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1. Introduction 

In recent years, population aging has been observed in some developed countries and is 

predicted to occur in developing countries in the next 50 years. One driving force of this 

phenomenon is a reduction in the fertility rate and thus a decline in the population. 

Existing studies have found that population decline may change the properties of 

equilibrium paths from those identified for a population-increasing economy in 

neoclassical and semi-endogenous growth models (Ritschl, 1985; Felderer, 1988; 

Christiaans, 2008, 2011, 2017; Ferrara, 2011; Sasaki, 2014, 2015, 2019a,b; Sasaki and 

Hoshida, 2017; Jones,2019).1  While these are interesting and important findings, the 

rates of population decline (i.e., the absolute value of negative population growth rates) 

needed to generate richer dynamics seem too large given the empirical data and 

population prospects available. 

This paper investigates whether the range of such theoretically derived rates of 

population decline may be empirically relevant and, if it is too high, explores how to 

reduce the critical level of the rate of population decline below which richer dynamics 

emerge in semi-endogenous and Solow models. 

More specifically, Sasaki (2019a) has shown, using a Solow growth model with the 

CES production function, that with a negative population growth rate ( 0n  ), the long-

run growth rate of per capita output is given by the rate of technological progress ( 0  ) 

if the elasticity of substitution between capital and labor is less than unity ( 1  ). Then, 

if the rate of technological progress is zero, the growth rate of per capita output is zero. 

He also shows that the long-run growth rate of per capita output can be positive even 

without technological progress if the elasticity of substitution is unity ( 1  ). 

While these results are interesting, they are derived under the condition that the rate of 

population decline (the absolute value of 0n  ) is larger than the sum of the rates of 

capital depreciation ( 0   ) and technological progress ( 0   ), i.e., ( )n      . 

Empirically, as Jones (2019) points out, the rates of population decline are 1% or smaller2, 

 
1 There is extensive literature investigating the effects of a decline in the population growth rate in 
growth models (Casey and Galor, 2014; Futagami and Nakajima, 2001; Futagami and Hori, 2010; Naito 
and Zhao, 2009; Prettner and Prslarwetz, 2010; Prettner, 2013; Prettner and Trimborn, 2016; Fukuda, 
2017). However, many of them focus on population aging and consider a decline in the positive 
population growth rate. The literature that explicitly analyzes the effects of negative population growth is 
relatively small. 
2 Appendix 1 provides detailed estimations from World Population Prospects 2019. 
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whereas depreciation rates are 3% or 5% or more. According to Barro and Sala-i-Martin 

(2004), the rates of technological progress are 1% or 2% (see TFP growth rate in Table 

10.1 on p. 439). Sasaki’s (2019a) case, therefore, may seem empirically implausible.3 

Because it is easy to observe that this empirical irrelevance comes from the presence of 

capital depreciation, one might think that it would be better to eliminate capital 

depreciation from the growth model, as in the standard population-increasing neoclassical 

growth models. 

  However, it seems essential to explicitly incorporate the rate of capital depreciation in 

the model once we proceed to analyze the properties of growth paths under population 

decline. Ferrara (2011) found that depreciation plays a fundamental role in the phenomena 

of convergence in the Solow model with AK technology. Christiaans (2011) showed in a 

semi-endogenous growth model that the condition for the emergence of richer dynamics 

under negative population growth crucially depends on the rate of capital depreciation. 

From a theoretical viewpoint, an intuitive reason for this relationship is straightforward: 

the rate of capital depreciation affects the direction of movement of the capital-labor ratio 

k= /K L , which is a key variable in determining per capita real income. In a population-

increasing economy, an increase in population ( L ) and an increase in the rate of capital 

depreciation both decrease the capital-labor ratio ( /K L ). Thus, eliminating capital 

depreciation does not affect the direction of movement of the capital-labor ratio. In 

contrast, in a population-declining economy, these two forces work in the opposite 

direction: population decline tends to increase the capital-labor ratio, while an increase in 

the capital depreciation rate tends to decrease it.4 The properties of the equilibrium paths 

will then be determined through interactions between movements in k and the other 

factors in the model, such as externalities. Therefore, the condition for the emergence of 

richer dynamics under negative population growth involves the rate of capital 

depreciation.5 

 
3 Despite this fact, the qualitative result of Sasaki (2017) could be valid for (the absolute value of) the 
rates of population decline smaller than    if we introduced child rearing costs. See the last paragraph 

of section 3. 
4 Jones (2019) makes the same explanation with somewhat different expressions (p.4). 
5 Sasaki (2019b) analyzes a growth model with capital-input externalities by introducing non-renewable 
resources. He considers both positive and zero rates of capital depreciation and shows that positive per 
capita output growth is possible not only under increasing returns-to-scale (in capital and labor) 
production and positive population growth but also under diminishing returns-to-scale production and 
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As a study that explicitly incorporates capital depreciation, Christiaans (2011) has 

shown that the growth rate of per capita output ( /Y Lg  ) exhibits a nonmonotonous 

dependency on negative population growth rates ( 0n  ) in a semi-endogenous growth 

model with an aggregate capital externality. In his model, the growth rate of per capita 

output becomes negative when the population growth rate becomes negative. He derives 

the critical value of the rate of population decline that separates positive and negative 

relations between /Y Lg  and 0n  : if ( / ) 0n     holds, the faster the population 

declines, the faster the per capita output decreases, and if ( / )n     holds, the faster 

the population declines, the slower the per capita output decreases.6 This result provides 

another important lesson: a positive externality represented by parameter 1   reduces 

the critical rate of population decline below which richer dynamics emerge. However, no 

studies have investigated whether this critical value is empirically relevant.7 

This paper first shows that the critical value ( / )   of the rates of population decline 

derived by Christiaans (2011) may be empirically relevant in the sense that it is 

sufficiently small to be consistent with available population estimates (World Population 

Prospects 2019). Then, it explores how we can reduce the corresponding rates of 

population decline in the Solow growth model without such externalities. We find that an 

introduction of a child rearing cost could make the absolute value of such a rate of 

population decline smaller. Finally, the economic implications of the presence of a child 

rearing cost are discussed for the Solow growth model. 

