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Abstract

We propose an estimation method of population moments or population parameters in ”biased
sampling data” in which for some units of data, not only the variable of interest but also the
covariates, have missing observations and the proportion of ”missingness” is unknown. We use
auxiliary information such as the distribution of covariates or their moments in random sampling
data in order to correct the bias. Moreover, with additional assumptions, we can correct the bias
even if we have only the moment information of covariates. The main contribution of this paper
is the development of a doubly robust-type estimator for biased sampling data. This method
provides a consistent estimator if either the regression function or the assignment mechanism
is correctly specified. We prove the consistency and semi-parametric efficiency of the doubly
robust estimator. Both the simulation and empirical application results demonstrate that the
proposed estimation method is more robust than existing methods.
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1 INTRODUCTION

Figure 1: Missing response problem Figure 2: Biased sampling problem considered
in this papaer

We propose an estimation method of population moments or population parameters in biased
sampling data in which for some units of data, not only the variable of interest but also the
covariates, have missing observations and the proportion of missingness is unknown. We use
auxiliary information such as the distribution of covariates or their moments in random sampling
data or moment information of them in order to correct the bias. In the analysis of survey
sampling data, there is often sampling bias due to missing observations.

Let y be variables of interest in their relevant parameters or their population moments θ and
x be covariates. Figure 1 shows the missing response problem in which the researcher can correct
bias by using the method for selection bias such as Heckman’s probit selection model (Heckman,
1974, 1979), inversed probability weighting (Rubin, 1985), partial linear model (Robinson, 1988;
Speckman, 1988), or the empirical likelihood approach (Qin, 1993; Qin et al., 2002), when the
missingness depends on the covariates. However, in order to use those methods, the researcher
has to specify one model and those methods never provide a consistent estimator if the model
is misspecified. To deal with this problem, the researcher can use the doubly robust estimator
method, which has consistency even if either a model for the missing mechanism or a model
for the distribution of the covariates is correctly specified (Bang and Robins, 2005). There are
numerous studies about this type estimator (Robins et al., 1994; Lipsitz et al., 1999; Hoshino,
2007; Wang et al., 2010). Qin et al. (2008) studied the empirical likelihood approach, which
can conduct the doubly robust-type imputation for missing data. In this setting, the researcher
has to assume no missingness in covariates x. Other studies dealt with the missing covariates
problem (see e.g., Liang et al., 2004, JASA, 357-367; Ibrahim et al., 1999, JRSSB, 173-190) in
which there is no missingness in variables of interest y.

In this paper, however, we consider biased sampling datasets as Figure 2, in which biased
samples of n units are only observed. The observed biased sample consists of n units, but the
total hypothetical sample size of the random sample is unknown (= N). In other words, the
resulting biased sample with sample size n can be considered a subsample of the random sample
with unknown sample size N (see e.g., Lee and Berger, 2001, JASA, 1397-1409; Qin, 2017). The
setting here would be more natural than the setting of Figure 1 because, for applied research,
the dataset contains the variables of concern, most of which are measured but obtained under
non-random sampling, whereas the auxiliary population information of a part of variables is
often available such as public statistics or databases. For example, in medicine, all receipt data
are gathered by the government but it does not contain treatment results (= y). We call these
data ”Big Data”. Let z be an indicator for biased small data (z = 1) or big data (z = 0) and
r be an indicator that indicates whether the unit is observed (r = 1) or missing (r = 0) in the
small data. A similar setting could be seen in the research of positive and unlabeled data in the
field of machine learning (Elkan and Noto, 2008) and presence-only data in biostatistics (Ward
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et al., 2009); however, y is restricted to be binary in these studies. We propose a consistent
doubly robust estimator for this set of bias, that can obtain a consistent estimator from biased
sampling data even if one of the two models is erroneously set.

Hirano et al. (2001) and Nevo (2003) use auxiliary information in order to correct the
bias of missing data. Both studies considered panel data examples with attrition by non-
ignorable selection mechanism. Hirano et al. (2001) dealt with a two-period panel dataset. They
proposed an estimation method that combined panel datasets with the auxiliary information
of refreshment samples and proved the identifiability of their method. Nevo (2003) used the
identification result of Hirano et al. (2001) and proposed a GMM-type estimator. In our setup,
shown in Figure 2, although we can conduct inversed probability weighting using the propensity
score, which can be estimated by the method of Nevo (2003), there is no previous research that
has developed a doubly robust estimator.

The greatest novelty of the paper is that we consider the doubly robust estimator for missing
units that occur not only in the dependent variables but also in the covariates.

Figure 3: The case in which auxiliary information is moment information

Moreover, our method can be extended to the situation represented by Figure 3. The
difference between this situation and the setting in Figure 2 is that available data are not unit-
level datasets {xm}Mm=1, but moment information or statistics such as averages or proportions.
The government can extract random samples from the citizens or run censuses, and companies
also have all their customers’ transaction data; however, because unit-level (eg., individual-
level) data usually contain sensitive private information, the government or companies may
not provide full individual-level data but only moment information like the sample mean. Our
method can correct sampling bias even if the researcher has only moment information with
additional assumptions.

This paper is organized as follows. Section 2 introduces our basic setup and doubly robust
estimator. Section 3 presents the proof of consistency and semi-parametric efficiency of the
doubly robust estimator in our setup. Section 4 reports the simulation results and Section 5
provides an empirical application. Section 6 extends our method to the case where the auxiliary
information is only moment information.

2 DOUBLY ROBUST ESTIMATOR

In this section, we explain the doubly robust estimator under the sampling bias. The bias can be
corrected by (1) weighting by the inverse of the propensity score and (2) the marginal estimating
equation using the regression model. With the doubly robust estimator, a consistent estimator
can be obtained from biased data even if one of the two models is erroneously set.
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2.1 Estimating Equation

Let y ∈ Rp be variables of interest, x ∈ Rs be covariates, θ ∈ Rq be population moments or
population parameters, and ψ(y|θ) ∈ Rq be an estimating function for the unbiased estimating
equation such that the expectation about y will be zero with true parameter θ0,

ψ(y|θ) s.t. E[ψ(y|θ)0] = 0. (1)

For example, if E[y] is the moment of interest, then θ = E[y] and ψ(y|θ) = y − θ. In the
case in which random N sampling data can be obtained, the solution of equation (1), θ̂, is a
consistent estimator for θ. In the setting of this research, however, the units with z = 1 and
r = 1 can only be obtained; thus, the sample mean of ψ(y|θ) will become the expectation with
respect to p(y,x|z = 1, r = 1) as n goes to infinity, E(ψ(y|θ)|z = 1, r = 1) ̸= 0.

There are two models, the missing mechanism and the regression model, used to obtain the
consistent estimator. Moreover, we can develop the doubly robust estimator by combining these
two models.

In this paper, we assume following two conditions:

Assumption 1. strong ignorability (Rosenbaum and Rubin, 1983)
When x is conditioned, r and y are independent;

r⊥⊥y|x, 0 < Pr(r = 1|x) < 1 for all x. (2)

In other words, the missing or not depends on the covariates, but not on the dependent variables:
p(r = 1|y,x) = p(r = 1|x).

