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Abstract

Recent empirical studies document that knowledge spillovers attenuate and industry

localization decays with distance. It is thus imperative to detect localization accurately

especially at short distances. We propose a new approach to testing for localization

that corrects the first-order bias at and near the boundary in existing methods while

retaining all desirable properties at interior points. Employing the NBER U.S. Patent

Citations Data File, we illustrate the performance of our localization measure based

on local linear density estimators. Our results suggest that the existing kernel density

methods and regression approaches can be substantially biased at short distances.
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1 Introduction

Localization – concentration over and above some reference distribution of economic activity

– is perhaps the most salient feature of the spatial economy. Since the seminal works of

Jaffe et al. (1993) and Ellison and Glaeser (1997), the localization of knowledge spillovers and

that of industries have been detected largely within administrative units such as states and

metropolitan statistical areas (MSAs).1 It is now widely recognized that localization results

differ depending on the chosen spatial units, which is known as the modifiable areal unit

problem (Gehlke and Biehl, 1934).

The recent availability of micro-geographic data has spurred the development of distance-

based methods that do not rely on administrative units. Duranton and Overman (2005) and

Murata et al. (2014) conduct kernel-density (henceforth K-density) estimations to smooth

the distribution of distances between establishments or inventors. Belenzon and Schankerman

(2013) and Kerr and Kominers (2015) take regression approaches using dummy variables for

distance rings, each of which is generated by discretization of distances. These two distance-

based methods have shed light on detailed location patterns.

Yet, statistical theory shows that K-density estimations (even when adopting a reflection

method) have the first-order bias at short distances (Jones, 1993; Marron and Ruppert, 1994;

Simonoff, 1996, Section 3.2),2 whereas distance-ring dummy-variable (DD) regressions are

sensitive to the way of discretizing the micro-geographic data.3 Since a large number of recent

empirical studies document that knowledge spillovers attenuate and industry localization

decays with distance,4 it is imperative to detect localization more accurately especially at

short distances.

We thus propose a new approach to testing for localization using micro-geographic data,

which allows us to overcome the problems with DD regressions and K-density estimations.

The idea is to combine key ingredients of the existing discretizing and smoothing methods as in

the following two steps. In the first step, we discretize the micro-geographic data into distance

1Put differently, the extent of localization is limited within states or MSAs, and the analysis abstracts
from the relative position of spatial units by making, for example, the distance from New York to Boston
equivalent to that of New York to Los Angeles.

2For the interested reader, this statistical property is provided in Appendix A.1.
3For example, to detect localization at 4 km, we need to focus on the second bin if the binwidth is 3 km.

However, if the binwidth is 5 km, we need to examine the first bin. Hence, the localization result differs
depending on the binwidth, which may be viewed as a variant of the modifiable areal unit problem.

4Indeed, these results are well documented in the literature (e.g., Rosenthal and Strange, 2003; Duranton
and Overman, 2005, 2008; Arzaghi and Henderson, 2008; Belenzon and Schankerman, 2013; Murata et al.,
2014; Buzard et al., 2015; Carlino and Kerr, 2015; Kerr and Kominers, 2015).
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bins as in DD regressions and count the number of observations in each bin to construct a

histogram. In the second step, we smooth the histogram to obtain a local linear density

(L-density) estimator, i.e., using the distance at each bin center and the corresponding height

of the histogram, we conduct a local linear regression, which is a smoothing technique as in

K-density estimations. Applying the same two-step procedure to a control sample generated

by randomization and taking the difference between the two estimates – one capturing the

spatial distribution of an observed sample and the other capturing that of a control sample

– we construct a new localization measure that enables us to test if there is a significant

departure from randomness.

Our new measure derived from such L-density estimations – local linear regressions using

the pre-binned data – has advantages over the existing discretizing and smoothing methods

for at least two reasons.

First, one may argue that, instead of the L-density estimations, the existing K-density

estimations could be used as the latter also rely on a smoothing technique. While the K-

density method displays only the second-order bias at interior points, it suffers from the

first-order bias at short distances (where localization is most likely to occur).5 In contrast,

the L-density estimators have the second-order bias even at short distances.

Second, one could stop at the first step of the L-density estimations and obtain a local-

ization measure from binning per se. However, such a measure based on histograms is shown

to be essentially the same as the localization measure generated by DD regressions, which is

sensitive to the way of discretizing the micro-geographic data.6 We cope with this problem

arising from discretization by conducting the local linear regressions in the second step.

In a nutshell, our localization measure, which combines binning and smoothing, resolves

the issue of discretization and has a better property at and near the boundary while retaining

all desirable properties of the existing methods at interior points.

To illustrate the performance of our L-density measure relative to the K-density measure,

we employ the NBER U.S. Patent Citations Data File (Hall et al., 2001). Using the data

on observed citation distances for all patent classes, we first show that the estimated K-

density with (or without) reflection is far below the estimated L-density at the boundary.

5In addition, if the kernel is symmetric and differentiable like the Gaussian kernel that is often used in the
literature, the K-density estimator with reflection must have zero derivative at the boundary even when the
true density does not (Silverman, 1986, Section 2.10).

6Furthermore, the histogram estimators have the first-order bias even at interior points when the derivative
of the true density is not zero (Simonoff, 1996, Section 2.1).
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Furthermore, this underestimation at the boundary induces overestimation near the boundary

since the densities must sum to one over the entire domain of distances (see Figure 1 for these

results and Section 4.1 where we discuss them in detail).

Insert Figure 1

The first-order bias caused by theK-density estimations is not offset even when we perform

our localization tests by taking the difference between the actual and counterfactual distribu-

tions.7 The reason is that as shown below the actual distribution is more right skewed (i.e.,

the mass of the actual distribution is concentrated in relatively shorter distances) than the

counterfactual ones, and thus suffers more from the first-order bias at short distances.

To see this more clearly, we turn to the disaggregated analysis at the patent class level.

The class-specific distance-based tests reveal that the L-density tests detect localization for

significantly more patent classes than the K-density tests. We further rank patent classes by

the magnitude of the localization indices, and find that the ranking differs between the K-

and L-density methods. This result suggests that the localization indices based on the K-

and L-densities provide a different piece of information. Our L-density approach will help

to revisit the determinants and shapes of agglomeration and coagglomeration, given that the

K-density indices have been incorporated into empirical specifications in that literature (see,

e.g., Ellison et al., 2010; Kerr and Kominers, 2015).

Since our main focus is on the difference between the K- and L-density methods at short

distances, we explore at which distance the K-density tests underestimate the number of

localized patent classes as compared to the L-density tests. It turns out that 40 out of 61

underestimated classes fall within the domain between 0 km and 100 km, which account for

66 % of the number of underestimated classes. The K-density tests thus underestimate the

number of localized classes especially at short distances. Hence, eliminating the first-order

bias at short distances is of first-order importance. This is especially so because various

empirical studies show that knowledge spillovers attenuate and industry localization decays

within short distances. Correcting the K-density tests is crucial for a better understanding

of localization of economic activity as they have been widely used for detecting localization

ever since Duranton and Overman (2005).

The L-density estimator depends on the binwidth in the first step and on the bandwidth

in the second step. We thus examine how sensitive our L-density tests are to their choices.

7For the interested reader, this statistical property is provided in Appendix A.2.
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We find that neither the localization result for all distances nor our main result for short

distances is affected by different binwidth and bandwidth selections. Hence, the result that

the K-density tests underestimate the number of localized patent classes than the L-density

tests especially at short distances is fairly robust. All these results remain valid even when

we use the common bandwidth for the K- and L-density tests while allowing the binwidth for

the L-density tests to vary. Therefore, our results are not driven by binwidth and bandwidth

selections.

The rest of the paper is organized as follows. In Section 2 we propose a new approach

using L-density estimators and compare it to the existing density-based localization measure.

The relation of our L-density measure to alternative regression-based localization measures is

relegated to Appendix B. Sections 3 and 4 describe the data and the estimation procedures,

respectively. The estimation results and their robustness are reported in Section 4. Section 5

concludes.

2 Density-based localization measures

In this section, we propose a new approach to testing for localization using micro-geographic

data. We first present our localization measure based on the L-density estimators. We then

compare it to the existing density-based localization measure, namely the K-density measure

of localization. We finally introduce possible regression-based localization measures that we

discuss in Appendix B.

2.1 A new approach

Following the seminal work by Jaffe et al. (1993), we consider the case of localized knowledge

spillovers as evidenced by patent citations for ease of exposition. Our approach, however, can

be readily applied to other contexts such as industry localization and co-localization. As in

many studies on patent citations and knowledge spillovers, our analysis relies on the premises

that patents proxy new ideas, and that patent citations proxy flows of these ideas.

Our localization measure involves the difference between observed and control samples

as in Jaffe et al. (1993) and Duranton and Overman (2005). To begin with, we obtain the

L-density estimator for an observed sample from the following two steps. In the first step, we

discretize the micro-geographic data into distance bins and count the number of observations

5



in each bin to construct a histogram. In the second step, we smooth the histogram to generate

an L-density estimator, i.e., using the distance at each bin center and the corresponding height

of the histogram, we conduct a local linear regression. Applying the same two-step procedure

to a control sample generated by randomization, and taking the difference between the two

density estimators – one capturing the spatial distribution of an observed sample and the

other capturing that of a control sample, we construct a localization measure to see if there

is a significant departure from randomness. The new localization measure based on such

L-density estimations – local linear regressions using the pre-binned data – performs better

than the existing ones at and near the boundary, while retaining all desirable properties at

interior points.

