner

who issued the first office action for the patent

application is a primary (senior) examiner, and

zero if she is an assistant (junior) examiner.

small entity dummy 1 A dummy variable that takes 1 if the patent ap-

plication claims small-entity status.

foreign priority dummy 1 A dummy variable that takes 1 if the patent ap-

plication claims foreign priority.

parent dummy 1 A dummy variable that takes 1 if the patent ap-

plication is a parent application. In other words,

a related continuing application is filed.
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Table G.1: Definition of variables (cont’d)

fam root dummy 1 A dummy variable that takes 1 if the patent ap-

plication is a family root of any other patent ap-

plications.

cip dummy 1 A dummy variable that takes 1 if the patent appli-

cation is a continuation-in-part (CIP) application

con dummy 1 A dummy variable that takes 1 if the patent ap-

plication is a continuation (CON) application

div dummy 1 A dummy variable that takes 1 if the patent ap-

plication is a divisional (DIV) application

accel dummy 1 A dummy variable that takes 1 if the patent appli-

cation is granted accelerated examination status.

ctrs dummy 1 A dummy variable that takes 1 if the patent ap-

plication is requested restriction/election.

bw order10 dummy 10 The order in which the first office action was is-

sued in the biweekly period in which it was issued

for the patent application, as a dummy variable

up to the tenth (censored for the tenth or more).

log bclog new numeric - The number of unexamined new patent applica-

tions (backlogs) at the beginning of the biweekly

period in which the first office action was issued

for the patent application (in logarithmic value).

log bclog amend numeric - The number of unexamined amended patent ap-

plications (backlogs) at the beginning of the bi-

weekly period in which the first office action was

issued for the patent application (in logarithmic

value).

ln fwd exa numeric - x The number of examiner’s forward citations on

the patent application (in logarithmic value).

ln fwd other numeric - x The number of non-examiner’s forward citations

on the patent application (in logarithmic value).

ln nclm numeric - x The number of claims of the patent application

(in logarithmic value).

ln draws numeric - x The number of drawings in the patent application

(in logarithmic value).

ln wtypes clm numeric - x The number of word types in the claims of the

patent application (in logarithmic value).

ln wtokens clm numeric - x The number of word tokens in the claims of the

patent application (in logarithmic value).

ln wtypes abs numeric - x The number of word types in the abstract of the

patent application (in logarithmic value).

ln wtokens abs numeric - x The number of word tokens in the abstract of the

patent application (in logarithmic value).

Notes: The sing ‘x’ in the “granted data” column represents the variable is included in the granted patent data.
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Table G.2: Reduced-form regression evidence for present-bias-induced procrastination (cont’d)

(1) (2) (3) (4) (5) (6)

exam rank -0.174 -0.172 -0.176 -0.146 -0.249 -0.174
[0.003] [0.003] [0.003] [0.028] [0.000] [0.003]

small entity 0.015 0.015 0.01 0.015 0.058 0.016
[0.387] [0.387] [0.615] [0.408] [0.011] [0.368]

foreign priority 0.009 0.009 0.017 0.011 0.048 0.01
[0.605] [0.607] [0.378] [0.540] [0.036] [0.572]

parent 0.104 0.104 0.11 0.105 0.124 0.104
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

fam root -0.021 -0.021 -0.028 -0.024 -0.013 -0.02
[0.543] [0.542] [0.461] [0.501] [0.769] [0.557]

cip 0.049 0.049 0.039 0.051 0.038 0.049
[0.036] [0.036] [0.131] [0.032] [0.206] [0.034]

cont -0.09 -0.09 -0.094 -0.089 -0.04 -0.09
[0.000] [0.000] [0.000] [0.000] [0.151] [0.000]

div -0.074 -0.074 -0.058 -0.07 -0.184 -0.073
[0.005] [0.005] [0.046] [0.008] [0.000] [0.005]

accel 0.053 0.053 0.077 0.044 0.03 0.058
[0.543] [0.541] [0.431] [0.615] [0.775] [0.507]

ctrs 0.269 0.269 0.27 0.265 0.257 0.27
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