Assumption 2. Auxiliary random sampling data {xi}N+M
i=N+1 of size M has been obtained 1.

2.2 Model 1: Missing Mechanism

E[ψ(y|θ)] can be transformed as follows:

E[ψ(y|θ)] =
∫
ψ(y|θ)p(y,x)dxdy =

∫
ψ(y|θ)p(y,x|z = 1, r = 1)p(z = 1, r = 1)

p(z = 1, r = 1|y,x)
dxdy

=

∫
ψ(y|θ)p(y,x|z = 1, r = 1)p(z = 1, r = 1)

p(z = 1, r = 1|x)
dxdy = 0.

Therefore, by using the method of moment estimator,

1

N

N∑
i=1

zirip(z = 1, r = 1)

p(z = 1, r = 1|xi)
ψ (yi|θ) =

1

N

n∑
i=1

p(z = 1, r = 1)

p(z = 1, r = 1|xi)
ψ (yi|θ) = 0. (3)

Here, p(z = 1, r = 1) is constant; then, both sides of equation (3) can be divided by it:

N∑
i=1

ziri
p(z = 1, r = 1|xi)

ψ (yi|θ) = 0. (4)

The solution of equation (4), θ̂, is a consistent estimator for θ0.
Here, N and N − n are unknown, thus, it is not possible to estimate the propensity score

p(z = 1, r = 1|x) with the (z = 1) dataset directly. We use the method of Nevo (2003) in order
to estimate it. Let h̄(x) be a J-dimensional function. Nevo (2003) defined h(x) = h̄(x)−E[h̄(x)]
and noted that E[h(x)] = 0. For example, if the researcher knows the first moment of covariates,
then, h̄(x) = x and h(x) = x − E[x]. In addition, E[h̄(x)] can be replaced with the sample
mean of random sampling data 1

M

∑M
m=1 h̄(xm).

1We also denote this auxiliary random sampling data as {xm}Mm=1 if necessary.
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Let the logit of the propensity score be a linear equation about h(x):

logit[p(r = 1|x)] = h(x)tα, (5)

where α ∈ RJ are the parameters for logit 2.

Then, with the biased data xi, by solving simultaneous equations:

n∑
i=1

1

p(r = 1|xi,α)
=

n

p̂(r = 1)
(6)

n∑
i=1

h(xi)

p(r = 1|xi,α)
= 0 , (7)

α̂ can be estimated and the propensity score using the estimated value can be calculated,
where, p̂(r = 1) = 1

M

∑M
m=1 p(r = 1|xm,α). Nevo (2003) proposed this GMM method when the

sample is not random and auxiliary information is obtained, and proved that α̂ is consistent and
has asymptotic normality. Equation (7) means that α is estimated as to satisfy the condition
that the weighted sample analog of E[h(xi)] equals to 0. We need equation (6) in order to make
the sample mean of weight equal to its population value 1

p(r=1) .

We calculate the inverse probability weighting (IPW) estimator using weighting by the in-
verse of the estimated propensity score p(r = 1|xi, α̂).

1

n

n∑
i=1

1

p(r = 1|xi, α̂)
ψ(yi|θ) = 0. (8)

The solution θ̂ is a consistent estimator for the parameter θ0 only when the missing mechanism
is correctly set.

2.3 Model 2: Regression Model

From the assumption that y and r are independent when x is conditioned, p(y|r = 1,x,β) =
p(y|x,β). β ∈ Rs is the parameter vector.

Therefore, the regression model estimated from biased data coincides with that estimated
from random sampling data.

Monte Carlo integration with the estimated regression model can be conducted.

1

M

M∑
m=1

L∑
l=1

ψ(yml|θ) = 0, (9)

where, yml ∼ p(y|r = 1,xm, β̂) l = 1, . . . , L, m = 1, . . . ,M and β̂ is a consistent estimator.
The solution θ̂ is a consistent estimator for the parameter θ0 only when the regression model

is correctly set.

2.4 Doubly Robust Estimator

If at least one of the two models is set correctly, then the solution θ̂ of the following equation
(10) will be a consistent estimator for the parameter θ0:

1

N +M

N+M∑
i=1

{ ziri
p(r = 1|xi,α)

ψ(yi|θ)+zi
(
1− ri

p(r = 1|xi,α)

)
Eyi|xi,β[ψ(yi|θ)]

+ (1− zi)Eyi|xi,β[ψ(yi|θ)]
}
= 0,

(10)

2In the case in which x contains a constant as a first element, h(x) may contain the element, constant −
E[constant] = 0. In order to contain a constant in h(x), this zero element can be replaced by 1.
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where, Eyi|xi,β[ψ(yi|θ)] is a conditional expectation of ψ(yi|θ) over a probability distribution
function p(yi|xi,β)

3.
By the definition of indicator, ziri = 1 if and only if the unit i is an observed unit in biased

sampling dataset. Equation (10) can be transformed as follows:

1

N +M

n∑
i=1

[
1

p(r = 1|xi,α)

{
ψ(yi|θ)− Eyi|xi,β[ψ(yi|θ)]

}]

+
1

N +M

N+M∑
i=1

Eyi|xi,β[ψ(yi|θ)] = 0.

We need to estimate N, p(r = 1|xi,α), and p(yi|xi,β); therefore, replace these by estimated
value N̂ and probability density functions p(r = 1|xi, α̂), p(yi|xi, β̂). The meaning of p(r = 1)
is the proportion of observed units on a hypothetical random sample p(r = 1) = n

N ; hence,

N̂ = n
p̂(r=1) = n

1
M

∑M
m=1 p(r=1|xm,α̂)

. Because N is unknown, the second term has to be replaced

with 1
M

∑M
m=1Eym|xm,α̂[ψ(ym|θ)]. After replacing, the estimating equation will be:

1

N̂ +M

n∑
i=1

[
1

p(r = 1|xi, α̂)

{
ψ(yi|θ)− Eyi|xi,β̂

[ψ(yi|θ)]
}]

+
1

M

M∑
m=1

Eym|xm,β̂[ψ(ym|θ)] = 0.

(11)

2.5 Monte Carlo Integration

The doubly robust estimator of estimate equation (11) contains the conditional expectations.
In the case where ψ(y|θ) is a continuous function, we have to solve the integral, which is often
difficult to. If the integral cannot be solved analitically, then Monte Carlo integration can be
used. Because the second term of equation (11) is about the random sample, it can be replaced
with the Monte Carlo integral on random sampling dataset (z = 0). On the other hand, because
the first term is about the biased sample, the Monte Carlo integration should be done on biased
sampling dataset (z = 1).

1

N̂ +M

n∑
i=1

[
1

p(r = 1|xi, α̂)

{
ψ(yi|θ)−

1

L

L∑
l=1

ψ(yil|θ)

}]
+

1

M

M∑
m=1

1

L

L∑
l=1

ψ(yml|θ) = 0, (12)

where, yil ∼ p(y|xi, β̂), l = 1, . . . , L, i = 1, . . . , n, and yml ∼ p(y|xm, β̂), l = 1, . . . , L,m =
1, . . . ,M .

