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ABSTRACT

There is a vast literature proposing non-Bayesian methods for making infer-

ences incorporating auxiliary information such as population-level marginal mo-

ments. However, it is not feasible to apply these methods directly to latent vari-

able models because the data augmentation approach, in which latent variables are

treated as incidental parameters and then generated, is not developed. In this paper,

we propose a Markov Chain Monte Carlo (MCMC) algorithm with data augmenta-

tion for latent variable models for cases in which we have both a sampled dataset

and additional information such as population level moments. The resulting quasi-

Bayesian inference with auxiliary information is very straightforwaed to implement,

and consistency and asymptotic variance of the quasi-Bayesian posterior mean esti-

mators from the MCMC outputs are shown in this paper. The proposed method is

especially useful when the dataset is biased but we have an unbiased large sample for

some variables or population marginal moments in which it is difficult to correctly

specify the sample selection model. For illustrative purposes, we apply the proposed

estimation method to generalized linear mixed models for biased data both in simu-

lation studies and in real data analysis. The proposed method can be used to make

inferences in non/semi-parametric latent variable models by incorporating the exist-

ing semi-parametric Bayesian algorithms such as the Blocked Gibbs sampler in the

MCMC iteration.

Keywords: Generalized Linear Mixred Models; Latent Variable Modeling; Quasi-

Bayes; Population-Level Information; Dirichlet Process Mixture; Markov Chain Monte

Carlo; Data Augmentation



1 Introduction

Recently, quasi-Bayesian inference methods or the Bayesian GMM (Generalized

method of moments) method have been developed and applied in various studies

(Kim, 2002; Chernozhukov and Hong 2003; Hoshino 2008; Yin 2009; Yang and He

2012). Most existing applications of the quasi-Bayesian estimation method empha-

size the robust estimation without full model specification in contrast with traditional

Bayesian methods (e.g., Li and Jiang, 2016); however, various other semi-parametric

Bayesian estimation methods, such as the Dirichlet process mixtures model, have

been proposed and applied to weaken the parametric assumptions in various fields

(e.g., Hoshino, 2013). The distinct feature of (non-)Bayesian GMM methods is that

they can easily include external information such as population-level moments in the

estimation of parameters.

There is a vast literature proposing non-Bayesian methods for making an infer-

ence incorporating auxiliary information; these methods include the traditional GMM

methods (Hansen, 1982; Imbens and Lancaster, 1994; Nevo, 2003) and the com-

bined empirical likelihood method (Qin and Zhang, 2007; Chaudhuri et.al, 2008).

However, it is not feasible to apply these methods directly to latent variable models

because the data augmentation approach has not been considered. For inference in

latent variable models, especially with mixed outcomes and/or clustered/multilevel

data, MCMC algorithms with data augmentation by sampling latent variables as in-

cidental parameters have been developed and employed in various applied studies

because of the flexibility of the modeling framework and estimation procedure (e.g.,

Tanner and Wong 1987; Albert and Chib 1993; Dunson, 2000).

In this paper, we propose a Markov Chain Monte Carlo (MCMC) algorithm with

data augmentation for latent variable models for cases in which we have both a sam-

pled dataset and additional information, such as population-level moments. We show

consistency and asymptotic variance of the quasi-Bayesian posterior mean estima-

tors from the MCMC outputs. The proposed methods are especially useful when the

dataset used can be biased, but it is difficult to correctly specify the sample selection

model, and we have an unbiased large sample for some of the variables or population
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moments. The existing semi-parametric Bayesian algorithms such as the Blocked

Gibbs sampler (Ishwaran and James, 2001) in the MCMC iteration do not easily in-

corporate auxiliary information, while the proposed method can be easily extended

to make inferences in non/semi-parametric latent variable models.

For illustrative purposes, we apply the proposed estimation method to general-

ized linear mixed models (GLMM) for biased data both in simulation studies and in

real data analysis. Several estimation methods for biased data specify the selection

mechanism model (e.g., Heckman, 1979), but it is difficult to correctly specify the

model. Other methods employ non-parametric model formulation for the selection

model (e.g., Lee and Berger, 2001; Hoshino, 2013). Instead, in this study, we use

marginal population-level information.

In medical sciences, a low degree of generalizability or external validity (Shadish

et.al. 2002) of the results obtained in randomized controlled trials due to biased

sampling of subjects has recently attracted significant attention (e.g., Cole and Stuart,

2010; van Poucke et.al. 2016), and some methods to deal with the problem have been

developed (e.g., Hartman et.al. 2015). The proposed method is especially useful

when the population-level moment information or a large sample dataset such as the

national medical database is available without the assumption of selection models.

