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Abstract

We o¤er a general derivation of axiomatizations for allocation rules, referred
to as �duality� and �anti-duality� approach. We show basic properties of
duality and anti-duality approach. Using these properties, we can derive ax-
iomatizations of allocation rules by taking (anti-)dual of axioms involved in
axiomatizations of their self-(anti-)dual rules. As an illustration, we derive a
new axiomatization of the Shapley value for bidding ring problems from using
the notion of duality and axioms involved in axiomatizations of the Shapley
value for airport problems. As another illustration, we derive a new axiom-
atization of the nucleolus for bidding ring problems from using the notion of
anti-duality and axioms involved in axiomatizations of the nucleolus for airport
problems.
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1 Introduction

�Claims problems� are well-known allocation problems in economics. They
deal with a situation where the liquidation value of a bankrupt �rm has to be
allocated between its creditors, but there is not enough to honor the claims of
all creditors. The problem is to determine how the creditors should share the
liquidation value (O�Neill 1982; Thomson 2003, for a survey of the literature).
In claims problems, Thomson and Yeh (2008) introduced operators on the
space of division rules and uncover the underlying structure of the space of
division rules. The notion of �duality�plays an important role in their analysis.
For each claims problem, this notion gives us its dual problem. Intuitively
speaking, the dual of a claims problem is to determine how the creditors should
abandon some part of their claims. Also, the notion of duality is applied to
division rules: Given a division rule for claims problems, its dual rule is the
same division rule for their dual problems. A division rule is said to be �self-
dual�if the outcome chosen by this division rule and that chosen by its dual
rule always coincide with each other.
Analogously to claims problems, one can de�ne �dual solutions�and �self-

dual solutions� in cooperative game theory. Oishi et al. (2016) proposed a
general approach for axiomatization of solutions for TU games, referred to as
�duality�and �anti-duality�approach. The dual of a TU game is well-known
in the literature.1 The anti-dual of a TU game (Oishi and Nakayama 2009)
is obtained by multiplying its dual by �1. Using these de�nitions, given a
solution, its �dual�and �anti-dual�are de�ned. Oishi et al. (2016) applied the
notions of (anti-)dual solutions to axioms: Two axioms are (anti-)dual to each
other if whenever a solution satis�es one of them, its (anti-)dual satis�es the
other. The duality and anti-duality approach allows us to relate some existing
axiomatizations of solutions for TU games, and �nd new ones. However, it
is an open question to uncover how the duality and anti-duality approach is
applicable to axiomatic analysis of allocation rules for economic problems. The
present study provides an answer to this question. In this answer, we o¤er a
general derivation of axiomatizations for allocation rules. This new approach
may be useful for axiomatic views in social choice theory and mechanism design
theory.
We develop the duality and anti-duality approach toward axiomatic analy-

sis of allocation rules for economic problems. Given a rule on a domain of
allocation problems, its (anti-)dual can be de�ned. A rule is self-(anti-) dual
if it is own (anti-)dual. Given an axiom, its (anti-)dual can be de�ned: Two
axioms are (anti-)dual to each other if whenever a rule satis�es one of them,
its (anti-)dual satis�es the other. Using these notions, we can derive axiomati-

1The notion of �dual games�is well known in the literature on cooperative games. The
de�nition of dual games and their interpretation are stated in Section 2.
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zations of allocation rules for economic problems from those of their self-(anti)
dual rules. Thus, an axiomatization of allocation rules for some problems,
which has not been analyzed in the existing literature, is possible automati-
cally.
First, we show basic properties of (anti-)dual axioms and of (anti-)dual

axiomatizations of allocation rules. That is, we verify that an axiom for the
(anti-)dual of a rule can be derived from taking the (anti-)dual of an axiom for
the original rule. We also verify that the (anti-)dual of a rule can be axioma-
tized by taking the (anti-)dual of the axioms involved in an axiomatization of
the original rule.
Next, we apply the notion of duality and anti-duality approach to �airport

problems� and �bidding ring problems�. Airport problems are cost sharing
problems of an airstrip among airlines (Littlechild and Owen 1973; Thomson
2007, for a survey of the literature). A bidding ring problem (Graham et al.
1990) describes a situation where bidders form a ring in a single-object English
auction. The ring reduces or eliminates buyer competition, thereby securing
an advantage over the seller. The problem forced by the members of the ring
is to share the bene�t of their strategy.
The �Shapley rule� is a mapping on some domain of allocation problems

that associates with each problem in the domain the �Shapley value�of the cor-
responding TU game. The Shapley value (Shapley 1953) is the most important
single-valued solution of TU games with economic applications. For instance,
Chun et al. (2012) investigated several axiomatizations of the Shapley rule
for airport problems. Applying duality approach to these axioms involved in
axiomatizations of the Shapley rule for airport problems, we present a new
axiomatization of the Shapley rule for bidding ring problems. In the axioma-
tization, we obtain a new axiom, referred to as ��rst-agent transfer agreement
equivalence�. This property requires that the outcome chosen by a rule should
be invariant even if �transfer agreement�between a buyer with the smallest
valuation and any bidding ring in the other buyers is made. Transfer agree-
ment means that a buyer with the smallest valuation and any bidding ring in
the other buyers agree upon that some part of his pro�ts is transferred from
him to the bidding ring. The �rst-agent transfer agreement equivalence is dual
to �rst-agent airport consistency involved in an axiomatization of the Shapley
rule for airport problems appearing in Chun et al. (2012). The other axioms
of the Shapley rule for bidding ring problems (i.e. reasonableness, equal share
lower bound, and individual monotonicity) are self-duals to those for airport
problems appearing in Chun et al. (2012), respectively.
The �nucleolus rule�is a mapping on some domain of allocation problems

that associates with each problem in the domain the �nucleolus�of the cor-
responding TU game. The nucleolus (Schmeidler 1969) is another important
single-valued solution of TU games with economic applications. For instance,
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Hwang and Yeh (2012) and Yeh (2004) axiomatized the nucleolus rule for air-
port problems. Applying anti-duality approach to these axioms involved in
axiomatizations of the nucleolus rule for airport problems, we present a new
axiomatization of the nucleolus for bidding ring problems. In the axiomati-
zation, we obtain a new axiom, referred to as �last-agent secret agreement
equivalence�. This property requires that the outcome chosen by a rule should
be invariant even if �secret agreement�between a buyer with the largest val-
uation and any bidding ring in the other buyers is made. Secret agreement
means that a buyer with the largest valuation and any bidding ring in the other
buyers agree upon that he cooperates with the bidding ring and obtains his
reward that is the outcome chosen by a rule. The last-agent secret agreement
equivalence is anti-dual to last-agent airport consistency involved in an axiom-
atization of the nucleolus rule for airport problems appearing in Yeh (2004).
The other axioms of the nucleolus rule for bidding ring problems (i.e. equal
treatment of equals, and last-agent additivity) are self-anti-duals to those for
airport problems appearing in Yeh (2004), respectively.
The rest of this paper is organized as follows. In Section 2, we explain the

notions of duality and anti-duality in cooperative game theory. In Section 3, we
introduce the notions of duality and anti-duality for allocation rules, and show
basic properties of these notions. In Section 4, using the duality approach, we
axiomatize the Shapley rule for bidding ring problems. Also, using the anti-
duality approach, we axiomatize the nucleolus rule for bidding ring problems.
In Section 5, we discuss a generalization of duality and anti-duality approach.