To formally describe the procedure, let N c denote the set of cited-citing relationships.8

We define the distance dij between an originating patent i and a citing patent j for each

citation link (i, j) ∈ N c. Let r = 1, . . . , R denote the index of distance rings. We define the

r-th distance ring as (dr −∆/2, dr +∆/2], where dr is the midpoint of the r-th distance ring

and ∆ is the binwidth. For example, d1 corresponds to 5 km, d2 to 15 km, d3 to 25 km and

so on, in which case the binwidth ∆ is 10 km.

The L-density for observed citation distances can be estimated as in the following two

steps. In the first step, we classify the micro-geographic data on citation distances {dij}(i,j)∈N c

into R different rings. To this end, we define for each cited-citing relationship (i, j) ∈ N c an

indicator variable as

Dijr = I (dij ∈ (dr −∆/2, dr +∆/2]) , (1)

which takes one if dij is in the r-th distance ring and zero otherwise. For each distance ring r,

we count the number N c
r =

∑
(i,j)∈N c Dijr of citations. Let N

c =
∑R

r=1 N
c
r be the total number

of citations. The height of the histogram for distance ring r is then given by the share N c
r/N

c

of observed citations falling within distance ring r divided by the binwidth ∆ as follows:

cr =
N c

r

N c∆
. (2)

As a result of the first step, the micro-geographic data on citation distances {dij}(i,j)∈N c ,

whose sample size is N c, boils down to the binned data {dr, cr}Rr=1 with sample size R, which

is much smaller than N c.

8In the context of testing for industry localization using micro-geographic data (e.g., Duranton and Over-
man, 2005), one can reinterpret N c as the set of pairs of all possible establishments in the industry in question.
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In the second step, we conduct a local linear regression using the pre-binned data, which

amounts to solving the minimization problem as follows:

min
{β0,β1}

R∑
r=1

[cr − β0 − β1(dr − d)]2 f((dr − d)/h), (3)

where f is a kernel function and h is a bandwidth. Then, the L-density estimator, which is

defined as β̂0 at a given distance d, can be expressed as follows (Cheng, 1994, eq.(2.18)):

L̂c(d) =

∑R
r=1

[
Ŝ2(d)− Ŝ1(d)(dr − d)

]
f((dr − d)/h)cr

Ŝ2(d)Ŝ0(d)− Ŝ1(d)2
, (4)

where Ŝq(d) =
∑R

r=1(dr − d)qf((dr − d)/h).

Having obtained the L-density estimator for the observed sample, we turn to the L-

density estimation using a control sample. For each observed cited-citing relationship (i, j) ∈

N c, we identify a set of control patents, from which we randomly draw a control patent

to generate a counterfactual citation. This allows us to define the set Ñ c of hypothetical

cited-citing relationships. By construction of counterfactual citations, the total number Ñ c of

counterfactual citations equals that of actual citations, i.e., Ñ c = N c. Computing the number

Ñ c
r of counterfactual citations in each distance ring, we obtain c̃r = Ñ c

r/(Ñ
c∆̃) = Ñ c

r/(N
c∆̃),

which is similar to (2). Using {d̃r, c̃r}R̃r=1 thus generated, we obtain the L-density estimator

L̃c(d) for counterfactual citations.9

We finally define a localization measure based on the L-density estimators by taking the

difference between the observed and control samples as in Jaffe et al. (1993) and Duranton

and Overman (2005). Our new measure of localization at distance d is thus given by the

difference between the two L-density estimators as follows:

γLD(d) ≡ L̂c(d)− L̃c(d). (5)

We will describe how this measure can be used for testing for localization in Section 4.2.10

9See Section 3.3 for more details on the construction of counterfactual citations. In the context of testing
for industry localization using micro-geographic data (e.g., Duranton and Overman, 2005), one can reinterpret
Ñ c as the set of pairs of establishments in a hypothetical industry generated by randomization.

10The L-density estimator has become increasingly more popular in recent empirical studies, especially in
the context of the regression discontinuity design (e.g., McCrary, 2008). Our novelty lies in constructing
the localization test based on the L-density estimators that do not suffer from the first-order bias at short
distances, and that are not sensitive to the way of discretizing the micro-geographic data.
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2.2 Comparison

We now compare our localization measure γLD to the existing density-based measure of local-

ization, namely, theK-density measure of localization. We then introduce possible regression-

based localization measures that we discuss in Appendix B.

It is easy to see that our localization measure γLD is similar to the localization measure

based on K-density estimations (Duranton and Overman, 2005):

γKD(d) ≡ K̂c(d)− K̃c(d), (6)

where

K̂c(d) =
1

N ch

∑
(i,j)∈N c

f((d− dij)/h) (7)

is the K-density estimator for actual citations, and the counterfactual estimator K̃c(d) is

analogously defined by using the set Ñ c of counterfactual citations. It is worth emphasizing

that both γLD and γKD are given by the difference of the density estimators.

However, it is recognized that the K-density estimator, when applied to bounded data

(like our distance data, which is bounded from below at zero), can be severely biased at

the boundary. To be more precise, even with the reflection method that is often adopted

in the localization literature, the bias of the K-density estimator is O(h) at the boundary,

while it is O(h2) at interior points (Jones, 1993; Marron and Ruppert, 1994; Simonoff, 1996,

Section 3.2). Thus, in finite samples, the boundary bias can be substantial. As we discuss in

Section 4.1, the underestimation at the boundary induces overestimation near the boundary

since the densities must sum to one over the entire domain of distances.11

Given that knowledge spillovers attenuate and industry localization decays within short

distances, the L-density estimator has both theoretical and practical advantages over the

existing estimators (Cheng, 1994; Cheng et al., 1997).

Theoretically, the L-density estimator has the same asymptotic rate of convergence at the

boundary as in the interior, which is O(h2), and thus displays a better boundary property than

theK-density estimator. One may argue why we combine the existing discretizing method and

smoothing technique. Indeed, one could stop at the first step and derive from binning per se

11Furthermore, in the special case where the kernel function is symmetric and differentiable like the Gaussian
kernel that is widely used in the literature, the K-density estimator must have zero derivative at the boundary
even when the true density does not (Silverman, 1986, Section 2.10). See Wand and Jones (1995) for further
discussion on boundary bias in nonparametric methods.
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the localization measure γHIST(d) based on the histograms at distance d ∈ (dr−∆/2, dr+∆/2]

as follows:

γHIST(d) ≡ cr − c̃r. (8)

We show in Appendix B that γHIST is essentially the same as the localization measure obtained

from the DD regressions (e.g., Belenzon and Schankerman, 2013; Kerr and Kominers, 2015).

Without a smoothing parameter h, however, γHIST is sensitive to the choice of ∆ and has

the first-order bias even at interior points unless the derivative of the true density is zero

(Simonoff, 1996, Section 2.1).

Practically, the implementation of the L-density estimation is simple and fast in compu-

tation. The reason is that the sample size for the local linear regression in the second step

equals the number R of bins, which is much smaller than the number N c of citations that is

required for the K-density estimation. Note that the kernel function f in (7) relies on dij for

(i, j) ∈ N c, rather than on dr for r = 1, ..., R in the L-density estimator (4).

Alternatively, one could skip binning in the first step and construct a localization measure

based only on the local linear regression. Although we discuss this possibility in Appendix B,

the analysis requires the information on the set of all possible pairs of patents (not just on

the set N c of pairs of patents having cited-citing relationships). Thus, the sample size for

the local linear regression without pre-binning is much larger than N c that is required for the

K-density estimation.

Our L-density approach, which combines the existing discretizing method and smoothing

technique, allows us to address these theoretical and practical problems simultaneously.

3 Data

3.1 Patents and patent citations

Our data are based on the NBER U.S. Patent Citations Data File by Hall et al. (2001), which

covers all patent applications between 1963 and 1999 and those granted by 1999, as well as

cited-citing relationships for patents granted between 1975 and 1999. For each patent, the list

of inventors, the addresses of inventors, and the technological category are recorded, along

with other information such as the year of application, assignees, and the type of assignees.

The information of patent application month and patent class (3-digit) and subclass (6-digit)

codes is supplemented with the United States Patent and Trademark Office (USPTO) Patent

9



BIB database.

We begin with 142, 245 U.S. nongovernmental patents granted between January 1975 and

December 1979. The sample period is chosen to be comparable to the previous studies. We

focus on the “U.S. patents” whose assignees are in the contiguous United States. We observe

that 115, 905 (81.5%) of them were cited at least once by other U.S. patents (see Column 1 of

Table 1). We call them the originating patents and identify the citing patents that cited the

originating patents by examining all patents granted between January 1975 and December

1999.

Insert Table 1

To focus on knowledge flows between different inventors of different assignees, we exclude

“self-citations”. A citing patent is classified as self-citing (i) if it had the same assignee as its

originating patent; or (ii) if it was invented by the same inventor as its originating patent.