The remainder of the paper is organized as follows. Section 2 presents the model

setup. Section 3 describes the existing method which is not available in the model we

considered, and the proposed method. The algorithm and the asymptotic properties

are also shown in Section 3. In Section 4 we show the detaied algorithm for the

GLMM model, and provide a brief summary of the simulation study. A simple real

data analysis is also shown.

2 Model Setup: Latent Variable Models with External
Information

We consider the following latent variable models,

p(yyy|θθθ) =
∫

p(yyy| fff ,θθθ)p( fff |θθθ)d fff , (1)
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where yyy is the dependent variable vector, fff is the latent variable vector, and θθθ is a

q×1 parameter vector of interest in the data generating process.

This model includes various submodels such as factor analytic models (Kunda

and Dunson, 2014), random effect models, multilevel models (Goldstein, 2010),

and generalized random utility models (Walker and Ben-Akiva, 2002) for discrete

variables. In this study, we will focus on GLMMs, among others. Note that our

model specification is applicable not only to full parametric models but also to non-

parametric or semi-parametric models via the Dirichlet process mixture (DPM) mod-

els or Probit Stick-breaking Process mixture (PSBPM) models (Chung and Dunson,

2009; Kleinman and Ibrahim, 1998; Kyung et.al.2010; Hjort et.al.2010).

Consider that we have a sample, yyy1, · · · ,yyyn, of n independent and identically dis-

tributed (i.i.d.) random vectors. The log-likelihood for the marginalized model is

Ln(θθθ) =
n

∑
i=1

log
∫

p(yyyi| fff i,θθθ)p( fff i|θθθ)d fff i, (2)

while the log-likelihood for MCMC methods with data augmentation is expressed as

Ln(θθθ | fff ) =
n

∑
i=1

log p(yyyi| fff i,θθθ), (3)

and the distribution of the latent variables is treated as a prior distribution of inciden-

tal parameters, p( fff |θθθ) = ∏
n
i=1 p( fff i|θθθ).

Moreover, consider that we have another source of information such as the r-

dimensional population-level information vector regarding moments of yyy

E[m∗(yyy|θθθ)] = 0. (4)

Note that if the model of interest is the linear regression model E(y|θθθ ,xxx) = xxxT θθθ ,

then the population-level information is expressed directly as the function of the pa-

rameter vector, and the target of inference will just be the reparameterized model.

However, this information is not easily utilized through reparametrization, param-

eter constraints, or prior distribution in a general model setup unless we use linear

regression models (see Section 4 for detail).
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3 Quasi-Bayesian Inference for Latent Variable Mod-
els with External Information

For a marginalized model, p(yyy|θθθ), the quasi-Bayesian posterior distribution is

q(θθθ |yyy) = exp{Ln(θθθ)}p(θ)∫
ΘΘΘ

exp{Ln(θθθ)}p(θθθ)dθθθ
∝ exp{Ln(θθθ)}p(θθθ), (5)

where p(θθθ) is a prior distribution for θθθ , ΘΘΘ is the parameter space of θθθ , and Ln(θθθ) is

an objective function for various estimation methods such as a GMM, M-estimator,

or empirical likelihood instead of a log-likelihood function. If we use the GMM-type

objective function, Qn(θθθ) = Ln(θθθ), the function is defined as follows.

Qn(θθθ) =−
n
2

[1
n

n

∑
i=1

mmm(yyyiii|θθθ)
]T

ΩΩΩnnn

[1
n

n

∑
i=1

mmm(yyyiii|θθθ)
]
, (6)

where mmm(yyyiii|θθθ) is the unbiased moment restriction vector and ΩΩΩnnn is a weight matrix

converging to E
(
mmm(yyy|θθθ)mmm(yyy|θθθ)T)−1. It is shown that under mild regularity con-

ditions, the posterior means are consistent and asymptotically normally distributed

(Kim, 2002; Chernozhukov and Hong 2003; Yin 2009; Yang and He 2012). The

quasi-Bayesian methods are mainly applied in order to weaken the model assump-

tion (Li and Jiang, 2016), but by using the GMM-type objective function, we can

incorporate population-level information as a subvector of mmm(yyyiii|θθθ) as Imbens and

Lancastor (1994) did in a non-Bayesian GMM estimation.

