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Abstract
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1 Introduction

In many markets, consumer demand is dynamic in the sense that consumers’ utility depends

on past decisions. Sources of dynamics in demand include, among others, storable products,1

durable products,2 habit formation and switching costs,3 adoption costs,4 and learning.5 These

models exhibit two main forms of state dependence in consumers’ purchasing decisions: last-

choice dependence and duration dependence. We have last-choice dependence if a consumer’s

previous purchase of a product has a causal effect on her current probability of buying that

product, for instance, as a result of habits, switching costs, or learning. We have duration de-

pendence if the time elapsed since the last purchase has a causal effect on the current buying

decision. Depletion of storable products and depreciation of durable products generate duration

dependence in consumer demand. These forms of state dependence can induce substantial differ-

ences between short-run and long-run responses of demand to price changes. This has important

economic implications in applications such as evaluating the effects of taxes and subsidies, mea-

surement of firms’ market power, or consumer welfare. The estimation of dynamic structural

demand models using consumer panel data tries to measure these causal effects and use them

for counterfactual analysis and welfare evaluation.

Unobserved heterogeneity plays a fundamental role in dynamic demand models using con-

sumer panel data. Ignoring or incorrectly specifying the correlation between unobserved het-

erogeneity and pre-determined explanatory variables (e.g., previous purchasing decisions) can

generate important biases in the estimation of the structural parameters that capture dynamic

causal effects (Heckman, 1981b). Furthermore, the distribution of consumer taste heterogene-

ity has an important impact on demand price elasticities (Berry, Levinsohn, and Pakes, 1995).

The empirical literature on dynamic demand of differentiated product has considered a Ran-

dom Effects (RE) approach to model consumer unobserved heterogeneity. RE models impose

parametric restrictions on the distribution of unobserved heterogeneity and on the correlation
1See Boizot, Robin, and Visser (2001), Pesendorfer (2002), Erdem, Imai, and Keane (2003), and Hendel and

Nevo (2006).
2See Esteban and Shum (2007), Goettler and Gordon (2011), and Gowrisankaran and Rysman (2012).
3See Roy, Chintagunta, and Haldar (1996), Keane (1997), and Osborne (2011).
4See Ryan and Tucker (2012), and De Groote and Verboven (2019).
5See Ackerberg (2003), and Ching (2010).

1



between these unobservables and the initial values of the predetermined explanatory variables.

Though this distribution is not identifiable in short panels, its misspecfication can generate

important biases in the estimation of dynamic causal effects. This is the so called initial con-

ditions problem (Heckman, 1981a). Therefore, RE models are not robust to misspecification of

parametric restrictions on unobserved heterogeneity.

Fixed effects (FE) approaches impose no restriction on the distribution of consumers’ unob-

served heterogeneity such that the identification of parameters of interest is more robust than

in RE models. However, several identification concerns have inclined researchers to avoid a FE

approach in applications of dynamic discrete choice structural models, and more specifically, in

dynamic demand models.

A first issue is related to the identification of structural parameters. All the existing (pos-

itive) identification results in FE dynamic discrete choice models impose the restriction that

unobserved heterogeneity enters additively in the utility of each choice alternative. However, in

dynamic programming models, unobserved heterogeneity enters not only in current utility but

also in the continuation value of the forward-looking decision problem, and these continuation

values depend non-additively (and in fact, without a closed-form expression) on both unobserved

heterogeneity and observable state variables. The common wisdom was that FE models cannot

deal with the non-additive unobserved heterogeneity that is inherent to discrete choice dynamic

programming models.

A second important issue is related to the fact that FE methods cannot deliver identification

of the distribution of unobserved heterogeneity with short-panels. Most empirical applications of

dynamic structural models are interested in using the estimated model to obtain Average Partial

Effects (APE) on endogenous variables of changes in explanatory variables or in structural

parameters. Demand price elasticities are examples of these APE s. The common wisdom was

that APEs are not identified in FE models, as they are expectations over the distribution of the

unobserved heterogeneity (e.g., Abrevaya and Hsu, 2021; Honoré and DePaula, 2021).

Two recent studies provide positive identification results for the two issues discussed above.