To distinguish unique inventors, we use the computerized matching procedure proposed by

Trajtenberg et al. (2006). We find that 15.0% of citing patents are classified as self-citations.

After excluding self-citations, we obtain 647, 983 citing patents (see Column 1 of Table 1).

3.2 Geographic information

We identify the location of each invention at the census place level. The U.S. Census Bureau

defines a place as a concentration of population. There are 23, 789 places in the 1990 census,

which we use below. Restricting patent inventors who reside in the contiguous U.S. area, we

first match the address of each inventor to its 1990 census place by name. If the name match

fails, we locate it via the populated place provided by the U.S. Geographic Names Information

System (GNIS). We match the inventor’s address with the GNIS populated place, which is

more finely delineated than the census place, and then find the census place that is nearest

to the identified GNIS populated place by using their spatial coordination information. This

procedure identifies 18, 139 census places for 97.0% of all inventors in the sample.

We measure the distance between an originating patent and a citing patent by the great-

circle distance between the census place of the originating inventor and that of the citing

inventor.12 When there is more than one inventor of a patent, we compute all possible

12Since census places are not spatial points, this definition poses a “zero distance” problem, i.e., even when
the actual distance between the originating and citing inventors is not zero, it is measured to be zero if they
happen to live in the same census place. As in Murata et al. (2014) we correct this by using the distance
between the two randomly chosen points in census place ℓ with area Aℓ, which is given by [128/(45π)]

√
Aℓ/π
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great-circle distances between the census places of the originating inventors and those of the

citing inventors. We then consider two types of distances – minimum and median distances

– between the cited and citing patents.

3.3 Control patents and counterfactual citations

To test whether knowledge spillovers are localized, we must control for the existing spatial

distribution of technological activities. Following Jaffe et al. (1993), we consider control

patents satisfying the following two conditions.13 First, control patents should belong to the

same technological area as the citing patent under consideration. In the baseline case we

select control patents at the 3-digit level and check the robustness of the result by choosing

finer controls at the 6-digit level. We refer to the former as 3-digit controls, and call the latter

6-digit controls as in Murata et al. (2014). Second, control patents should be in the same

cohort as the citing patents. As in the previous studies, we use one-month and six-month

windows for the 3-digit and 6-digit controls, respectively.

The second and third columns of Table 1 report the numbers of originating and citing

patents having at least one control. Note that citing patents do not always have controls,

and, even if they do, the control is not necessarily unique for each citing patent. As shown,

60.2% of the citing patents have 3-digit controls. The rate of the citing patents having 6-

digit controls is lower, at 18.7%. The citing patents with no controls assigned (and their

originating patents) are dropped out of the sample. We also drop patent classes in which

originating patents are distributed across less than 10 census places to obtain well-behaved

estimated density functions. As a result, 92.6% of the originating patents remain “in-sample”

for the 3-digit controls, and the corresponding number is 51.0% for the 6-digit controls. We

use these in-sample patents in the subsequent analysis.

Once the relevant control patents are identified, we can construct the counterfactual cita-

tions, with which we compare the actual citations, as follows. For each observed cited-citing

relationship, we define an admissible patent set that consists of the citing and control patents

at the 3- or 6-digit level, i.e., the patents that either actually cited or could have cited the

originating patent. We then allocate a counterfactual citation between the originating patent

and a patent that is randomly drawn from the corresponding admissible patent set.

(Kendall and Moran, 1963). The median and average of within-area distances for census places are 1.3 km
and 1.7 km, respectively.

13The way we control patents in theK- and L-density estimations is also similar to that in the DD regressions
in Belenzon and Schankerman (2013) and Kerr and Kominers (2015).
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3.4 Actual versus counterfactual citations

Table 2 (a) reports the descriptive statistics for the actual citations, where we use 390, 104

citing patents in Table 1. As shown, both the minimum and median distance distributions

defined in Section 3.2 are right skewed, i.e., the mass of each distribution is concentrated in

short distances. Furthermore, the distribution of minimum citation distances is more right

skewed than that of median citation distances.14

Insert Table 2

Table 2 (b) illustrates the descriptive statistics for the counterfactual citations, where

we report the averages for 1000 draws from 33, 472, 826 control patents. Comparing panels

(a) and (b) of Table 2, we find that the counterfactual citation distances tend to be greater

than the actual citation distances for both the minimum and median cases. Since the actual

distributions are more right skewed than the counterfactual ones, the former suffer more from

the first-order downward bias at short distances generated by K-density estimations than

the latter. Thus, the boundary bias is not offset even when we take the difference between

the actual and counterfactual K-densities for citation distances. We provide this statistical

property in Appendix A.2 and illustrate the impact of this boundary bias on the K-density

tests in Section 4.

4 Estimation

We now describe the estimation procedure in more detail and provide the estimation results.

We start with the K- and L-density estimations using the aggregate data and illustrate the

first-order bias at short distances generated by the K-density estimation. We then turn to the

disaggregate analysis at the patent class level. We construct class-specific localization tests

based on K- and L-density estimators and summarize the localization results. We first report

the localization results for all distances for the sake of completeness, and then illustrate

our main results for short distances. We finally examine the robustness of the results by

considering different binwidths and bandwidths.

14We find that the median citation distance is larger than the minimum citation distance at every percentile
point. Table 2 (a) reports the distances at several lower percentile, namely, 1, 5, 10, 25, 50 percentile, points.
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4.1 K-density and L-density estimations

It is well known that the K-density estimators can be severely biased when the domain of

the data is bounded. As mentioned above and as shown in Appendix A.1, the first-order

boundary bias caused by the K-density estimation still remains even when adopting the

reflection method. In contrast, the L-density estimators have the second-order bias only. We

begin with the analysis by illustrating the performance of these density estimators for all

distances. We then focus on the behavior at and near the boundary.

4.1.1 Density estimations for all distances

Figure 1 (a) presents the density estimation results — the K-density estimates with and with-

out reflection, and the L-density estimate — for the actual citation distances. For comparison

purposes, we superimpose the histogram generated by the first step of the L-density estima-

tion. To obtain these results, we stick to the standard practice in the existing studies. More

precisely, as to the K-density estimation, we follow Duranton and Overman (2005) who use

the Gaussian kernel function and the rule-of-thumb (ROT) bandwidth hS in Silverman (1986,

Section 3.4.2). With regard to the first step of the L-density estimation, we use the binwidth

∆ = 2σ(N c)−1/2 for binning as in McCrary (2008). For the LL regression in the second step,

we choose the triangular kernel function and employ the bandwidth hCV obtained from the

cross-validation method as in Fan and Gijbels (1996).15, 16 We retain them when conducting

localization tests in Section 4.3, and relegate a number of robustness checks on the binwidth

and bandwidth selections to Section 4.4.

Comparison of the density estimates reveals that the K-density estimates, with and with-

out reflection, and the L-density estimate are quite similar at distances greater than about

300 km. This result is in accordance with the theoretical prediction that the order of biases

differs only at and near the boundary between the two estimators. In what follows, we thus

focus on the behaviors of the estimated densities within shorter distances between 0 km and

300 km in Figure 1 (b), which is an enlargement of Figure 1 (a).

15It is widely recognized that the choice of the kernel function is not so important for the performance of the
resulting LL regression (see Fan and Gijbels, 1996, p.76). Yet, Cheng et al. (1997) prove that the triangular
kernel, defined as fT (x) = 1 − |x| for x ∈ (−1, 1] and fT (x) = 0 otherwise, is optimal at the boundary. We
thus use it in the subsequent analysis.

16More concretely, let L̂c
h(d) denote the L-density estimator in equation (4), involving a specific value of the

bandwidth parameter h. For each r = 1, · · · , R, we use data {ds, cs}s ̸=r to build a “leave-one-out” L-density

estimator L̂c
h,−r(d) and then determine the bandwidth parameter hCV so as to minimize (1/R)

∑R
r=1[cr −

L̂c
h,−r(dr)]

2w(dr), where w(dr) is a weight function.
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4.1.2 Density estimations at and near the boundary

Figure 1 (b) illustrates the estimated densities at and near the boundary. Several remarks

are in order. First, the K-density estimate without reflection is substantially lower than that

with reflection and the L-density estimate at the boundary. This can be explained by the

fact that the K-density estimator, if not corrected by a reflection method, is inconsistent at

short distances (Jones, 1993, p.136; Simonoff, 1996, Section 3.2; See also Appendix A.1).

Second, the K-density estimate with reflection is located under the L-density estimate

at the boundary. The discrepancy between the two density estimates can be ascribed to

the difference in the order of boundary biases, which is the first order for the K-density

with reflection (Jones, 1993, p.137; See also Appendix A.1) and the second order for the

L-density (Cheng, 1994, Theorem 3). Interestingly, the underestimation at the boundary

induces overestimation near the boundary since the densities must sum to one over the entire

domain of distances. Indeed, the K-density estimate even with reflection underestimates

severely at the boundary up to around 45 km. This underestimation at the boundary is

compensated by the overestimation near the boundary, which is at distances between 45 km

and 300 km in Figure 1 (b).