2 Preliminaries

There is a universe of potential agents, denoted I �N, where N is the set of
natural numbers.2 Let N be the class of non-empty and �nite subsets of I,
and N 2 N . A coalitional game with transferable utility for N (a
TU game for N , for short) is a function v : 2N ! R with v(;) = 0. A set
S 2 2N is called a coalition. For all S 2 2N , v(S) represents what coalition
S can achieve on its own. Let VN be the class of TU games for N , and
V �

S
N2N VN .

Let RN denote the Cartesian product of jN j copies of R, indexed by the
members of N . A payo¤vector for N is an element x of RN . For all x 2 RN
and all S 2 2N , let xS = (xi)i2S.
A solution, denoted ', is a mapping de�ned on some domain of games

that associates with each game in the domain a non-empty set of payo¤vectors.
A solution is single-valued if it associates with each game in its domain a
unique payo¤ vector.

2We use � for weak set inclusion, and � for strict set inclusion.
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Given a game v for N , the dual of v, denoted vd, is de�ned by setting,
for all S � N ,

vd(S) � v(N)� v(NnS):
The number vd(S) is the amount that the complementary coalitionNnS cannot
prevent S from obtaining.
Let V be a class of games such that if v 2 V, then vd 2 V. Given a solution

' on V, the dual of ', denoted 'd, is de�ned by setting, for all v 2 V,

'd(v) � '(vd):

A solution ' on V is self-dual if for all v 2 V, '(v) = 'd(v).
An axiom of a solution is a property that should be satis�ed by the solu-

tion. Two axioms are dual to each other if whenever a solution satis�es
one of them, the dual of this solution satis�es the other. That is, two axioms
A and A�are dual to each other if for all solutions that satisfy A, it holds that
their duals satisfy A�, and conversely, for all solutions that satisfy A�, it holds
that their duals satisfy A. An axiom is self-dual if it is its own dual.
Given a game v for N , the anti-dual of v, denoted vad, is de�ned by

setting, for all S � N ,
vad(S) � �vd(S):

Let V be a class of games such that if v 2 V, then vad 2 V. Given a solution
' on V, the anti-dual of ', denoted 'ad, is de�ned by setting, for all v 2 V,

'ad(v) � �'(vad):

A solution ' on V is self-anti-dual if for all v 2 V, '(v) = 'ad(v). Two
axioms are anti-dual to each other if whenever a solution satis�es one of
them, the anti-dual of this solution satis�es the other. That is, two axioms A
and A�are anti-dual to each other if for all solutions that satisfy A, it holds
that their anti-duals satisfy A�, and conversely, for all solutions that satisfy
A�, it holds that their anti-duals satisfy A. An axiom is self-anti-dual if it
is its own anti-dual.
Finally, we introduce well-known solutions for coalitional games. The

Shapley value (Shapley 1953) is de�ned as the following single-valued so-
lution: for all N 2 N , all v 2 VN , and all i 2 N ,

Shi(v) �
X
S�N
S 63i

jSj!(jN j � jSj � 1)!
jN j!

�
v(S [ fig)� v(S)

�
:

Given N 2 N and v 2 VN , let I(v) be the set of vectors x 2 RN such that
for all i 2 N , xi � v(fig), and

P
N xi = v(N). Let VN be a class of games such
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that for all v 2 VN , I(v) 6= ;. For all x 2 I(v), let e(v; x) 2 R2N be de�ned by
setting, for all S � N , eS(v; x) � v(S) �

P
S xi. For all z 2 R2

N
, �(z) 2 R2N

is de�ned by rearranging the coordinates of z in non-increasing order. For
all z 2 R2N , z is lexicographically smaller than z0 if �1(z) < �1(z

0) or
[�1(z) = �1(z

0) and �2(z) < �2(z
0)] or [�1(z) = �1(z

0) and �2(z) = �2(z
0) and

�3(z) < �3(z
0)], and so on. The nucleolus (Schmeidler 1969) is de�ned as

follows: for all N 2 N , and all v 2 VN ,

Nu(v) �
n
x 2 I(v)

��� For all y 2 I(v)nfxg, e(v; x) is
lexicographically smaller than e(v; y)

o
:

The nucleolus is a single-valued solution.

3 Duality and anti-duality for allocation rules,
and their basic properties

In this section, we introduce the notions of duality and anti-duality for allo-
cation rules. We also show properties of (anti-)dual axioms, and (anti-)dual
axiomatizations of allocation rules.

3.1 Duality and anti-duality for allocation rules

An allocation problem for N is a pair (N; p), where N 2 N is a �nite non-
empty set of agents and p = (pi)i2N is a pro�le of parameters for N . For each
i 2 N , the parameter pi is the bene�t or the cost experienced by agent i 2 N
when engaging in some economic activity. Let P be the set of all allocation
problems on N .
Given all S 2 2N , we denote by vP : P ! R2N a mapping that associates

with each allocation problem (N; p) in the domain the unique 2jN j-dimensional
vector whose S-component is the amount coalition S can obtain on its own.
By convention, vP (N; p)(;) = 0. The mapping vP is the coalitional game
for N derived from the allocation problem (N; p).
Let VP be the class of all coalitional games derived from allocation prob-

lems P. Given (N; p) 2 P, an allocation for (N; p) is a vector x 2 RN such
that

P
N xi = vP (N; p)(N). Let X(N; p) be the set of allocations for (N; p).

A solution for coalitional games is a mapping � : VP ! RN that asso-
ciates with each coalitional game vP (N; p) on the domain a non-empty set of
allocations in X(N; p). We refer to the composite mapping ' � � � vP as
an allocation rule, or simply a rule, for allocation problems on the domain
of P. For instance, we refer to the composite mapping ' � Sh � vP as the
Shapley rule, and to the composite mapping ' � Nu � vP as the nucleolus
rule.
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Given a rule ' on P, the dual of ', denoted 'd, is de�ned by setting,
for all (N; p) 2 P,

'd(N; p) � �[(vdP )(N; p)]:
A rule ' on P is self-dual if for all (N; p) 2 P, '(N; p) = 'd(N; p). Two
axioms are dual to each other if whenever a rule satis�es one of them, the
dual of this rule satis�es the other. That is, two axioms A and A�are dual to
each other if for all rules that satisfy A, it holds that their duals satisfy A�,
and conversely, for all rules that satisfy A�, it holds that their duals satisfy A.
An axiom is self-dual if it is its own dual.
Given a rule ' on P, the anti-dual of ', denoted 'ad, is de�ned by

setting, for all (N; p) 2 P,

'ad(N; p) � ��[(vadP )(N; p)]:

A rule ' on P is self-anti-dual if for all (N; p) 2 P, '(N; p) = 'ad(N; p).
Two axioms are anti-dual if whenever a rule satis�es one of them, the anti-
dual of this rule satis�es the other. That is, two axioms A and A�are anti-dual
to each other if for all rules that satisfy A, it holds that their anti-duals satisfy
A�, and conversely, for all rules that satisfy A�, it holds that their anti-duals
satisfy A. An axiom is self-anti-dual if it is its own anti-dual.