However, it is difficult to directly draw samples of parameters from Equation (5)

for latent variable models, such as GLMMs, in which computation of the likelihood

of marginalized models requires numerical integrations.

To be more concrete, in the estimation of latent variable models using marginal-

ized likelihood (Equation (2)) and external information (Equation (4)), the GMM-

type function should be employed, because the dimension of moments to be consid-

ered is q+r and the dimension of parameters is q. Then, the quasi-Bayesian posterior

distribution in this setup is expressed as Equation (5), and the objective function is

Equation (6), where the q+ r dimensional moment restriction vector is expressed as

m(yyy|θθθ) =
(

∂

∂θθθ
T log

∫
p(yyy| fff ,θθθ)p( fff |θθθ)d fff m∗T (yyy|θθθ)

)T
. (7)

It is very difficult to draw MCMC samples from the resulting quasi-Bayesian poste-

rior distribution, which is proportional to the exponential of the quadratic form of the
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above function m containing high dimensional integrals.

3.1 Hybrid Posterior Combining Likelihood and GMM-type Ob-
jective Function

It would be better to employ the data augmentation approach by treating latent vari-

ables as incidental parameters in a quasi-Bayesian computation. In this study, we

propose the following quasi-Bayesian joint posterior distribution for parameter vec-

tor θθθ and latent variable vector fff

q(θθθ , fff |yyy)QB∗ =
{∏n

i=1 p(yyyi| fff i,θθθ)p( fff i|θθθ)}× exp
[
Q∗n(θθθ)

]
× p(θθθ)∫ ∫

{∏n
i=1 p(yyyi| fff i,θθθ)p( fff i|θθθ)}× exp

[
Q∗n(θθθ)

]
× p(θθθ)d fff dθθθ

(8)

to sample the random draws of θθθ and fff , where

Q∗n(θθθ) =−
n
2

[1
n

n

∑
i=1

m∗(yyyi|θθθ)
]T

ΩΩΩ
∗
n

[1
n

n

∑
i=1

m∗(yyyi|θθθ)
]
, (9)

and ΩΩΩ
∗
n is a matrix converging to E[m∗(yyy|θθθ)m∗(yyy|θθθ)T ]−1.

Note that the quasi-Bayesian posterior distribution (Equation (8)) is proportional

to the likelihood ∏
n
i=1 p(yyyi| fff i,θθθ)p( fff i|θθθ) times the following quasi-Bayesian poste-

rior distribution, conditional on the external information of the moment m∗(yyy|θθθ),

q(θθθ |m∗)QB∗ =
exp
[
Q∗n(θθθ)

]
× p(θθθ)∫

{exp
[
Q∗n(θθθ)

]
× p(θθθ)dθθθ

. (10)

3.2 Algorithm

In our augmentation approach, the algorithm to drawn samples of θθθ from Equation

(8) is very straightforward.

Sampling θθθ

The samples of θθθ are drawn from

q(θθθ | fff ,yyy)QB∗ =
{∏n

i=1 p(yyyi| fff i,θθθ)p( fff i|θθθ)}× exp
[
Q∗n(θθθ)

]
× p(θθθ)∫

{∏n
i=1 p(yyyi| fff i,θθθ)p( fff i|θθθ)}× exp

[
Q∗n(θθθ)

]
× p(θθθ)dθθθ

. (11)

In this setup it is difficult to draw samples θθθ directly from the above distribution, then

we use the Metropolis-Hastings algorithm by drawing the candidate of θθθ , θθθ
∗ from
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the ordinal posterior distribution

p(θθθ | fff ,yyy) = {∏n
i=1 p(yyyi| fff i,θθθ)p( fff i|θθθ)}× p(θθθ)∫

{∏n
i=1 p(yyyi| fff i,θθθ)p( fff i|θθθ)}× p(θθθ)dθθθ

, (12)

and accept the value with the following probability:

min
(expQ∗n(θθθ

∗)

expQ∗n(θθθ
o)
,1
)
, (13)

where θθθ
o is the value obtained in the former iteration.

Sampling fff

fff is drawn from

p( fff |θθθ ,yyy) = {∏n
i=1 p(yyyi| fff i,θθθ)p( fff i|θθθ)}∫

{∏n
i=1 p(yyyi| fff i,θθθ)p( fff i|θθθ)}d fff

, (14)

which is the ordinal full conditional posterior distribution of the latent variables.

See section 4 for the detailed algorithm in the case of generalized linear mixed mod-

els.