Third, the slope of the density at the boundary varies across estimators. It is positive,

zero and negative for the K-density without reflection, the K-density with reflection and the

L-density, respectively. Indeed, without reflection, the derivative of the K-density estimate

at the boundary must be theoretically positive since there is no data with negative distances,

while with reflection, the estimate using the symmetric and differentiable Gaussian kernel

is subject to the constraint that the derivative at the boundary is zero. By contrast, the

L-density estimation does not impose such restrictions on the derivative.

Last, although the L-density estimation requires pre-binning, the estimated L-density does

not perfectly mimic the histogram, especially at and near the boundary. The difference arises

because the L-density estimator at distance d, which by construction smooths the histogram

obtained from binning in the first step, puts some non-negative weights on distances away

from d in the second step, as seen from equations (3) and (4).

4.2 Localization tests and indices

We now address whether knowledge spillovers as evidenced by patent citations are localized.

To this end, we start with the localization measures γKD and γLD, which are based on the K-
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and L-density estimations, respectively. Those measures allow us to compare the estimated

density of actual citation distances to that of counterfactual citation distances. However,

testing for localization formally requires a confidence band of the estimated counterfactual

densities. We thus sample counterfactual citations repeatedly from the admissible patent set,

and regard the deviation of the actual density from the upper bound of the confidence band

as evidence of localization.

To be more specific, let us denote the upper local 5% confidence intervals by Kc(d) and

Lc(d) for theK- and L-density estimators, respectively. We run 1000 Monte Carlo simulations,

and estimate the counterfactual K- and L-densities for each simulation. Then, Kc(d) and

Lc(d) are given by the 950th of the estimated counterfactual K- and L-densities that are

ranked in ascending order. In turn, the upper global 5% confidence intervals, denoted by

Kc(d) and Lc(d), are defined as the identical local confidence intervals such that, when we

consider them across all distances between 0 km and the threshold distance d̄ km, only 5%

hit them. Analogous to equation (6) (resp., (5)), we can say that knowledge spillovers exhibit

global localization at 5% significance level for the K-density (resp., L-density) estimators if

K̂c(d) −Kc(d) > 0 (resp., if L̂c(d) − Lc(d) > 0) for at least one d ∈ [0, d̄). Thus, using the

indices of global localization at distance d:

ΓKD(d) = max{K̂c(d)−Kc(d), 0}

ΓLD(d) = max{L̂c(d)− Lc(d), 0},

we define the cross-distance global localization indices as ΓKD ≡
∑

d ΓKD(d) and ΓLD ≡∑
d ΓLD(d), where the summations are taken up to the median distance d̄ of all possible

actual and counterfactual citation distances. The K-density (resp., L-density) test detects

localization if ΓKD > 0 (resp., if ΓLD > 0).

As shown in Murata et al. (2014), the extent of knowledge spillovers differs by technol-

ogy. To take this heterogeneity into account, we detect localization of knowledge spillovers

originating from each patent class.17 To this end, we classify all originating patents into dif-

ferent patent classes by their primary class, and examine whether each patent class – to which

originating patents belong – displays localization.

Let A be the set of all patent classes. For each patent class A ∈ A, we estimate the K- and

17Note that citing patents, which cite an originating patent in one patent class, may or may not belong to
that patent class. Put differently, we allow for intra- and inter-class knowledge spillovers.
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L-densities for the actual and counterfactual citation distances. The Monte Carlo simulation

procedure described above provides the class-specific local and global confidence intervals by

which localization is tested. Finally, for each patent class A, we denote by ΓA
KD(d) and ΓA

LD(d)

the class-specific global localization indices at distance d for the K- and L-density estimators,

respectively. The cross-distance global localization indices for patent class A are then given

by ΓA
KD ≡

∑
d Γ

A
KD(d) and ΓA

LD ≡
∑

d Γ
A
LD(d), where the summations are taken up to the class-

specific median distance d
A
. Hence, the K-density (resp., L-density) test detects localization

of knowledge spillovers originating from patent class A if ΓA
KD > 0 (resp., if ΓA

LD > 0).18

4.3 Localization results

We now summarize the localization results obtained from the K- and L-density methods. We

first report the localization results for all distances for the sake of completeness, and then

focus on the main results for short distances.

4.3.1 Localization results for all distances

Table 3 summarizes the numbers and the percentages of localized patent classes. Columns 1

and 2 (resp., 3 and 4) report the case with the 3-digit (resp., 6-digit) controls. In each case we

consider the K-density with reflection and the L-density. Panels (a) and (b) show the results

for the minimum and median citation distances, respectively. In both panels, the K-density

tests with the 3-digit (resp., 6-digit) controls detect localization for about 70% (resp., 30%)

of feasible patent classes.19 In the L-density tests, the numbers of localized patent classes

increase systematically for both the 3- and 6-digit controls. We may thus conclude that the

K-density tests underestimate localized patent classes than the L-density tests.

Insert Tables 3 and 4

In what follows, we report the localization results using the minimum citation distances

and the 3-digit controls as the benchmark.20 Table 4 further presents the top 20 patent classes

18To perform the localization tests for each patent class, we adopt a class-specific bandwidth and denote it
by hA

S or hA
CV.

19These results are the same as in Murata et al. (2014). As in the previous studies, we drop patent classes
in which originating patents are distributed across less than 10 census places to obtain well-behaved estimated
density functions. Thus, the numbers of feasible patent classes differ between the 3- and 6-digit cases.

20As shown in Appendix F, the results for the median citation distances are quite similar to our main
results for the minimum citation distances given in Section 4.3.2. We also obtain similar results even with the
6-digit controls. However, Henderson et al. (2005) argue that the localization tests using the 6-digit controls
are subject to sample selection biases. The sensitivity analysis in Murata et al. (2014), which encompasses
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with the highest degrees of localization, measured by ΓA
KD and ΓA

LD. Since about a half of

them are not overlapped, the localization indices based on the K- and L-densities provide a

different piece of information. Our L-density approach will help to revisit the determinants

and shapes of agglomeration and coagglomeration, given that theK-density indices have been

incorporated into empirical specifications in that literature (see, e.g., Ellison et al., 2010; Kerr

and Kominers, 2015).

To see the difference in the number of localized patent classes between the two tests, let

AKD andALD be the sets of localized patent classes by theK- and L-density tests, respectively.

Then, we take the following three disjoint sets: AKD∩LD, which consists of localized classes

detected by both the K- and L-density tests; and AKD\LD (resp., ALD\KD), which consists of

localized classes detected only by the K-density (resp., L-density) test. Given these disjoint

sets, we can decompose the sets of localized patent classes as AKD = AKD∩LD ∪ AKD\LD and

ALD = AKD∩LD ∪ ALD\KD. Thus, the increase in localized classes arises due to the difference

in size between ALD\KD and AKD\LD. For the localization results in Table 3, we find that 61

patent classes belong to ALD\KD while 5 patent classes belong to AKD\LD. Hence, the number

of localized classes increases by 56 (= 61− 5).

4.3.2 Localization results at and near the boundary

Turning to our main results, Figure 2 illustrates the difference between the K- and L-density

tests using an example of a patent class belonging to ALD\KD (patent class 283: Printed

Matter).21 Panel (a) (resp., panel (b)) depicts the K-density (resp., L-density) test. As can

be seen from panel (a) (resp., panel (b)), the actual density does not (resp., does) exceed the

upper bound of the global 5% confidence interval. Thus, the K-density test does not detect

localization, whereas the L-density test does for this patent class. It is worth emphasizing that

the difference in the localization result comes from the difference in the boundary behavior

between the two panels.

Insert Figures 2 and 3

How often do we observe this pattern? To obtain our main results at short distances, we

now illustrate the spatial pattern of the difference in the number of localized patent classes

the 3- and 6-digit controls, shows that the 6-digit controls correspond to the case where the biases induced by
imperfect matching between citing and control patents due to unobserved heterogeneity are infinitely large.
See Carlino and Kerr (2015) for more discussion.

21As mentioned above, we consider the minimum citation distances here. The result for the median citation
distances is similar and can be found in Figure F1 in Appendix F.
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between theK- and L-density tests. Figure 3 gives the frequency distribution of patent classes

for the distances at which the members in ALD\KD initially localize. This allows us to explore

at which distance the K-density tests underestimate the number of localized patent classes

as compared to the L-density tests. The top panel of Figure 3 shows that the patent classes

in ALD\KD are most frequently observed at shorter distances. Indeed, 40 out of 61 patent

classes in ALD\KD are localized within 100 km, which account for 66 % of the number of

underestimated patent classes (see the first row of Table 5). We also illustrate in the bottom

panel of Figure 3 the spatial distribution of the members in AKD\LD, although it does not

display a clear pattern.22

Insert Table 5

We may thus conclude that the K-density tests underestimate the number of localized

patent classes than the L-density tests especially at short distances. Hence, eliminating the

first-order bias at short distances is of first-order importance. This is especially so because

a large number of recent studies document that knowledge spillovers attenuate and industry

localization decays within short distances. Thus, correcting the K-density tests is crucial for

a better understanding of localization of economic activity as they have been widely used for

detecting localization ever since Duranton and Overman (2005).

4.4 Robustness check

We check the robustness of our main result that theK-density tests underestimate the number

of localized patent classes than the L-density tests, especially at short distances.