 

 

2. Semi-Endogenous Growth Model and Empirical Relevance 

Let us first summarize the semi-endogenous growth model of Christiaans (2011) and his 

results. The reason for choosing this model is that it explicitly incorporates capital 

 
negative population growth. 
6 See Figure 1 in section 2, which is cited from Christiaans (2011) for further details. 
7 Another study investigating negative population growth in a semi-endogenous growth model is Sasaki 
and Hoshida (2017). They show that within a finite time horizon, the employment share of the R&D 
sector reaches zero, and thus the rate of technological change falls to zero, and that the growth rate of per 
capita output asymptotically approaches a positive value. Although these results are interesting, they 
assume a zero depreciation rate for capital. 
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depreciation as well as the aggregate capital-input externality, which is a common feature 

among the advanced countries that have been experiencing population decline. After 

deriving a lesson from his analysis, I show that his model applies to empirically relevant 

ranges of rates of population decline by numerical examples. 

 

2.1 Christiaans’ (2011) Model and Its Implications 

In a one-sector competitive-economy model with the aggregate capital externality, the 

saving rate s   ( 0 1s   ) is assumed to be exogenous. An individual firm j has a 

production function /(1 ) 1( )j j jY K K L      , where jK   and jL   are capital and labor 

inputs, respectively, and jj
K K    is the aggregate capital stock, with   

representing the positive externality due to learning by investment ( 0 1  , 0 1  , 

1    ). Because all firms are identical and choose the same capital-labor ratio 

( / ) ( / )j jK L K L  , the aggregate production function is 1Y K L     , where 

jj
Y Y   is the gross domestic product, and jj

L L  is the total labor force with a 

constant growth rate /n L L    (the dot represents a time derivative). Dividing the 

aggregate production function by L , we obtain the scale-adjusted per capita production 

function y k    with /y Y L  and /k K L  . The term (1 ) /(1 )        

represents the strength of the positive externality from knowledge accumulation; 1   

if 0   (semi-endogenous growth model) and 1   if 0   (Solow model). 

Capital is accumulated by K sY K   , where 0    is the rate of capital 

depreciation. Using the accumulation rate / ( / )Kg K K s Y K    , we obtain: 

( )k sk n k                                                  (1) 

When 0n     holds, there exists a unique steady state ( 0k   ) that is globally 

asymptotically stable for any initial value 0 0k  . Even under 0n  , this property holds 

as long as the absolute value of the rate of population decline is sufficiently small that 
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( / ) 0n     holds. Then, the growth rate of per capita income (not /y Y L  but 

Y/L) in the steady state is: 

/ ( 1)Y Lg n                                                (2) 

In the presence of the externality ( 1  ), the steady-state growth rate of per capita income 

is positive if 0n  , zero if 0n   and negative if ( / ) 0n    . 

However, the main finding of Christiaans (2011) occurs when 0n    , i.e., 

1
( / )

1
n

   


       
  holds. Then, the scale-adjusted per capita capital k  

grows indefinitely. More precisely, there exists no steady state with a positive and 

constant growth rate of per capita income, but an asymptotic steady state exists (i.e., the 

growth rate of per capita income converges to a constant value as time goes to infinity). 

Because /Y L K L    , we have 

/

/
( ) ( )( / ) ( )

/Y L K L

Y L
g g g sY K n s n

K L



          
 

           
 

  (3) 

Therefore, the growth rate of per capita income is: 

1
/ ( ) ( )Y Lg sk n                                        (4) 

Because 1   , the growth rate of per capita income in the asymptotic steady state 

is: 

/ ( )Y Lg n                                               (5) 

This long-run growth rate is positive if and only if 

n
  

   

 
                                             (6) 

The threshold value ˆ [( ) / ]n       , which separates positive and negative values of 

/Y Lg , is lower than the kink at ( / )n    . 

Christiaans (2011) has found the nonmonotonous dependency of the long-run per 

capita income growth rate /Y Lg   on population growth rates 0n    in Figure 1. An 

important lesson must then be that the critical value ( / )n    , which separates the 
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positive and negative relations of /Y Lg  to 0n  , is reduced by the positive externality 

( 1  ). 

 

Figure 1. Dependency of Long-Run Per Capita Income Growth Rate on the Population 

Growth Rate 

 
Source: Figure 2 on p.2671 in Christiaans (2011) 

 

2.2 Empirical Relevance of the Theoretical Rates of Population Decline 

We investigate whether the critical values for the rates of population decline derived in 

Christiaans (2011) can be empirically relevant by calculating the values of ( / )n     

and ˆ [( ) / ]n         with numerical examples that satisfy 1    : the relative 

share of capital is approximately 1/ 3    and the rate of capital depreciation is 

(0.05,0.12)  . 

Let us look at the values of ( / )   in Table 1. The absolute values are smaller than 

1%.8 According to the United Nations’ World Population Prospects 2019, the absolute 

values of the rates of population decline estimated in most countries are 1% or smaller. 

For example, the estimated average annual rates of population change (as medium 

variants) in Japan, Greece, Italy and Germany for 2020-2025 are -0.40, -0.52, -0.20 and -

0.06%, while they are -0.53, -0.47, -0.28 and -0.09% for 2025-2030, respectively.9 From 

 
8 See Appendix 2 for other numerical examples. 
9 See Appendix 1 for estimated values of other countries. 

O
 




 
 
 

/ ( 1)Y Lg n 

/ ( )Y Lg n      

n̂
  

   

 
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this observation, the nonmonotonous dependency derived by Christiaans (2011) seems 

empirically relevant.10 

 

Table 1. Dependency of the Range for the Rates of Population Decline on Capital 

Depreciation Rates 

(a) α=0.33，β＝0.65 and thus γ=33.5 

Δ -(δ/γ) (%) n̂  -(α＋β)δ/α (%) 

0.12 -0.36 -35.6 

0.1 -0.30 -29.7 

0.09 -0.27 -26.7 

0.08 -0.24 -23.8 

0.07 -0.21 -20.8 

0.06 -0.18 -17.8 

0.05 -0.15 -14.8 

 

(b)α=0.3，β＝0.69 and thus γ=70 

δ  -(δ/γ) (%) n̂  -(α＋β)δ/α （%）

0.12 -0.17 -39.6 

0.1 -0.14 -33.0 

0.09 -0.13 -29.7 

0.08 -0.11 -26.4 

0.07 -0.10 -23.1 

0.06 -0.09 -19.8 

0.05 -0.07 -16.5 

Source: Author’s calculations 

 

  In addition, because the threshold values of n̂  in Table 1 are so large in absolute value, 

 
10 The absolute values of 

/ ( 1) /Y Lg       at ( / )n    also seem too large from an empirical 

viewpoint. For example, in case (a) 
/ 4.9%Y Lg    for 0.05   and 

/ 9.7%Y Lg    for 0.10   

(I appreciate Yasuhiro Nakagami for his comment on this point). If we exogenously incorporated Harrod-
neutral technological progress into Christiaans (2011) model, the absolute values of 

/ 0Y Lg   would be 

smaller. 
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the long-run per capita income growth rates /Y Lg  are likely to remain negative from an 

empirical viewpoint. Based on Christiaans (2011), as the absolute value of 0n   

increases, the long-run decrease in per capita income will accelerate (the absolute value 

of / 0Y Lg    will become larger) for ( / ) 0n      while it will slow down (the 

absolute value of / 0Y Lg   will decrease) for ( / )n    . 