3 ASYMPTOTIC PROPERTIES

In this section, we provide two theorems, their proofs, and the asymptotic distribution. First,
we show that our estimator is consistent if one of two models is correctly specified. This
proof verifies the estimator is a doubly robust-type. Second, we prove that our estimator is
the most efficient when both models are correctly specified. We denote p(r = 1|x, α̂) = π
and Ey|x,β̂[ψ(y|θ)] = Ey|x[ψ(y|θ)] in this section. Finally, the asymptotic distribution for our
estimator is shown.

3In the case where the researcher knows Ey|x[ψ(y|θ)], the regression model and consistent estimator for β are
not necessary and the researcher can use Ey|x[ψ(y|θ)] directly.
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3.1 Proof of Consistency

Theorem 1. If either the missing mechanism or the regression model is set correctly, then the
doubly robust estimator has consistency.

Proof. We prove this theorem by showing that the doubly robust estimator is M-estimator,
which has consistency.

(i) When the propensity score p(r = 1|x, α̂) = π is correctly specified
In this case, regression model p(y|x,β) may be misspecified. This implies Ey|x[ψ(y|θ)] may

also be misspecified. We denote this expectation as Ẽy|x[ψ(y|θ)].
As M → ∞, n→ ∞ and M

n → k (constant),

1

N +M

N+M∑
i=1

{
ziri
πi

ψ(yi|θ) + zi

(
1− ri

πi

)
Ẽyi|xi

[ψ(yi|θ)] + (1− zi)Ẽyi|xi
[ψ(yi|θ)]

}

=
1

N +M

N+M∑
i=1

{
ri
πi
ψ(yi|θ) +

πi − ri
πi

Ẽyi|xi
[ψ(yi|θ)]

}
→Ex

[
Er|x

[ r
π

]
Ey|x [ψ(y|θ)] + Er|x

[
r − π

π

]
Ẽy|x[ψ(y|θ)]

]
=Ex

[
Ey|x [ψ(y|θ)]

]
= 0

(
∵ Er|x

[
r − π

π

]
=
π − π

π

)
=E [ψ(y|θ)] .

Therefore, as M → ∞, n→ ∞ and M
n → k (constant), θ̂

p−→ θ0.

(ii) When the regression model p(y|x,β) is correctly specified
In this case, missing mechanism p(r = 1|x,α) = π may be misspecified. This implies that

the estimated N̂ may be incorrect. We denote these π and N as π̃ and Ñ .
Equation (11) can be represented as follows:

n

Ñ +M

1

n

n∑
i=1

[ri
π̃

{
ψ(yi|θ)− Eyi|xi

[ψ(yi|θ)]
}]

+
1

M

M∑
m=1

Eym|xm
[ψ(ym|θ)] = 0. (13)

As M → ∞, n→ ∞ and M
n → k,

n
Ñ+M

→ p̂(r=1)
1+kp̂(r=1) = C (constant) and,

n

Ñ +M

1

n

n∑
i=1

[ri
π̃

{
ψ(yi|θ)− Eyi|xi

[ψ(yi|θ)]
}]

+
1

M

M∑
m=1

Eym|xm
[ψ(ym|θ)]

→C · Ex

[
Er|x

[ r
π̃

]
Ey|x [ψ(y|θ)− ψ(y|θ)]

]
+ Ex

[
Ey|x[ψ(y|θ)]

]
=Ex

[
Ey|x [ψ(y|θ)]

]
=E [ψ(y|θ)] .

Therefore, as M → ∞, n→ ∞ and M
n → k (constant), θ̂

p−→ θ0.
The proposed estimator has consistency in both cases.

3.2 Proof of Efficiency

Theorem 2. When both the missing mechanism and the regression model are set correctly,
the doubly robust estimator has minimum variance in specific models with an augment term
(semi-parametric efficiency).
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Proof. The proof is similar to Robins et al. (1994). Consider augment term A(ϕ).
If all the data of z = 1 were observed, let DF (θ) = zψ(y|θ),

1

N +M

N+M∑
i=1

{
DF (θ)− (1− zi)Eyi|xi

[ψ(yi|θ)]
}
= 0, (14)

then, the solution θ̂ for θ will be a consistent estimator. However, there is missingness in this
setting; therefore, we use D(θ,ϕ) = r

πD
F (θ)−A(ϕ) and estimate θ by solving

1

N +M

N+M∑
i=1

{
Di(θ,ϕ)− (1− zi)Eyi|xi

[ψ(yi|θ)]
}
= 0. (15)

where, π = p(r = 1|x), A(ϕ) = r−π
π ϕ, and

D(θ,ϕ) = DF (θ) +
r − π

π

{
DF (θ)− ϕ

}
. (16)

D(θ,ϕ)− (1− z)Ey|x[ψ(y|θ)] of equation (15) is equal to

DF (θ) + (1− z)Ey|x[ψ(y|θ)] +
r − π

π

{
DF (θ)− ϕ

}
. (17)

Because under the condition of x, y and r are independent, the first and second terms do not
correlate and the variance of equation (17) is

V ar
(
DF (θ) + (1− z)Ey|x[ψ(y|θ)]

)
+ Ex

[
1− π

π
Ey|x

[{
DF (θ)− ϕ

}⊗2
]]

4. (18)

Following ϕ∗ minimize (18) and according to Proposition2.2 of Robins et al. (1994), the ϕ∗

minimizing the variance of equation (17) minimizes the asymptotic variance of θ̂,

ϕ∗ = Ey,z|x
[
DF (θ)

]
= zEy|x [ψ(y|θ)] . (19)

Then, equation (17) will be

zr

π
ψ(y|θ) + z

(
1− r

π

)
Ey|x[ψ(y|θ)] + (1− z)Ey|x[ψ(y|θ)]. (20)

This is the estimating equation of the doubly robust estimator.

3.3 Asymptotic Distribution

We have shown that our doubly robust estimator is M-estimator. The asymptotic distribution
of our estimator is the following normal distribution:

√
N(θ̂ − θ0) ∼ N(0,V(θ0)), (21)

V(θ0) can be estimated by V̂(θ̂) = Â(θ̂)−1B̂(θ̂){Â(θ̂)−1}t,
where

Â(θ̂) = − 1

N +M

N+M∑
i=1

∂

∂θt
m(yi,xi, zi, ri, θ̂),

B̂(θ̂) =
1

N +M

N+M∑
i=1

m(yi,xi, zi, ri, θ̂)m(yi,xi, zi, ri, θ̂)
t,

m(yi,xi, zi, ri,θ) =
ziri
πi

ψ(yi|θ) + zi

(
1− ri

πi

)
Eyi|xi

[ψ(yi|θ)] + (1− zi)Eyi|xi
[ψ(yi|θ)].