First, we stick to the baseline cross-validation method and consider different values of

hA
CV/∆. In particular, we impose hA

CV/∆ > τ with τ = 10, 20, 30, which is in line with

McCrary (2008) who provides the condition in terms of the ratio between the bandwidth and

binwidth to ensure the robustness to different binwidths.

Second, we replace hA
CV with Fan and Gijbels’ (1996) ROT bandwidth hA

FG while imposing

the same thresholds τ = 10, 20, 30.23

22Again, we consider the minimum citation distances here. See Figure F2 in Appendix F for the result
using the median citation distances. Both results are very similar.

23The ROT bandwidth in Fan and Gijbels (1996) is more involved as it requires estimating derivatives
nonparametrically. Let g be the estimated fourth-order polynomial for the pre-binned data {dr, cr}Rr=1. Denote
by g′′ and σ2 the second derivative and the mean squared error of the polynomial regression. Then, according
to Fan and Gijbels (1996), the bandwidth is given by hFG = κ[σ2

∫
w0(ν)dν/

∑R
r=1{[g′′(dr)]2w0(dr)}]1/5,

where w0(ν) is an indicator function on the interval [0, dR] with dR being the midpoint of the R-th distance
ring, and the constant κ depends on the kernel function.
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Last, to show that our results are not driven by different bandwidth selections between

the K- and L-density estimations, we consider Silverman’s (1986) ROT bandwidth hA
S not

only for the K-density tests but also for the L-density tests while allowing the binwidth ∆

for the L-density tests to vary to satisfy hA
S /∆ > τ with τ = 10, 20, 30.

Note that hA
CV/∆ > τ with τ = 10, 20, 30 is not always satisfied. If the condition is not

met, we take the following heuristic iterative procedure: Starting from the baseline binwidth

∆0, we compute the corresponding bandwidth hA
CV,0 for each patent class A. While the

condition is not satisfied for at least one patent class A ∈ A, we decrease the binwidth by 10

percent iteratively, i.e., ∆t+1 = 0.9∆t, to compute the updated bandwidth hA
CV,t+1. We do

the same for hA
FG/∆ > τ with τ = 10, 20, 30 if violated.

Insert Table 6

Table 6 presents the robustness results and reports the percentages of patent classes for

which the iterative procedure is implemented at least once. With the ROT bandwidth given

by Fan and Gijbels (1996), all patent classes satisfy hA
FG/∆ > 10, so that no iteration is

needed. When the threshold is set at τ = 20, 30, some patent classes violate hA
FG/∆ > τ

in the case of the 6-digit controls. Furthermore, when the cross-validation method is used,

some patent classes do not meet the condition even with the smallest threshold τ = 10. In all

cases, however, once the iterative procedure is adopted, we can show that the K-density tests

underestimate the percentage of localized patent classes than the L-density tests. Finally,

when we use Silverman’s (1986) ROT bandwidth not only for the K-density tests but also

for the L-density tests, we obtain fairly similar results. Hence, our results for all distances do

not seem to be affected by the choice of binwidth and bandwidth parameters.

Insert Figure 4

Turning to the robustness of our main result at short distances, Figures 4 (a), (b), and (c)

replicate Figure 3 using the cross-validation method with hA
CV/∆ > 10, the ROT bandwidth

by Fan and Gijbels (1996) with hA
FG/∆ > 10, and the ROT bandwidth by Silverman (1986)

with hA
S /∆ > 10, respectively.24 Again, we can see clear evidence on the downward biases of

the K-density tests within short distances: We find that (a) 66 %, (b) 71 %, and (c) 76 % of

the patent classes underestimated by the K-density tests fall within 100 km (see Table 5).25

Since these numbers are similar to the one shown in the benchmark, our main result that the

24We obtain quite similar results for different values of τ . The results are available upon request.
25The results for the median citation distances can be found in the bottom half of Table 5 and Figure F3.
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K-density tests underestimate the number of localized patent classes than the L-density tests

especially at short distances is not sensitive to the binwidth and bandwidth selections.

5 Concluding remarks

Combining the existing discretizing method and smoothing technique, we propose a new

approach to testing for localization using micro-geographic data. Our localization measure

is based on local linear density estimators that have a better boundary property, and thus

suitable for analyzing localization that generally occurs within short distances.

Our L-density approach can be applied to flows of people, goods, and ideas. In this paper

we illustrate the case of knowledge spillovers using the data on citation flows. The analysis

can be readily used for commuting and commodity flows, as well as for industry localization

and co-localization.

When applied to industry localization, our localization test satisfies all five criteria sum-

marized in Duranton and Overman (2005), namely it (i) is comparable across industries; (ii)

controls for the overall agglomeration of manufacturing; (iii) controls for industrial concen-

tration; (iv) is unbiased with respect to scale and aggregation; and (v) gives an indication of

the significance of the results.

While having these desirable properties, the L-density approach allows us to address both

the first-order biases at short distances and the issue that localization results differ depending

on the way of discretizing the micro-geographic data. Our results suggest that coping with

these problems is crucial for a better understanding of to what extent people, goods, and

ideas are localized in the spatial economy.
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Table 1: Sample patent sizes

Total 3-digit 6-digit
Originating patents 115,905 107,561 59,168

(Percent) (100.00) (92.64) (51.04)
Citing patents 647,983 390,104 120,876

(Percent) (100.00) (60.20) (18.65)
Control patents — 33,472,826 941,532
Note: Column 1 reports the number of originating patents
(that were cited at least once by other U.S. patents) and
the number of citing patents (that cited the originating
patents). Self-citations are excluded. Columns 2 and 3
report the numbers of originating and citing patents hav-
ing at least one control, as well as the numbers of control
patents. The citing patents with no controls assigned (and
their originating patents) are dropped out of the sample.
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Table 2: Descriptive statistics of minimum and median citation distances for actual and
counterfactual citations

Citation Moments Percentiles
distances Min Max Mean Std Dev Skewness 1st 5th 10th 25th 50th
(a) Actual citations

Minimum 0.47 4513.48 1373.67 1240.81 0.89 4.00 19.10 75.72 375.81 973.77

Median 0.49 4517.25 1483.43 1264.69 0.79 11.22 37.02 123.05 441.82 1098.28

(b) Counterfactual citations
Minimum 0.42 4516.11 1472.08 1241.77 0.79 6.53 42.78 149.88 453.12 1089.60

Median 0.52 4539.75 1577.99 1261.29 0.69 15.96 70.03 197.76 528.93 1187.97

Note: To compute the actual citation distances, we use 390, 104 citing patents in Table 1. For
the counterfactual citation distances, we report the averages for 1000 draws from 33, 472, 826
control patents in Table 1. We measure the distance between an originating patent and an actual
(or counterfactual) citing patent by the great-circle distance between the census place of the
originating inventor and that of the citing inventor. When there is more than one inventor of a
patent, we compute all possible great-circle distances between the census places of the originating
inventors and those of the citing inventors. We then consider two types of distances – minimum
and median distances – between the cited and citing patents. All distances are in kilometers.
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Table 3: Localization results for all distances

3-digit control 6-digit control
K-density L-density K-density L-density

(1) (2) (3) (4)
All classes∗ 384 384 360 360
(a) Minimum citation distance

Localized patent classes 273 329 109 149
Percentage of localized patent classes 71.09% 85.68% 30.28% 41.39%

(b) Median citation distance
Localized patent classes 275 334 109 165
Percentage of localized patent classes 71.61% 86.98% 30.28% 45.83%

Note: For the K-density tests, we use Silverman’s (1986) rule-of-thumb bandwidth. For
the L-density tests, we adopt the cross-validation method and McCrary’s (2008) binwidth.
(*) The numbers of feasible patent classes differ between the 3- and 6-digit control cases
because the patent classes in which originating patents are distributed across less than 10
census places are dropped out of the sample.
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Table 4: Top 20 localized patent classes by ΓA
KD and ΓA

LD

K-density case (ΓA
KD)

Patent class 3-digit Rank by Rank by
code ΓA

KD ΓA
LD

Hydraulic and earth engineering 405 1 1
Boots, shoes, and leggings 36 2 3
Butchering 452 3 14
Surgery 606 4 4
Apparel apparatus 223 5 6
Communications, electrical: acoustic wave systems and devices 367 6 37
Land vehicles: bodies and top 296 7 2
Sugar, starch, and carbohydrates 127 8 23
Acoustics 181 9 26
Pipe joints or couplings 285 10 7
Roll or roller 492 11 8
Cutlery 30 12 91
Compositions: ceramic 501 13 29
Implements or apparatus for applying pushing or pulling force 254 14 62
Fences 256 15 5
Fluid sprinkling, spraying, and diffusing 239 16 38
Expanded, threaded, driven, headed, tool-deformed, or locked-
threaded fastener

411 17 22

Special receptacle or package 206 18 28
Article dispensing 221 19 65
Fluid handling 137 20 71

L-density case (ΓA
LD)

Patent class 3-digit Rank by Rank by
code ΓA

LD ΓA
KD

Hydraulic and earth engineering 405 1 1
Land vehicles: bodies and tops 296 2 7
Boots, shoes, and leggings 36 3 2
Surgery 606 4 4
Fences 256 5 15
Apparel apparatus 223 6 5
Pipe joints or couplings 285 7 10
Roll or roller 492 8 11
Sewing 112 9 35
Chemistry: electrical current producing apparatus, product,
and process