 

 

3. A Solow Growth Model with Child Rearing Cost 

We have shown that in the semi-endogenous growth model by Christiaans (2011), positive 

externalities from knowledge accumulation can reduce the critical rate of population 

decline, which separates positive and negative relations between the growth rate and the 

rate of population decline. In this section, we explore how to reduce the corresponding 

critical value of the rate of population decline in the Solow growth model without such 

externalities. It is found that an introduction of a child rearing cost could reduce the 

critical rate of population decline below which a growth path with different properties 

emerges. 

 

3.1 The Model 

Consider the Solow growth model with capital depreciation rate 0  . The aggregate 

production function exhibits constant returns to scale in physical capital ( )K t  and labor 

( )L t  . The exogenous growth rate n   of population ( )L t   can be either positive or 

negative. Unlike the standard Solow model, we assume that the birth and rearing of each 

child of the next generation costs an amount   at any point in time t. Following Barro 

and Sala-i-Martin (2004, p.413), the child rearing cost is assumed to be positively related 

to per capita capital ( ) ( ) / ( )k t K t L t , i.e., ( ( ))k t  with '( ( )) 0k t  . This is because 

the cost   tends to rise with parents’ wage rates ( ) ( ( )) ( ) '( ( ))w t f k t k t f k t  , which is 

increasing in ( )k t  , or other measures of the opportunity costs of parental time. The 

commodity costs of rearing a child may or may not be increasing in ( )k t , which could 

lead to technical complexity in the form of nonlinearity. 
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Because the aggregate cost of child rearing is ( )nL t  , the aggregate capital stock 

evolves over time according to ( ) ( ) ( ) ( )K t sY t K t nL t    . Thus, the accumulation 

function of per capita capital is: 

    ( ) ( ( )) ( ) ( ) ( ( ))k t sf k t n k t n k t                                    (7),  

where ( ( ))f k t   is the per capita production function with '( ( )) 0f k t  , "( ( )) 0f k t  , 

(0) 0f  , '(0)f    and '( ) 0f   . In this section, we show the analysis for a linear 

child rearing cost ( )bk t   , where 0b    is a constant. Then, the per capita capital 

accumulation function is: 

( ) ( ( )) [ (1 ) ] ( )k t sf k t b n k t                                       (8) 

Even if the population growth rate n  is negative, the properties of the equilibrium 

paths are the same as those of the standard Solow growth model as long as the “effective 

depreciation rate for k”, (1 ) 0b n    , is positive,11 that is, a stable steady state Ek  

uniquely exists, as shown in Figure 2. More generally, when the child rearing cost 

( ( ))k t   is small enough, the sum of the second and third terms in (7) 

( ( )) ( ) ( ) ( ( ))k t n k t n k t       will be positive even if 0n    holds. Then, a stable 

steady state uniquely exists even under negative population growth in the present model. 

 

Figure 2. A Stable Steady State for (1 ) 0b n     

 
 

 
11 We follow Gruescu (2007, p.34) for this expression.  

E 

o

( )sf k

k
Ek

[ (1 ) ]b n k  
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3.2 Rates of Population Decline Inducing the Unbounded Equilibrium Path 

The properties of the equilibrium paths will differ substantially when (1 ) 0b n     

holds, as shown in Figure 3. In this case, per capita capital k  increases unboundedly 

because the capital dilution effect, including depreciation, dominates the capital 

accumulation effect by per capita saving. Although this qualitative result has already been 

found in Ritschl (1985),12 the range of rates of population decline for the unbounded 

equilibrium path turns out to be: 

           
1

n
b


 


                                              (9). 

A higher child rearing cost ( 0b  ) will decrease the absolute value ( /(1 )b  ) of the 

critical rate of population decline below which an equilibrium path is induced with 

different properties from that of the standard Solow model. Because the child rearing cost 

must be very high in many developed countries that have already entered the phase of 

population decline, the critical value /(1 )b   is likely to be much lower than 0  . 

 

Figure 3. An Unbounded Equilibrium Path for (1 ) 0b n     

 

Let us make a brief comment on the condition ( )n      in Sasaki (2019a), under 

which the long-run growth rate of per capita output equals the rate of technological 

progress ( 0  ) when the elasticity of substitution is less than unity ( 1  ). If the linear 

child rearing cost had been introduced in the same way as in this paper, the accumulation 

function of capital per unit of efficiency labor ( /k K AL  ) would be

 
12 See subsection 3.3 for details of Ritschl (1985). 

o

( )sf k

k

[ (1 ) ]b n k  
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( ) {(1 ) }k sf k b n       , where A   is a technological parameter. The condition 

( )n      would be modified into (1 ) 0b n       , i.e., ( ) /(1 )n b      . 

Then, the qualitative result of Sasaki (2019a) might hold for rates of population decline 

that seem much lower than   . 

In addition, it is interesting to show that introducing the child rearing cost ( / )K L  

into the Christiaans (2011) semi-endogenous growth model further reduces the critical 

rate of population decline. From ( / )K sY K K L nL    , the dynamics of the scale-

adjusted capital intensity /k K L  are: 

[ { ( / ) /( / ) } )]k sk K L K L n k         

Then, the critical rate of population decline that separates positive and negative relations 

between /Y Lg   and 0n    is given not by ( / )   but by 
( / ) /( / )K L K L


 




 . 

Under the linear child rearing cost function, it is { /( )}b   . Their absolute values are 

smaller than ( / )  .  