Note that for non/semi-parametric models via DPM or PSBPM, we can express

p(yyy| fff ,θθθ)p( fff |θθθ) as the infinite mixtures and employ the related algorithms in our for-

mulation because the proposed quasi-Bayesian posterior distribution is proportional

to the product of the likelihood and the function regarding the auxiliary information,

whereas there is no algorithm in the existing quasi-Bayesian inference (Equation (5))

with external information.

When the external information is stochastic

We considered the case that has population-level information, and the proposed

method is easily generalized to deal with the case by using statistics from unbiased

external surveys. For such cases, we can combine the stochastic information obtained

in the external surveys by adding the statistics to function m in Equation (7) and its

variance matrix to the relevant part of ΩΩΩnnn. To be more concrete, Equation (9) is

replaced with

Q∗sn (θθθ) =−n
2

[1
n

n

∑
i=1

m∗s(yyyi|θθθ)
]T

ΩΩΩ
∗s
n

[1
n

n

∑
i=1

m∗s(yyyi|θθθ)
]
, (15)

where M is the sample size of the external information, M/N converges to some

constant k, ms(yyy|θθθ) is the moment or estimating equation for solving θθθ in the external
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information source, and

m∗s(yyyi|θθθ) =
(

m∗T (yyy|θθθ) msT (yyy|θθθ)
)T

,

lim
n→∞

ΩΩΩ
∗s
n =

(
E[m∗(yyy|θθθ)m∗(yyy|θθθ)T ]−1 0

0 kE[ms(yyy|θθθ)ms(yyy|θθθ)T ]−1,

)
(16)

3.3 Asymptotic Properties

We define the quasi-Bayesian posterior mean estimator as

θ̂θθ QB∗ =
∫ ∫

θθθq(θθθ , fff |yyy)QB∗dθθθd fff , (17)

where q(θθθ , fff |yyy)QB∗ is defined as Equation (8). We can easily obtain the following

theorem.

Theorem 1. θ̂θθ QB∗ is consistent for estimating θθθ and is asymptotically normally dis-

tributed as

A−1/2
n (θθθ 0)B(θθθ 0)[

√
N(θ̂θθ QB∗−θθθ 0)]

d→ N(0, III), (18)

where θθθ 0 is true value of the parameter vector,

An(θθθ 0) =
1
n

[ ∂

∂θθθ
Rn(θθθ 0)

][ ∂

∂θθθ
Rn(θθθ 0)

]T
, (19)

and

Bn(θθθ 0) =−
1
n

∂ 2

∂θθθ∂θθθ
T Rn(θθθ 0), (20)

where

Rn(θθθ) =
n

∑
i=1

log p(yyy|θθθ)+Q∗n(θθθ). (21)

Proof. See Appendix.

4 Application to the Generalized Linear Mixed Model

We apply the proposed method to the GLMM for biased data.

4.1 Generalized Linear Mixed Model

The GLMM, which includes latent variables in a generalized linear model (GLM), is

a major model that can express various types of responses, such as linear, binomial,

count, and multinomial.
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Let individual i(1, ...,n)’s t(1, ...,Ti)-th event response be yit ; then, the probability

density function (pdf) is as follows.

p(yit |θθθ , fi) = exp
{

yitξit−b(ξit)

a(φ)
+ c(yit ,φ)

}
. (22)

g(ξit) = α + xxxT
i βββ +wwwT

it γγγ + fi (23)

Here, xxxiii is individual i’s covariate vector; wwwit is individual i’s t-th time-varying co-

variate vector; α is an intercept; βββ and γγγ are coefficients, which are common among

individuals, and we set θθθ = [α βββ
T

γγγT ]T ; fi is a latent variable that differs for each in-

dividual. Besides, a(), b(), and c() are known functions; φ is a dispersion parameter

that may or may not be known; and g() is a known link function.

Let the latent variable fi follow normal distribution with mean 0 and variance σ2.

fi ∼ N(0,σ2) (24)

The GLMM covers various models such as linear regression, logistic regression,

Poisson regression, or parametric hazard models by setting an error function and link

structure.