429 10 85

Railways 104 11 190
Resilient tires and wheels 152 12 111
Safes, bank protection, or a related device 109 13 89
Butchering 452 14 3
Imperforate bowl: centrifugal separators 494 15 198
Metal deforming 72 16 26
Textiles: fluid treating apparatus 68 17 24
Winding, tensioning, or guiding 242 18 22
Prosthesis, parts thereof, or aids and accessories therefor 623 19 71
Perfume compositions 512 20 49

Note: For the K-density tests, we use Silverman’s (1986) rule-of-thumb bandwidth. For the
L-density tests, we adopt the cross-validation method and McCrary’s (2008) binwidth.
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Table 5: Localization results for short distances

|ALD\KD| |ALD\KD| % short
for all d for d ∈ [0, 100] distances

(1) (2) (3)
(a) Minimum citation distance

Cross-validation (no restriction) Fig 3 61 40 66%
Cross-validation (hA

CV/∆ > 10) Fig 4(a) 61 40 66%
Fan and Gijbels’ ROT (hA

FG/∆ > 10) Fig 4(b) 49 35 71%
Silverman’s ROT (hA

S /∆ > 10) Fig 4(c) 46 35 76%
(b) Median citation distance

Cross-validation (no restriction) Fig F2 63 40 63%
Cross-validation (hA

CV/∆ > 10) Fig F3(a) 62 39 63%
Fan and Gijbels’ ROT (hA

FG/∆ > 10) Fig F3(b) 48 29 60%
Silverman’s ROT (hA

S /∆ > 10) Fig F3(c) 49 30 61%
Note: Column (1) (resp., Column (2)) reports the number |ALD\KD| of localized patent
classes detected only by L-density tests for all distances (resp., for short distances between
0 km and 100 km). Column (3) provides the percentage of underestimated patent classes
that fall within the domain between 0 km and 100 km.
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Table 6: Robustness check: Localization results for all distances

3-digit control 6-digit control
% Localized % Iterated† % Localized % Iterated†

K-density 71.09% − 30.28% −
L-density
(a) Cross-validation:

hA
CV/∆ > 10 85.68% 8.33% 40.83% 24.17%

hA
CV/∆ > 20 85.42% 44.27% 40.56% 44.72%

hA
CV/∆ > 30 85.42% 59.38% 40.28% 51.39%

(b) Fan and Gijbels’ ROT:
hA
FG/∆ > 10 82.03% 0.00% 38.61% 0.00%

hA
FG/∆ > 20 82.03% 0.00% 38.61% 1.11%

hA
FG/∆ > 30 82.03% 0.00% 38.33% 25.83%

(c) Silverman’s ROT:
hA
S /∆ > 10 81.25% − 37.22% −

hA
S /∆ > 20 80.73% − 37.78% −

hA
S /∆ > 30 81.00% − 37.78% −

Note: For the K-density tests, we use Silverman’s (1986) rule-of-thumb bandwidth.
For the L-density tests, we adopt (a) the cross-validation method, (b) Fan and Gijbels’
(1996) rule-of-thumb bandwidth, and (c) Silverman’s (1986) rule-of-thumb bandwidth.
In cases (a) and (b), hA

CV/∆ > 10, 20, 30 and hA
FG/∆ > 10, 20, 30 hold for all patent

classes A ∈ A. Note that while the inequality condition is not satisfied for all patent
classes, the binwidth, ∆, is iteratively decreased by 10 percent for that condition to be
satisfied. The percentage of patent classes for which the iterative procedure is imple-
mented at least once is reported. In case (c), we choose the binwidth, ∆, such that
hA
S /∆ > 10, 20, 30 holds for all patent classes A ∈ A.
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(a) Density estimation results for 0 km to 1200 km
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(b) Density estimation results for 0 km to 300 km

Figure 1: Density estimation results at the aggregate level.

Panels (a) and (b) present the same density estimation results for different domains of dis-
tances. For the K-density estimation, we use Silverman’s (1986) rule-of-thumb bandwidth.
For the second step of the L-density estimation, we adopt the cross-validation method. To
depict the histogram we use McCrary’s (2008) binwidth, which constitutes the first step of
the L-density estimation.
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(b) L-density test

Figure 2: K-density and L-density tests using patent class 283 (Printed Matter).

The solid curves are the estimated densities for the actual citations. The dashed (resp.,
dotted) curves correspond to the global (resp., local) confidence intervals obtained from the
counterfactual citations. For the K-density test, we use Silverman’s (1986) rule-of-thumb
bandwidth. For the L-density test, we adopt the cross-validation method and McCrary’s
(2008) binwidth.
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Figure 3: Localization results at and near the boundary.

The top (resp., bottom) panel depicts the frequency distributions of patent classes for the
distances at which the members in ALD\KD (resp., AKD\LD) initially display localization. The
bars in dark grey (resp., light grey) are the frequencies of localized patent classes detected only
by the L-density (resp., K-density) tests. For the K-density tests, we use Silverman’s (1986)
rule-of-thumb bandwidth. For the L-density tests, we adopt the cross-validation method and
McCrary’s (2008) binwidth.

32



0 500 1000 1500 2000 2500
0

10

20

30

40

50

# 
of

 c
la

ss
es

Frequency distribution of 61 patent classes
detected only by L-density tests

0 500 1000 1500 2000 2500
Kilometers

0

10

20

30

40

50

# 
of

 c
la

ss
es

Frequency distribution of 5 patent classes
detected only by K-density tests

(a) Cross-validation (hA
CV/∆ > 10)
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(b) Fan and Gijbels’ ROT (hA
FG/∆ > 10)
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(c) Silverman’s ROT (hA
S /∆ > 10)

Figure 4: Robustness check: Localization results at and near the boundary.

In all cases (a), (b), and (c), the top (resp., bottom) panel depicts the frequency distributions
of patent classes for the distances at which the members in ALD\KD (resp., AKD\LD) initially
display localization. The bars in dark grey (resp., light grey) are the frequencies of localized
patent classes detected only by the L-density (resp., K-density) tests. For the K-density
tests, we use Silverman’s (1986) rule-of-thumb bandwidth. For the L-density tests, we adopt
the cross-validation method in panel (a), Fan and Gijbels’ (1996) rule-of-thumb bandwidth in
panel (b), and Silverman’s (1986) rule-of-thumb bandwidth in panel (c). In cases (a) and (b),
hA
CV/∆ > 10 and hA

FG/∆ > 10 hold for all patent classes A ∈ A. Note that while the inequality
condition is not satisfied for all patent classes, the binwidth, ∆, is iteratively decreased by 10
percent for that condition to be satisfied. In case (c), we choose the binwidth, ∆, such that
hA
S /∆ > 10 holds for all patent classes A ∈ A.
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Appendix A: Some boundary properties of K-density estimators

For illustrative purposes, we consider a kernel function f((d − dij)/h) defined on [−1, 1].

However, the following results can be extended to other kernel functions. Assume that the

density φ is being estimated at some distance d = δh either within the boundary region

(0 ≤ δ < 1) or outside the boundary region (δ ≥ 1).

A.1. K-density estimators (even when adopting the reflection method) have the

first-order bias at short distances.

Without reflection. The expectation of the K-density estimator has the Taylor series

representation (e.g., Jones, 1993, p.136; Simonoff, 1996, Section 3.2):

E
[
K̂(d)

]
= a0(δ)φ(d)− ha1(δ)φ

′(d) +O(h2), (9)

where al(δ) =
∫ min{1,δ}
−1

ulf(u)du.

If the distance is away from the boundary (δ ≥ 1), the bias is of the second order O(h2)

because a0(δ) = 1 and a1(δ) = 0 in (9).

However, in the boundary region (0 ≤ δ < 1), the K-density estimator is inconsistent due

to a0(δ) < 1 and has the first-order bias O(h) since a1(δ) ̸= 0.

To obtain a consistent estimate, one could renormalize theK-density estimator by dividing

K̂(d) by a0(δ). However, the first-order bias O(h) in the boundary region remains because

a1(δ)/a0(δ) ̸= 0 for 0 ≤ δ < 1.

With reflection. Jones (1993, p.137) shows the following result for the K-density with the

reflection method by Silverman (1986):

E
[
K̂R(d)

]
= φ(d)− 2h {a1(δ) + δ[1− a0(δ)]}φ′(d) +O(h2). (10)

Thus, the K-density estimator with reflection is consistent but still has the first-order bias

O(h) in the boundary region because {a1(δ) + δ[1− a0(δ)]} ̸= 0 for 0 ≤ δ < 1.

Since limδ→0{a1(δ) + δ[1 − a0(δ)]} = a1(δ) < 0, the second term of (10) generates the

first-order downward bias at the boundary d = 0 by reducing E
[
K̂R(d)

]
when φ′(d) < 0.

By continuity, the first-order downward bias remains near the boundary. Furthermore, when

φ′(d) < 0, the larger the absolute value |φ′(d)|, the greater the first-order downward bias.
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A.2. The first-order bias caused by the K-density estimations with reflection is

not offset even when we take the difference between the actual and counterfactual

distributions.