 

3.3 Previous Studies and Implications of the Present Analysis 

We have shown the existence of a stable steady state under negative population growth 

for (1 ) 0b n    . It would be useful to explain how the present model is related to 

previous studies on Solow models with negative population growth. 

  The first study that considered negative population growth ( 0n  ) in the Solow model 

was Ritschl (1985). Using the Solow model without capital depreciation ( 0   ), he 

found that a steady state does not exist for 0n  , but per capita capital k  increases 

unboundedly. He also found that when assuming a negative saving rate ( 0s  ) in the 

Solow saving function, there exists an unstable steady state (i.e., the capital-labor ratio 

either converges to zero or grows unboundedly, depending on the initial conditions). He 

proceeded to show that a stable steady state exists by introducing a “classical” saving 

function in which saving is positive when the return on capital is greater than a certain 

level and falls to zero when a minimum rate of return is reached. Because the “classical” 

saving function lacks a sound microeconomic foundation, Felderer (1988) introduced 
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simple life-cycle assumptions in a neoclassical framework without capital depreciation 

and showed that a steady state exists for any sign of the population growth rate. 

  In the present model, even when 0n  , a stable steady state 0Ek   exists as long as 

(1 ) 0b n     holds. Taking into account that this is the case even if the child rearing 

cost is absent ( 0b  ), we find that the presence of the capital depreciation rate ( 0  ) 

enables a stable steady state to exist. Here, again, capital depreciation turns out to play a 

crucial role in determining the properties of equilibrium dynamics under negative 

population growth. Ferrara (2011) has found that under negative population growth 

( 0n  ), the capital-labor ratio converges to zero when the depreciation rate is sufficiently 

large (so that sA   holds) using an AK Solow model with capital depreciation. 

In the standard Solow growth model with capital depreciation ( 0  ), Gruescu (2007, 

p.34) had already referred to the possibility that if the workforce declined to a greater 

extent than capital depreciation ( n  ) under negative population growth, it would lead 

to an increase in the capital-labor ratio k. She mentioned, however, that this theoretically 

possible case is rather unrealistic. Our paper shows that the existence of a child rearing 

cost makes the emergence of such unbounded growth paths easier ( /(1 )n b  ) in a 

population-declining economy. 

 

 

4. Economic Implications of Child Rearing Cost in the Solow Growth 

Model 

A child rearing cost has never been introduced into the Solow growth model. Therefore, 

we will further explore the economic implications of a child rearing cost based on the 

Solow growth model, particularly under population decline. 

 

4.1 The Roles of the Child Rearing Cost in Capital Accumulation 

The effects of a child rearing cost on the per capita income level in the long run differ 

between the cases of 0n   and 0n  . In Figure 4, the initial steady state is point E. In 

a population-increasing economy ( 0n  ), a higher child rearing cost ( 0b  ) induces a 
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lower level of per capita capital '
Ek  in the steady state 'E . This is because a higher child 

rearing cost depresses saving and investment, hindering capital accumulation. In contrast, 

in a population-declining economy ( 0n  ), a higher child rearing cost induces a higher 

level of per capita capital "
Ek   in the steady state "E  . This is because a higher child 

rearing cost means that an economy saves more income when the newly born population 

decreases. In such context, it can afford to save and invest more resources to promote 

capital accumulation. 

 

Figure 4. Child Rearing Cost and Capital Accumulation 

 

4.2 Possibility of Multiple Steady States 

We do not have any clear evidence showing whether the child rearing cost function 

( ( ))k t  in the general form will be concave or convex, so it is reasonable to take both 

possibilities into account. Thus, our Solow growth model has the possibility of multiple 

equilibria. Figure 5 shows the case when two steady states exist: 1S  is stable and 2S  is 

unstable. Even under negative population growth ( 0n   ), the model can have steady 

states with positive values of per capita capital k if the rate of capital depreciation is so 

large that ( ( )) ( ) ( ) ( ( ))k t n k t n k t      is positive. 
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Figure 5. Possibility of Multiple Steady States 

 

An economic implication of this multiplicity is as follows. If an economy initially lies 

below 2k , it will converge to the steady state 1k . However, if it initially lies above 2k , 

an economy will experience the unbounded growth of the capital-labor ratio in the long 

run. In this process, “capital deepening” (due to the negative “capital dilution effect”) 

takes place without technological progress. It follows that in a competitive market 

economy, per capita income may increase even if technological progress is absent.13 

Figure 6 shows the more complicated case when two stable steady states exist ( 1S  and 

3S ). One interpretation could be that high-income countries (such as European countries 

and Japan) starting from a high level of per capita income (between 2k  and 3k ) will 

reach the high-income steady state 3k , while low-income countries (such as Thailand, 

Malaysia and Indonesia in Southeast Asia) starting from a lower level of per capita 

income (below 2k ) reach the low-income steady state 1k . History matters in deciding 

 
13 This does not mean, however, that technological progress is less important in a population-declining 
economy than in a population-increasing economy. If Harrod-neutral technological progress took place at 
the same time, the growth rate of per capita income would be higher in our Solow growth model with 
child rearing costs. 

 

( )k t

( ( ))sf k t

0
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the income level that each economy, given the same technologies and preferences, can 

reach in the long run. 

These possibilities have never been considered in traditional studies of the Solow 

growth model. The child rearing cost might expand our understanding of the importance 

of initial conditions in deciding the log-run income level in a perfectly competitive 

economy. 

 

Figure 6. Possibility of Multiple Stable Steady States 

 

Let us finally mention a qualification of our Solow growth model with a child rearing 

cost. Our model does not explicitly formulate how child rearing activities contribute to 

the human capital accumulation of children.14 However, building and analyzing a growth 

model in which the stock of human capital accumulates through child rearing activities is 

more complicated and thus beyond the scope of this paper, which attempts to investigate 

whether the critical rate of population decline is empirically relevant. 

 

 

5. Concluding Remarks 

This paper has investigated whether the theoretically derived critical the rate of 

population decline, which induces richer dynamics, is empirically relevant and, if it is too 

 
14 I appreciate Keisaku Higashida (Kwansei Gakuin University) for his comment on this point. 
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high, explored how we can reduce it in semi-endogenous and Solow models. In the semi-

endogenous growth model of Christiaans (2011), positive externalities from knowledge 

accumulation can make the critical rate of population decline sufficiently small that it is 

consistent with the United Nations population estimates. In the Solow growth model 

without such externalities, the introduction of a child rearing cost could reduce the critical 

rate of population decline, which induces the unbounded growth of per capita income. 