Aguirregabiria, Gu, and Luo (2021) establish the identification of structural parameters in a

class of FE dynamic panel data logit models where agents are forward-looking. The class of
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models includes two types of endogenous state variables: the lagged choice variable, and the

time duration in the last choice. Aguirregabiria and Carro (2021) prove the point identification

of different AMEs in FE dynamic logit models. For instance, the average causal effect of changes

in the lagged dependent variable or in the duration in last choice are identified.6

In this paper, I apply and extend identification results in Aguirregabiria, Gu, and Luo (2021)

to a FE dynamic panel data model of consumer demand with differentiated product. The model

can incorporate storable or durable products, habit formation, and brand switching costs. I

present a new identification result in FE dynamic discrete choice with forward-looking agents.

I show identification of utility parameters associated to state variables that follow exogenous

stochastic processes. More specifically, in the context of demand models, I establish the iden-

tification of parameters that capture the effect of prices. In a FE forward-looking model, this

identification result relies on a particular structure in the stochastic process of prices. There

are two components in prices: a persistent component (i.e., regular price), and a transitory

component (i.e., temporary promotions).

The structural parameters of the model are estimated using a sufficient statistics - condi-

tional maximum likelihood (CML) method, in the spirit of Chamberlain (1985) and Honoré and

Kyriazidou (2000). In the context of dynamic structural models, a very helpful implication of

this CML method is that it is not subject to a curse of dimensionality associated with the

computational cost of solving a dynamic programming problem, or calculating present values

of future utilities. This is particularly relevant in applications of dynamic demand of differen-

tiated product as the dimension of the state space increases exponentially with the number of

products, which is typically large. The sufficient statistics - CML method "differences out" the

continuation (forward-looking) value of the consumer’s decision problem, as this value depends

on the incidental parameters / unobserved heterogeneity. This implies that continuation values

should not be computed to implement the CML estimator. Therefore, the CML estimation of

this dynamic structural model is computationally as simple as in static or myopic models, and

its cost does not depend on the dimension of the state space.7

6In related work, Chernozhukov, Fernandez-Val, Hahn, and Newey (2013), and more recently Davezies,
D’Haultfoeuille, and Laage (2021), provide partial identification results for a general class of AMEs in binary
choice panel data models.

7CML estimation implies a different type of curse of dimensionality. The evaluation of the conditional likeli-
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The rest of the paper is organized as follows. Section 2 describes the model. Section 3 presents

identification results. Section 4 describes the estimation method. In section 5, I summarize and

discuss some extensions for further research.

2 Model

I present a framework that includes both storable and durable differentiated products. Most of

the features of the model are standard in the literature. The main distinguishing feature is the

Fixed Effects (FE) nature of consumer unobserved heterogeneity.

2.1 Basics

There are J different brands of a differentiated product, and we index brands by j ∈ {1, 2, ..., J}.

We index consumers by i. Time is discrete and indexed by t. There is a dichotomy in the

definition of time in empirical applications of dynamic consumer demand. In most applications,

t has the standard interpretation as calendar time: for instance, the unit of time can be a week.

In these applications, the model and data account for time periods where a consumer does not

purchase any variety of the differentiated product. In contrast, a good number of empirical

applications in this literature consider t as the index for purchase events, such that t = 1 means

a consumer’s first purchase, t = 2 is her second purchase, and so on (see Keane, 1997; Osborne,

2011; among others). The different definition of time t has implications on the interpretation

of dynamics in the model, such as duration dependence.8 Here, I follow the standard definition

of t as calendar time. However, all the identification results in this paper apply also to models

where t indexes purchase events.

Every period t, consumer i decides whether to purchase or not one unit of the product, and

which brand to buy. Variable yit ∈ Y = {0, 1, ..., J} represents the decision of consumer i at

hood function involves adding up a function over all the possible values of the vector of sufficient statistics. The
number of possible values increases exponentially with the number of time periods in the data, T . However, this
dimensionality problem has an easy solution – at the cost of some efficiency lost in the CML estimator – which
consists of splitting a T -periods history into shorter sub-histories.

8Also very importantly, the model where t indexes purchase events does not include the decision of "no
purchase" as a choice alternative. That is, there is not an outside alternative.
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period t, where yit = 0 means "no purchase", and yit = j > 0 means purchase of brand j.

There are two endogenous state variables that capture dynamics in consumer demand: brand

choice in the last purchase, `it ∈ {1, 2, ..., J}; and time duration since the last purchase, dit ∈

{1, 2, ..., D}. Last brand choice is related to habit formation and switching costs. Duration since

last purchase captures the effect of inventory depletion (for storable products) or depreciation

(for durable products). By definition, the transition rule of the vector of endogenous state

variables xit ≡ (`it, dit) is:

xi,t+1 ≡ (`i,t+1 , di,t+1) = fx(yit,xit) ≡

 (`it , dit + 1) if yit = 0

(j , 1) if yit = j > 0
(1)

In many applications, consumers are located in different geographic markets and face different

prices. This is not a necessary condition for the identification results in this paper, but I allow

for it. Let pit(j) be the price of product j at period t in the market where consumer i is located,

and let pit be the vector with the prices of all products, pit ≡ (pit(j) : j = 1, 2, ..., J).

