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Abstract

In this study, we focus on intermittent missingness in repeated duration analy-
sis, which is common in applied studies but has not rigorously been considered in
statistics. Under intermittent missingness, whether any missing events exist between
two observed events is unknown. In other words, the missing indicators are never
observed. Thus, if there exist any missing events between two observed events, we
observe only the cumulated duration between two or more events. We propose a
quasi-Bayes estimation method that utilizes population-level information to identify
unobserved intermittent missingness. The proposed model consists of the following:
(1) latent variable model, (2) latent missing indicator model which separates true and
composite duration, (3) mixtures of duration models and (4) moment restriction from
population-level information to deal with nonignorable intermittent missingness. We
use a new estimation procedure that combines objective functions of likelihood and
GMM simultaneously with latent variables, which we call Bayesian data combina-
tion. We apply the proposed model to analyze interpurchase-duration in database
marketing using purchase-history data in Japan, which capture purchase incidences
and purchase stores.

Keywords: Intermittent Missingness; Latent Variable Modeling; Quasi-Bayes; Population-
Level Information; Dirichlet Process Mixture
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1 Introduction

Duration analysis, which captures the time-to events, is widely used in various areas in-

cluding biostatistics, engineering, economics, and marketing. We focus on duration analysis

for repeated events (Andersen and Gill 1982; Sinha 1993; Sinha and Dey 1997; Bijwaard

et al. 2006), such as clinical trials, unemployment or interpurchase-timing. Especially in

repeated measurement data, missing data often become a problem. In duration analysis

studies, this problem has been extensively considered. The major issues regarding the

missingness in repeated measurements including duration analysis are censoring, missing

covariates, and dropouts (Little 1995; Diggle and Kenward 1994; Ibrahim et al. 2001;

Klein and Moeschberger 2005). However, there is a small number of studies that deal with

intermittent missing data in repeated measurement (Gad and Ahmed 2007; Wand et al.

2010; Qin et al. 2016). Previous studies, which focus on the linear or binomial regression

models, consider cases in which researchers can observe the missing indicators that reveal

the presence of missing events between two observed events. However, as we show in detail,

in many application settings, missing indicators are not observed, which can yield severely

biased estimates especially in duration analysis, because some distinct true durations may

be summed up to one observed duration. Despite its importance in application studies, the

intermittent missingness in repeated duration analysis is not adequately considered and

studied. In this study, we focus on the intermittent missingness in duration analysis with

repeated measurements.

Figure 1 depicts the intermittent missingness in repeated duration analysis. In the fig-

ure, the black cross-marks show observed events and the gray cross-marks show unobserved

events, called intermittent missingness. Under these conditions, researchers can observe

only black cross-marks, and not gray cross-marks. If any missing events exist between two

observed events, the observed duration is not the true duration. In other words, we observe

only the cumulated duration for two or more events. Therefore, ignoring intermittent miss-

ingness will lead to biased estimates and incorrect interpretations about the effects of some

important covariates. The intermittent missing problem can arise in various areas such as

medical research (e.g., a mild spasm or taking over-the-counter drugs outside hospitals)

and animal ecological studies (e.g., reproductive behavior), which cannot be known to re-
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searchers. For illustrative purposes, we now deal with the interpurchase-timing model in

marketing. Consumers purchase various products from different companies or stores such

as supermarkets, drugstores, and corner stores. By analyzing the purchase histories includ-

ing interpurchase timing, marketers plan various marketing interventions such as coupons

or direct mail. However, the purchase data consist of only customers’ behaviors from the

company’s own stores. Therefore, data on consumers’ behaviors in competing stores are

unavailable. As shown in detail in Section 5, output from analyzing this incomplete data

may lead to biased estimates and incorrect decision-making.

Observed Event Missing Event

Observed Duration
(Not True)

True Duration

����

ID1

Figure 1: Intermitternt Missingness in Repeated Duration Analysis

Under intermittent missingness in repeated duration analysis, neither the covariates nor

the incidences of events can be observed. These features result in difficulty in dealing with

intermittent missingness. There is one study which deals with intermittent missingness

in repeated duration analysis by using latent class model (Lin et al. 2004). Their model

is a generalization of Little(1993)’s pattern mixture model, and they called their model

the latent pattern mixture model (LPMM). It should be noted that Lin et al. (2004)

merely modeled the joint distribution of the longitudinal outcomes and the number of

events by using the latent class model, in which the parameters of duration analysis differ

among classes. It is not guaranteed that the method will provide the class without the

intermittent missingness, so Lin et al. (2004) simply refer to the intermittent missingness

from the outputs of estimated classes retroactively. Intermittent missingness cannot be

fixed by the latent class model which has common membership indicators among the same

individual, because the intermittent missingness does not depend only on individuals but

on the both individual and each of their events. Moreover, the latent class model itself
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is not able to identify intermittent missingness in repeated duration analysis because of

the individual’s heterogeneity in the length of durations. That is to say, it is likely that

both individuals who have averagely long durations without intermittent missingness and

individuals who have averagely short durations with some intermittent missingness exist.