Finally, an increase in the child rearing cost will promote capital accumulation in a 

population-declining economy, whereas it hinders capital accumulation in a population-

increasing economy. An introduction of a child rearing cost into the Solow growth model 

may induce multiple steady states. 

The main message of this paper is that in realistically relevant ranges of rates of 

population decline, equilibrium paths may emerge with different properties from those in 

a population-increasing economy. Changes in the properties of equilibrium paths in 

growth models under population decline should be not only a theoretical possibility but 

also a realistically relevant problem in modern economies. Therefore, we should proceed 

to investigate what kinds of equilibrium paths may emerge in growth models under 

population decline. 

Finally, let us suggest three promising directions for future research, in addition to the 

existing direction of using the Solow and semi-endogenous R&D growth models. First, 

it is of fundamental importance to investigate the properties of the equilibrium paths of 

the Ramsey-type optimal growth model when the population declines exogenously. 

Second, recalling that complex dynamics such as the indeterminacy of the equilibrium 

may occur in growth models with externalities, it should be interesting to investigate the 

kinds of equilibrium paths that can emerge in exogenous growth models with factor-input 

externalities under negative population growth. One possible step in this direction might 

be to extend an endogenous growth model with human capital accumulation by 

exogenously introducing positive and negative population growth. 

Third, and most importantly, analyzing endogenous growth models with endogenous 

fertility will provide deep insights.15  Recently, Jones (2019) obtained two interesting 

 
15 Prettner and Prslarwetz (2010) are useful as a survey on interrelations between demographic variables 
and long-run economic performance in the endogenous growth literature. 
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findings from his endogenous growth model of this type. First, when the equilibrium 

fertility rate is negative, the optimal allocation features two stable steady states: the 

Expanding Cosmos outcome of a sustained exponential growth in population, knowledge 

and living standards, and the Empty Planet outcome of stagnant knowledge and living 

standards combined with a population decline toward zero. Second, if the economy adopts 

the optimal allocation sufficiently quickly, it converges to the Expanding Cosmos 

outcome while if the economy waits too long to switch, even the optimal allocation 

converges to the Empty Planet outcome. These results may provide an important lesson 

for policymaking, and they also help us answer the unresolved question of whether 

population decline is occurring at a steady state or along a transition path. 

Negative population growth is just beginning to be analyzed in the field of economic 

growth theory. This paper is only an early attempt to promote economic research on this 

theme. 
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Appendix 1. Excerpt from World Population Prospects 2019 

(a) Medium Variant 

 

Medium variant Average annual rate of population change (percentage)

Region, country or area * 2020-2025 2025-2030 2030-2035 2035-2040 2040-2045 2045-2050 2050-2055 2055-2060 2060-2065 2065-2070 2070-2075 2075-2080 2080-2085 2085-2090 2090-2095 2095-2100

Asia 0.77 0.62 0.49 0.36 0.25 0.14 0.04 -0.05 -0.12 -0.19 -0.25 -0.29 -0.33 -0.35 -0.37 -0.39

Europe -0.05 -0.12 -0.17 -0.20 -0.23 -0.26 -0.29 -0.33 -0.34 -0.32 -0.28 -0.24 -0.19 -0.16 -0.14 -0.14

Latin America and the Caribbean 0.84 0.70 0.56 0.43 0.32 0.22 0.11 0.02 -0.07 -0.16 -0.24 -0.30 -0.36 -0.40 -0.44 -0.46

Northern America 0.59 0.56 0.53 0.45 0.38 0.34 0.32 0.33 0.34 0.33 0.30 0.27 0.25 0.24 0.24 0.25

Eastern Asia 0.21 0.05 -0.08 -0.20 -0.30 -0.40 -0.49 -0.56 -0.59 -0.60 -0.60 -0.60 -0.59 -0.55 -0.51 -0.50

China 0.26 0.09 -0.05 -0.17 -0.27 -0.38 -0.47 -0.54 -0.57 -0.58 -0.59 -0.59 -0.58 -0.55 -0.51 -0.50

China, Hong Kong SAR 0.68 0.67 0.25 0.05 -0.09 -0.16 -0.17 -0.15 -0.15 -0.17 -0.21 -0.21 -0.15 -0.04 0.08 0.17

Japan -0.40 -0.53 -0.60 -0.66 -0.69 -0.69 -0.71 -0.76 -0.82 -0.84 -0.80 -0.70 -0.63 -0.57 -0.54 -0.52

Republic of Korea 0.03 -0.07 -0.18 -0.36 -0.53 -0.69 -0.86 -0.99 -1.03 -1.02 -1.00 -0.97 -0.93 -0.88 -0.83 -0.72

South-Eastern Asia 0.91 0.77 0.63 0.49 0.37 0.26 0.16 0.07 -0.01 -0.08 -0.13 -0.18 -0.23 -0.26 -0.30 -0.33

Cambodia 1.26 1.07 0.94 0.84 0.70 0.56 0.41 0.29 0.17 0.05 -0.06 -0.15 -0.21 -0.26 -0.32 -0.38

Indonesia 0.97 0.83 0.69 0.57 0.44 0.32 0.21 0.12 0.05 -0.01 -0.05 -0.10 -0.14 -0.19 -0.24 -0.28

Lao People's Democratic Re 1.33 1.13 0.95 0.79 0.63 0.47 0.31 0.16 0.02 -0.11 -0.24 -0.34 -0.43 -0.51 -0.58 -0.65

Malaysia 1.19 0.99 0.80 0.62 0.50 0.41 0.33 0.24 0.13 0.02 -0.07 -0.14 -0.17 -0.19 -0.19 -0.21

Myanmar 0.76 0.68 0.54 0.38 0.23 0.11 0.02 -0.05 -0.12 -0.18 -0.25 -0.31 -0.35 -0.37 -0.38 -0.38

Philippines 1.28 1.14 1.00 0.84 0.70 0.57 0.44 0.33 0.23 0.14 0.04 -0.05 -0.13 -0.20 -0.26 -0.30

Singapore 0.77 0.60 0.39 0.18 0.01 -0.12 -0.20 -0.25 -0.28 -0.30 -0.30 -0.28 -0.24 -0.19 -0.13 -0.06