2.2 Utility

Let Uit be the per-period utility that consumer i obtains at period t. It has four components:

Uit = bit + γi mit − scit + εit (2)

The term bit is the utility from consumption of the branded product; mit represents consumption

of the outside good or numeraire; γi is the marginal utility of the outside good, also referred

as marginal utility of income; scit represents brand switching costs or habits; and εit represents

consumer idiosyncratic taste shocks at the moment of purchase. I describe below each of these

components.

(i) Heterogeneity in consumers’ tastes. The model allows for product differentiation at the

moment of consumption and not only at the moment of purchase. Parameter αi(j) is the flow

utility that consumer i receives from consuming product j when the product has not depreci-

ated (or depleted) over time. It depends on product characteristics and consumer characteristics,
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some of them unobservable to the researcher. The vector αi ≡ (αi(1), αi(2), ..., αi(J)) represents

the fixed effects for consumer i. The fixed effect αi(j) depends on product and consumer char-

acteristics in an unrestricted way. For instance, it could have the structure αi(j) = x
′
jβi+ ξ

′
jωi,

where xj and ξj are vectors of observable and unobservable product characteristics, respec-

tively, and βi and ωi are the vectors of marginal utilities of these characteristics for consumer

i. Therefore, the specification of consumer heterogeneity in preferences is very flexible.

(ii) Depreciation / depletion. The flow utility from consumption of the branded product

takes into account depletion or depreciation over time.9 This flow utility has the following form:

bit ≡

 αi(j) if yit = j > 0

αi(`it)− βdep(`it, dit) if yit = 0 .
(3)

If the consumer purchases a new product (if yit = j > 0), there is no depreciation effect and

the flow utility is αi(j). Otherwise, if the consumer does not purchase a new product (if yit =

0), she consumes product `it – her last purchase – and flow utility is αi(`it) − βdep(`it, dit).

Parameter βd(j, d) measures the effect on utility of d periods of depreciation in product j. This

depreciation/depletion effect can vary across products, and it is a nonparametric function of

duration d.

Arguably, the depletion effect βdep could vary across households. It is important to note that

the model in this paper allows all the structural parameters, including this depletion effect, to

depend on observable household characteristics, such as family size, income, education, or region.

We impose the restriction that βdep does not depend on consumer unobserved heterogeneity.

(iii) Utility from consumption of the composite good. The (dollar) amount of consump-

tion of the composite good, mit, is given by the consumer’s budget constraint:

mit = mi −
J∑

j=1

pit(j) 1{yit = j}, (4)

9The datasets used in this literature contain information on consumer purchase histories, but not on consump-
tion and inventories of storable products. To deal with this missing information for storable products, researchers
have imposed different restrictions. Aguirregabiria and Nevo (2013) discuss this issue and different restrictions
in the literature. A common approach is using duration since last purchase, dit, as a proxy of inventory. For
storable products, this is the approach in Erdem, Imai, and Keane (2003).
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where mi is the consumer’s (weekly) disposable income, and
∑J

j=1 pit(j) 1{yit = j} represents

expenditure in the branded product. Since this utility is linear in consumption of the composite

good, income mi does not enter explicitly in the difference between the utilities of two product

choices. However, the parameter γi that represents the marginal utility of the composite good

may depend on consumer income, or on other observable consumer characteristics.

(iv) Product switching costs / habits. Following the standard approach, brand switching

costs take place at the moment of purchase, and not through the consumption of the product.

The specification of brand switching costs is:

scit = βsc(`it, yit), (5)

Parameter βsc(k, j) represents the cost of switching from brand k to brand j. There is no

switching cost without switching or without a new purchase, such that such that βsc(k, k) = 0

and βsc(k, 0) = 0.

This component of the utility can be also interpreted in terms of habit formation. In that

case, we have that scit = −βhab(`it, yit), where parameter βhab(j, j) ≥ 0 for j > 0 is the increase

in utility from purchasing the same brand as in last purchase, and for any k 6= j, βhab(k, j)

is restricted to be zero. This habit formation model is equivalent to the brand switching cost

model under the restrictions βsc(k, j) = βsc(k′, j) for any k, k′ 6= j. This more parsimonious

specification is quite common in this literature.