3.2 Basic properties of (anti-)dual axioms for rules

3.2.1 Propositional functions, axioms, and axiomatizations

We show basic properties of duality and anti-duality for rules. In order to show
these properties, we introduce the mathematical structure which explicitly
deals with (anti-)dual axioms of rules for allocation problems. The basic idea of
this mathematical structure follows from Funaki (1998). Funaki (1998) applies
the propositional function approach to dealing with axioms of solutions for TU
games. We apply the propositional function approach to uncovering properties
of (anti-)dual axioms of rules for allocation problems.
Given a class P, a class VP and a solution � on VP , a propositional

function F is generically de�ned as follows:

F : f((N; p); '(N; p)) : (N; p) 2 P, '(N; p) 2 X(N; p)g ! f0; 1g,

where '(N; p) � � � vP (N; p) for all (N; p) 2 P and all vP 2 VP . We say that
the propositional function F with respect to (N; p) and ' is true (resp. false)
if F ((N; p); '(N; p)) = 1 (resp. F (�; �) = 0).
Let F be the set of all propositional functions. Given a class P, a class

VP and a solution � on VP , an equivalence relation �' on F is de�ned as
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follows:

F �' �F , F ((N; p); '(N; p)) = �F ((N; p); '(N; p)) for all (N; p) 2 P :

Given a propositional function �F 2 F on P, an axiom for a rule ' with
respect to �F is de�ned by setting, for all (N; p) 2 P,

E �F (P ; ') � fF : F �' �Fg:

A rule ' satis�es the axiom E �F (P ; ') with respect to �F if for all (N; p) 2
P, and all F 2 E �F (P ; '), F ((N; p); '(N; p)) = 1.
On P, a rule ' is axiomatized by the set of axioms if the rule '

satis�es a set of axioms with respect to some propositional functions and any
other rules do not satisfy it.

3.2.2 Dual axioms, and dual axiomatizations

Given a class P, a class VP , a solution � on VP , and a propositional function
F 2 F , the dual of F , denoted F d, is de�ned by setting, for all (N; p) 2 P,

F d((N; p); '(N; p)) � F ((N; p); 'd(N; p));

where 'd(N; p) = � � vdP (N; p) for all (N; p) 2 P and all vP 2 VP .

Given a propositional function �F 2 F , a dual axiom of a rule ' with
respect to �F , denoted Ed�F (P ; '), is de�ned by setting, for all (N; p) 2 P,

Ed�F (P ; ') � E �F d(P ; '):

The following theorem shows that one can derive an axiom for the dual of
a rule ', namely 'd, from taking the dual of an axiom for the original rule '.

Theorem 1 (Existence theorem of dual axioms of rules) Given a class P, a
class VP , a solution � on VP , and a propositional function F 2 F , a rule '
satis�es an axiom EF (P ; ') if and only if the dual rule 'd satis�es the dual
axiom EdF (P ; 'd).

Proof. Let 'd be a rule satisfying an axiom EdF (P ; 'd), that is, for all (N; p) 2
P and all G 2 EdF (P ; 'd);

G((N; p); 'd(N; p)) = 1:
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By the duality of propositional functions,

EdF (P ; 'd)
= fG : G((N; p); 'd(N; p)) = F d((N; p); 'd(N; p)) for all (N; p) 2 Pg
= fG : G((N; p); � � vd(N; p)) = F d((N; p); � � vd(N; p)) for all (N; p) 2 Pg
= fG : Gd((N; p); '(N; p)) = F ((N; p); '(N; p)) for all (N; p) 2 Pg
= fG : Gd 2 EF (P ; ')g:

Since G((N; p); 'd(N; p)) = 1, Gd((N; p); '(N; p)) = 1. Then, for all (N; p) 2
P and all Gd 2 EF (P ; '), Gd((N; p); '(N; p)) = 1, which implies that ' sat-
is�es an axiom EF (P ; '). By the same argument, we obtain the opposite
implication.

Next, the following theorem shows that one can axiomatize the dual of a
rule ', namely 'd, by taking the dual of the axioms involved in an axiomati-
zation of the original rule '.

Theorem 2 (Axiomatization theorem of dual rules) Given a class P, a class
VP , a solution � on VP , and propositional functions Fl 2 F (l = 1; 2; � � � ; k),
if a rule ' on P is axiomatized by axioms EFl(P ; ') (l = 1; 2; � � � ; k), then the
dual rule 'd is axiomatized by the dual axioms EdFl(P ; '

d) (l = 1; 2; � � � ; k).

Proof. Let ' be a rule on P, satisfying EFl(P ; ') (l = 1; 2; � � � ; k). By
Theorem 1, 'd satis�es EdFl(P ; '

d) (l = 1; 2; � � � ; k). Suppose that ' is the
unique rule on P, satisfying EFl(P ; ') (l = 1; 2; � � � ; k), and ~' is any rule
on P, satisfying EdFl(P ; '

d) (l = 1; 2; � � � ; k). Since ~' = (~'d)d, (~'d)d satis�es
EdFl(P ; '

d) (l = 1; 2; � � � ; k). Again, by Theorem 1, ~'d satis�es EFl(P ; ')
(l = 1; 2; � � � ; k). Hence, ~'d = ', or equivalently, ~' = 'd, which implies that
~' is unique.

An economic application of Theorem 2 is as follows: Suppose that we have
an axiomatization of a rule ' for allocation problems and its dual is 'd for dis-
tinct allocation problems. Furthermore, suppose that in the existing literature
no axiomatization of the rule 'd is investigated. Then just by identifying the
dual of each axiom involved in an axiomatization of the rule ', we obtain an
axiomatization of the rule 'd.

3.3 Anti-dual axioms, and anti-dual axiomatizations

By the same manner as in the case of dual axioms of rules, we introduce the
mathematical structure of anti-dual axioms for rules.
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Given a class P, a class VP , a solution � on VP , and a propositional function
F 2 F , the anti-dual of F , denoted F ad, is de�ned by setting, for all (N; p) 2
P,

F ad((N; p); '(N; p)) � F ((N; p); 'ad(N; p));
where 'ad(N; p) = �� � vadP (N; p) for all (N; p) 2 P and all vP 2 VP .
Given a propositional function �F 2 F , an anti-dual axiom for a rule '

with respect to �F , denoted Ead�F (P ; '), is de�ned by setting, for all (N; p) 2
P,

Ead�F (P ; ') � E �Fad(P ; '):

The following theorem is the anti-dual version of Theorem 1. The proof is
the same as that of Theorem 1. We omit it.