Under these conditions, even if we consider individual’s heterogeneities in latent class model

like Lin et al. (2004), we are unable to identify the differences of the length of durations

caused by individual’s heterogeneities or intermittent missingness. It is easily shown that

the existing approach, including Lin et al. (2004), can yield severe biased estimates (see

Section 4).

In this study, we propose a Bayesian estimation method to deal with intermittent miss-

ingness when missing indicators are not observed. Concretely, we incorporate population-

level information into individual-level duration analysis to identify the observations that do

not have any intermittent missingness. In real data, the observed individual-level data are

likely to be biased for various reasons including selection bias and nonignorable missingness,

causing the resulting estimates to be biased. Therefore, complete data, without any biases,

are occasionally unavailable, and analysis from biased data would lead to biased estima-

tors. On the other hand, researchers can sometimes obtain population-level information

from other sources, such as government statistics or research institutions. Population-level

information given by other sources is limited to summary statistics such as averages or

proportions of variables, and the parameters which shows the relationships between vari-

ables cannot be given to researchers. This information cannot be incorporated into the

prior distribution of Bayesian modeling, except for simple probability distribution models,

like normal or binomial distributions in which averages or proportions mean the param-

eters of models directly. In this setup, some studies use population-level information to

strengthen the accuracy of individual-level data models. Imbens and Lancastor (1994) and

Hellerstein and Imbens (1999) propose the method of incorporating the population-level

information into individual-level models using the generalized method of moment (GMM).

Similarly, Qin (2000) and Chaudhuri et al. (2008) propose empirical likelihood approaches

that include population-level information in individual-level modeling. We can regard these

methods as a kind of data combinations especially used in economic fields (Ridder and Mof-
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fit 2007). From the viewpoint of missing data analysis, Nevo (2003), Qin (2000) and Qin

and Zhang (2007) use population-level information to strengthen the analysis of data with

missing responses, using GMM or empirical likelihood. However, their models deal with

missing data problems in which missing indicators are observed. Thus, no studies deal with

repeated duration analysis with unobserved missing indicators. We use population-level in-

formation to deal with missing data problems that have unobserved missing indicators.

However, problems exist with the related literature regarding data combinations. First,

there are no studies which deal with latent variables in the model. Unobserved hetero-

geneities, such as multi-level models, random effect models, generalized linear mixed mod-

els or frailty models, and hierarchical Bayes models are very important in individual-level

modeling. Latent variable modeling is very important in recent empirical studies, and

therefore we include latent variables in data combinations. Further, there is a need to use

latent variables to identify the durations without intermittent missingness. Second, there

are computational problems in the complex models. For the estimation of flexible models,

Bayesian estimation using Markov chain Monte Carlo (MCMC) is effective and widely used

(Gelman et al. 2013; Koop et al. 2007). However, moment restrictions such as Imbens and

Lancastor (1994) are not utilized in Bayesian methods. In such a situation, Chernozhukov

and Hong (2003) propose the quasi-Bayes method using MCMC, which can use different

types of objective functions such as GMM, M-estimators or empirical likelihoods instead of

likelihood function. Similarly, Yin (2009) and Li and Jiang (2016) proposed Bayesian GMM

as the same framework as Chernozhukov and Hong (2003). In this study, we use a new

estimation procedure which can incorporate latent variables into the model and combine

the likelihood and objective function of GMM, which enables us to estimate the repeated

duration model with unobserved missing indicators by MCMC.

The remainder of the article is organized as follows. In Section 2, we develop a repeated

duration model with nonignorable intermittent missingness. Section 3 provides an estima-

tion procedure for Bayesian data combinations mixing objective functions of likelihood and

GMM with latent variables using MCMC. Section 4 provides a summary of the simulation

study. Section 5 presents application of the proposed model to interpurchase-timing in

marketing. Here we show that analysis of the database that records the purchase histories
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of only their own stores underestimates the effects of price for interpurchase-timing. A

concluding remark is given in Section 6.

2 Model

2.1 Whole Structure

In this study, we express the distribution of observed durations as a mixture distribution

that consists of two distributions: (1) the distribution without intermittent missingness be-

tween two observed events and (2) the distribution with intermittent missingness between

two observed events. This idea is similar to the LPMM by Lin et al. (2004), but is different

in that our model identifies whether each observed duration includes intermittent missing-

ness using data combinations, and estimate parameters with imposing the restrictions on

moment conditions in GMM.

We define the latent missing indicator zij for individual i’s(i = 1, 2, ..., n) jth(j =

1, 2, ..., Ji) event.

zij =

 1 There exists no intermittent missingness between observed event j − 1 and j

0 There exists intermittent missingness between observed event j − 1 and j

Note that zij can be regarded as the membership indicator in the latent class model. We

call the duration in zij = 1 true duration, and the duration in zij = 0 composite duration

hereafter.