Regardless of consumer unobserved heterogeneity or/and forward-looking behavior, it is not

possible to identify all the switching cost parameters βsc(k, j) using data of consumers’ product

choices. In the best case, for any pair of products (k, j), it is possible to identify the following

linear combination of these parameters:

β̃sc(k, j) = βsc(k, j) + βsc(j, k)− βsc(k, k)− βsc(j, j) (6)

Therefore, we study the identification of these β̃sc(k, j) parameters.

(v) Extreme value distributed shocks in preferences. Finally, variable εit(j) captures
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other consumer idiosyncratic factors affecting the utility from purchasing product j at period t.

Variables εit ≡ (εit(0), ..., εit(J)) are i.i.d. over (i, t, j) with a type I extreme value distribution.

Both αi and εit are unobservable to the econometrician.

Putting together the different components of the utility function, we have:

Uit = uαi
(yit,xit,pit)+εit(yit) =


αi(`it)− βdep(`it, dit) + εit(0) if yit = 0

αi(j)− γi pit(j)− βsc(`it, j) + εit(j) if yit = j > 0,

(7)

where uαi
(yit,xit,pit) represents utility excluding unobservable logit shocks.

2.3 Stochastic process for prices

The structure of the stochastic process of prices that I describe here is not necessary for the

identification of the parameters βsc and βdep, but it plays an important role in the identification

of the marginal utility of income parameter, γ, in this forward-looking model. The assumption

is that the price of any product j has two components, one that is persistent over time (zit(j)),

and other that is transitory (eit(j)). That is:

pit(j) = ρ (zit(j), eit(j)) (8)

where ρ(.) is a known function. Some examples for the ρ(.) function are the linear function

pit(j) = zit(j) + eit(j), or the linear in logs function, pit(j) = exp{zit(j)eit(j)}. The vector of

permanent components zit ≡ (zit(j) : j = 1, 2, ..., J) follows a Markov process of order n. The

vector of transitory components eit ≡ (eit(j) : j = 1, 2, ..., J) is i.i.d. over time, and for any

periods t and s, zit and eis are independently distributed. The stochastic relationship between

the prices of the different products is unrestricted.

This structure can be interpreted in terms of "regular prices", represented by zit, and transi-

tory promotions, represented by eit. For notational simplicty, for the rest of the paper, I consider

that zit follows a first-order Markov process with transition density function fz(zi,t+1|zit).

This structure has an important implication on a consumer’s dynamic decision model. The
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whole vector of prices pt (both zt and et) affects a consumer’s current utility, but the expected

and discounted value of future utilities (the continuation value) depends on zt but not on et.

This exclusion restriction plays an important role in the identification of parameter γ in the

Fixed Effects dynamic forward-looking model in this paper.

It is relevant to note that, given time series data on prices and a specification of the ρ(.)

function, it is possible to identify the parameters in the two stochastic processes that charac-

terize the evolution of prices, and based on these parameters, it is possible to identify the two

components zit and eit. For the rest of the paper, I assume that these two vectors, zit and eit,

are observable to the researcher.

2.4 Consumer decision problem

Every period t, the consumer observes the vectors of state variables xit, zit, eit, and εit, and

makes a purchasing decision yit to maximize her expected and discounted intertemporal utility

Et [
∑∞

s=0 δ
s
i Ui,t+s], where δi ∈ [0, 1) is consumer i’s time discount factor. This consumer’s

problem is a stationary Markov Decision Process (MDP), and Blackwell’s Theorem establishes

that the value function and the optimal decision rule are time-invariant (Blackwell, 1965).

The decision problem of consumer i at period t is:

yit = argmax
j∈Y

{ uαi
(j,xit,pit) + εit(j) + vαi

(fx(j,xit), zit) } (9)

where, as defined in equation (1), fx(j,xit) represents the value of xi,t+1 given state xit and

decision yit = j; and vαi
(fx(j,xit), zit) is the continuation value function, i.e., the expected

and discounted value of future utility given current state is (xit, zit) and current choice j.10 Let

σαi
(xit, zit, eit) be the integrated (or smoothed) value function, that is defined as the expectation

of the value function over the distribution of the i.i.d. unobservable state variables εit (Rust,

1994).11 This value function is the unique solution of the integrated Bellman equation. For the
10In the literature of structural dynamic discrete models, letter v is commonly used to denote the conditional

choice value function. Instead, here I use letter v to denote the continuation value, such that the conditional
choice value function is uαi(j,xit,pit) + vαi(fx(j,xit), zit).