Thailand 0.15 0.01 -0.13 -0.26 -0.39 -0.52 -0.63 -0.71 -0.74 -0.75 -0.74 -0.73 -0.73 -0.74 -0.74 -0.71

Viet Nam 0.76 0.60 0.41 0.28 0.20 0.13 0.03 -0.08 -0.18 -0.25 -0.29 -0.31 -0.31 -0.32 -0.32 -0.34

Southern Asia 1.07 0.92 0.77 0.62 0.48 0.36 0.25 0.14 0.03 -0.08 -0.17 -0.24 -0.30 -0.35 -0.39 -0.42

India 0.92 0.80 0.66 0.50 0.35 0.23 0.13 0.03 -0.08 -0.18 -0.27 -0.34 -0.39 -0.42 -0.45 -0.47

Central & South America

El Salvador 0.48 0.40 0.26 0.18 0.06 -0.05 -0.16 -0.28 -0.41 -0.54 -0.68 -0.83 -0.98 -1.11 -1.22 -1.31

Mexico 0.96 0.81 0.68 0.54 0.41 0.29 0.18 0.08 -0.01 -0.10 -0.17 -0.24 -0.31 -0.38 -0.43 -0.46

Brazil 0.60 0.44 0.30 0.16 0.05 -0.05 -0.15 -0.25 -0.34 -0.43 -0.51 -0.57 -0.61 -0.62 -0.63 -0.62

Chile 0.13 0.22 0.43 0.28 0.14 0.02 -0.08 -0.17 -0.24 -0.29 -0.34 -0.39 -0.41 -0.43 -0.43 -0.41

Eastern Europe -0.24 -0.35 -0.41 -0.43 -0.41 -0.40 -0.41 -0.44 -0.47 -0.47 -0.43 -0.36 -0.28 -0.23 -0.22 -0.23

Belarus -0.14 -0.26 -0.35 -0.37 -0.35 -0.34 -0.34 -0.37 -0.40 -0.41 -0.38 -0.32 -0.24 -0.18 -0.17 -0.21

Bulgaria -0.77 -0.82 -0.88 -0.89 -0.87 -0.86 -0.88 -0.92 -0.94 -0.93 -0.88 -0.80 -0.72 -0.67 -0.68 -0.72

Czechia 0.09 -0.02 -0.10 -0.12 -0.09 -0.06 -0.08 -0.14 -0.20 -0.21 -0.15 -0.06 0.03 0.09 0.11 0.10

Hungary -0.31 -0.37 -0.45 -0.50 -0.51 -0.49 -0.48 -0.49 -0.52 -0.53 -0.50 -0.44 -0.38 -0.34 -0.30 -0.26

Poland -0.18 -0.31 -0.42 -0.50 -0.56 -0.60 -0.64 -0.69 -0.75 -0.83 -0.87 -0.86 -0.79 -0.71 -0.64 -0.60

Republic of Moldova -0.30 -0.45 -0.60 -0.71 -0.78 -0.83 -0.90 -0.98 -1.09 -1.18 -1.21 -1.16 -1.06 -0.95 -0.88 -0.86

Romania -0.49 -0.50 -0.54 -0.58 -0.61 -0.64 -0.67 -0.71 -0.73 -0.71 -0.66 -0.61 -0.57 -0.55 -0.53 -0.54

Russian Federation -0.11 -0.25 -0.31 -0.30 -0.25 -0.22 -0.22 -0.25 -0.27 -0.26 -0.20 -0.12 -0.05 -0.02 -0.03 -0.06

Slovakia -0.04 -0.17 -0.30 -0.40 -0.45 -0.47 -0.49 -0.54 -0.61 -0.67 -0.67 -0.61 -0.52 -0.43 -0.38 -0.37

Ukraine -0.65 -0.70 -0.73 -0.74 -0.75 -0.77 -0.81 -0.85 -0.87 -0.86 -0.82 -0.74 -0.65 -0.59 -0.57 -0.58

Southern Europe -0.22 -0.29 -0.32 -0.36 -0.44 -0.54 -0.65 -0.75 -0.79 -0.77 -0.71 -0.62 -0.54 -0.50 -0.49 -0.49

Greece -0.52 -0.47 -0.42 -0.42 -0.47 -0.56 -0.68 -0.77 -0.81 -0.80 -0.72 -0.62 -0.53 -0.47 -0.46 -0.46

Italy -0.20 -0.28 -0.31 -0.34 -0.43 -0.57 -0.68 -0.77 -0.80 -0.74 -0.64 -0.56 -0.51 -0.49 -0.48 -0.47

Portugal -0.27 -0.30 -0.34 -0.39 -0.47 -0.55 -0.62 -0.67 -0.68 -0.65 -0.57 -0.49 -0.42 -0.40 -0.39 -0.36

Spain -0.08 -0.15 -0.20 -0.24 -0.31 -0.41 -0.55 -0.68 -0.76 -0.77 -0.70 -0.56 -0.42 -0.35 -0.34 -0.36

Western Europe 0.13 0.09 0.05 -0.01 -0.07 -0.12 -0.15 -0.15 -0.13 -0.09 -0.08 -0.07 -0.06 -0.04 -0.02 -0.00

Austria 0.22 0.16 0.08 0 -0.06 -0.12 -0.16 -0.18 -0.16 -0.14 -0.13 -0.13 -0.11 -0.06 0.00 0.05

Belgium 0.29 0.25 0.21 0.16 0.11 0.06 0.01 0.00 0.01 0.03 0.04 0.05 0.06 0.07 0.08 0.08

France 0.24 0.19 0.16 0.10 0.03 -0.03 -0.07 -0.09 -0.08 -0.06 -0.05 -0.04 -0.05 -0.06 -0.06 -0.07

Germany -0.06 -0.09 -0.12 -0.16 -0.21 -0.26 -0.28 -0.26 -0.22 -0.17 -0.15 -0.14 -0.11 -0.06 -0.02 0.01

Netherlands 0.21 0.15 0.06 -0.05 -0.14 -0.20 -0.23 -0.22 -0.19 -0.15 -0.13 -0.15 -0.17 -0.17 -0.16 -0.14
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(b) Low Variant 

 
Note: The data for “Central & South America” is not available because the data for “Central America” 

and that for “South America” are provided separately in the World Population Prospects 2019. 