4Define A⊗2 = AA′.
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4 SIMULATION STUDY

In the simulation study, we generate 1,000 datasets in which the total sample size (M +N) is
3,000. All statistical computations in this paper are carried out by R version 3.5.1. There are two
covariates in the dataset, x1i, x2i following Student’s t-distributions with freedom of degree ν = 5
and with parallel transport so as to the sample mean equals to 1. We arbitrarily set the regression
model and missing mechanism. y is calculated by the regression model, p(yi|x1i, x2i,β). Then,
2,000 (= M) observations are divided as random sampling data among the 3,000 observations
{x1m, x2m}2000m=1 and the remaining 1,000 (= N) observations are divided as candidates of biased
sampling data. Whether each unit is observed in the biased sampling data is determined by the
following probabilistic missing mechanism (logistic function), p(r = 1|x1i, x2i,α)5. Suppose we
are interested in the population mean of y, ie., θ = E[y] and ψ(y|θ) = y − θ.

To investigate the properties of the proposed doubly robust-type estimator, we conduct
simulations in the following two conditions:

(i) the case in which the regression model is misspecified but the missing mechanism is cor-
rectly specified,

(ii) the case in which the missing mechanism is misspecified but the regression model is cor-
rectly specified.

First, we consider the case in which the regression model is misspecified. So as to generate
the simulation datasets, we set the regression model as a quadratic function y = xtBx + ε
and the logit of missing mechanism as a linear function p(r = 1|x,α) = h(x)tα + ε 6, where
h(x) = (1, x1 − 1

2000

∑2000
m=1 x1m, x2 −

1
2000

∑2000
m=1 x2m)t, ε ∼ N(0, 1).

We compared the following three methods:

• REG: Monte Carlo integration based on MLE, where the regression function is misspecified
as liner.

• IPW: inverse probability weighting estimator based on the propensity score by the method
of Nevo (2003), where the missing mechanism is correctly specified as linear.

• PROP-DR: the proposed doubly robust estimation method, where the regression function
is misspecified as liner.

Table 1: Average of estimates θ = E[y] when the regression function is misspecified
True value REG IPW PROP-DR

mean 0.000 -0.127 0.003 -0.087
SD 0.119 0.116 0.105
MSE 0.026 0.011 0.015
MSEratio 170.81 70.52 100.00

Table 1 reports the simulation results when the regression model is misspecified as linear;
however, in the data-generating model, the regression function is set to be quadratic. ”True
value” is the sample mean of y in random sampling data. The row ”mean” shows the average of
estimation results from 1,000 datasets and the row ”SD” shows the standard deviations. ”MSE”
means mean squared error and ”MSEratio” shows the ratio of MSE of PROP-DR and MSE of
another method when the ”MSEratio” of PROP-DR is set as 100. We compare three types of
estimator that use only biased sampling data and the covariates x1, x2 in random sampling data

5Because the missing mechanism is not a function of y, Assumption 1 for strong ignorability is satisfied.

6We set B =

 −3.0 0.8 1.2
0.4 −0.2 −0.2
0.8 0.0 0.2

 and α =
(

0.4 −0.4 0.8
)t
.
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as auxiliary information. Although the IPW estimator provides the best estimates since the
missing mechanism is correctly specified, proposed estimator also works well even though the
regression model is misspecified.

Second, we consider the case in which the missing mechanism is misspecified. To generate
the simulation datasets, we set the logit of missing mechanism as a quadratic function p(r =
1|x,α) = h(x)tα+ ε and the regression model as a linear function y = xtβ+ ε 7, where h(x) =
(1, x1 − 1

2000

∑2000
m=1 x1m, x2 − 1

2000

∑2000
m=1 x2m, x

2
1 − 1

2000

∑2000
m=1 x

2
1m, x

2
2 − 1

2000

∑2000
m=1 x

2
2m)t, ε ∼

N(0, 1).
We compared the following three methods:

• REG: Monte Carlo integration based on MLE, where the regression function is correctly
specified as linear.

• IPW: inverse probability weighting estimator based on the propensity score by the method
of Nevo (2003), where the missing mechanism is misspecified as liner.

• PROP-DR: the proposed doubly robust estimation method, where the missing mechanism
is misspecified as liner.

Table 2: Average of estimates θ = E[y] when the Assignment mechanism is misspecified
True value REG IPW PROP-DR

mean 0.000 0.000 -0.023 0.000
SD 0.057 0.0084 0.057
MSE 0.0025 0.0070 0.0026
MSEratio 97.02 272.15 100.00

Table 2 reports the simulation results when the logit of the missing mechanism is misspecified
as linear; however, in the data-generating model, the logit is set to be quadratic. The true
value is the sample mean of y in random sampling data. Although REG provides the best
estimates because the regression model is correctly specified, the mean squared error (MSE)
of the proposed estimator is almost the same as REG even though the missing mechanism is
misspecified.

5 EMPIRICAL APPLICATION

We apply our method to marketing data in which the target of inference is the population
mean of the purchasing interval of drink products. We consider the case where we have two
datasets, the biased sampling dataset (purchasing interval and covariate information obtained
in a specific store chain) and the random sampling dataset (only covariate information obtained
from all the competing stores in our dataset). In this case, y in Figure 2 is the purchasing
interval of drink products, θ is the population mean of purchasing intervals E[y] and x in that
figure are covariates as stated below. Small data (z = 1) in Figure 2 corresponds to the biased
sampling dataset of a specific store chain and big data (z = 0) in that figure is equivalent to
covariates data of all stores. The purchasing interval represents purchasing frequency, which is
a quite important index in marketing. We show that in our marketing data, the sample mean
of the biased sampling dataset is smaller than the (true) sample mean of the random sampling
dataset. Our doubly robust estimator allows us to correct that bias by using the auxiliary
information, ie., covariates of the random sampling dataset.

7We set α =
(

0.4 0.1 0.1 −0.4 0.6
)
and β =

(
0 0.8 −0.8

)t
.
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5.1 Data

We use the SCI data by Intage Inc. in Japan. The SCI is scanner panel data and is one of the
most popular purchase panel datasets in Japanese marketing. The SCI data contains purchase
incidences, purchase products, number of products the consumer purchases, amounts, prices,
and purchase stores with date and time. Additionally, the SCI has records about covariates of
consumers such as age, gender, income, and so on.

We analyze the purchasing interval of drink products like soft drinks and alcoholic beverages,
coffee, tea etc. There are covariates: Age Class (in five-year increments), Gender, Occupation
Code, logarithms for Individual Annual Income, Living with Spouse or Not, Living with Child
(17-years-old or younger), Owning a Car or Not, and Educational Background Code. The data
period is from July 2015 to June 2016. We use the purchasing interval of drink products and
the covariates of a specific supermarket store chain, that is popular in Japan and with stores
throughout the country, as biased sampling dataset8. We regard the covariate information from
the whole SCI dataset as a random sampling dataset 9. The sample size of biased sampling
dataset is n = 3870 and that of random sampling one is M = 55620. In this setup, we can
compute the sample mean of purchasing intervals of full SCI data and call this value ”true”
value. The dataset of consumers in that store chain can be thought as a biased sampling
dataset because the sample mean of a biased sampling dataset is smaller than the true sample
mean of a random sampling dataset as Table 3.