Let individual i’s jth time-to-event yij, the latent missing indicator zij , time-varying

covariates vector xij ,wij , individual-level covariates vector di, latent variable fi, and struc-

tural parameters θ,γ, ξ,η,

p(yij|xij) =

∫
p(fi|di,η)

[
p(zij = 1|wij , fi,γ)p(yij|zij = 1,xij , fi,θ)

+ p(zij = 0|wij , fi,γ)p(yij|zij = 0,xij , fi, ξ)

]
dfi.

(1)

The proposed model consists of four components: (1) latent variable model p(fi|di,η), (2)

latent missing indicator model p(zij|wij , fi,γ) which separates true and composite dura-

tions, (3) mixtures of duration model p(yij|zij = 1,xij , fi,θ) and p(yij|zij = 0,xij , fi, ξ)
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and (4) moment restriction for some group-level information(eg., gender or age ranges).

We now explain each model.

2.2 Submodels

Latent Variable Model

Latent variable fi is included in p(zij|wij , fi,γ), p(yij|zij = 1,xij , fi,θ) and p(yij|zij =

0,xij , fi, ξ). We assume that fi is explained by individual-level covariates di,

fi ∼ N(d′
iη, σ

2
f ). (2)

Here we set σ2
f = 1 simply.

Latent Missing Indicator Model to Separate True and Composite Duration

The probability that individual i’s jth event belongs to the latent missing indicator zij = 1

is modeled via a logistic regression model using the time-varying covariates wij and the

latent variable fi,

p(zij = 1|wij , fi,γ) =
exp(γ0 +w′

ijγ1 + fi)

1 + exp(γ0 +w′
ijγ1 + fi)

. (3)

Here we set γ = (γ0,γ
′
1)

′. However, this model cannot be estimated appropriately with only

observed data because of the identification problem. Therefore, it is necessary to include

the population-level information in our model and estimate this model with imposing the

restrictions on the moment conditions.

Duration Model

We consider two models for the duration model, the cases of z = 1 and z = 0. We interpret

the parameter θ of the latent missing indicator z = 1 as a result without any bias by

intermittent missingness. We are not interested in the parameter ξ in z = 0 and do not

interpret it.

(i)Duration without Intermittent Missingness (z = 1)

We assume the parametric hazard model for the time-to-event yij of the individual i’s jth

event using the time-varying covariates vector xij , latent variable fi, and parameter θ.
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The general hazard function is

h(yij|zij = 1,xij , fi,θ) = h0(yij)exp(β0 + x′
ijβ1 + ρfi). (4)

If we employ a parametric baseline hazard function for h0(yij), this model accommodates

exponential, Weibull, and log-normal survival model. We can regard this model as a

Bayesian frailty model, which is common in survival analysis (Clayton 1991; Sinha 1993;

Ibrahim et al. 2005; Dunson and Herring 2005; Pennell and Dunson 2006). Additionally,

we assume ρ > 0 as a theory constraint.

The probability density function (pdf) is represented by the multiplication of hazard

function and survival function.

p(yij|zij = 1,xij , fi,θ) = h(yij|zij = 1,xij , fi,θ)S(yij|zij = 1,xij , fi,θ) (5)

(ii)Duration with Intermittent Missingness (z = 0)

The observed durations yij in z = 0 may be cumulated between two or more events, but

how many missing events there are is not known. Therefore, the simple duration model

p(yij|zij = 0,xij , fi, ξ) may cause model misspecification. We assume nonparametric Bayes

model to avoid model misspecification by using the Dirichlet process mixture (DPM) model

(Ishwaran and James 2001; Dunson et al. 2007; Dunson and Park 2008; Chung and Dunson

2009; Hoshino 2013).

p(yij|zij = 0,xij , fi, ξ) =
∞∑
k=1

πkp(yij|zij = 0, zDij = k,xij , fi, ξk) (6)

Here, k means a component in DPM and does not show the number of unobserved inter-

mittent missingness. Additionally, πk is a probability weight for component k and zDij is the

individual i’s jth membership indicator which belongs to k-th component when zij = 0.

This hierarchical structure for the latent missing indicator model and DPM is similar to a

two-stage or multilevel latent class model. We use Ishwaran and James (2001)’s types of

DPM. The stick-breaking representation is by letting,

π1 = V1, πk = Vk

k−1∏
h=1

(1− Vh), Vk ∼ Be(1, r). (7)

Here, we let r = 1 (Ishwaran and James 2001; Gelman et al. 2013).
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2.3 Incorporating Population-Level Information

For identification of the true duration model, we use two types of population-level informa-

tion, the proportion without intermittent missingness z∗ and average duration y∗ by using

moment restrictions (Imbens and Lancastor 1994; Chaudhuri et al. 2008). In this study, z∗

and y∗ are considered to be known exactly, but the proposed method is easily generalized

to deal with the case by using statistics from external surveys.