4.2 Simulation Study

Here, we will show the performance of the proposed model by simulation study for

biased data using a logistic regression model with random effects.

p(yit |θθθ , fi) = p(yit = 1|θθθ , fi)
yit p(yit = 0|θθθ , fi)

1−yit (25)

logit
[
p(yit = 1|θθθ , fi)

]
= α + xiβ +witγ + fi (26)

In MCMC procedure, we set the parameters θθθ = [α β γ]T . The quasi-bayesian

joint posterior distribution is

q(θθθ ,σ2, fff |yyy)QB∗

=

{
∏

n
i=1 p( fi|σ2){∏Ti

t=1 p(yit | fi,θθθ)}
}
× exp

[
Q∗n∗(θθθ)

]
× p(θθθ)× p(σ2)

∫ ∫ ∫ {
∏

n
i=1 p( fi|σ2){∏Ti

t=1 p(yit | fi,θθθ)}
}
× exp

[
Q∗n∗(θθθ)

]
× p(θθθ)× p(σ2)d f dθθθdσ2

,

(27)
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where

Q∗n∗(θθθ) =−
n∗

2

[ 1
n∗

n

∑
i=1

Ti

∑
t=1

m∗(yit |θθθ)
]T

ΩΩΩ
∗
n∗

[ 1
n∗

n

∑
i=1

Ti

∑
t=1

m∗(yit |θθθ)
]
, (28)

and n∗ is the total number of data size, n∗ = ∑
n
i=1 ∑

Ti
t=1 I. The moment restriction

m∗(yit |θθθ) is

m∗(yit |θθθ) = yyy∗−E(yit = 1|xit ,θθθ) = yyy∗−
∫ exp(α + xiβ +witγ + fi)

1+ exp(α + xiβ +witγ + fi)
p( fi)d fi.

(29)

Here, yyy∗ is the r-dimensional population-level proportion of y = 1.

Sampling θθθ

The quasi-bayesian conditional distribution of θθθ is

q(θθθ |yyy,σ2, fff )QB∗ ∝ {
n

∏
i=1

Ti

∏
t=1

p(yit | fi,θθθ)}× exp
[
Q∗n∗(θθθ)

]
× p(θθθ). (30)

It is difficult to draw samples θθθ directly from the above distribution, then we use

the Metropolis-Hastings algorithm. We redefine the conditional posterior of θθθ except

the part of moment restriction,

p(θθθ |yyy,σ2, fff ) ∝ {
n

∏
i=1

Ti

∏
t=1

p(yit | fi,θθθ)}× p(θθθ)

=

{
n

∏
i=1

Ti

∏
t=1

[ exp(α + xiβ +witγ + fi)

1+ exp(α + xiβ +witγ + fi)

]yit
[ 1

1+ exp(α + xiβ +witγ + fi)

]1−yit

}
× exp

{
− 1

2
(θθθ −µµµθθθ )

TVVV−1
θθθ
(θθθ −µµµθθθ )

}
,

(31)

where µµµθθθ and Vθθθ are the mean vector and variance matrix of prior distribution p(θθθ).

Then, we use the Metropolis-Hastings algorithm by drawing the candidate of θθθ , θθθ
∗

from the ordinal candidate distribution,

θθθ
∗|yyy,σ2, fff ∼ N(θθθ o +H(θθθ o)T (θθθ o),H(θθθ o)), (32)

where,

T (θθθ) =
∂ logp(θθθ |yyy,σ2, fff )

∂θθθ
, H(θθθ) =−

[
∂ logp(θθθ |yyy,σ2, fff )

∂θθθ

]−1
, (33)

and accept the value with the following probability:

min
(q(θθθ ∗|yyy,σ2, fff )QB∗π(θθθ

o|θθθ ∗,yyy,σ2, fff )
q(θθθ o|yyy,σ2, fff )QB∗π(θθθ

∗|θθθ o,yyy,σ2, fff )
,1
)
, (34)

where π() is pdf of candidate distribution.
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Sampling fff

The conditional distribution of fi is

p( fi|yyy,θθθ ,σ2) ∝ p( fi|σ2){
Ti

∏
t=1

p(yit | fi,θθθ)}

= exp
{
− 1

2σ2 f 2
i
}{ Ti

∏
t=1

[ exp(α + xiβ +witγ + fi)

1+ exp(α + xiβ +witγ + fi)

]yit

×
[ 1

1+ exp(α + xiβ +witγ + fi)

]1−yit

}
.

(35)

which is the ordinal full conditional posterior distribution of the latent variables. We

draw new candidate sample from

f ∗i |yyy,σ2 ∼ N( f o
i ,τ

2), (36)

where τ2 is a variance parameter of random-walk Metropolis-Hastings algorithm,

and accept the value with the following probability:

min
( p( f ∗i |yyy,θθθ ,σ2)

p( f o
i |yyy,θθθ ,σ2)

,1
)
. (37)

Sampling σ2

σ2 is drawn from

p(σ2|θθθ , fff ,yyy) =
{∏n

i=1 p( fi|σ2)}× p(σ2)∫
{∏n

i=1 p( fi|σ2)}× p(σ2)dσ2 , (38)

which is widely known as the ordinal full conditional posterior distribution of the

variance parameters like linear regression model.