Low Variant Average annual rate of population change (percentage)

Region, country or area * 2020-2025 2025-2030 2030-2035 2035-2040 2040-2045 2045-2050 2050-2055 2055-2060 2060-2065 2065-2070 2070-2075 2075-2080 2080-2085 2085-2090 2090-2095 2095-2100

Asia 0.59 0.35 0.16 0.04 -0.09 -0.24 -0.40 -0.55 -0.69 -0.80 -0.91 -1.01 -1.12 -1.21 -1.30 -1.38

Europe -0.20 -0.35 -0.45 -0.50 -0.54 -0.60 -0.69 -0.79 -0.86 -0.89 -0.89 -0.88 -0.87 -0.87 -0.89 -0.93

Latin America and the Caribbean 0.65 0.41 0.22 0.09 -0.04 -0.18 -0.33 -0.48 -0.62 -0.75 -0.88 -1.01 -1.14 -1.27 -1.38 -1.48

Northern America 0.42 0.30 0.21 0.14 0.07 0.01 -0.05 -0.09 -0.12 -0.15 -0.19 -0.24 -0.30 -0.34 -0.37 -0.37

Eastern Asia 0.05 -0.18 -0.36 -0.49 -0.61 -0.76 -0.90 -1.04 -1.14 -1.22 -1.28 -1.34 -1.40 -1.44 -1.46 -1.52

China 0.10 -0.14 -0.32 -0.45 -0.58 -0.74 -0.89 -1.03 -1.13 -1.20 -1.27 -1.34 -1.41 -1.45 -1.48 -1.54

China, Hong Kong SAR 0.49 0.41 -0.03 -0.19 -0.33 -0.44 -0.51 -0.57 -0.63 -0.67 -0.72 -0.74 -0.71 -0.63 -0.54 -0.44

China, Taiwan Province of Ch -0.05 -0.22 -0.38 -0.54 -0.72 -0.87 -1.00 -1.12 -1.24 -1.34 -1.41 -1.45 -1.42 -1.37 -1.32 -1.25

Japan -0.53 -0.73 -0.87 -0.94 -0.98 -1.01 -1.06 -1.18 -1.33 -1.43 -1.44 -1.39 -1.35 -1.34 -1.37 -1.43

Republic of Korea -0.13 -0.32 -0.48 -0.64 -0.81 -0.99 -1.20 -1.41 -1.56 -1.64 -1.68 -1.70 -1.71 -1.74 -1.79 -1.77

South-Eastern Asia 0.73 0.49 0.29 0.16 0.02 -0.14 -0.29 -0.44 -0.58 -0.69 -0.79 -0.89 -1.00 -1.11 -1.21 -1.30

Cambodia 1.06 0.76 0.57 0.46 0.30 0.09 -0.11 -0.29 -0.46 -0.64 -0.82 -0.98 -1.12 -1.25 -1.39 -1.54

Indonesia 0.79 0.55 0.35 0.22 0.08 -0.09 -0.25 -0.40 -0.52 -0.62 -0.71 -0.80 -0.91 -1.02 -1.14 -1.25

Lao People's Democratic Re 1.12 0.82 0.57 0.41 0.23 0.02 -0.20 -0.40 -0.60 -0.79 -0.99 -1.18 -1.36 -1.55 -1.74 -1.93

Malaysia 0.99 0.69 0.45 0.30 0.17 0.07 -0.06 -0.21 -0.37 -0.51 -0.64 -0.75 -0.84 -0.91 -0.96 -1.01

Myanmar 0.57 0.38 0.16 0.01 -0.15 -0.31 -0.47 -0.61 -0.74 -0.86 -0.98 -1.11 -1.23 -1.33 -1.41 -1.46

Philippines 1.09 0.85 0.64 0.49 0.33 0.16 -0.00 -0.16 -0.31 -0.45 -0.59 -0.73 -0.87 -1.00 -1.13 -1.24

Singapore 0.60 0.36 0.13 -0.06 -0.24 -0.40 -0.53 -0.63 -0.70 -0.74 -0.76 -0.77 -0.76 -0.74 -0.70 -0.61

Thailand -0.01 -0.25 -0.44 -0.57 -0.72 -0.89 -1.06 -1.21 -1.32 -1.38 -1.43 -1.48 -1.57 -1.68 -1.78 -1.84

Viet Nam 0.58 0.33 0.10 -0.02 -0.11 -0.23 -0.38 -0.56 -0.72 -0.85 -0.94 -1.02 -1.10 -1.17 -1.24 -1.32

Southern Asia 0.88 0.63 0.42 0.28 0.13 -0.03 -0.21 -0.38 -0.54 -0.69 -0.83 -0.97 -1.11 -1.23 -1.35 -1.44

India 0.73 0.50 0.30 0.15 -0.00 -0.16 -0.33 -0.50 -0.65 -0.80 -0.94 -1.07 -1.20 -1.32 -1.43 -1.50

Central & South America

El Salvador 0.26 0.08 -0.13 -0.21 -0.35 -0.51 -0.68 -0.87 -1.06 -1.27 -1.51 -1.79 -2.13 -2.49 -2.87 -3.30

Mexico 0.77 0.51 0.32 0.19 0.04 -0.11 -0.28 -0.43 -0.57 -0.70 -0.83 -0.96 -1.10 -1.25 -1.39 -1.51

Brazil 0.41 0.15 -0.05 -0.17 -0.30 -0.43 -0.58 -0.73 -0.89 -1.04 -1.18 -1.31 -1.42 -1.53 -1.63 -1.71

Chile -0.05 -0.05 0.11 -0.04 -0.19 -0.33 -0.47 -0.61 -0.74 -0.85 -0.95 -1.04 -1.14 -1.22 -1.28 -1.33

Eastern Europe -0.39 -0.58 -0.70 -0.74 -0.75 -0.78 -0.85 -0.95 -1.04 -1.11 -1.12 -1.09 -1.05 -1.03 -1.05 -1.12

Belarus -0.29 -0.49 -0.62 -0.67 -0.69 -0.72 -0.78 -0.87 -0.96 -1.02 -1.05 -1.04 -1.00 -0.97 -0.99 -1.07

Bulgaria -0.91 -1.04 -1.16 -1.20 -1.21 -1.25 -1.33 -1.45 -1.57 -1.65 -1.68 -1.67 -1.65 -1.68 -1.79 -1.97

Czechia -0.06 -0.24 -0.37 -0.40 -0.39 -0.39 -0.45 -0.57 -0.69 -0.75 -0.73 -0.65 -0.58 -0.54 -0.54 -0.57