Let the moment restrictions m(zij|γ) using the proportion without intermittent miss-

ingness for group s(s = 1, 2, ..., S) z∗s

m(zij|γ) =


I1ij
[
z∗1 − E[zij = 1|wij , fi,γ]

]
· · ·

ISij
[
z∗S − E[zij = 1|wij , fi,γ]

] ,

here Isij = 1 when individual i’s jth event belongs to group s.

Next, we use the auxiliary information y∗s to identify the parameters of the true duration

distribution. The moment restrictions m(yij|θ) are by letting

m(yij|θ) =


I1ij
[
y∗1 − E[yij|zij = 1,xij , fi,θ)]

]
· · ·

ISij
[
y∗S − E[yij|zij = 1,xij , fi,θ)]

] .

3 Estimation Method

Here we introduce a new method for Bayesian data combinations. We propose the new

quasi-Bayes method and MCMC algorithms, which can deal with latent variables and have

hybrid posteriors with likelihood functions and moment restrictions. See the supplementary

material for proof of consistency and asymptotic properties of the estimator.

3.1 Hybrid Posterior Combining Likelihood and Objective Func-

tion of GMM

The usual quasi-Bayes method is represented as follows.

p(θ|Y ) =
exp{Ln(θ)}p(θ)∫

Θ
exp{Ln(θ)}p(θ)dθ

∝ exp{Ln(θ)}p(θ) (8)
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where p(θ|Y ) is a posterior distribution for θ, p(θ) is a prior distribution for θ, Θ is the

parameter space of θ and Ln(θ) is an objective function such as GMM, M-estimators,

or empirical likelihoods instead of log-likelihood functions (Chernozhukov and Hong 2003;

Hoshino 2008; Yin 2009; Yang and He 2012).

The posterior expectations of quasi-Bayes are represented as follows.

θ̂ =

∫
Θ

θp(θ|Y )dθ =

∫
Θ

θ

(
exp{Ln(θ)}p(θ)∫

Θ
exp{Ln(θ)}p(θ)dθ

)
dθ (9)

If we use the GMM type of objective function, the objective function is defined as

follows.

Ln(θ) = −n

2

( 1
n

n∑
i=1

m(yi|θ)
)′
Ωn

( 1
n

n∑
i=1

m(yi|θ)
)

(10)

Here,m(yi|θ) is a moment restriction andΩn is a weight matrix,Ωn = E
(
m(y|θ)m(y|θ)′

)−1
.

We can incorporate population-level information into m(yi|θ) like Imbens and Lancastor

(1994).

However, the previously proposed quasi-Bayes estimation methods do not consider la-

tent variable modeling (LVM). How to incorporate latent variables is not known nor is the

validity of resulting method. In traditional Bayesian estimation with LVM, by treating

latent variables as incidental parameters and drawing samples from the full conditional

distribution of the latent variable, we can avoid evaluation of marginal likelihood in which

latent variables are integrated out (e.g., Tanner and Wong 1987; Albert and Chib 1993).

It would also be useful to treat latent variables as incidental parameters in quasi-Bayes

computation. Additionally even if we can incorporate latent variables into a GMM-type

quasi-Bayes method, the method would have a heavy computational load. It is not realistic

in practice because we must compose several moment restrictions in accordance with the

number of latent variables, which is proportional to the sample size n. If we can express the

full quasi-posterior distribution as the product of the parametric likelihood p(Y |θ,f) and

the function regarding moment restriction Ln(θ), it is easy to draw the MCMC runs. That

is, we set quasi-Bayes posterior distribution q(θ,f |Y ) with latent variable f as follow:

q(θ,f |Y ) ∝ p(Y |θ,f)× exp
{
Ln(θ)

}
× p(θ)× p(f |θ). (11)

Here, p(f |θ) is a prior distribution for f . We call this format hybrid posterior thereafter
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and this form enables us to conduct Bayesian data combinations. Thus, we propose hybrid

methods of full-Bayes and quasi-Bayes that include latent variables in the model.

3.2 Moment Restriction with Latent Variables

The expectations of each parametric hazard model are shown in Klein and Moeschberger

(2005). Here, we integrate out the latent variable in moment restriction.

The expectations of the proportion without intermittent missingness is

E[zij = 1|wij , fi,γ]
]
=

∫
exp(γ0 +w′

ijγ1 + fi)

1 + exp(γ0 +w′
ijγ1 + fi)

p(fi|η, σ2)dfi

≃ 1

L

L∑
l=1

exp(γ0 +w′
ijγ1 + f l

i )

1 + exp(γ0 +w′
ijγ1 + f l

i )
.

(12)

We draw the latent variable by using Monte Carlo simulations, that is f l
i ∼ N(d′

iη, σ
2).