log bclog new -0.001 -0.001 0 -0.013 0.009 0
[0.974] [0.972] [0.991] [0.566] [0.751] [0.997]

log bclog amend -0.044 -0.044 -0.044 -0.06 0.034 -0.045
[0.048] [0.048] [0.049] [0.009] [0.233] [0.042]

ln fwd exa -0.079
[0.001]

ln fwd other -0.076
[0.000]

ln nclm 0.193
[0.000]

ln ndrw -0.04
[0.007]

ln wtypes clm 0.125
[0.026]

ln wtokens clm -0.003
[0.944]

ln wtypes abs 0.05
[0.498]

ln wtokens abs -0.024
[0.657]

Notes: This table reports the supplementary estimation results for the regression model (2). The
estimated coefficients of the covariates on the first office action failure are reported. The p-values in
brackets are calculated based on robust standard errors clustered at the art unit level.
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Table G.3: Estimated standard deviations and correlation matrix of the pa-
rameters for the regression model with the lead and lag effects of the shortened
deadline

σ0 σ1 σ2 σ3

0.696 0.204 0.210 0.126
[0.000] [0.000] [0.000] [0.004]

σ01 σ02 σ03

-0.343 -0.307 -0.281
[0.001] [0.002] [0.114]

σ12 σ13 σ23

0.676 0.556 0.616
[0.002] [0.124] [0.089]

Notes: This table reports the estimated standard deviations and correlation ma-
trix of the regression model (3). The p-values in brackets are calculated based on
robust standard errors clustered at the art unit level.
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Table G.4: The estimation results for the key parameters of the present-bias-induced pro-
crastination model under wider prior distributions

Priors β ∈ [0.1, 1.1] β ∈ [0.1, 1.2] β ∈ [0.1, 1.2] β ∈ [0.1, 1.2]
δ ∈ [0.1, 1.0] δ ∈ [0.9, 1.0] δ ∈ [0.9, 1.0] δ ∈ [0.1, 1.0]
τ ∈ (0.0, 0.2] τ ∈ (0.0, 0.2] τ ∈ (0.0, 0.3] τ ∈ (0.0, 0.3]

(A) Marginal posterior means

Present bias factors
¯̂
βi

1st Qt. 0.432 0.469 0.434 0.429
(0.312, 0.570) (0.312, 0.661) (0.368, 0.509) (0.306, 0.582)

2nd Qt. 0.599 0.643 0.613 0.601
(0.495, 0.714) (0.325, 1.090) (0.502, 0.739) (0.435, 0.793)

3rd Qt. 0.792 0.847 0.797 0.789
(0.574, 1.045) (0.658, 1.096) (0.652, 0.964) (0.601, 1.037)

Discount factor
¯̂
δ 0.321 0.948 0.949 0.319

(0.104, 0.904) (0.902, 0.997) (0.902, 0.997) (0.104, 0.902)

Admissible failure rate ¯̂τ 0.044 0.049 0.044 0.044
(0.041, 0.046) (0.046, 0.052) (0.041, 0.047) (0.041, 0.046)

(B) Measures of goodness-of-fit
WAIC 0.756 0.756 0.756 0.756
AUC.ROC 0.692 0.692 0.692 0.692

(C) Present-biased patent examiners (%) 70.000 63.239 69.296 69.155

Notes: This table reports the results of the Bayesian estimation. The means of the marginal
posterior distributions are presented for the key parameters. The values in parentheses represent
the lower and upper limits of the 95 percent highest density interval (HDI) of the marginal
posterior distribution. We use (i) either [0.1, 1.0] or [0.9, 1.0] as the support of the uniform prior
for the discount factor δ; (ii) [0.1, 1.1] or [0.1, 1.2] as the support of the uniform prior for the
present bias factor β, and (iii) (0.0, 0, 2] or (0.0, 0.3] as the support of the uniform prior for the
admissible failure rate τ .
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Table G.7: The effect of the present bias measure on the PTA period using a
tobit regression model (cont’d)