5.2 Result

We use the following three methods:

• REG: Monte Carlo integration based on MLE, where the regression model is an exponential
regression, linear about the parameter10.

• IPW: inverse probability weighting estimator based on the propensity score by the method
of Nevo (2003), where the logit function is liner.

• PROP-DR: the proposed doubly robust estimation method.

Table 3: Difference between the estimation result for mean of purchasing interval θ
True Sample mean of biased data REG IPW PROP-DR

θ 7.993 6.774 8.074 7.208 7.974
s.e. 0.137 0.008 0.348 0.100

Table 3 reports the results of this analysis. Ture means the sample mean of purchasing
intervals in the random sampling dataset, Sample mean of biased data is computed by just
taking the average of those in the biased sampling dataset, and s.e. represents the standard
error11 and Bias/SE is computed by |True − θ̂|/SE. All three methods can correct the bias
between the true and sample means of biased data. Especially, we can correct the bias greatly
by the proposed method.

8Purchasing interval of each observation is average of purchasing intervals of each consumer. The purchasing
intervals of each consumer are intervals between their purchases from any store in the SCI data.

9In both biased and random sampling datasets, we use records of consumer who have bought drink products
more than two times from any stores in the period.

10For example, see Cameron and Trivedi (2005) for a review of exponential regression and estimation method
for such non-linear models.

11The standard errors are computed using asymptotic variance with the assumption that both the regression
model and the missing mechanism are correctly specified. The row of SE shows that the standard error of REG
is quite small because in REG calculation we use M = 55620 observations.
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6 USE ONLY MOMENT INFORMATION AS AUXILIARY
information

In previous sections, we use a unit-level covariates dataset as auxiliary information. In this
section, we also develop a method that needs only moment information as auxiliary information
(like Figure 3).

6.1 Setup

In this section, we assume Assumption 1 (strong ignorability) and the following two conditions:

Assumption 3. Let h̄(x) be an J-dimensional function and m(x) be a K-dimensional function
(h̄(x) and m(x) are allowed to contain some elements that are bijections from one to the others).

Suppose that E[h̄(x)] and E[m(x)] are obtained as the auxiliary moment information.
Then, at least one of the following conditions is satisfied:

(i) A missing mechanism p(r = 1|x) can be correctly specified with h(x):
logit[p(r = 1|x)] = h(x)tα, where, h(x) = h̄(x)− E[h̄(x)] and α is a parameter vector.

(ii) A regression model p(y|x) can be correctly specified with m(x):
p(y|x) = m(x)tβ, where, β is a parameter vector.

Assumption 4. Let β be a parametor vector of the regression model:
Ex[Ey|x,β[ψ(y|θ)]] is a function of E[m(x)],β and θ.

Let h(x) and m(x) be represented together by g(x). We need Assumption 3 in order
to develop models in the case where only moment information can be used as the auxiliary
information. This assumption means that if the researchers want to develop a complex model
with higher-degree covariates, then they have to obtain higher-degree moments. For example,
if the researchers want to develop a quadratic regression model, they must obtain up to not the
first moment, but up to the second moment.

6.2 Doubly Robust Estimator

Model 1: missing mechanism

A missing mechanism is similar to previous sections. Let the logit of the propensity score be a
linear equation about h(x),

logit[p(r = 1|x)] = h(x)tα, (22)

where α ∈ RJ is parameters for logit 12.

Then, with the biased data xi and by solving simultaneous equations:

n∑
i=1

1

p(r = 1|xi,α)
=

n

p̂(r = 1)
(23)

n∑
i=1

h(xi)

p(r = 1|xi,α)
= 0 , (24)

α̂ can be estimated and the propensity score can be calculated using the estimated value.
In previous sections, we compute p̂(r = 1) by using a unit-level covariates dataset; however, in

12In the case in which x contains a constant as a first element, h(x) may contain the element constant −
E[constant] = 0. To contain a constant in h(x), this zero element can be replaced by 1.
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the setting of this section we do not know the datasets. We only know the moment information
of the covariates. Because p(r = 1) = n

N , we can compute p̂(r = 1) as follows:

p̂(r = 1) =
E[h̄(xi)j ]

1
n

∑n
i=1

h̄(xi)j
p(r=1|x,α)

, (25)

where h̄(xi)j is any j-th component of h̄(xi). This equation is derived from E[h̄(xi)j ] =
1
N

∑n
i=1

rih̄(xi)j
p(r=1|x,α) .

Calculate the IPW estimator using weighting by the inverse of the estimated propensity
score p(r = 1|xi, α̂).

Model 2: regression model

From the assumption that y and r are independent when x is conditioned, p(y|r = 1,x,β) =
p(y|x,β). Therefore, the regression model estimated from biased data coincides with that
estimated from random sampling data.

By assumption 4, Ex,y|β[ψ(y|θ)] = Ex[Ey|x,β[ψ(y|θ)]] can be represented with E[m(x)],β

and θ. The solution θ̂ of the following equation (26) is a consistent estimator for the parameter
θ0 if the regression model is correctly set:

Ex,y|β̂[ψ(y|θ)] = 0, (26)

where β̂ is a consistent estimator for the coefficient of the regression model.

Doubly robust estimator

If at least one of the two models is set correctly, then the solution θ̂ of the following equation
(27) will be a consistent estimator for the parameter θ0.

1

N

N∑
i=1

{
ri

p(r = 1|xi,α)
ψ(yi|θ) +

(
1− ri

p(r = 1|xi,α)

)
Eyi|xi,β[ψ(yi|θ)]

}
= 0, (27)

When N is enough large, 1
N

∑N
i=1Eyi|xi,β[ψ(yi|θ)] = Ex,y|β[ψ(y|θ)]. By definition of ri, equa-

tion (27) will be

1

N

n∑
i=1

{
1

p(r = 1|xi,α)

(
ψ(yi|θ)− Eyi|xi,β[ψ(yi|θ)]

)}
+ Ex,y|β[ψ(y|θ)] = 0. (28)

We need to estimate N, p(r = 1|xi,α) and p(yi|xi,β), so replace these by the estimated
value N̂ and probability density functions p(r = 1|xi, α̂), p(yi|xi, β̂). We can estimate N̂ by

N̂ =

∑n
i=1

h̄(xi)j
p(r=1|x,α̂)

E[h̄(xi)j ]
. After replacing, the estimating equation will be

1

N̂

n∑
i=1

{
1

p(r = 1|xi, α̂)

(
ψ(yi|θ)− Eyi|xi,β̂

[ψ(yi|θ)]
)}

+ Ex,y|β̂[ψ(y|θ)] = 0. (29)

The second term of equation (29) can be calculated when we satisfy assumption 4.