Theorem 3 (Existence theorem of anti-dual axioms of rules) Given a class
P, a class VP , a solution � on VP , and a propositional function F 2 F , a rule
' satis�es an axiom EF (P ; ') if and only if the anti-dual rule 'ad satis�es the
anti-dual axiom EadF (P ; 'ad).

Next, the following theorem is the anti-dual version of Theorem 2. The
proof is the same as that of Theorem 2. We omit it.

Theorem 4 (Axiomatization theorem of anti-dual rules) Given a class P,
a class VP , a solution � on VP , and propositional functions Fl 2 F (l =
1; 2; � � � ; k), if a rule ' on P is axiomatized by axioms EFl(P ; ') (l = 1; 2; � � � ; k),
then the anti-dual rule 'ad is axiomatized by the anti-dual axioms EadFl (P ; '

ad)
(l = 1; 2; � � � ; k).

An economic application of Theorem 4 is the same as in the case of Theorem
2. In the following sections, we apply the duality and ant-duality approach
mentioned to economic problems.

4 Illustration of (anti-)dual axiomatizations of
rules

In this section, by using the duality and anti-duality approach, we derive new
axiomatizations of rules for bidding ring problems.
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4.1 Airport problems, and bidding ring problems

There is a set of airlines for whom an airstrip they will jointly use is to be
built. Each airline owns one type of aircraft. Airlines have di¤erent needs
for airstrips, since they own di¤erent types of aircraft. An airstrip needed to
accommodate the largest aircraft is to be built. The problem is to determine
how to share the cost of the airstrip between the airlines (Littlechild and Owen
1973).
An airport problem is a pair (N; c), where N 2 N is the set of airlines

and c = (ci)i2N is the pro�le of cost parameters, namely ci is the construction
cost of the airstrip for airline i. We assume that the cost is increasing in the
length of the airstrip.
For all N 2 N such that jN j = n, let � : N ! f1; 2; � � � ; ng be a bijection

such that c��1(n) � c��1(n�1) � � � � � c��1(1) > 0. These airlines are ordered in
terms of their costs. Let C be the class of all airport problems on N .
Given (N; c) 2 C, the airport game is de�ned by setting, for all S � N ,

cA(N; c)(S) � max
i2S

ci.

For all S 2 2N , cA(N; c)(S) represents the cost of the airstrip needed to ac-
commodate the members of coalition S. It is equal to the cost of the airstrip
needed to accommodate the member of the coalition whose cost parameter is
the largest.
Let CA be the class of all airport games. Given (N; c) 2 C, an allocation for

(N; c) is a vector x 2 RN+ such that
P

N xi = maxN ci (which is equal to c��1(n)).
LetX(N; c) be the set of allocations for (N; c). A solution for airport games
is a mapping �A : CA ! RN that associates with each airport game cA(N; c)
in the domain an allocation in X(N; c). We refer to the composite mapping
'A � �A � cA as a rule for airport problems. The Shapley rule for
airport problems is de�ned by 'ShA � Sh � cA. The nucleolus rule for
airport problems is de�ned by 'NuA � Nu � �cA, since airport problems are
cost problems and the nucleolus is de�ned under the situation of pro�t games.3

An English auction is an oral auction in which an auctioneer initially
sets a bid at a seller�s reservation price and then gradually increases the price
until only one bidder remains active. There is a set of buyers in a single-object
English auction. There is no asymmetry of information between the buyers;
that is, each buyer has information on the valuations of all buyers for the

3The nucleolus can be de�ned under the situation of cost games. Given N 2 N and
v 2 VN , let I(v) be the set of vectors x 2 RN such that for all i 2 N , xi � v(fig), andP

N xi = v(N). Let VN be a class of (cost) games such that for all v 2 VN , I(v) 6= ;. For
all x 2 I(v), let e(v; x) 2 R2N be de�ned by setting, for all S � N , eS(v; x) �

P
S xi� v(S).

For N 2 N and v 2 VN , the nucleolus is de�ned as the set of x 2 I(v) such that for all
y 2 I(v)nfxg e(v; x) is lexicographically smaller than e(v; y).
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object. The valuation of each buyer is positive. The reservation price is zero.
A bidding ring is formed by all buyers. The bidding ring wins the auction by
making the buyer whose valuation is the largest the sole bidder. The bene�t
of the ring members� strategy is equal to the valuation of this buyer. The
problem for the members in the ring is to determine how to share the bene�t
of their strategy (Graham et al. 1990).
A bidding ring problem is a pair (N; c), where N 2 N is the set of

buyers and c = (ci)i2N is the pro�le of valuations for a single object, ci being
the valuation of buyer i. For all N 2 N such that jN j = n, let � : N !
f1; 2; � � � ; ng be a bijection such that c��1(n) � c��1(n�1) � � � � � c��1(1) > 0.
These buyers are ordered in terms of their values. Let C be the class of all
bidding ring problems on N .
Given (N; c) 2 C, the bidding ring game is de�ned by setting, for all

S � N ,
vB(N; c)(S) = max

�
max
i2S

ci � max
j2NnS

cj; 0

�
:

where maxj =2N cj � 0. The intuition is as follows: First, under the English
auction rule, it is a dominant strategy for each bidder to remain active until
bidding reaches his valuation. Second, any coalition including buyer ��1(n)
with the largest valuation can win the auction, and achieve the net bene�t
maxi2S ci�maxj =2S cj by making buyer ��1(n) the sole bidder in the coalition
and his bidding c��1(n). Finally, no coalition that does not include buyer ��1(n)
wins the auction, and hence its net bene�t is 0.
Let VB be the class of all bidding ring games. Given (N; c) 2 C, an alloca-

tion for (N; c) is a vector x 2 RN+ such that
P

N xi = c��1(n). Let X(N; c) be
the set of allocations for (N; c) . A solution for bidding ring games is a
mapping �B : VB ! RN that associates with each bidding ring game vB(N; c)
in the domain an allocation in X(N; c). We refer to the composite mapping
'B � �B � vB as a rule for bidding ring problems. The Shapley rule for
bidding ring problems is de�ned by 'ShB � Sh � vB. The nucleolus rule
for bidding ring problems is de�ned by 'NuB � Nu � vB.

Remark 1 Given an arbitrary pair (N; c) 2 C, let cA be the airport game
derived from (N; c), and let vB be the bidding ring game derived from (N; c).

(i) cA and vB are dual to each other.
(ii) �cA and vB are anti-dual to each other.
(ii) The Shapley value of cA coincides with that of vB.
(iv) The nucleolus of �cA coincides with that of vB multiplied by �1.

The proof of Remark 1 is immediate from Oishi and Nakayama (2009).
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4.2 Illustration of dual axiomatizations of the Shapley
rule

In the existing literature, the Shapley rule for bidding ring problems has not
been axiomatized. Just by identifying the dual of each axiom involved in an
axiomatization of 'ShA , we obtain an axiomatization of '

Sh
B . Let us consider

the dual of each axiom involved in an axiomatization of the Shapley rule for
airport problems (Chun et al. 2012).

First, we consider the following property. Each airline i has the right to
use at least the airstrip to accommodate the airline i. It says that each airline
i should pay at least an equal share of ci.