Now, we explain the method of generating biased datasets. First, we generate

artificial data sets for the usual GLMM using true parameters. Second, we create a

biased dataset. To be more concrete, we set the probability of missing to be a decreas-

ing function of the expectation value, E(yit |θθθ true). The resulting missing mechanism

is not ignorable, and we do not use the missing mechanism (or selection) model.

We set the missing rate to be around 40%. Third, we estimate and compare the

accuracy of the estimated parameters of the unconstrained (existing) and constrained

(proposed) models for biased data using GLMM, in which we do not consider the

missing indicator or selection biases. We show the results of the logistic and Poisson

regressions.
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In this simulation study, we set the sample size, n = 500, and average number

of events, T̄i = (5,7,10), and estimate the parameters of the unconstrained and con-

strained models. We draw 2,000 MCMC samples after a 2,000 burn-in phase, and

confirm the convergence of MCMC using Geweke (1992)’s method. We generate

1,000 datasets for each situation. We consider one covariate, x, and one time-varying

covariate, w, and obtain a total of 11 moment restrictions on x and w.

We show the mean squared errors (MSEs) and coverage from the 95% credible

interval in Table 1. Table 1 also shows the average MSEs and the ratio of MSEs that

are scaled based on the proposed model. The proposed model outperforms the un-

constrained models without population-level information and is the only model that

yields unbiased estimates. Next, we show the box plots of each parameter in Figure

1. From this, we can show the reproducibility of parameters. In the unconstrained

model, parameters cannot be estimated appropriately, and the results show that analy-

sis using biased data will lead to biased estimates. On the other hand, the constrained

model can estimate parameters appropriately, and it performs better than the uncon-

strained model. From this, we can understand that the quasi-Bayesian method with

latent variables works appropriately.

4.3 Real Data Analysis

In the empirical analysis, we analyze the economic panel data on quantity of purchase

goods using a Poisson regression model. In the economics and marketing fields, this

model is used for modeling purchase quantities. The Poisson regression model also

is widely used for analyzing count data in biostatistics and medical statistics (e.g.,

Agresti & Kateri 2013; Dobson & Barnett 2008). The Poisson regression model is a

GLM in which the error function is the Poisson distribution and the link function is

the logarithm.

p(yit |θθθ , fi) =
exp(−λit)λ

yit
it

yit!
(39)

log(λit) = α + xxxT
i βββ +wwwT

it γγγ + fi (40)
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Table 1: Simulation results of Logistic regression for biased data

MSE ×102 Coverage(95%)
Proposed Existing Ratio Proposed Existing

Mean=5
α 0.024 12.843 539.333 1.000 0.010
β 0.092 1.277 13.914 0.990 0.790
γ 0.096 0.971 10.086 0.985 0.756

σ2 8.822 21.019 2.383 0.920 0.596

Mean=7
α 0.016 10.767 666.655 0.999 0.016
β 0.068 1.141 16.783 0.994 0.793
γ 0.066 0.749 11.313 0.990 0.758

σ2 6.119 18.855 3.082 0.926 0.512

Mean=10
α 0.012 8.239 694.965 1.000 0.027
β 0.055 1.031 18.895 0.998 0.776
γ 0.047 0.540 11.540 0.996 0.752

σ2 4.744 15.540 3.276 0.886 0.457
In each condition, we generated 10,000 sets.
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Figure 1: Boxplot of simulation results (Mean=7)
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Here, the moment restriction for y is as follows.

m∗(yit |θθθ) = yyy∗−E(yit |θθθ) = yyy∗−
∫

exp
{

α + xxxT
i βββ +wwwT

it γγγ + fi}p( fi)d fi (41)

Sampling each parameters of Poisson regression model is the same as those of logis-

tic regression model.