Monte Carlo integration

The doubly robust estimator of estimate equation (29) contains the conditional expectations
Eyi|xi,β̂

[·]. In the case where ψ(y|θ) is a continuous function, we have to solve the integral,
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which is often difficult to do. If the researchers cannot solve the integral analytically, than thay
can replace it with Monte Carlo integration.

1

n

n∑
i=1

{
1

p(r = 1|xi, α̂)

(
ψ(yi|θ)−

1

L

L∑
l=1

ψ(yil|θ)

)}
+ Ex,y|β̂[ψ(y|θ)] = 0. (30)

where, yil ∼ p(y|xi, β̂), l = 1, . . . , L, i = 1, . . . , n.

Example

We provide an example for estimating the population moment that shows when Assumption 3
and 4 are satisfied. We consider the case where we want to estimate the population moment
of y (one dimension) and we have two covariates x = (x1, x2)

t. There are biased sampling
dataset and auxiliary first moment information E[x1] and E[x2]. In this case, θ = E[y] and
ψ(y) = y − θ. Suppose that the true regression model is p(y|x,β) = β0 + β1x1 + β2x2 + ε =
m(x)tβ + ε, where m(x) = (1, x1, x2)

t and the true missing mechanism is p(r = 1|x,α) =
h1(x)α1 + h2(x)α2 + ε = h(x)tα + ε, where h1(x) = (x1, x2)

t − E[(x1, x2)
t] and h2(x) =

(x21, x
2
2)

t − E[(x21, x
2
2)

t]. We estimate θ = E[y] by using the doubly robust estimator with the
regression model correctly specified as p(y|x,β) = m(x)tβ + ε and the missing mechanism
misspecified as p(r = 1|x,α) = h1(x)α1 + ε (we cannot contain a term of h2(x) in the missing
mechanism because we do not know the second moment E[x21] and E[x22]). Although a missing
mechanism is misspecified, Assumption 3 is satisfied because we correctly specified a regression
model and we have E[m(x)] = (E[x1], E[x2])

t as auxiliary information. This case satisfies
Assumption 4 because Ex[Ey|x,β[ψ(y|θ)]] = Ex[Ey|x,β[y]] − θ = Ex[m(x)]tβ − θ. Moreover,
Assumption 4 can be satisfied if the regression model is linear about β. Therefore, if we can
assume Assumption 1, then the doubly robust estimator provides a consistent estimator.

Asymptotic Properties

Proof of Consistency

We denote p(r = 1|x, α̂) = π, Ey|x,β̂[ψ(y|θ)] = Ey|x[ψ(y|θ)], and Ex,y|β̂[ψ(y|θ)] = Ex,y[ψ(y|θ)]
in the proof.

Theorem 3. If either the missing mechanism or the regression model is set correctly, then the
doubly robust estimator has consistency.

Proof. We prove this theorem by showing that the doubly robust estimator is M-estimator,
which has consistency.

(i) When propensity score p(r = 1|x, α̂) = π is correctly specified
In this case, regression model p(y|x,β) may be misspecified. This implies Ey|x[ψ(y|θ)] may

also be misspecified. We denote this expectation as Ẽy|x[ψ(y|θ)].
As n→ ∞ (and n

N = p(r = 1) > 0),

1

N

N∑
i=1

{ri
π
ψ(yi|θ) +

(
1− ri

π

)
Ẽyi|xi

[ψ(yi|θ)]
}

→Ex

[
Er|x

[ r
π

]
Ey|x [ψ(y|θ)] + Er|x

[
r − π

π

]
Ẽy|x[ψ(y|θ)]

]
=Ex

[
Ey|x [ψ(y|θ)]

] (
∵ Er|x

[
r − π

π

]
=
π − π

π
= 0

)
=E [ψ(y|θ)] .

Therefore, as n→ ∞ (and n
N = p(r = 1) > 0), θ̂

p−→ θ0.
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(ii) When the regression model p(y|x,β) is correctly specified
In this case, the missing mechanism p(r = 1|x,α) = π may be misspecified. This implies

that estimated N̂ may be incorrect. We denote these π and N as π̃ and Ñ .
Equation (29) can be represented as follows:

1

Ñ

n∑
i=1

{
1

π̃

(
ψ(yi|θ)− Eyi|xi

[ψ(yi|θ)]
)}

+ Ex,y[ψ(y|θ)] = 0. (31)

As n→ ∞ (and n
Ñ

= p̂(r = 1) > 0),

n

Ñ
· 1
n

n∑
i=1

{
1

π̃

(
ψ(yi|θ)− Eyi|xi

[ψ(yi|θ)]
)}

+ Ex,y[ψ(y|θ)]

→p̂(r = 1) · Ex

[
Er|x

[ r
π̃

]
Ey|x [ψ(y|θ)− ψ(y|θ)]

]
+ Ex,y[ψ(y|θ)]

=Ex,y[ψ(y|θ)]
=E [ψ(y|θ)] .

Therefore, as n→ ∞ (and n
Ñ

= p̂(r = 1) > 0), θ̂
p−→ θ0.

The proposed estimator has consistency in both cases.

Proof of Efficiency

Theorem 4. When both the missing mechanism and the regression model are set correctly,
the doubly robust estimator has minimum variance in specific models with the augment term
(semi-parametric efficiency).

Proof. If all the samples were observed, then let DF (θ) = ψ(y|θ),

1

N

N∑
i=1

{
DF (θ)

}
= 0, (32)

then, the solution θ̂ for θ will be a consistent estimator. However, there is missingness in this
setting; therefore, we use D(θ,ϕ) = r

πD
F (θ)−A(ϕ) and estimate θ by solving

1

N

N∑
i=1

{Di(θ,ϕ)} = 0. (33)

where π = p(r = 1|x), A(ϕ) = r−π
π ϕ, and

D(θ,ϕ) = DF (θ) +
r − π

π

{
DF (θ)− ϕ

}
. (34)

Because under the condition of x, y and r are independent, the first and second terms do not
correlate and the variance of D(θ,ϕ) is

V ar
(
DF (θ)

)
+ Ex

[
1− π

π
Ey|x

[{
DF (θ)− ϕ

}⊗2
]]
. (35)

Following ϕ∗ minimize (35) and according to Proposition2.2 of Robins et al. (1994), the ϕ∗

minimizing the variance of D(θ,ϕ) minimizes the asymptotic variance of θ̂,

ϕ∗ = Ey|x
[
DF (θ)

]
= Ey|x [ψ(y|θ)] . (36)

Then, D(θ,ϕ) will be
r

π
ψ(y|θ) +

(
1− r

π

)
Ey|x[ψ(y|θ)]. (37)

This is the estimating equation of the doubly robust estimator.
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Asymptotic Distribution

We have shown that our doubly robust estimator is M-estimator. The asymptotic distribution
of our estimator is the following normal distribution:

√
N(θ̂ − θ0) ∼ N(0,V(θ0)), (38)

V(θ0) can be estimated by V̂(θ̂) = Â(θ̂)−1B̂(θ̂){Â(θ̂)−1}t,
where

Â(θ̂) = − 1

N

N∑
i=1

∂

∂θt
m(yi,xi, ri, θ̂),

B̂(θ̂) =
1

N

N∑
i=1

m(yi,xi, ri, θ̂)m(yi,xi, ri, θ̂)
t,

m(yi,xi, ri,θ) =
ri
π
ψ(yi|θ) +

(
1− ri

π

)
Eyi|xi

[ψ(yi|θ)].