Similarly, when we use Weibull hazard model, the expectation is

E[yij|zij = 1,xij , fi,θ)] =

∫
Γ
(
1 + α−1

)
exp

{
−
β0 + x′

ijβ1 + ρfi

α

}
p(fi|η, σ2)dfi

≃ 1

L

L∑
l=1

Γ
(
1 + α−1

)
exp

{
−
β0 + x′

ijβ1 + ρf l
i

α

}
.

(13)

Here, Γ() means the gamma function and set θ = (α, β0,β
′
1, ρ)

′.

The objective functions of GMM for moment restriction parts are given by

Lz
N(γ) = −N

2

(
1

N

n∑
i=1

Ji∑
j=1

m(zij|γ)

)′

Ωz
N

(
1

N

n∑
i=1

Ji∑
j=1

m(zij|γ)

)

Ly
Nz=1

(θ) = −Nz=1

2

(
1

Nz=1

n∑
i=1

Ji∑
j=1

I(zij = 1)m(yij|θ)

)′

Ωy
Nz=1

(
1

Nz=1

n∑
i=1

Ji∑
j=1

I(zij = 1)m(yij|θ)

).
(14)

Here, Ωz
N and Ωy

Nz=1
are the optimal weight matrix.

Ωz
N =

[
1

N

n∑
i=1

Ji∑
j=1

m(zij|γ)m(zij|γ)′
]−1

, Ωy
Nz=1

=

[
1

Nz=1

n∑
i=1

Ji∑
j=1

I(zij = 1)m(yij|θ)m(yij|θ)′
]−1

(15)

Here, N =
∑n

i

∑Ji
j I, Nz=1 =

∑n
i

∑Ji
j I(zij = 1).
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3.3 Total Objective Function

The objective function combining likelihood and GMM for the proposed model is

p(Y |x) ∝
∫ n∏

i=1

p(fi|di,η)

Ji∏
j=1

[
p(zij = 1|wij , fi,γ)p(yij|zij = 1,xij , fi,θ)

+ p(zij = 0|wij , fi,γ)
∞∑
k=1

πkp(yij|zij = 0, zDij = k, fi, ξk)

]
dfi

× exp
{
Lz

N(γ))
}
× exp

{
Ly

Nz=1
(θ)
}
.

(16)

3.4 MCMC Implementation

We draw samples using MCMC.

Draw θ(z = 1)

The posterior distribution is combined with likelihood and GMM (z = 1) and draw θ from

hybrid posterior using the Metropolis-Hastings algorithms.

q(θ|yij, zij = 1,xij , fi) =
n∏

i=1

Ji∏
j=1

{
p(yij|zij = 1,xij , fi,θ)

I(zij=1)

}
× p(θ)× exp

{
Ly

Nz=1
(θ)
} (17)

Here p(θ) is a prior distribution for θ.

Draw γ

The posterior distribution is combined with likelihood and GMM and draw γ from hybrid

posterior using the Metropolis-Hastings algorithms.

q(γ|zij,wij , fi) =
n∏

i=1

Ji∏
j=1

{
p(zij|wij , fi,γ)

}
× p(γ)× exp

{
Lz

N(γ))
}

(18)

Here p(γ) is a prior distribution for γ.

Draw fi

The posterior distribution is simple likelihood and the objective function of GMM is inte-
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grated out, thus we draw fi from simple posterior using the Metropolis-Hastings algorithms.

p(fi|·) =
Ji∏
j=1

[
p(zij = 1|wij , fi,γ)p(yij|zij = 1,xij , fi,θ)

+ p(zij = 0|wij , fi,γ)
∞∑
k=1

πkp(yij|zij = 0, zDij = k,xij , fi, ξk)

]
p(fi|di,η)

(19)

Draw zij and zDij

The posterior distribution is simple likelihood and the objective function of GMM is inte-

grated out.

p(zij = 1|·) = p(zij = 1|wij , fi,γ)p(yij|zij = 1,xij , fi,θ)

p∗(yij, zij)

p(zDij = k|·) =
p(zij = 0|wij , fi,γ)πkp(yij|zij = 0, zDij = k,xij , fi, ξk)

p∗(yij, zij)

(20)

Here,

p∗(yij, zij) =p(zij = 1|wij , fi,γ)p(yij|zij = 1,xij , fi,θ)

+ p(zij = 0|wij , fi,γ)
∑
k

πkp(yij|zij = 0, zDij = k,xij , fi, ξk)
(21)

Draw Other Parameters

Drawing ξk and Vk is the same as those of the general DPM (Ishwaran and James 2001;

Gelman et al. 2013 ) and drawing η is the same as the usual Gibbs sampling.

In the Bayesian latent class model, label switching problems are often pointed out, and

researchers usually set the restriction of one parameter, such as θ11 < ... < θ1k < ... < θ1K

(Frühwirth-Schnatter 2001), where k = (1, ..., K) means each class. In the proposed model,

the moment restriction Lz
N(γ) and Ly

Nz=1
(θ) play a role on label switching restrictions.