Equal share lower bound for airport problems: For all (N; c) 2 C and
all i 2 N ,

'A[i](N; c) �
ci
n
:4

The following property says that each buyer i 2 N should gain at least an
equal share of his valuation.

Equal share lower bound for bidding ring problems: For all (N; c) 2 C
and all i 2 N ,

'B[i](N; c) �
ci
n
:

Next, we consider the following property for airport problems. It requires
that if the cost of an airline increases, then all the other airlines should pay at
most as much as they did initially.

Individual monotonicity for airport problems: Fix an arbitrary N 2 N .
For all (N; c) 2 C, all (N; c0) 2 C, and all i 2 N , if c0i > ci, and for all
j 2 Nnfig, c0j = cj, then for all j 2 Nnfig,

'A[j](N; c
0) � 'A[j](N; c):

The following property says that if the valuation of a buyer increases, then
all the other buyers should share at most as much as they did initially.

Individual monotonicity for bidding ring problems: Fix an arbitrary
N 2 N . For all (N; c) 2 C, all (N; c0) 2 C, and all i 2 N , if c0i > ci, and for all
j 2 Nnfig, c0j = cj, then for all j 2 Nnfig,

'B[j](N; c
0) � 'B[j](N; c):

4'A[i](N; c) is the i-th coordinate of 'A(N; c) 2 Rn. Similarly, we de�ne 'B[i](N; c) as
the i-th coordinate of 'B(N; c) 2 Rn.
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Next, the following property says that each airline should contribute a
non-negative amount, but no more than his individual cost.

Reasonableness for airport problems: For all (N; c) 2 C, all i 2 N and
x = 'A(N; c), 0 � xi � ci.

The following property says that each buyer should gain a non-negative
amount, but no more than his contribution to N .

Reasonableness for bidding problems: For all (N; c) 2 C, all i 2 N and
x = 'B(N; c), 0 � xi � ci.

Let i� be an airline with the smallest cost. Imagine that airline i� pays its
contribution 'i�(N; c) and leaves. Let x � '(N; c) and N 0 � Nnfi�g. Imagine
that the contribution xi� is intended to cover the construction cost of the part
of the airstrip that airline i� uses. Since the part of the airstrip that airline i�

uses is also used by the remaining airlines, the cost of each remaining airline
j 2 N 0 is revised down by the amount xi�. As a result, the revised cost of
each remaining airline j 2 N 0 is cj � xi�. The following property says that the
outcome chosen by a rule should be invariant under the departure of airline i�.

First-agent airport consistency5: For all (N; c) 2 C with n � 2, all i 2 N ,
N 0 = Nnfi�g, where i� = argmini2N ci, and x = 'A(N; c),

(N 0; �cxN 0) 2 C and xN 0 = 'A(N
0; �cxN 0);

where for each j 2 N 0, (�cxN 0)[j] = cj � xi�.6

The following property, referred to as ��rst-agent transfer agreement equiv-
alence�, says that for reduced bidding ring problems where a buyer i� with the
smallest valuation leaves the outcome chosen by a modi�ed rule '� should co-
incide with that chosen by the original rule '. Given ', its modi�ed rule '� is
derived from �transfer agreement�between i� and any bidding ring in Nnfi�g.
An explanation of transfer agreement is as follows: Let i� be a buyer

with the smallest valuation. Let N 0 � Nnfi�g. Imagine that the members
of S � N 0 with S 6= ; announce that they will cooperate with anybody
if they gain vB(S). Then the remaining buyers in NnS will play a game
vSB(T ), where for all T � NnS vSB(T ) � vB(S [ T ) � vB(S). As a result
of the announcement, each buyer k 2 NnS gets '̂B[k](NnS; cNnS) � (� �
vSB(NnS; cNnS))[k].7 If the members of S do not make this announcement, each

5In Chun et al. (2012), this property is called �smallest cost consistency�. Smallest cost
consistency is originally introduced by Potters and Sudhölter (1999).

6For z 2 Rn and N 0 � N , zN 0 is the projection of z onto N 0, that is, zN 00 � (zk)k2N 0 .
7(� � vSB(NnS; cNnS))[k] is the k-th coordinate of � � vSB(NnS; cNnS) 2 RNnS .
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buyer k 2 NnS gets 'B[k](N; c). Therefore buyer i
� gets '̂i�(NnS; cNnS) if the

announcement is made, and 'B[i�](N; c) otherwise. Imagine that the members
of S and buyer i� agree upon that the di¤erence '̂i�(NnS; cNnS)�'B[i�](N; c) is
transferred from buyer i� to the members of S. This agreement is referred to as
transfer agreement between i� and S � N 0. First-agent transfer agreement
equivalence requires that the outcome chosen by a rule ' should be invariant
even if transfer agreement between i� and any bidding ring in Nnfi�g is made.

First-agent transfer agreement equivalence: For all (N; c) 2 C with
n � 2, N 0 � Nnfi�g, where i� = argmini2N ci, and x = 'B(N; c),

(N 0; cN 0) 2 C and xN 0 = '�(N 0; cN 0);

where
(i) '�(N 0; cN 0) � � � ŵ(N 0; cN 0), and
(ii) for each S � N 0

ŵ(N 0; cN 0)(S)

=

8><>: max

�
max
i2S

ci � max
j2NnS

cj; 0

�
+ '̂i�(NnS; cNnS)� xi� if S 6= ;;

0 if S = ;;

where '̂(NnS; cNnS) � � � vSB(NnS; cNnS) and vSB is the game for NnS
de�ned by setting for all T � NnS, vSB(T ) � vB(S [ T )� vB(S).

Theorem A (Chun et al. 2012) For airport problems, the Shapley rule is
the only rule satisfying reasonableness, the equal share lower bound, individual
monotonicity, and �rst-agent airport consistency.

Using the duality approach, we obtain the following axiomatization of 'ShB
that is dual of the axiomatization appearing in Theorem A.

Theorem 5 (Dual of Theorem A) For bidding ring problems, the Shapley rule
is the only rule satisfying reasonableness, the equal share lower bound, individ-
ual monotonicity, and �rst-agent transfer agreement equivalence.

Proof. We compute the dual of each axiom involved in an axiomatization of
the Shapley rule appearing in Theorem A. We have two steps.

Step 1: Reasonableness for bidding ring problems is self-dual to that for
airport problems. Using the propositional function form, we restate the fol-
lowing axioms.
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Reasonableness for airport problems (propositional function form):
For all (N; c) 2 C, F ((N; c); � � cA(N; c)) = 1 i¤ for all i 2 N and x =
� � cA(N; c), 0 � xi � ci.

Reasonableness for bidding problems (propositional function form):
For all (N; c) 2 C, F ((N; c); � � vB(N; c)) = 1 i¤ for all i 2 N and x =
� � vB(N; c), 0 � xi � ci.

Let us take the dual of reasonableness for airport problems. Since cA =
(vB)

d, the following formula holds.