We use (10) and take the difference between the actual and counterfactual K-density estima-

tors, which yields

E
[
K̂R(d)− K̃R(d)

]
= [φ(d)− φ̃(d)]−2h {a1(δ) + δ[1− a0(δ)]} [φ′(d)− φ̃′(d)]+O(h2). (11)

The above expression shows that the first-order bias remains as long as the derivative of actual

density φ′(d) differs from that of counterfactual density φ̃′(d).

As before, since limδ→0{a1(δ)+δ[1−a0(δ)]} = a1(δ) < 0, the second term of (11) generates

the first-order downward bias at the boundary d = 0 by reducing E
[
K̂R(d)− K̃R(d)

]
when

[φ′(d)− φ̃′(d)] < 0. By continuity, the first-order downward bias remains near the boundary.

Furthermore, when [φ′(d)− φ̃′(d)] < 0, the larger the absolute value |φ′(d) − φ̃′(d)|, the

greater the first-order downward bias. Although we consider the case where the actual and

counterfactual bandwidths are the same in (11), this assumption is made for expositional

purposes only, and a similar argument applies to the case with different bandwidths.

Appendix B: Regression-based localization measures

Our localization measure γLD requires pre-binning and the local linear regression. Therefore,

it is natural to think that alternative measures can be derived from nonparametric regressions.

Indeed, one could construct a localization measure based on the DD regression. We will show

that such a localization measure is essentially the same as γHIST obtained from binning in

the first step of the L-density estimations. Alternatively, one could conduct the local linear

regression without pre-binning to obtain a localization measure. In what follows, we explore

these possibilities building on the nonparametric regression literature and argue that these

approaches have difficulties from either a theoretical or a practical point of view.

Let N denote the set of all possible pairs of patents. It is worth emphasizing that unlike

N c, the set N includes pairs of patents that do not have a cited-citing relationship. Thus,

the number N of all possible pairs of patents is much larger than the number N c of citations.

Denote by cij the citation dummy variable which takes one if patent i is cited by patent j,

i.e., if (i, j) ∈ N c, and zero otherwise, i.e., if (i, j) ∈ N\N c. We start with the regression
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model as follows:

cij = m(dij) + εij, (12)

where εij is an idiosyncratic error term with zero mean.26 The function m can be viewed as

the likelihood of citation between two patents with distance dij since m(dij) = E(cij|dij) =

Prob(cij = 1|dij).27

B.1. A special case: Distance-ring dummy-variable regression

We first analyze a special case in which a functional form for m in the regression model (12)

is known. A popular choice of m is the sum of dummy variables for distance rings (e.g.,

Belenzon and Schankerman, 2013; Kerr and Kominers, 2015). Replacing m(dij) in (12) with

the sum of the dummy variables, the DD regression model is given by

cij =
R∑

r=1

µrDijr + εij, (13)

where Dijr is the dummy variable defined as (1) and µr is the coefficient on Dijr.
28 Let

Nr =
∑

(i,j)∈N Dijr be the number of all possible pairs of patents in distance ring r. The OLS

estimator for the DD regression model can then be expressed as follows (see Appendix D)

µ̂r =
N c

r

Nr

, (14)

where N c
r =

∑
(i,j)∈N c Dijr is the number of citations in distance ring r as in Section 2.1.

Having analyzed the observed sample, we turn to the DD regression using a control sample.

For each observed cited-citing relationship (i, j) ∈ N c, we identify a set of control patents,

from which we randomly draw a control patent to generate a counterfactual citation. As in the

26In the context of industry localization, one may reinterpret N as the set of all possible pairs of estab-
lishments in all manufacturing industries and dij as the distance between establishments i and j. Setting
cij = 1 if establishments i and j are in the same industry and cij = 0 otherwise, then yields essentially the
same localization test as in Duranton and Overman (2005) once the regression model (12) is estimated via the
Nadaraya-Watson regression (Nadaraya, 1964; Watson, 1964). We will come back to this point in Appendices
B.2 and E.

27There is another variant of the regression model based on different observation units. However, as shown
in Appendix C, this alternative approach leads to the same function m as in the regression model (12). Hence,
without loss of generality, we focus on the regression model (12).

28A few remarks are in order. First,
∑R

r=1 Dijr = 1 holds for any patent pair (i, j). We thus exclude a
constant term from (13). Second, the dummy variables are orthogonal. Letting Dr be a column vector of the
r-th distance ring with a typical element Dijr, we have D′

rDs = 0 for distance rings r and s ̸= r. Finally, the
DD regression model is a linear probability model in the context of binary dependent variable model.
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main text, let Ñ c be the set of counterfactual cited-citing relationships. By construction, the

total number of counterfactual citations equals that of actual citations, i.e., Ñ c = N c. Denote

by c̃ij a counterfactual citation dummy, which takes one if (i, j) ∈ Ñ c and zero otherwise.

Then, as shown in Appendix D, the OLS estimator for the r-th distance ring is given by

µ̃r = Ñ c
r/Ñr = Ñ c

r/Nr, where the counterfactual number Ñr of all possible pairs of patents

in the r-th distance ring is the same as the denominator Nr in (14) because the set N of all

possible patent pairs that we use to estimate µ̂r and µ̃r is common.

Finally, we define the measure of localization based on the DD regressions at distance

d ∈ (dr −∆/2, dr +∆/2] as the difference between the actual and counterfactual coefficients:

γDD(d) ≡ µ̂r − µ̃r = wDD ×
[
N c

r − Ñ c
r

]
, (15)

where wDD ≡ 1/Nr. Note that, for µ̂r and µ̃r to be comparable, the binwidths for the observed

and control samples are assumed to be the same here, i.e., ∆ = ∆̃. Under this assumption,

the localization measure (8) based on the histograms at distance d ∈ (dr − ∆/2, dr + ∆/2]

can be rewritten as γHIST(d) ≡ cr − c̃r = wHIST × [N c
r − Ñ c

r ] = (wHIST/wDD)× γDD(d), where

wHIST ≡ 1/(N c∆). Thus, the localization measure (15) obtained from the DD regressions

is proportional to the localization measure (8) derived from binning in the first step of the

L-density estimations. Hence, these two localization measures provide qualitatively the same

localization results: Knowledge spillovers are localized at distance d ∈ (dr −∆/2, dr + ∆/2]

if the difference N c
r − Ñ c

r is positive and significantly different from zero.

B.2. A general case: Local linear regression

We consider a general case of the regression model (12) without imposing a specific functional

form on m. A typical estimator is then the local linear (LL) regression estimator.29 Formally,

the LL regression estimator m̂(d) is given by β̂0 that solves the minimization problem:

min
{β0,β1}

∑
(i,j)∈N

[cij − β0 − β1(dij − d)]2 f((dij − d)/h) (16)

29Another estimator that is often used in the literature is the Nadaraya-Watson (NW) regression estimator.
We show in Appendix E that the localization measure obtained from the NW regressions is essentially the
same as γKD that is derived from the K-density estimations.
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as follows:

m̂(d) =
Ŝ(d)

Ŝ2(d)Ŝ0(d)− Ŝ1(d)2
, (17)

where

Ŝ(d) =
∑

(i,j)∈N c

[
Ŝ2(d)− Ŝ1(d)(dij − d)

]
f((dij − d)/h) (18)

Ŝq(d) =
∑

(i,j)∈N

(dij − d)qf((dij − d)/h) (19)

(see, e.g., Wand and Jones, 1995). As in the previous cases, we consider the estimator m̃(d)

for counterfactual citations. Taking the difference between m̂(d) and m̃(d), the localization

measure based on the LL regressions can be defined as follows:

γLL(d) ≡ m̂(d)− m̃(d) = wLL ×
[
Ŝ(d)− S̃(d)

]
, (20)

where wLL ≡ [Ŝ2(d)Ŝ0(d)− Ŝ1(d)
2]−1. Note that the actual and counterfactual bandwidths are

assumed to be the same here. One may think of the difference Ŝ(d) − S̃(d) as a localization

measure. We will discuss such a possibility in Appendix B.3.

B.3. Difficulties with regression-based localization measures

In Section 2 we have compared the two different localization measures, γLD and γKD, both

of which are based on density estimators. We now discuss the relationship between our

localization measure γLD and the localization measures based on nonparametric regressions.

Our localization measure γLD obtained from the L-density estimations shares a similarity

with γHIST in (8) and γDD in (15) since they rely on the binwidth ∆. However, the difference

is that γLD depends also on the smoothing parameter h. This allows us to cope with the

problem that γHIST and γDD are sensitive to the choice of ∆. Furthermore, our measure

is similar to γLL in (20) because both measures are obtained from local linear regressions.

Notwithstanding the similarities, these alternative approaches to γLD have difficulties from

either a theoretical or a practical point of view.

Theoretically, the localization measure obtained from DD regressions is essentially the

same as that derived from the histograms. However, the histogram estimator has the first-

order bias even at interior points unless the derivative of the true density is zero (Simonoff,

1996, Section 2.1). Thus, the localization tests using γHIST and γDD tend to underperform
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those using γKD. In contrast, the LL regression estimator has the O(h2) bias at the boundary

as well as at interior points (Fan and Gijbels, 1996, Section 3.2). Therefore, the localization

measure γLL could perform better than γKD that is subject to the O(h) bias at the boundary.