11That is, if Vαi
(xit, zit, eit, εit) is the value function, then the integrated value function is defined as

σαi
(xit, zit, eit) ≡

∫
Vαi

(xit, zit, eit, εit) fε(εit) dεit, where fε is the density function of εit.
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type I extreme value distribution, the integrated Bellman equation is:

σαi
(xit, zit, eit) = log

(
J∑

j=0

exp {uαi
(j,xit,pit) + vαi

(fx(j,xit), zit)}

)
(10)

and the continuation value function is:

vαi
(fx(j,xit), zit) ≡ δi

∫
zi,t+1

∫
ei,t+1

σαi
(fx(j,xit), zi,t+1, ei,t+1) fz(dzi,t+1|zit) fe(dei,t+1) (11)

Define the conditional choice probability (CCP) function as:

P (j|xit, zit, eit,αi) ≡ Pr

(
j = argmax

k∈Y
{uαi

(k,xit,pit) + εit(k) + vαi
(fx(k,xit), zit)} |xit, zit, eit,αi

)
(12)

Importantly, this CCP function is conditional on the observable state variables (xit, zit, eit) and

on the unobservable fixed effects αi. The extreme value type I distribution of the unobservables

ε implies that the logarithm of the CCP function has the following form. For any j ∈ Y :

logP (j|xit, zit, eit,αi) = uαi
(j,xit,pit) + vαi

(fx(j,xit), zit) − σαi
(xit, zit, eit) (13)

Note that the integrated value σαi
(xit, zit, eit) is also the logarithm of the denominator of the

logit CCP function.

3 Identification

The researcher observes a panel dataset of N households over T periods with information on

households’ purchasing decisions and prices. The time length of the panel, T , is short in the

sense that it contains only a few purchases per household. The identification results in this paper

consider that T is fixed and – as it is common in proofs of identification – that N is infinite such

that we have an infinite population of households.

Assumption 1 summarizes restrictions on the model for the identification of structural pa-

rameters β̃sc, βdep, and γ.
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ASSUMPTION 1. (A) (i.i.d. Logit shocks) εit(j) is i.i.d. over (i, t, j) with type I extreme

value distribution, and is independent of αi. (B) (Strict exogeneity of prices with respect to

shocks εit) For any two periods, t and s, the variables εit(j) and prices pis are independently

distributed. (C) (Sticky prices) The vectors zt − zt−1 and et − et−1 have supports that include a

neighborhood around zero. �

Assumptions 1(A) and 1(B) rule out aggregate market-level shocks correlated with prices.

This restriction is very common in the literature of structural dynamic demand models, espe-

cially in applications using consumer level data.12 This may seem a strong assumption in an

econometric demand model, and at odds with the literature on estimation of static demand

models using the BLP framework (Berry, Levinsohn, and Pakes, 1995). However, as I explain

in the next two paragraphs, the FE approach in this paper controls for two important sources

of endogeneity in prices.

First, note that the vector of fixed effects αi = (αi(1), αi(2), ..., αi(J)) includes product fixed

effects: in fact, it accounts for any interaction of product effects and consumer effects. Therefore,

these incidental parameters account for time-invariant differences in product quality that can

be correlated with the cross-sectional variation in prices across products. That is, the model

accounts – in a very general way – for endogeneity of price levels. This means that the potential

concern with Assumption 1(B) is because endogeneity of changes in prices over time.

Second, all the identification results in this paper control for variation over time in the

persistent component of prices, zit and exploit only variation in the transitory component, eit.

Therefore, the method controls for endogeneity of regular prices.

Importantly, we consider a fixed effects (FE) model, in the sense that both the unconditional

distribution Fα(αi) and the sequence of conditional distributions Fα|x,t(αi|`it, dit, zit, eit) for

t = 1, 2, ..., T are completely unrestricted functions.
12For instance, Erdem, Imai, and Keane (2003), Hendel and Nevo (2006), Pavlidis and Ellickson, (2017),

Griffith, Nesheim, and O’Connell, (2018), or Mysliwski, Sanches, Junior, and Srisuma, (2020), among many other
papers in this literature, assume that prices are not correlated with transitory shocks. In contrast, some dynamic
demand models using market level data, such as Gowrisankaran and Rysman (2012), allow for unobserved
market-level demand shocks.
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3.1 Preliminaries

Let θ be the vector with the structural parameters βsc, βd, and γ. To establish the identification

of θ, I follow Aguirregabiria, Gu, and Luo (2021) who consider a sufficient statistic - conditional

likelihood approach in the spirit of Chamberlain (1985), Magnac (2000), and Honoré and Kyr-

iazidou (2000). I start describing some general features of this approach in the context of the

dynamic demand model.