Thus, any label switching restriction is not required in the proposed model.

4 Simulation Study

In this section, we show the performance of the proposed model using simulation data.

Here, we assume a Weibull distribution for baseline hazard function(Ibrahim et al. 2005;

Klein and Moeschberger 2005),

h(yij|zij = 1, xij, fi,θ) = αyα−1
ij exp(β0 + xijβ1 + ρfi) (22)
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where α is a shape parameter of the Weibull distribution and β0 and β1 are the coeffi-

cients for covariates. We set θ = (α, β0, β1, ρ)
′. The pdf for the Weibull hazard model is

represented,

p(yij|zij = 1, xij, fi,θ) = αyα−1
ij exp(β0 + xijβ1 + ρfi)exp

{
− exp(β0 + xijβ1 + ρfi)y

α
ij

}
.

(23)

Here we estimate four models to show the performance of the proposed model: (1)

Frailty, (2) LPMM, (3) DPM and (4) Proposedmodels. Frailty is the general Weibull hazard

model with unobserved heterogeneity, ignoring the intermittent missingness. LPMM is the

latent pattern mixture model (Lin et al. 2004) with two classes of which membership

indicator is common in each individual across different events, that is zi1 = zi2 = ... =

ziJi ≡ zi. In LPMM, we incorporate latent variables into the latent class model like Lin

et al.(2004). We pick up estimated parameters from the latent class which estimates the

shortest duration in all classes. DPM is the Dirichlet process mixture model without the

population-level information. Proposed is the full model with population-level information,

which has hybrid posterior and DPM.

Next, we set the conditions of the simulation: (1) sample size n = 500, (2) the average

number of events J̄i = 10, (3) missing rate (MR)= 20%, 40%, 60%, (4) the 200 simulation

sets in each model.

We show the MSEs of simulation study in Table 1. In Table 1, we show only the results

of the estimators of the parameters in the latent missing indicator z = 1 of DPM and

Proposed. Table 1 also shows the average MSEs and ratio of MSEs that are scaled based

on Proposed (MSEProposed = α, β0, β1), which are common to each model. The proposed

model outperforms the existing models and is the only one that yields unbiased estimates.

Next, we show the box plots of common parameters α, β0, β1 for each model in Figure 2.

From this, we can show reproducibility of parameters. In the Frailty model, parameters

cannot be estimated appropriately in each missing rate. The results show that ignoring

intermittent missingness will lead to biased estimates. In LPMM, the results are not close to

true parameters even in low missing rates. As the intermittent missingness does not depend

on only individuals but on both the individual and each of thier events, LPMM does not

work appropriately. Though we show the results of two classes for LPMM, we also simulate
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this model from two to ten classes and confirm LPMM does not work appropriately. The

results of the DPM model are close to those of Proposed, but results show that even when

low missing rate, the estimated parameters have biases from the true values. The reason

why the DPM model does not work appropriately is lack of identification for the latent

missing indicator models and distributions without intermittent missingness. Finally, the

Proposed model performs the best of the four models. Proposed can estimate parameters

appropriately even with a high missing rate. From this, we can determine that previous

models are not able to deal with intermittent missingness appropriately.

Table 1: Simulation Results (MSE×102)

Frailty LPMM DPM Proposed

MR = 20% α 17.45 24.31 0.58 0.05

β0 56.54 137.54 106.45 2.50

β1 16.46 251.45 2.20 0.06

average MSE 30.15 57.42 36.41 0.87

MSE Ratio 214.56 1620.58 30.64 1.00

MR = 40% α 18.88 2.18 0.35 0.19

β0 45.35 29.82 136.41 1.25

β1 20.95 315.84 1.90 0.16

average MSE 28.39 10.90 46.22 0.53

MSE Ratio 88.55 655.45 40.74 1.00

MR = 60% α 15.92 0.38 0.38 0.36

β0 11.32 83.46 173.45 1.87

β1 21.97 307.42 1.97 0.24

average MSE 16.41 28.06 58.60 0.82

MSE Ratio 46.90 435.88 34.00 1.00
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Figure 2: Box plots of Simulation Results
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5 Application to Interpurchase-Timing Modeling

5.1 Interpurchase-Timing in Marketing and Incomplete Data

We apply our model to interpurchase-timing analysis in marketing. Many studies deal with

interpurchase-time using duration analysis (Jain and Vilcassim 1991; Helsen and Schmit-

tlein 1993; Allenby et al. 1999; Seetharaman and Chintagunta 2003; Bijwaard et al. 2006).