Simulation

We conduct two types of simulation studies when auxiliary information is moment information.
One is the estimation of population moment and the other is the estimation of the population
parameters for the logistic model.

Estimation of population moment

In this simulation study, the goal is to estimate population moment. We generate 1,000 datasets
in which the total sample size (M+N) is 3,000. There are two covariates in the dataset, x1i, x2i,
following Student’s t-distributions with freedom of degree ν = 3 and with parallel transport so
that the sample mean equals to 1. We arbitrarily set the regression model and missing mecha-
nism. y is calculated by the regression model, p(yi|x1i, x2i,β). Then, 2,000 (=M) observations
are divided as random sampling data among the 3,000 observations {x1m, x2m}2000m=1 and we use
their sample mean as the auxiliary information. The remaining 1,000 (= N) observations are
divided as candidates of biased sampling data. Whether each unit is observed in the biased sam-
pling data is determined by the following probabilistic missing mechanism (logistic function):
p(r = 1|x1i, x2i,α). Suppose that we are interested in a population mean of y, ie., θ = E[y] and
ψ(y|θ) = y − θ.

To investigate the properties of the proposed doubly robust-type estimator, we conduct
simulations in the following two conditions:

(i) the case in which the regression model is misspecified but the missing mechanism is cor-
rectly specified,

(ii) the case in which the missing mechanism is misspecified but the regression model is cor-
rectly specified.

First, we consider the case in which the regression model is misspecified. To generate the
simulation datasets, we set the regression model as a quadratic function y = xtBx + ε and
the logit of the missing mechanism as a linear function p(r = 1|x,α) = h(x)tα + ε 13, where
h(x) = (1, x1 − 1

2000

∑2000
m=1 x1m, x2 −

1
2000

∑2000
m=1 x2m)t, ε ∼ N(0, 1).

We compared the following three methods:

• REG: Calculate E[y] based on MLE, where the regression function is misspecified as liner.

13We set B =

 −3.0 0.8 1.2
0.4 −0.2 −0.2
0.8 0.0 0.2

 and α =
(

0.4 −0.4 0.8
)t
.
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• IPW: inverse probability weighting estimator based on the propensity score by the method
of Nevo (2003), where the missing mechanism is correctly specified as linear.

• PROP-DR: the proposed doubly robust estimation method, where the regression function
is misspecified as liner.

Table 4: Average of estimates θ = E[y] when the regression function is misspecified
True value REG IPW PROP-DR

mean 0.003 -0.328 0.006 -0.045
SD 0.85 0.33 0.29
MSE 0.89 0.20 0.17
MSEratio 510.37 116.01 100.00

Table 4 reports the simulation results when the regression model is misspecified as linear;
however, in the data-generating model, the regression function is set to be quadratic. ”True
value” is the sample mean of y in random sampling data. The row ”mean” shows the average
of estimation results from 1,000 datasets and the row ”SD” shows their standard deviations.
”MSE” means mean squared error and ”MSEratio” shows the ratio of MSE of PROP-DR and
MSE of another method when the ”MSEratio” of PROP-DR is set as 100. We compare three
types of estimator that use only biased sampling data and the first moment of the covariates
x1, x2 as auxiliary information. Although the missing mechanism is correctly specified, the
proposed estimator provides the minimumMSE even though the regression model is misspecified.

Second, we consider the case in which the missing mechanism is misspecified. To generate
the simulation datasets, we set the logit of the missing mechanism as a quadratic function p(r =
1|x,α) = h(x)tα+ε and the regression model as a linear function y = xtβ+ε 14, where h(x) =
(1, x1 − 1

2000

∑2000
m=1 x1m, x2 − 1

2000

∑2000
m=1 x2m, x

2
1 − 1

2000

∑2000
m=1 x

2
1m, x

2
2 − 1

2000

∑2000
m=1 x

2
2m)t, ε ∼

N(0, 1).
We compared the following three methods:

• REG: Calculate E[y] based on MLE, where the regression function is correctly specified as
linear.

• IPW: inverse probability weighting estimator based on the propensity score by the method
of Nevo (2003), where the missing mechanism is misspecified as liner.

• PROP-DR: the proposed doubly robust estimation method, where the missing mechanism
is misspecified as liner.

Table 5: Average of estimates θ = E[y] when the assignment mechanism is misspecified
True value REG IPW PROP-DR

mean -0.002 -0.003 -0.046 -0.004
SD 0.065 0.16 0.068
MSE 0.0027 0.026 0.0032
MSEratio 85.71 820.19 100.00

Table 5 reports the simulation results when the logit of the missing mechanism is misspecified
as linear; however, in the data-generating model, the logit is set to be quadratic. The true
value is the sample mean of y in random sampling data. Although REG provides the best
estimates because the regression model is correctly specified, the mean squared error (MSE)
of the proposed estimator is almost the same as REG even though the missing mechanism is
misspecified.

14We set α =
(

0.4 0.1 0.1 −0.4 0.6
)
and β =

(
0 0.8 −0.8

)t
.
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Estimation of population parameters: logistic function

We also conduct a simulation study to estimate the population parameters of logistic functions.
Let be y = (y1, y2)

t, y1 = (0, 1), y2 ∈ R. The goal is to estimate population parameters

θ = (θ1, θ2)
t for logistic function Pr(y1 = 1|y2) = exp(θ1+θ2y2)

1+exp(θ1+θ2y2)
and the estimating equation is

the score function of logistic regression ψ(y|θ) =
(
y1 − 1

1+exp(−θ1−θ2y2)

)
y2, where y2 = (1, y2)

t.

Let x ∈ R be a one-dimensional covariate. We consider the case in which we have biased sampling
data {xi,yi}ni=1 and auxiliary moment information E[y1] = Pr(y1 = 1), E[x|y1 = 0], E[x2|y1 =
0], E[x|y1 = 1], E[x2|y1 = 1]15. We generate 1,000 datasets in which the total sample size
(M +N) is 8,000 with an arbitrarily set regression model and missing mechanism. Then, 5,000
(= M) observations are divided as random sampling data among the 8,000 observations and
we use their moments as the auxiliary information. The remaining 3,000 (= N) observations
are divided as candidates of biased sampling data. Whether each unit is observed in the biased
sampling data is determined by the following probabilistic missing mechanism (logistic function).
The detail of data generation is explained below.

To investigate the properties of the proposed doubly robust-type estimator, we conduct
simulations in the following two conditions:

(i) the case in which the regression model is misspecified but the missing mechanism is cor-
rectly specified.

(ii) the case in which the missing mechanism is misspecified but the regression model is cor-
rectly specified.