Hungary -0.46 -0.61 -0.74 -0.80 -0.84 -0.85 -0.89 -0.97 -1.08 -1.16 -1.17 -1.15 -1.14 -1.14 -1.14 -1.15

Poland -0.33 -0.54 -0.70 -0.79 -0.87 -0.95 -1.05 -1.17 -1.31 -1.46 -1.59 -1.66 -1.67 -1.65 -1.65 -1.68

Republic of Moldova -0.48 -0.71 -0.90 -1.03 -1.13 -1.24 -1.38 -1.55 -1.76 -1.96 -2.10 -2.17 -2.16 -2.14 -2.16 -2.24

Romania -0.63 -0.73 -0.83 -0.89 -0.95 -1.01 -1.11 -1.23 -1.33 -1.39 -1.40 -1.41 -1.43 -1.48 -1.56 -1.66

Russian Federation -0.27 -0.48 -0.60 -0.61 -0.60 -0.61 -0.66 -0.75 -0.83 -0.87 -0.86 -0.82 -0.77 -0.75 -0.79 -0.87

Slovakia -0.20 -0.40 -0.58 -0.69 -0.77 -0.82 -0.90 -1.02 -1.17 -1.30 -1.37 -1.37 -1.33 -1.29 -1.29 -1.33

Ukraine -0.80 -0.94 -1.03 -1.06 -1.11 -1.18 -1.28 -1.40 -1.51 -1.59 -1.62 -1.60 -1.57 -1.56 -1.61 -1.70

Southern Europe -0.36 -0.51 -0.60 -0.65 -0.74 -0.86 -1.02 -1.18 -1.31 -1.37 -1.35 -1.30 -1.26 -1.27 -1.32 -1.39

Greece -0.66 -0.69 -0.70 -0.72 -0.78 -0.89 -1.04 -1.20 -1.32 -1.38 -1.37 -1.30 -1.24 -1.21 -1.27 -1.34

Italy -0.33 -0.50 -0.58 -0.62 -0.73 -0.88 -1.04 -1.20 -1.31 -1.31 -1.26 -1.21 -1.19 -1.22 -1.28 -1.34

Portugal -0.41 -0.52 -0.62 -0.68 -0.76 -0.87 -0.99 -1.11 -1.21 -1.24 -1.21 -1.14 -1.10 -1.12 -1.18 -1.22

Spain -0.22 -0.36 -0.46 -0.52 -0.60 -0.72 -0.90 -1.09 -1.26 -1.35 -1.33 -1.22 -1.09 -1.05 -1.09 -1.18

Western Europe -0.02 -0.14 -0.24 -0.29 -0.36 -0.44 -0.52 -0.59 -0.62 -0.62 -0.62 -0.64 -0.67 -0.68 -0.70 -0.72

Austria 0.06 -0.08 -0.21 -0.27 -0.34 -0.43 -0.53 -0.61 -0.64 -0.65 -0.67 -0.70 -0.72 -0.70 -0.66 -0.63

Belgium 0.14 0.01 -0.08 -0.14 -0.19 -0.27 -0.36 -0.43 -0.48 -0.48 -0.49 -0.51 -0.53 -0.55 -0.57 -0.60

France 0.09 -0.04 -0.13 -0.20 -0.28 -0.36 -0.45 -0.53 -0.58 -0.60 -0.61 -0.63 -0.68 -0.73 -0.79 -0.85

Germany -0.21 -0.32 -0.40 -0.44 -0.50 -0.58 -0.65 -0.70 -0.71 -0.69 -0.69 -0.70 -0.71 -0.69 -0.68 -0.68

Netherlands 0.06 -0.09 -0.24 -0.34 -0.44 -0.53 -0.61 -0.68 -0.70 -0.69 -0.70 -0.74 -0.82 -0.88 -0.93 -0.95
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Appendix 2. Rates of Population Decrease derived from Christiaans (2011) 

(c) α=0.33，β＝0.66 and thus γ=67 

δ -(δ/γ) (%) -(α＋β)δ/α (%) 

0.12 -0.18 -36.00 

0.1 -0.15 -30.00 

0.09 -0.13 -27.00 

0.08 -0.12 -24.00 

0.07 -0.10 -21.00 

0.06 -0.09 -18.00 

0.05 -0.07 -15.00 

 

(d) α=0.32，β＝0.67 and thus γ=68 

δ -(δ/γ) (%) -(α＋β)δ/α  (%) 

0.12 -0.18 -37.13 

0.10 -0.15 -30.94 

0.09 -0.13 -27.84 

0.08 -0.12 -24.75 

0.07 -0.10 -21.66 

0.06 -0.09 -18.56 

0.05 -0.07 -15.47 

 

(e) α=0.33，β＝0.60 and thus γ=9.57 

δ -(δ/γ) (%) -(α＋β)δ/α  (%) 

0.12 -1.25 -33.82 

0.10 -1.04 -28.18 

0.09 -0.94 -25.36 

0.08 -0.84 -22.55 

0.07 -0.73 -19.73 

0.06 -0.63 -16.91 

0.05 -0.52 -14.09 
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(f) α=0.30，β＝0.65 and thus γ=14 

δ -(δ/γ) (%) -(α＋β)δ/α  (%) 

0.12 -0.86 -38.00 

0.10 -0.71 -31.67 

0.09 -0.64 -28.50 

0.08 -0.57 -25.33 

0.07 -0.50 -22.17 

0.06 -0.43 -19.00 

0.05 -0.36 -15.83 

 

(g) α=0.30，β＝0.66 and thus γ=17.5 

δ -(δ/γ) (%) -(α＋β)δ/α  (%) 

0.12 -0.69 -38.40 

0.10 -0.57 -32.00 

0.09 -0.51 -28.80 

0.08 -0.46 -25.60 

0.07 -0.40 -22.40 

0.06 -0.34 -19.20 

0.05 -0.29 -16.00 

 

(h) α=0.30，β＝0.60 and thus γ=7 

δ -(δ/γ) (%) -(α＋β)δ/α  (%) 

0.12 -1.71 -36.00 

0.10 -1.43 -30.00 

0.09 -1.29 -27.00 

0.08 -1.14 -24.00 

0.07 -1.00 -21.00 

0.06 -0.86 -18.00 

0.05 -0.71 -15.00 

Source: Author’s Calculation 
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