Let yi ≡ (`i1, di1, yi1, yi2, ..., yiT ) be the vector with consumer i’s choice history, including the

initial condition (`i1, di1), and let z̃i ≡ (zi1, zi2, ..., ziT ) and ẽi ≡ (ei1, ei2, ..., eiT ) be the vectors

with the histories of the two components in prices. Taking into account equation (13) for the

log-CCP function, we have that the log-probability of a choice history yi conditional on the

history of prices and parameters θ and αi is:

logP (yi|z̃i, ẽi,αi,θ) = log p1(xi1|αi) +
T∑
t=1

uαi
(j,xit,pit) + vαi

(fx(j,xit), zit)− σαi
(xit, zit, eit)

(14)

where p1(.) is the probability of the endogenous state variables at period t = 1. In this model,

the log-probability of a choice history has the following structure:

logP (yi|z̃i, ẽi,αi,θ) = s(yi, z̃i, ẽi)
′ g(αi) + c(yi, z̃i, ẽi)

′ θ (15)

where s(yi, z̃i, ẽi) and c(yi, z̃i, ẽi) are vectors of statistics which are functions of (yi, z̃i, ẽi), such

as, for instance,
∑T

t=1 1{yit = j} or
∑T

t=1 1{yit = j}pit(j), and g(αi) is a vector of functions

which include the fixed effects αi.

The structure in equation (15) has two key implications for the identification of θ. First,

equation (15) implies that si ≡ s(yi, z̃i, ẽi) is a sufficient statistic for αi. That is, the probability

P(yi|z̃i, ẽi,αi,θ, si) does not depend on αi. To show this, note that:

P(yi|z̃i, ẽi,αi,θ, si) =
P(yi|z̃i, ẽi,αi,θ)

P(si|z̃i, ẽi,αi,θ)
=

exp {s′i g(αi) + c′i θ}∑
y: s(y)=si

exp {s′i g(αi) + c(y)′ θ}

=
exp {c′i θ}∑

y: s(y)=si
exp {c(y)′ θ}

= P(yi|z̃i, ẽi,θ, si)

(16)
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where
∑

y: s(y)=si
is the sum over all the possible choice histories y with s(y) equal to si.

Second, using the expression at the bottom line of equation (16), we have the following

conditional log-likelihood function (at the population level):

E [logP(yi|z̃i, ẽi,θ, si)] = E

c′i θ − log

 ∑
y: s(y)=si

exp {c(y)′ θ}

 (17)

The first order conditions for the maximization of this likelihood function with respect to θ

imply the following moment conditions (i.e., likelihood equations):

m (θ) ≡ E

ci − ∑
y: s(y)=si

c(y) P(y|z̃i, ẽi,θ, si)

 = 0 (18)

The Jacobian matrix for this vector of moment conditions – or equivalently, the Hessian of the

log-likelihood function, or the negative of Fisher’s information matrix – is:

∂m (θ)

∂θ′
= − E

(
[ci − E(ci|si)] [ci − E(ci|si)]′

)
(19)

This is the negative of a variance-covariance matrix, and therefore, it is negative semidefinite for

any value of θ. In other words, the likelihood function is globally concave in θ. Furthermore,

based on these moment conditions, a necessary and sufficient condition for (point) identification

of θ is that this Jacobian matrix ∂m(θ)/∂θ′ is nonsingular (i.e., rank identification condition).

The right-hand-side in equation (19) shows that this is the case if and only if the statistics in

vector ci are linearly independent conditional on si.

A more intuitive description of the identification of the structural parameters consists in

showing that, for every parameter in the vector θ, say θk (the k-th element of vector θ), there

exist two choice histories, say A and B, such that s(A) = s(B) and c(A) − c(B) is a vector

where all the elements are zero except element k that is one. Under these conditions, equation

(15) implies that:

θk = logP(A)− logP(B), (20)
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which shows that parameter θk is identified from the log odds ratio of histories A and B.13 This

intuitive description of the identification of parameters in FE discrete choice models has been

used by Chamberlain (1985) and Honoré and Kyriazidou (2000), among others. In this paper, I

follow this approach.