Despite such a desirable boundary property, the LL regression estimator has a drawback

in terms of computational time. As shown in equations (17)–(19), the implementation of the

LL regression requires the summation Ŝq(d) with q = 0, 1, 2, each of which involves the kernel

function evaluation as many times as the sample size N . Thus, when testing for localization

using micro-geographic data, the required sample size is often quite large. For example, in the

case of the NBER U.S. Patent Citations Data File that we use in this paper, the number of

patents eligible for the LL regression analysis is 937, 469, so that the number of observations,

which is the number of all possible pairs of patents, can be up to 8.8 × 1011. Such a large

number of observations make estimation infeasible in practice.30

It should be noted that a computational burden is much less severe for the K- and L-

density estimations. Indeed, the localization measures γKD and γLD can be computed without

much difficulty. The reason is that the K-density estimator requires the kernel function

evaluation only for N c times rather than N times as shown in (7), where the summation is

taken over the set N c of patent pairs having a cited-citing relationship, not the set N of all

possible patent pairs. Similarly, as discussed in Section 2, the L-density estimator requires

only R (< N c) times, where R is the number of bins. One may think of the difference

Ŝ(d)− S̃(d) in (20) as an alternative localization measure using the LL regressions. However,

the computational burden remains heavy since, as shown in (18), the computation of Ŝ(d)

still involves the summation of Ŝq(d) with q = 1, 2, each of which requires the kernel function

evaluation for N times rather than N c or R times.

Appendix C: An alternative regression model

In this appendix, we consider an alternative regression model with different observation units.

Let z and z′ be geographic sites (e.g., zip code area or county), and consider

czz′

nzz′
= ms(dzz′) + εzz′ , (21)

30Another example can be taken from Duranton and Overman (2005). Since there are 176, 106 establish-
ments in their data, the sample size for the LL regression, i.e., the number of all possible pairs of establishments,
will be more than 1.5× 1010, where we use (cij , dij) = (cji, dji) because their data is undirectional.
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where czz′ and nzz′ are the number of citations and the number of patent pairs between z and

z′, respectively; and dzz′ is the distance between sites z and z′. Thus, for each pair of sites

(z, z′), the citation rate czz′/nzz′ is regressed on the distance dzz′ between the two sites.

It can be verified that the functionms in (21) is identical to the functionm of the regression

model (12). To see this, let zi and zj be the geographic sites to which patents i and j belong,

respectively. Noting that czz′ =
∑

{i|zi=z}
∑

{j|zj=z′} cij, we readily obtain the result as follows:

ms(dzz′) = E

(
czz′

nzz′

∣∣∣∣dzz′) =
1

nzz′

∑
{i|zi=z}

∑
{j|zj=z′}

E(cij|dzizj) =
1

nzz′

∑
{i|zi=z}

∑
{j|zj=z′}

m(dzizj).

Since the value of m(dzizj) is constant for any i and j such that zi = z and zj = z′, we obtain

ms(dzz′) = m(dzizj). Hence, without loss of generality, we focus on the regression model (12).

Appendix D: The OLS estimators for the DD regressions

Since the regressors are orthogonal in (13), the OLS estimator for distance ring r is given by31

µ̂r =

∑
(i,j)∈N Dijrcij∑
(i,j)∈N D2

ijr

=

∑
(i,j)∈N c Dijr∑
(i,j)∈N Dijr

,

where we use
∑

(i,j)∈N Dijrcij =
∑

(i,j)∈N c Dijr and D2
ijr = Dijr. Using the definitions of N c

r

and Nr, we obtain (14). Similarly, using the counterfactual citation dummy c̃ij and the set

Ñ c of counterfactual citations, the OLS estimator for the r-th distance ring is given by

µ̃r =

∑
(i,j)∈N Dijrc̃ij∑
(i,j)∈N D2

ijr

=

∑
(i,j)∈Ñ c Dijr∑
(i,j)∈N Dijr

,

where we use
∑

(i,j)∈N Dijrc̃ij =
∑

(i,j)∈Ñ c Dijr and D2
ijr = Dijr. Using the properties of Ñ c

r

and Ñr, we obtain µ̃r = Ñ c
r/Ñr.

31This result comes from the Frisch-Waugh-Lovell Theorem (see, e.g., Davidson and MacKinnon, 2004,
pp.65-66). When all regressors are orthogonal, the coefficient of any single variable in the multiple regression
can be expressed as the coefficient of the variable in the simple regression after dropping out all the other
independent variables.
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Appendix E: On the relationship between K-density estimation and

Nadaraya-Watson regression

In general the regression model (12) can be estimated via local polynomial regressions. Let p

denote the degree of the polynomial being fit. At distance d, the local polynomial regression

estimator m̂(d) is obtained by fitting the p-th order polynomial to the data using weighted

least squares. More specifically, m̂(d) is given by β̂0 that solves the minimization problem:

min
{β0,··· ,βp}

∑
(i,j)∈N

[cij − β0 − β1(dij − d)− · · · − βp(dij − d)p]2 f((dij − d)/h). (22)

The commonly used values for the order of the polynomial are p = 0 and 1. In such cases, we

have simple explicit formulae (see, e.g., Wand and Jones, 1995). In Appendix B.2, we deal

with the case with p = 1. When p = 0, the value β̂0 is called the Nadaraya-Watson (NW)

regression estimator and is given by

m̂NW(d) =

∑
(i,j)∈N f((dij − d)/h)cij∑
(i,j)∈N f((dij − d)/h)

.

Noting that
∑

(i,j)∈N f((dij − d)/h)cij =
∑

(i,j)∈N c f((dij − d)/h), and that f((dij − d)/h) =

f((d − dij)/h) by symmetry of the kernel function f , the NW regression estimator can be

expressed in term of density estimators as follows:

m̂NW(d) =
N c

N

K̂c(d)

K̂(d)
,

where

K̂c(d) =
1

N ch

∑
(i,j)∈N c

f((d− dij)/h)

K̂(d) =
1

Nh

∑
(i,j)∈N

f((d− dij)/h)

are K-density estimators. Note that the former expression, K̂c(d), is the same as (7).

We denote by m̃NW(d) the NW regression estimator when the dependent variable is a

counterfactual citation dummy c̃ij. Then, the localization measure is given by the difference
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between the two estimators as follows:

γNW(d) ≡ m̂NW(d)− m̃NW(d) = wNW ×
[
K̂c(d)− K̃c(d)

]
where wNW ≡ (N c/N)[K̂(d)]−1 > 0. Note that the actual and counterfactual bandwidths

are assumed to be the same here. Under this assumption, the localization measure based

on the NW regression estimators can be rewritten in terms of the localization measure (6)

derived from the K-density estimators as γNW(d) = wNW × γKD(d). Since wNW > 0 for any

distance, γNW(d) and γKD(d) have the same sign. Hence, they provide qualitatively the same

localization results: Knowledge spillovers are localized at distance d if γNW(d) and γKD(d) are

positive and significantly different from zero.
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Appendix F: The results for the median citation distances
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(a) K-density test
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(b) L-density test

Figure F1: K-density and L-density tests using patent class 283 (median citation distances).

The solid curves are the estimated densities for the actual citations. The dashed (resp.,
dotted) curves correspond to the global (resp., local) confidence intervals obtained from the
counterfactual citations. For the K-density test, we use Silverman’s (1986) rule-of-thumb
bandwidth. For the L-density test, we adopt the cross-validation method and McCrary’s
(2008) binwidth.
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Figure F2: Localization results at and near the boundary (median citation distances).

The top (resp., bottom) panel depicts the frequency distributions of patent classes for the
distances at which the members in ALD\KD (resp., AKD\LD) initially display localization. The
bars in dark grey (resp., light grey) are the frequencies of localized patent classes detected only
by the L-density (resp., K-density) tests. For the K-density tests, we use Silverman’s (1986)
rule-of-thumb bandwidth. For the L-density tests, we adopt the cross-validation method and
McCrary’s (2008) binwidth.
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(a) Cross-validation (hA
CV/∆ > 10)
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(b) Fan and Gijbels’ ROT (hA
FG/∆ > 10)
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(c) Silverman’s ROT (hA
S /∆ > 10)

Figure F3: Robustness check: Localization results at and near the boundary (median citation
distances).

In all cases (a), (b), and (c), the top (resp., bottom) panel depicts the frequency distributions
of patent classes for the distances at which the members in ALD\KD (resp., AKD\LD) initially
display localization. The bars in dark grey (resp., light grey) are the frequencies of localized
patent classes detected only by the L-density (resp., K-density) tests. For the K-density
tests, we use Silverman’s (1986) rule-of-thumb bandwidth. For the L-density tests, we adopt
the cross-validation method in panel (a), Fan and Gijbels’ (1996) rule-of-thumb bandwidth in
panel (b), and Silverman’s (1986) rule-of-thumb bandwidth in panel (c). In cases (a) and (b),
hA
CV/∆ > 10 and hA

FG/∆ > 10 hold for all patent classes A ∈ A. Note that while the inequality
condition is not satisfied for all patent classes, the binwidth, ∆, is iteratively decreased by 10
percent for that condition to be satisfied. In case (c), we choose the binwidth, ∆, such that
hA
S /∆ > 10 holds for all patent classes A ∈ A.
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