(1) For all (N; c) 2 C, F ((N; c); � � (vB)d(N; c)) = 1 i¤ for all i 2 N and
x = � � (vB)d(N; c), 0 � xi � ci.

By Theorem 1 and the fact that ((vB)d)d = vB, the dual of the formula (1)
is the following formula.

(2) For all (N; c) 2 C, F d((N; c); � � (vB)(N; c)) = 1 i¤ for all i 2 N and
x = � � vB(N; c), 0 � xi � ci.

Therefore, the dual of reasonableness of airport problems is reasonable-
ness for bidding ring problems, that is, reasonableness is self-dual. By the
same manner as in the argument mentioned, the equal share lower bound and
individual monotonicity are self-duals, respectively.

Step 2: We show that �rst-agent transfer agreement equivalence is dual
to �rst-agent airport consistency.

First, we write the propositional function of �rst-agent airport consistency.

(3) For all (N; c) 2 C with n � 2, F ((N; c); ��cA(N; c)) = 1 i¤ for all i 2 N ,
N 0 = Nnfi�g, where i� = argmini2N ci, and x = � � cA(N; c), (N 0; �cxN 0) 2 C
and

xN 0 = � � cA(N 0; �cxN 0);

where (i) for all j 2 N 0, (�cxN 0)[j] = cj�xi�, and (ii) for all S � N 0 cA(N
0; �cxN 0)(S) =

maxj2S(�c
x
N 0)[j].

Let x = '(N; c) and N 0 = Nnfi�g, where i� = argmini2N ci. First, we
claim that the Davis-Maschler reduced game8 on N 0 with respect to cA and x

8For a game v 2 V, a vector x 2 RN and non-empty subset N 0 of N , the Davis-
Maschler reduced game (Davis and Maschler 1965) on N 0 with respect to v and x is the
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is the Hart-Mas-Colell reduced game9 on N 0 with respect to cA and x. Given
an airport game cA and N 0 � N with N 0 6= ;, the subgame of N 0, denoted
cA jN 0 , is de�ned by setting for all S 2 2N

0
, cA jN 0 (S) = cA(S). Since for

each S � N 0 with S 6= ; the subgame cA
��
S[(NnN 0) = cA(S [ fi�g) and cA

cA(S [ fi�g) = cA(S),

cA(S [ (NnN 0))� �i�(cA
��
S[(NnN 0) ) = cA(S [ fi�g)� �i�(cA)

= minfcA(S [ fi�g)� �i�(cA); cA(S)g;

the desired claim.
Since the Davis-Maschler reduced game on N 0 with respect to cA and x is

the Hart-Mas-Colell reduced game on N 0 with respect to cA and x, we obtain
the following proposition function of �rst-agent airport consistency.

(4) For all (N; c) 2 C with n � 2, F ((N; c); � � cA(N; c)) = 1 i¤ for N 0 =
Nnfi�g, where i� = argmini2N ci, and x = � � cA(N; c); xN 0 = � � w(N 0; cN 0)
and for each S � N 0

w(S) =

(
cA
�
S [ (NnN 0)

�
� �i�(cA

��
S[(NnN 0) ) if S 6= ;;

0 if S = ;:

Since (vB)d = cA, the formula (4) is rewritten as follows.

game (N 0; rxN 0(v)) 2 V de�ned by setting for all S � N 0,

rxN 0(v)(S) =

8>>>>>><>>>>>>:

v(N)�
X

i2NnN 0

xi if S = N 0;

max
T�NnN 0

�
v(S [ T )�

X
i2T

xi
�
if S 6= N 0; ;;

0 if S = ;:

A solution f on a subclass V 0 of V satis�es the Davis-Maschler consistency (Davis and
Maschler 1965) if for all (N; v) 2 V 0 and every non-empty N 0 ( N it holds that for all i 2 N
fi(N; v) = fi(N

0; rxN 0(v)), where x 2 f(N; v).
9Let f be a single-valued solution on V. For a game v 2 V, a vector x 2 RN and non-

empty subset N 0 of N , the Hart-Mas-Colell reduced game (Hart and Mas-Collel 1989) on
N 0 with respect to v and x is the game (N 0; rxN 0(v)) 2 V de�ned by setting for all S � N 0,

rxN 0(v)(S) =

(
v(S [ (NnN 0))�

P
i2NnN 0 fi(v

��
S[(NnN 0) ) if S 6= ;;

0 if S = ;:

A single-valued solution f on a subclass V 0 of V satis�es the Hart-Mas-Colell consistency
(Hart and Mas-Colell 1989) if for all (N; v) 2 V 0 and every non-empty N 0 ( N it holds that
for all i 2 N fi(N; v) = fi(N

0; rxN 0(v)), where x = f(N; v).
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(5) For all (N; c) 2 C with n � 2, F ((N; c); � � (vB)d(N; c)) = 1 i¤ for N 0 =
Nnfi�g, where i� = argmini2N ci, and x = ��(vB)d(N; c); xN 0 = ��w(N 0; cN 0),
where for each S � N 0

w(S) =

(
(vB)

d
�
S [ (NnN 0)

�
� �i�((vB)d

��
S[(NnN 0) ) if S 6= ;;

0 if S = ;:

For each T � NnS,

(cA
��
NnS )

d(T ) = (cA
��
NnS )(NnS)� (cA

��
NnS )((NnS)nT )

= ((vB)
d
��
NnS )(NnS)� ((vB)d

��
NnS )((NnS)nT )

= vB(N)� vB(Nn(NnS))� vB(N) + vB(Nn((NnS)nT ))
= vB(S [ T )� vB(S):

By this observation together with the fact that wd(;) = 0 and for each ; 6=
S � N 0,

wd(S) = w(N 0)� w(N 0nS)
= cA(N)� �i�(cA)� cA(NnS) + �i�(cA

��
NnS )

= cA(N)� cA(NnS)� �i�(cA) + �i�(cA
��
NnS )

= vB(S)� �i�((vB)d) + �i�((vSB)d);

where each T � NnS, vSB(T ) � vB(S [ T )� vB(S).
By Theorem 1 and the fact that ((vB)d)d = vB, the dual of the formula (5)

is the following formula.

(6) For all (N; c) 2 C with n � 2, F d((N; c); � � vB(N; c)) = 1 i¤ for
N 0 = Nnfi�g and , where i� = argmini2N ci, and x = � � vB(N; c), xN 0 =
� � ~w(N 0; cN 0), and for each S � N 0

~w(S) =

(
vB(S) + ~'i�(NnS; cNnS)� xi� if S 6= ;;
0 if S = ;;

such that ~'(NnS; cNnS) � � � vSB(NnS; cNnS) and vSB is the game for NnS
de�ned by setting for each T � NnS, vSB(T ) � vB(S [ T )� vB(S).

Therefore, the dual of �rst-agent airport consistency is �rst-agent transfer
agreement equivalence.

Thanks to Theorem 2, logical independence of the axioms appearing in The-
orem 5 holds. The argument of the formula (6) is inspired from the fact that
the dual of the Hart-Mas-Colell consistency is transfer-agreement consistency
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(Oishi et al. 2016).10 Since transfer-agreement consistency is a property that
should be satis�ed by a single-valued solution on the domain of all TU games,
it is not directly applicable to the argument mentioned above. As shown in
the proof of Theorem 5, calculation of a series of propositional functions based
on Theorem 1 is necessary for our argument.