It is important to note that for some FE nonlinear panel data models the identification condi-

tions based on this conditional likelihood approach are sufficient but not necessary. Bonhomme

(2012) provides a systematic approach (the functional differencing method) to construct moment

restrictions for a general class of FE models. Recently, Honoré and Weidner (2020), Dobronyi,

Gu, and Kim (2021), and Honoré, Muris, and Weidner (2021) have used Bonhomme’s functional

differencing approach to establish new point identification results of parameters in FE models

where the conditional likelihood approach, at least apparently, does not provide identification.

For the rest of this subsection, I present results on the identification of structural parameters

in two versions of the demand model: with and without duration dependence. Here, for simplic-

ity, I do not present the expression for the statistics si and ci and instead provide examples of

pairs of histories A and B that identify the different parameters in θ.

3.2 Dynamic demand without duration dependence

Suppose that there is not depreciation or depletion such that βd(`, d) = 0, but there is habit

formation or/and brand switching costs, such that βsc(`, y) 6= 0. This is the demand model in

empirical applications like Roy, Chintagunta, and Haldar (1996), Keane (1997), Osborne (2011),

or Mysliwski, Sanches, Junior, and Srisuma, (2020), among others.

In this model, the only endogenous state variables is `it, and the transition function is:

`i,t+1 = fx(yit, `it) =

 `it if yit = 0

j if yit = j > 0
(21)

Then, combining equation (13) with this transition rule, we have the following expression for
13Note that, in this class of models, every choice history has a strictly positive probability such that logP(A)

and logP(B) are finite real numbers.
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the log-CCP function:

logPit (yit) =

 αi(`it) + vαi
(`it, zit)− σαi

(`it, zit, eit) if yit = 0

αi(j) + vαi
(j, zit)− σαi

(`it, zit, eit)− βsc(`it, j)− γ pit(j) if yit = j > 0

(22)

Suppose that T = 4. Let k and j be two different products, and consider the following pair

of choice histories:

A = (k, j, k, j) ; B = (k, k, j, j) (23)

Taking into account the structure of the log-CCP function in equation (22), we have the following

expression for the log-probabilities of the choice histories:

logP(A) = log p1(k,αi) + αi(j) + αi(k) + αi(j)

+ vαi
(j, z2) + vαi

(k, z3) + vαi
(j, z4)

− σαi
(k, z2, e2)− σαi

(j, z3, e3)− σαi
(k, z4, e4)

− βsc(k, j)− βsc(j, k)− βsc(k, j)− γ (p2(j) + p3(k) + p4(j)) ,

(24)

and
logP(B) = log p1(k,αi) + αi(k) + αi(j) + αi(j)

+ vαi
(k, z2) + vαi

(j, z3) + vαi
(j, z4)

− σαi
(k, z2, e2)− σαi

(k, z3, e3)− σαi
(j, z4, e4)

− βsc(k, j)− γ (p2(k) + p3(j) + p4(j)) ,

(25)

Therefore, the difference between log-probabilities of the two histories is:

logP(A)− logP(B) = vαi
(j, z2) + vαi

(k, z3)− vαi
(k, z2) + vαi

(j, z3)

− σαi
(j, z3, e3)− σαi

(k, z4, e4) + σαi
(k, z3, e3) + σαi

(j, z4, e4)

− β̃sc(k, j)− γ (p2(j)− p3(j)− p2(k) + p3(k)) ,

(26)

Given equation (26), we can establish the identification of parameters β̃sc(k, j) and γ. To

control for the unobserved heterogeneity in the functions v(.,αi) and σ(.,αi), we need to impose
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the restrictions z2 = z3 = z4 and e3 = e4. Given these restrictions, we have that:

logP(A)− logP(B) = −β̃sc(k, j)− γ (p2(j)− p3(j)− p2(k) + p3(k)) , (27)

Therefore, with p2(j)− p3(j) = 0 and p2(k)− p3(k) = 0 we have identification of the switching

cost parameter β̃sc(k, j). And with p2(j) − p3(j) − p2(k) + p3(k) 6= 0 we have identification

of the price-sensitivity parameter γ. That is, keeping constant the permanent component of

prices between periods 2 and 4, and the transitory component between periods 3 and 4, we can

identify γ using the variation between periods 2 and 3 in the transitory component of the prices

in products j and k.