In the empirical analysis, we use the Survey of Consumer Index (SCI) data pro-

vided by Intage Inc. in Japan. The SCI data is the de facto standard for purchase panel

data in the Japanese marketing field. The SCI records the purchase incidence, pur-

chased products, number of products purchased by consumers, amounts and prices of

products, and stores in which the purchase occurred with dates and times. Although

the scanner panel data record purchase histories for all the stores, we used purchase

histories from particular stores and regard it to be a complete dataset, which can yield

severely biased results. Here, we utilize purchase histories of corner stores. That is,

we assume that, although the purchase incidences of each store type are observed,

the purchase incidence of other competing stores cannot be observed. This situation

is very popular in real data analysis by marketing managers of retail companies. We

show the summary statistics in Table 2. We select a sample size (n = 3,316) and total

number of events (= 36,978) for the estimation of parameters, which is limited to

the purchase histories of corner stores. Corner stores have obvious purchase behavior

tendencies, especially regarding quantities and independent variables such as price,

compared with other stores. The average purchase quantity of a corner store is lower

than that of total stores. On the other hand, the price is higher than that of the total

stores, and analysis using this limited information should lead to a biased estimator.

To make inferences from this incomplete data, we utilize auxiliary information by

aggregating the complete data.

In the analysis, we use purchase data of the cola category from January 2015 to

June 2016. We use “gender (male=1),” “age,” and “family size” for individual-level

covariates, xxxiii; the logarithm of “unit price” for time-varying covariates, wit ; and four

about “unit price”: (1) all, (2) under 100 yen, (3) 100 ∼ 120 yen, and (4) over 120

yen.

14



The coefficients of price should be negative, because consumers are likely to pur-

chase more products when price discounts are available. In economics and marketing

fields, since the effects of price discounts are very important, we compare the coeffi-

cients of price with the unconstrained (existing) model.

Table 2: Summary statistics for purchase quantity

complete data selected data
(corner store)

purchase quantity 1.379 1.105
unit price 101.531 122.093
age 39.373 38.403
gender(male 1) 0.519 0.696
child 0.423 0.378
family size 3.090 3.063

In each model, we draw 10,000 MCMC iterations after a 2,000 burn-in phase and

confirm the convergence of MCMC using Geweke (1992)s method. We show the

95% credible intervals of “unit price” in Figure 2 and trace the plots of MCMC in

Figure 3. From this, it is obvious that the effects of “unit price” are underestimated

in the unconstrained model with respect to the complete data model. The results may

cause marketing managers to disregard price discounts for consumers because the

effects of price discounts are underestimated. On the other hand, the trace of MCMC

in the constrained model is stable compared with the complete data and unconstrained

model, which justifies the proposed method.
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Figure 2: Coefficient of γ .
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Figure 3: Trace of γ .
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5 Conclusion

In this study, we proposed an MCMC algorithm with data augmentation for latent

variable models with auxiliary information. We showed consistency and asymptotic

variance of the quasi-Bayesian posterior mean estimators from the MCMC outputs.

As we illustrated in simulaton studies and real data analysis, the proposed method

is especially useful when our dataset is biased. It is usually difficult to correctly

specify the sample selection model, while we have an unbiased large sample for

some variables or population moments.

The proposed method can be easily generalized to consider non/semi-parametric

latent variable models by incorporating the existing semi-parametric Bayesian al-

gorithms such as the Blocked Gibbs sampler in the MCMC iteration, because the

proposed quasi-Bayesian posterior distribution is proportional to the product of the

likelihood and the function regarding the auxiliary information.

In this paper we focus on GLMMs, among others, but the method can be useful in

various important model setups. For example, we can apply the proposed method to

data combination of expetimental with observational studies to estimate population

treatment effects to enhance generalizability or external validity (Shadish et.al. 2002)

of the results obtained in randomized controlled trials due to biased sampling of sub-

jects. In medical sciences, a low degree of generalizability of the results obtained in

randomized controlled trials due to biased sampling of subjects has been questioned,

and the proposed method will provide valid results without the assumption of selec-

tion models when the population-level moment information or a large sample dataset

such as the national medical database is available (e.g., Hartman et al. 2015).

For another example, consider duration analysis for repeated events (Andersen

and Gill 1982; Sinha and Dey 1997; Bijwaard et al. 2006), such as clinical tri-

als, unemployment or interpurchase-timing. In many application settings, missing

indicators that reveal the presence of missing events between two observed events

(intermittent missingness) are not observed. For such cases, simple analyses without

considering that some distinct true durations may be summed up to one observed

duration can yield severely biased estimates especially in duration analysis. For ex-
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ample, in medical statistics, researchers often use longitudinal data about clinical trial

for patients, but such data often record histories within the limited medical institution

and patients may go to another clinic or take over-the-counter drugs. In this situation,

researchers may underestimate the effects of therapy programs, since there exists un-

observed events between observed events. Additionally, in economics, researchers

use panel data on factors such as job employment, marriage, and wages. Here, in-

complete data problems can occur in the same way. We can strengthen incomplete

observed data using population-level information from government statistics, large

databases or other research institutes.