The role of duration analysis in marketing is estimating the effect of marketing promo-

tions such as price coupons and predicting the time at which consumers are highly likely

to purchase products. Marketing managers use their own databases which record pur-

chase histories in their own stores, and this is called Database Marketing (eg., Payne and

Frow 2005). In Database Marketing, marketers conduct some forms of marketing activ-

ities such as offering price coupons or sending direct mails to customers, depending on

each customers’ previous purchase records. The goal is to stop customers from switching

to competing stores or to encourage consumers to purchase more products in their own

stores. However, databases usually record the purchase histories of only their own store

chains and lack those of competing stores. Therefore, they are likely to be incomplete and

companies need to predict consumers’ purchase behavior from only available data.

Our model enables us to estimate parameters exactly using incomplete data, and helps

marketing manager decide marketing activities. For clarity of explanation, we consider

the two customers in Figure 3. Black cross-marks mean observed purchase for their own

store in some product categories, and gray cross-marks mean unobserved purchase from

competing stores. In this situation, the marketer may offer price coupons to customers

who have a low frequency of purchase. Both ID1 and ID2 customers purchase products

three times from observed data, but ID2 customer have purchased more, though some of

purchases occur in competing stores. These purchases are unobserved by the marketer. If

the company gives a price coupon to the ID1 customer, it is difficult for the ID1 customer to

purchase more products, because they have no potential capacity in this product category.

However, if company gives a price coupon to the ID2 customer, it is possible for the ID2

customer to purchase more products, because they have potential capacity in this product

category, and coupons may cause store switching from the competing stores.
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Figure 3: Intermittent Missingness in Direct Marketing

5.2 Data Description

Purchase History Data

We use the Survey of Consumer Index (SCI) data provided by Intage Inc in Japan. The SCI

is scanner panel data that is the de facto standard for purchase panel data in the Japanese

marketing field. The SCI records the purchase incidence, purchase product, number of

products consumer purchases, amounts, prices, and purchase stores with date and time.

The data record the store names when purchase events occur. Though the scanner panel

data are recorded for purchase histories in competing store chains, we regard it to be a

database from a particular store, which is incomplete and lacks information on competing

stores. We assume that, though the purchase incidences in each store are observed, the

purchase incidence in other competing stores can not be observed. To make inference from

this incomplete data, we utilize auxiliary information by aggregating the complete data, in

this case to identify unobserved intermittent missingness.

In the analysis, we use the purchase data of the haircare category that consists of

shampoo, hair rinse, and hair treatment. We analyze data from the January 2015 to June

2016 period. From the purchase data, we pick up consumers who purchase products in this

category more than 3 times within a period. We show histograms of observed duration in

Figure 4. We choose a drugstore chain which is very familiar in Japan in analysis. We

select a sample size (n = 967) and total events number (= 5157) for the estimation of

parameters.
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Figure 4: Histograms of Observed Duration

Covariates and Population-Level Information

Next, we define the covariates and auxiliary information used in analysis. We show the

summary statistics in Table 2.

First, we show the covariates x in the repeated duration model.

x =


Price

log(Previous Amount)

log(Previous Duration)

 .

Here ”Price ” is scaled and equals 1 when the price in the purchase incidence equals to

regular price. The coefficients of ”Price” should be negative, because consumers are likely

to visit stores when price discounts are available. In marketing fields, since the effects of

price discounts are very important, we compare ”Price” coefficients with competing models.

Second, we show the covariates w in a logistic regression model. We use the previous

visit frequency in this store chain (not only for this category but for all products), logarithms
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for the average of the previous duration for this category, and store loyalty.

w =


Previous V isit Frequency

log(Average of Previous Duration)

Store Loyalty

 .

Third, we show the individual-level covariates d. We use gender (male 1), age, family

size (1,2, etc.), child and job(fulltime 1).

d =



Gender(Male = 1)

Age

Family Size

Child

Job(Fulltime = 1)


.

Finally, we show the population-level information for proportions without intermittent

missingness z∗s and duration y∗s . We use 6 total demographic groups for ranges of age.

s =



All

Age 20s

Age 30s

Age 40s

Age 50s

Age 60s or more


.

5.3 Results

For real data analysis, we use an exponential hazard model, which is a special type of the

Weibull hazard model, in which the shape parameter α is fixed to one. We estimated five

models: (1) Complete Data, (2) Frailty, (3) LPMM, (4) DPM and (5) Proposed models. In

addition to four models in the simulation study, we estimated Complete Data of which the

results from analyzing the data without any intermittent missing. Since we have purchase

records from competing stores, we can check the accuracy of the estimated parameters by

comparing them with the Complete Data. In each model, we draw 5,000 MCMC iterations
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Table 2: Summary Statistics

Mean

Basic Information

(Observed) Average Frequency 5.3

Observed Duration 56.6

Auxiliary Information

True Duration 43.3

Observed Rate 0.72

Covariates x

Price Scale 1.23

Previous Amounts 686.1

Previous Duration 56.9

Covariates w

Frequency of Previous Visit 28.6

Average of Previous Duration 57.5

Chain Loyalty 0.72

Demographic d

gender(Male=1) 0.10

Age 41.1

Family Size 3.3

Child 0.52

Job(Fulltime=1) 0.31
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Figure 5: Estimated Price Coefficients

after 15,000 burn-in phase. In the DPM and Proposedmodels, we setM = 10 as the number

of components for the Dirichlet process mixture model. We confirm the convergence of each

model by the Geweke (1992) method.