First, we consider the case in which the regression model is misspecified16. We generate the
data by p(y2, x|y1 = j) = p(x|y2, y1 = j)p(y2|y1 = j), for j = 0, 1,17 where p(y2|y1 = j) are
normal distributions N(4, 1) and N(3, 1). The regression models p(x|y2, y1 = j), for j = 0, 1 are
set as the same quadratic function y2 = (1, x, x2)β + ε and the logit of the missing mechanism
is set as a linear function p(r = 1|x,α) = h(x)tα+ ε 18, where h(x) = (1, x− 1

5000

∑5000
m=1 xm)t,

ε ∼ N(0, 1).
We compared the following three methods:

• REG: Because conditional probability distributions p(x|y1 = j) are normal distributions
and we have moment information E[y1], E[x|y1 = j], E[x2|y1 = j], for j = 0, 1, we
can draw x|y1 = j randomly from p(x|y1 = j). Calculate β based on MLE, where
the regression functions p(y2|x, y1 = j)for j = 0, 1 is misspecified as linear. Using the
estimated regression model, we can conduct Monte Carlo integration for E[ψ(y|θ)] =∫ ∑

j=0,1 {ψ(y1 = j, y2|θ)p(y2|x, y1 = j)p(x|y1 = j)Pr(y1 = j)} dx and estimate θ by solv-
ing this equation.

• IPW: inverse probability weighting estimator based on the propensity score by the method
of Nevo (2003), where the missing mechanism is correctly specified as linear19.

• PROP-DR: the proposed doubly robust estimation method, where the regression function
is misspecified as liner.

15In this simulation, the conditional expectations E[x|y1 = 0], E[x2|y1 = 0], E[x|y1 = 1], E[x2|y1 = 1] are
supposed to be given. If this situation is strange in practical data, then the population parameters of logit can
be estimated with auxiliary information Pr(y1 = 1) and unit-level random sampling covariate xi.

16While we generate data with a quadratic regression, we estimate the parameter with a linear model.
17If we generate data by p(y2, x|y1 = j) = p(y2|x, y1 = j)p(x|y1 = j), for j = 0, 1, then p(y2|y1 = j) are not

always normal distributions and the relationship between y1 and y2 is not always a true model. Therefore, we
generate data not by p(y2|x, y1 = j)p(x|y1 = j) but by p(x|y2, y1 = j)p(y2|y1 = j).

18We set β =
(

−0.8 −1.6 0.8
)t

and α =
(

0.4 −0.4
)t
.

19We calculate E[x] = Pr(y1 = 0)E[x|y1 = 0] + Pr(y1 = 1)E[x|y1 = 1] and E[x2] = Pr(y1 = 0)E[x2|y1 =
0] + Pr(y1 = 1)E[x2|y1 = 1] for the method of Nevo (2003).
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Table 6: Average of estimates θ = (θ1, θ2)
t when the regression model is misspecified

True value REG IPW PROP-DR

θ1 3.502 2.778 3.533 3.017
SD 0.124 0.394 0.176
MSE 0.532 0.168 0.256
MSEratio 208.12 65.69 100.00
θ2 -1.000 -0.779 -1.010 -0.849
SD 0.035 0.126 0.050
MSE 0.0050 0.017 0.025
MSEratio 201.72 68.62 100.00

Table 6 reports simulation results when the regression model is misspecified as linear; how-
ever, in the data-generating model, the regression function is set to be quadratic. ”True value”
is estimated in random sampling data. The row ”mean” shows the average of estimation re-
sults from 1,000 replications, and the row ”SD” shows their standard deviations. ”MSE” means
mean squared error and ”MSEratio” shows the ratio of MSE of PROP-DR and MSE of another
method when the ”MSEratio” of PROP-DR is set as 100. We compare three types of estimators.
Although the missing mechanism is correctly specified, the proposed estimator does not provide
much larger MSE than IPW. The MSE of the proposed estimator is twice as small as that for
REG.

Second, we consider the case in which the missing mechanism is misspecified20. (x, y2|y1 = 0)

and (x, y2|y1 = 1) are separately generated fromN

((
2
4

)
,

(
1 1/4

1/4 1

))
andN

((
1
3

)
,

(
1 1

4
1
4 1

))
.

This data-generation makes p(y2|y1 = j)for j = 0, 1 to be a normal distribution and p(y1|y2) to
be a logistic regression. Moreover, the regression models p(y2|x, y1 = j)for j = 0, 1 are linear.
To decide whether a unit is missing or observed, we set the logit of the missing mechanism as
a quadratic function p(r = 1|x,α) = h(x)tα + ε 21, where h(x) = (1, x − 1

5000

∑5000
m=1 xm, x

2 −
1

5000

∑5000
m=1 x

2
m)t, ε ∼ N(0, 1).

We compared the following three methods:

• REG: Because conditional probability distributions p(x|y1 = j) are normal distributions
and we have moment information E[y1], E[x|y1 = j], E[x2|y1 = j]for j = 0, 1, we can
draw x|y1 = j randomly from p(x|y1 = j). Calculate β based on MLE, where the re-
gression functions p(y2|x, y1 = j)for j = 0, 1 is correctly specified as linear. Using the
estimated regression model, we can conduct Monte Carlo integration for E[ψ(y|θ)] =∫ ∑

j=0,1 {ψ(y1 = j, y2|θ)p(y2|x, y1 = j)p(x|y1 = j)Pr(y1 = j)} dx and estimate θ by solv-
ing this equation.

• IPW: inverse probability weighting estimator based on the propensity score by the method
of Nevo (2003), where the missing mechanism is misspecified as linear22.

• PROP-DR: the proposed doubly robust estimation method, where the missing mechanism
is misspecified as linear.

Table 7 reports the simulation results when the logit of the missing mechanism is misspecified
as linear; however, in the data-generating model, the logit is set to be quadratic. The true value
is estimated in random sampling data. Although REG provides the best estimates because

20While we generate data with quadratic missing mechanism, we estimate the parameter with the linear missing
mechanism.

21We set α =
(

−0.4 0.2 0.2
)t
.

22We calculate E[x] = Pr(y1 = 0)E[x|y1 = 0] + Pr(y1 = 1)E[x|y1 = 1] and E[x2] = Pr(y1 = 0)E[x2|y1 =
0] + Pr(y1 = 1)E[x2|y1 = 1] for the method of Nevo (2003).
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Table 7: Average of estimates θ = (θ1, θ2)
t when the missing mechanism is misspecified

True value REG IPW PROP-DR

θ1 3.502 3.508 4.000 3.508
SD 0.253 0.259 0.255
MSE 0.076 0.328 0.077
MSEratio 98.83 426.12 100.00
θ2 -1.001 -1.002 -1.055 -1.002
SD 0.071 0.072 0.072
MSE 0.006 0.009 0.006
MSEratio 98.78 149.90 100.00

the regression model is correctly specified, the mean squared error (MSE) of the proposed
estimator is almost the same as for REG in both θ1 and θ2 even though the missing mechanism
is misspecified.
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