4.3 Illustration of anti-dual axiomatizations of the nu-
cleolus rule

In the existing literature, the nucleolus rule for bidding ring problems has not
been axiomatized. Just by identifying the anti-dual of each axiom involved in
an axiomatization of 'NuA , we obtain an axiomatization of 'NuB . Let us consider
the anti-dual of each axiom involved in an axiomatization of the nucleolus rule
for airport problems (Yeh 2004, Hwang and Yeh 2012).
First, we consider the following property. It says that airlines with equal

costs should contribute equal amounts.

Equal treatment of equals for airport problems: For each (N; c) 2 C
and each pair fi; jg � N , if ci = cj, then 'A[i](N; c) = 'A[j](N; c):

The following property says that buyers with equal valuations should gain
equal amounts.

Equal treatment of equals for bidding ring problems: For each (N; c) 2
C and each pair fi; jg � N , if ci = cj, then 'B[i](N; c) = 'B[j](N; c):

Next, we consider the following property. It says that if the cost of an airline
with the largest cost increases by �, then all other airlines should contribute
the same amounts as they did initially.

Last-agent additivity for airport problems: For each pair f(N; c); (N; c0)g
of elements of C, each � 2 R+, and i� = argmaxi2N ci, if c0i� = ci� + � and for
10Let f be a single-valued solution on V. For all N 2 N , all v 2 VN , all N 0 � N with

N 0 6= ;, and all w 2 R2N
0
, if for all S � N 0,

w(S) =

8>>>>>><>>>>>>:

v(N)�
X

i2NnN 0

fi(v) if S = N 0;

v(S) +
X

i2NnN 0

fi(v
S)�

X
i2NnN 0

fi(v) if S 6= N 0; ;;

0 if S = ;;

where vS is the game for N nS de�ned by setting for all T � N nS, vS(T ) � v(S[T )�v(S),
then w 2 VN 0

and for all i 2 N 0, fi(w) = fi(v).
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each j 2 Nnfi�g c0j = cj, then 'A[i�](N; c
0) = 'A[i�](N; c) + � and for each

j 2 Nnfi�g, 'A[j](N; c0) = 'A[j](N; c):

The following property says that if the valuation of a buyer with the largest
valuation increases by �, then all other buyers should gain the same amounts
as they did initially.

Last-agent additivity for bidding ring problems: For each pair f(N; c); (N; c0)g
of elements of C, each � 2 R+, and and i� = argmaxi2N ci, if c0i� = ci� + � and
for each j 2 Nnfi�g c0j = cj, then 'B[i�](N; c0) = 'B[i�](N; c) + � and for each
j 2 Nnfi�g, 'B[j](N; c0) = 'B[j](N; c):

The following property says that the outcome chosen by a rule should be
invariant under the departure of an airline with the largest cost. Let i� be
an airline with the largest cost. Imagine that airline i� pays its contribution
'i�(N; c) and leaves. Let x � '(N; c) and N 0 � Nnfi�g. Imagine that for all
j 6= i� the contribution xi� is intended to cover ci� � cj. Airline j may or may
not bene�t from xi� under a situation that depends on the di¤erence between
xi� and ci� � cj. Consider two cases. If xi� � ci� � cj, airline j bene�ts since
the cost of j is revised down by xi� � (ci� � cj). Otherwise, airline j does
not bene�t since the cost of j is not revised down. As a result, the revised
cost of each remaining airline j 2 N 0 is cj �maxfxi� � (ci� � cj); 0g, namely
minfcj; ci� � xi�g. For the details of this property, see Yeh (2004), and Hwang
and Yeh (2012).

Last-agent airport consistency11: For all (N; c) 2 C with n � 2, all i 2 N ,
N 0 = Nnfi�g, where i� = argmaxi2N ci, and x = 'A(N; c),

(N 0; �cxN 0) 2 C and xN 0 = 'A(N
0; �cxN 0);

where for each j 2 N 0, (�cxN 0)[j] = minfcj; ci� � xi�g.

The following property, referred to as �last-agent secret agreement equiv-
alence�, says that for reduced bidding ring problems where a buyer i� with
the largest valuation leaves the outcome chosen by a modi�ed rule '� should
coincide with that chosen by the original rule '. Given ', its modi�ed rule '�

is derived from �secret agreement�between i� and any bidding ring in Nnfi�g.
For the details of this property, we will explain the revised valuation and

a game that any bidding ring in Nnfi�g play.
11In Yeh (2004), this property is called �last-agent consistency�. In Hwang and Yeh

(2012), they used �consistency� in their axiomatization of the nucleolus rule for airport
problems. This property is originally introduced by Potters and Sudhölter (1999). The
last-agent consistency is a weaker version of consistency.
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First, the scenario of the revised valuation is as follows. Let i� be a buyer
with the largest valuation. Let N 0 � Nnfi�g. Notice that the valuation
ci of each buyer i 2 N is reinterpreted as his contribution to the bidding
ring N . This is because ci is the di¤erence between the gain of N (i.e. ci�)
and that of Nnfig (i.e. ci� � ci). Thus the pro�le of valuations (ci)i2N is
reinterpreted as buyers�contribution to N . Imagine that the bidding ring N 0

pays xi� to buyer i� as a reward for his cooperation, and buyer i� leaves. Thus
the gain of N 0 is ci� � xi�. On the other hand, imagine that buyer j 2 N 0

competes with the members of N 0nfjg, and buyer j leaves from N 0. Here, two
scenarios are possible: (a) buyer i� behaves cooperatively for N 0nfjg or (b)
buyer i� behaves non-cooperatively for N 0nfjg. In the case of (a), since buyer
i� obtains xi� as a reward for his cooperation for N 0, the coalition N 0nfjg can
avoid competing with buyer i�. Thus, in the case of (a), the gain of N 0nfjg
is ci� � cj � xi�. In the case of (b), since N 0nfjg competes with buyers i�
and j, the gain of N 0nfjg is 0. Thus, the possibly highest gain of N 0nfjg is
maxfci� � cj � xi� ; 0g. Therefore, the contribution of buyer j is revised as
(ci� � xi�) � maxfci� � cj � xi� ; 0g, which means �buyer j�s contribution to
the coalition N 0�. As a result, the revised valuation of each remaining buyer
j 2 N 0, denoted �cxN 0, is (ci� � xi�) � maxfci� � cj � xi� ; 0g, namely, for each
j 2 N 0 (�cxN 0)[j] = minfcj; ci� � xi�g.
Next, the scenario of a game that the members of any bidding ring in N 0

play is as follows. Imagine that each agent j 2 N 0 has his revised valuation
�cxN 0[j] mentioned above and that the members of S � N 0 with S 6= ; compete
with the members of N 0nS in the English auction. Furthermore imagine that
in this competition the members of S and buyer i� agree upon that buyer
i�cooperates with S and they pay xi� to buyer i� as his reward. Therefore
the members of S, where ; 6= S � N 0, always win and play a game, denoted
W (S), where W (S) = ci� � maxj2N 0nS(�c

x
N 0)[j] � xi�. Here, the number ci� �

maxj2i�0nS(�c
x
N 0)[j] is the gain of S in the English auction, and the number xi�

is the payment of S to buyer i�. Notice that W (;) = 0.
An explanation of last-agent secret agreement equivalence is as fol-

lows: Imagine that the members of S � N 0 with S 6= ; compete with the
members of N 0nS in the English auction. Buyer i� and the members of S
agree upon that buyer i� cooperates with S and the members of S pay xi� to
buyer i� as his reward. This agreement is referred to as �secret agreement�
between i� and S � N 0. Then the remaining buyers in N 0 will play a game
W (S), and thus each buyer k 2 N 0 gets '�[k](N