We show the box plots for ”Price” coefficients in each model in Figure 5. From this, it

is obvious that the effects of ”Price” are underestimated, except for in the Proposed model

with respect to Complete Data. The results may cause marketing managers to disregard

price discounts for consumers because effects of price promotions are underestimated.

Next, we confirm that moment restrictions function appropriately. We show the auxil-

iary information z∗ and estimated proportion without intermittent missingness of Proposed

in Table 3. We use the posterior means for the estimated values. Though the estimated

proportions without intermittent missingness are not completely consistent with auxiliary

information z∗, the estimated values are very close to population-level information.

For prediction of the intermittent missingness, we use the results of logistic regression

models. We show the coefficients of γ and η in Table 4. Table 4 shows the posterior mean,

posterior standard deviation, and significant test from a 95% credible interval, which shows

”*” when the 95% credible interval does not include zero. In the logistic regression model,
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Table 3: Auxiliary Information z∗ and Estimated Proportions without Intermittent Miss-

ingness in Proposed

Auxiliary Estimated

Information Proportions

All 0.706 0.754

Age 20s 0.767 0.779

Age 30s 0.714 0.754

Age 40s 0.667 0.758

Age 50s 0.700 0.713

Age 60s 0.763 0.693

coefficients of all covariates are significant. The effect of ”Previous Visit Frequency” is

estimated to be negative. We interpret this as frequent consumers in this store chain make

high-involvement purchases in this category, may cause them to visit other competing stores

frequently and cause intermittent missingness. On the other hand, the effects of ”Store

Loyalty” are estimated to be positive. We can understand that higher the store loyalty of

consumers, the lower the proportions with intermittent missingness. Additionally in the

effects of demographic variable, male consumers, young consumers and fulltime-working

consumers are likely to visit other store chains.

6 Conclusion

In this study, we proposed a duration model with repeated events, which has unobserved

intermittent missingness using hybrid posterior incorporating population-level information.

The proposed model consists of four components: (1) the latent variable model, (2) the la-

tent missing indicator model which separates true and composite duration, (3) mixtures of

duration models and (4) moment restriction from population-level information to deal with

intermittent missingness directly. Additionally, we propose the hybrid quasi-Bayes method

to estimate parameters of the proposed model that incorporates population-level informa-
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Table 4: Coefficients for γ and η in Proposed Model

mean (sd)

γ

Intercept 0.609 (0.046) *

Previous Visit Frequency -0.023 (0.009) *

log(Average of Previous Duration) 0.056 (0.018) *

Store Loyalty 2.040 (0.021) *

η

Gender(Male=1) -0.335 (0.203) *

Age -0.013 (0.006) *

Family Size -0.002 (0.064)

Child 0.180 (0.155)

Job(Fulltime=1) -0.316 (0.134) *

tion into duration models with latent variables. From the simulation study and real data

analysis, we show that ignoring the intermittent missingness in repeated measurement data

may result in severely biased estimates. To show the usefulness of our model, we applied

the proposed model to interpurchase-timing in marketing, in which we can trace the whole

purchase histories observed both in own stores and competing stores. We select and use

only the purchase histories observed in own stores to mimic the situation in database mar-

keting. We confirm that the proposed model can estimate the coefficients of the duration

model appropriately compared to the results from the complete data.

Our model can be applied to other issues in marketing. For example, we apply our

model to internet marketing using web access data. In internet circumstances, the com-

plete data on consumer’s website browsing behaviors cannot be collected because consumers

visit websites of competing companies and purchase products. On the other hand, the pro-

posed model can be applied to other research fields such as social and natural sciences. For

example, in medical statistics, researchers often use longitudinal data about clinical trial

for patients, but such data often record histories within the limited medical institution
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and patients may go to another clinic or take over-the-counter drugs. In this situation, re-

searchers may underestimate the effects of therapy programs, since there exists unobserved

events between observed events. Additionally, in economics, researchers use panel data on

factors such as job employment, marriage, and wages. Here, incomplete data problems can

occur in the same way. We can strengthen incomplete observed data using population-level

information from government statistics or other research institutes.

In future research, we shall extend our model to include the dynamic latent missing

indicator models. In this study, we assume that the latent missing-indicators are inde-

pendent between each event for the same individual. We intend to relax this restriction

and permit the dependence of dynamic relationships by using Markov models or hidden

Markov models, which will allow us to capture the dynamics of intermittent missingness.

Additionally, we shall extend our model to Bayesian Cox’s proportional hazard model of

which the baseline hazard function is a nonparametric model such as a gamma process

model (Kalbfleisch 1978; Ibrahim et al. 2005).
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