Despite its importance in application studies, the intermittent missingness in re-

peated duration analysis is not adequately considered and studied. In this study, we

focus on the intermittent missingness in duration analysis with repeated measure-

ments.

In the next coming paper we will propose a duration model with repeated events,

which has unobserved intermittent missingness using hybrid posterior incorporating

population-level information regarding intermittent missingness. For such models it

is not possible to obtain valid estimates to make use of auxiliary information and

employ data augmentation approach by using the proposed method.

Appendix: Sketch of Proof of the Theorem 1

In this paper, we assume that the assumptions for GMM type objective function for

the marginalized model (Equations (6) and (7) ) holds true as in Proposition 1 of

Chernozhukov and Hong (2003), which is sufficient for consistency and asymptotic

normality of the quasi-Bayesian posterior mean estimator using the (practically in-

feasible) GMM type objective function for the marginalized model.

First, we show that the mean of the following quasi-Bayesian posterior distribu-

tion under marginal model p(yyy|θθθ), q(θθθ |yyy)QB∗,

q(θθθ |yyy)QB∗ ∝ exp
{

Rn(θθθ)
}
× p(θθθ), (42)
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where

Rn(θθθ) =
n

∑
i=1

log p(yyy|θθθ)+Q∗n(θθθ) = ln(θθθ)+Q∗n(θθθ) (43)

is constant and asymptotically normally distributed.

To avoid rigorous mathematical formulation, we use the expectation of the op-

timal weight matrix as ΩΩΩn, but the following argument applies to the case with the

estimated weight matrix.

The covariance between the log likelihood and the moment conditions is zero,

E
[

∂

∂θθθ
log p(yyy|θθθ) m∗(yyy|θθθ)T

]
=
∫

∂

∂θθθ
p(yyy|θθθ)m∗(yyy|θθθ)T dyyy = 0. (44)

Then,

E
[
m(yyyi|θθθ)m(yyyi|θθθ)T

]−1
=

(
I(θθθ)−1 0

0 E(m∗(yyy|θθθ)m∗(yyy|θθθ)T )−1,

)
(45)

where I(θθθ) is the Fisher information matrix.

By using the expectation of the optimal weight matrix, the GMM objective func-

tion (Equation(6)) is expressed as

Qn(θθθ) = Sn(θθθ)+Q∗n(θθθ) = (Sn(θθθ − ln(θθθ))+Rn(θθθ), (46)

where

Sn(θθθ) =−
n
2

[1
n

n

∑
i=1

∂

∂θθθ
T log p(yyyi|θθθ)

]
I(θθθ)−1

[1
n

n

∑
i=1

∂

∂θθθ
log p(yyyi|θθθ)

]
. (47)

From similar arguments of equivalence of the asymptotic distributions of the like-

lihood ratio test statistics and score test statistics (e.g., Serfling, 1980), for θθθ in an

open neighborhood of θθθ 0,

Sn(θθθ)−
[
ln(θθθ)− ln(θθθ 0)

]
p→ 0. (48)

Then the asymptotic properties of the quasi-Bayesian posterior mean estimator using

a GMM-type objective function Qn(θθθ) as Ln(θθθ) in Equation (5) apply to the quasi-

Bayesian posterior mean estimatior using Rn(θθθ).

The objective function Rn(θθθ) satisfies the assumptions required for Theorem 2

(consistency and asymptotic normality of the quasi-Bayesian estimator) in Cher-

nozhukov and Hong (2003) to hold true, and the limiting distribution is equivalent to

that of the corresponding extremum estimator.

Next, by integrating the latent variables, we obtain the quasi-Bayesian posterior
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distribution of θθθ as∫
q(θθθ , fff |yyy)QB∗d fff =

{∏n
i=1 p(yyyi|θθθ)}× exp

[
Q∗n(θθθ)

]
× p(θθθ)∫

{∏n
i=1 p(yyyi|θθθ)}× exp

[
Q∗n(θθθ)

]
× p(θθθ)dθθθ

, (49)

which is equivalent to the quasi-Bayesian posterior distribution under the marginal

model, p(yyy|θθθ), q(θθθ |yyy)QB∗. This shows the consistency and asymptotic normality of

the estimator θ̂θθ QB∗.
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