0; �cxN 0) � (� � W (N 0; �cxN 0))[k],
where for all S � N 0 with S 6= ; W (S) = ci� � maxj2N 0nS(�c

x
N 0)[j] � xi� and

W (;) = 0.12 This property requires that the outcome chosen by a rule '
should be invariant even if secret agreement between i� and any bidding ring
S � Nnfi�g is made.
12(� �W (N 0; �cxN 0))[k] is the k-th coordinate of � �W (N 0; �cxN 0) 2 RN

0
.
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Last-agent secret agreement equivalence: For all (N; c) 2 C with n � 2,
N 0 � Nnfi�g, where i� = argmaxi2N ci, and x = 'B(N; c),

(N 0; �cxN 0) 2 C and xN 0 = '�(N 0; �cxN 0);

where
(i) '�(N 0; �cxN 0) � ��W (N 0; �cxN 0), where for all j 2 N 0 (�cxN 0)[j] = minfcj; ci��

xi�g, and
(ii) for all S � N 0

W (N 0; �cxN 0)(S) =

(
ci� �maxj2N 0nS(�c

x
N 0)[j] � xi� if S 6= ;;

0 if S = ;:
:

Theorem B (Yeh 2004, Hwang and Yeh 2012) For airport problems, the
nucleolus rule is the only rule satisfying equal treatment of equals, last-agent
additivity, and last-agent airport consistency.

We obtain the following axiomatization of solution 'NuB that is the anti-dual
of the axiomatization of 'NuA appearing in Theorem B.

Theorem 6 (Anti-dual of Theorem B) For bidding ring problems, the nucle-
olus rule is the only rule satisfying equal treatment of equals, last-agent addi-
tivity, and last-agent secret agreement equivalence.

Proof. We compute the anti-dual of each axiom involved in an axiomatization
of the nucleolus rule appearing in Theorem B. Equal treatment of equals, and
last-agent additivity are self-anti-duals, respectively. The proof is omitted.
We show that last-agent secret agreement equivalence is anti-dual to last-agent
airport consistency. By using the proportional function form, we can express
last-agent airport consistency as follows.

(7) For all (N; c) 2 C with n � 2, F ((N; c);�� � �cA(N; c)) = 1 i¤ for
N 0 � Nnfi�g, where i� = argmaxi2N ci, and x = ����cA(N; c); (N 0; �cxN 0) 2 C
and xN 0 = �� � w(N 0; �cxN 0), where for all j 2 N 0 (�cxN 0)[j] = minfcj; ci� � xi�g
and for all S � N 0 w(S) � �maxj2S(�cxN 0)[j].

Since (vB)ad = �cA, the formula (7) can be rewritten by the following
formula.

(8) For all (N; c) 2 C with n � 2, F ((N; c);�� � (vB)ad(N; c)) = 1 i¤ for
N 0 � Nnfi�g, where i� = argmaxi2N ci, and x = ��� (vB)ad(N; c); (N 0; �cxN 0) 2
C and xN 0 = �� � w(N 0; �cxN 0), where for all j 2 N 0 (�cxN 0)[j] = minfcj; ci� � xi�g
for all S � N 0 w(S) � �maxj2S(�cxN 0)[j].
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For all S � N 0 with S 6= ;,

wad(S) = �w(N 0) + w(N 0nS)
= ci� � xi� � max

j2N 0nS
(�cxN 0)[j];

and wad(;) = 0. For all S � N 0 let W (S) � wad(S). The formula (8) can be
rewritten by the following formula.

(9) For all (N; c) 2 C with n � 2, F ((N; c);�� � (vB)ad(N; c)) = 1 i¤ for
N 0 � Nnfi�g, where i� = argmaxi2N ci, and x = ��� (vB)ad(N; c); (N 0; �cxN 0) 2
C and xN 0 = ���W ad(N 0; �cxN 0), where for all j 2 N 0 (�cxN 0)[j] = minfcj; ci��xi�g
for all S � N 0 W ad(S) = �maxj2N 0nS(�c

x
N 0)[j].

By Theorem 3 and the fact that ((vB)ad)ad = vB, the anti-dual of the
formula (9) is the following formula.

(10) For all (N; c) 2 C with n � 2, F ad((N; c); � � vB(N; c)) = 1 i¤ for all
(N; c) 2 C with n � 2, N 0 � Nnfi�g, where i� = argmaxi2N ci, x = 'B(N; c),
N 0 = Nnfi�g, and all S � N 0

(N 0; �cxN 0) 2 C and xN 0 = '�(N 0; �cxN 0);

where (i) '�(N 0; �cxN 0) � � � W (N 0; �cxN 0), where for all j 2 N 0 (�cxN 0)[j] =
minfcj; ci� � xi�g, and (ii) for all S � N 0

W (N 0; �cxN 0)(S) =

(
ci� �maxj2N 0nS(�c

x
N 0)[j] � xi� if S 6= ;;

0 if S = ;:

Therefore, the anti-dual of last-agent airport consistency is last-agent secret
agreement equivalence.

Thanks to Theorem 4, logical independence of the axioms appearing in
Theorem 6 holds.

5 Concluding remarks

Finally, we discuss a generalization of duality and anti-duality approach. A
TU game v 2 V can be considered as an element of R2N�1, its dual can be
expressed by a linear transformation w =Mv, whereM is a (2n�1)�(2n�1)
matrix, on the space.13 If there exists the inverse matrixM�1 and (Mv)(N) =

13For instance, Faigle and Grabisch (2016) investigated a relation between such a linear
transformation as the Möbius transformation and solutions for TU games.
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v(N), one can de�neM -transformation of solutions and axioms for TU games.
Using these notions, one can generalize duality and anti-duality approach for
axiomatic analysis of solutions for TU games. Hokari et al. (2017) show a
non-trivial M -transformation for which the Shapley value is invariant, that
is for all v 2 2Nnf;g, Sh(Mv) = Sh(v). Analogously to this approach, one
can de�ne M -transformation of rules, and axioms for allocation problems.
Whether the M -(anti-) duality approach for axiomatic analysis of rules for
allocation problems is useful may deserve investigation, which we leave to the
future research.
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