(1) (2) (3) (4)

small entityr -23.493 -24.497 -19.098 -11.792
[0.000] [0.000] [0.000] [0.003]

parent -21.889 -23.635 -18.004 -35.975
[0.000] [0.000] [0.000] [0.000]

cip 55.858 55.153 44.796 -1.612
[0.000] [0.000] [0.000] [0.818]

cont -111.822 -110.447 -111.886 -295.952
[0.000] [0.000] [0.000] [0.000]

div -124.835 -121.432 -123.064 -278.093
[0.000] [0.000] [0.000] [0.000]

foreign priority 0.113 -0.471 2.616 15.954
[0.975] [0.894] [0.444] [0.000]

ctrs 139.682 134.095 151.665 176.292
[0.000] [0.000] [0.000] [0.000]

accel -289.357 -289.21 -293.836 -491.57
[0.000] [0.000] [0.000] [0.000]

fam root 48.76 49.041 34.742 7.507
[0.000] [0.000] [0.000] [0.462]

Notes: This table provides the supplementary contents for the marginal effects on
the PTA period of a patent application based on the regression model (8). The
p-values in brackets are calculated based on robust standard errors clustered at the
art unit level.
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Table G.8: The estimation results for the key parameters of the present-bias-induced procrastination
model using a sample of TC 2100

γ = 0 γ = 0.5 γ = 1.0 γ = 1.5 γ = 2.0

(A) Marginal posterior means

Present bias factors
¯̂
βi

1st Qt. 0.359 0.405 0.408 0.401 0.392
(0.148, 0.765) (0.141, 0.860) (0.271, 0.577) (0.283, 0.554) (0.304, 0.501)

2nd Qt. 0.602 0.605 0.601 0.605 0.606
(0.413, 0.818) (0.329, 0.949) (0.310, 0.986) (0.435, 0.818) (0.246, 1.060)

3rd Qt. 0.766 0.779 0.78 0.777 0.776
(0.385, 1.081) (0.599, 0.991) (0.338, 1.081) (0.496, 1.076) (0.287, 1.087)

Discount factor
¯̂
δ 0.951 0.949 0.949 0.949 0.949

(0.902, 0.998) (0.903, 0.997) (0.902, 0.997) (0.902, 0.997) (0.902, 0.997)

Admissible failure rate ¯̂τ 0.041 0.03 0.03 0.032 0.035
(0.039, 0.043) (0.029, 0.032) (0.028, 0.032) (0.030, 0.034) (0.032, 0.037)

(B) Measures of goodness-of-fit
WAIC 0.661 0.660 0.660 0.661 0.661
AUC.ROC 0.715 0.717 0.717 0.717 0.716

(C) Present-biased patent examiners (%) 49.026 58.658 58.009 54.437 53.139

Notes: This table reports the replication results of the Bayesian estimation for the model parameters using
the sample of patent applications reviewed by patent examiners who belong to TC2100 (Computer Architecture
and Software). The means of the marginal posterior distributions are presented for the key parameters. For the
individual-specific present bias factors, the first to third quartiles of the marginal posterior means’ distribution
are presented. The values in parentheses represent the lower and upper limits of the 95 percent highest density
interval (HDI) of the marginal posterior distribution. A patent examiner is defined as present biased if the upper
limit of 95 percent HDI of her present-bias factor does not reach the value of 1.0. As goodness-fit-measures, we
report the widely applicable information criterion (WAIC), which is normalized by the number of observations,
and the area under the ROC curve (AU.ROC) from the receiver operating characteristics (ROC) analysis.
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Figure G.1: The daily number of first office actions for TC1600 for the period 2004-2009. The solid
circle represents the deadline day of a biweekly quota period. The dashed line represents the end of the
quarterly period.
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Figure G.2: Estimated marginal posterior distributions of the discount factor for patent examiners.
The estimation is based on the exponential discounting model. The bar represents the 95% HDI of the
marginal posterior distribution of a patent examiner’s annual discount factor.
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Figure G.3: A histogram of the PTA period. The sample consists of applications that were granted
patents because unapproved patent applications do not have PTA records.
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