The pair of histories A and B in equation (23) is only one of the many history pairs with

identification power for the structural parameters. For instance, we can extend this example by

including periods of no purchase. Let 0n represent a vector of n zeros. For k, j ≥ 1 with k 6= j,

and any two natural numbers n1 and n2, consider the following choice histories:

A = (k, 0n1 , j, 0n2 , k, 0n2 , j) ; B = (k, 0n1 , k, 0n2 , j, 0n2 , j) (28)

It is straightforward to show that the difference between the log-probabilities of these two his-

tories has the following expression:

logP(A)− logP(B) =

n1+n2+2∑
t=n1+2

vαi
(j, zt)− vαi

(k, zt) +

n1+2n2+3∑
t=n1+n2+3

vαi
(k, zt)− vαi

(j, zt)

−
n1+n2+3∑
t=n1+3

σαi
(j, zt, et)− σαi

(k, zt, et) +

n1+2n2+4∑
t=n1+n2+4

σαi
(k, zt, et)− σαi

(j, zt, et)

− β̃sc(k, j)− γ (pn1+2(j)− pn1+n2+3(j)− pn1+2(k) + pn1+n2+3(k)) .

(29)

To eliminate the unobserved heterogeneity αi from this difference we need the following condi-

tions on prices: (i) the permanent component zt is constant from period n1 + 2 to n1 + 2n2 + 4;

and (ii) the transitory component et is constant between periods n1+3 and n1+2n2+4. Under
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these conditions, we have that:

logP(A)− logP(B) = −β̃sc(k, j)− γ (pn1+2(j)− pn1+3(j)− pn1+2(k) + pn1+3(k)) . (30)

This equation shows that a change between periods n1+2 and n1+3 in the transitory component

of the price of product j or k identifies parameter γ. The switching cost parameter β̃sc(k, j) is

identified from histories where this transitory component is constant.

3.3 Dynamic demand with duration dependence

Consider now the demand model with duration dependence. The expression for the log-CCP

function is:

logPit =

 αi(`it)− βdep(`it, dit) + vαi
(`it, dit + 1, zt)− σαi

(`it, dit, zt, et) if yit = 0

αi(j)− γ pit(j)− βsc(`it, j) + vαi
(j, 1, zt)− σαi

(`it, dit, zt, et) if yit = j > 0

(31)

First, it is straightforward to verify that the pair of histories in equation (23) still identifies

the switching cost parameters β̃sc
kj and the price sensitivity parameter γ. Therefore, I focus

here on the identification of the depretiation parameters βdep(j, d). Furthermore, for notational

simplicity, I consider here that the two price components are constant over the considered choice

histories and omit zt and et as arguments.

Let n be a natural number such that 2 ≤ n ≤ (T − 2)/2. Consider the following choice

histories, both with initial duration d1 = 1:

A = (j, 0n−1, j, 0n+1) ; B = (j, 0n, j, 0n) (32)

Note that these histories do not contain any product switching event such that switching cost

parameters do not appear in the probabilities of these choice histories. Taking into account the

structure of the log-CCP in equation (31), we have the following expressions for log-probabilities
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of these choice histories:

logP(A) = log p1(j, d1|αi) + 2(n+ 1)αi(j)−
n−1∑
d=1

βdep(j, d)−
n+1∑
d=1

βdep(j, d)

+
n∑

d=2

vαi
(j, d) +

n+2∑
d=1

vαi
(j, d)−

n∑
d=1

σαi
(j, d)−

n+1∑
d=1

σαi
(j, d).

(33)

logP(B) = log p1(j, d1|αi) + 2(n+ 1)αi(j)−
n∑

d=1

βdep(j, d)−
n−1∑
d=1

βdep(j, d)

+
n+1∑
d=2

vαi
(j, d) +

n+1∑
d=1

vαi
(j, d)−

n+1∑
d=1

σαi
(j, d)−

n∑
d=1

σαi
(j, d).

(34)

They imply the following expression for the difference between the log-probabilities:

logP(A)− logP(B) = − βdep(j, n+ 1) + βdep(j, n) + vαi
(j, n+ 2)− vαi

(j, n+ 1) (35)

The expression in the right-hand-side still depends on the incidental parameters αi such that,

without further restrictions, this pair of histories does not identify βdep parameters.

In general, without further restrictions, the duration dependence structural parameters βdep(j, d)

are not identified in the forward-looking model.14 To obtain identification of these parameters,

I follow the same approach as Aguirregabiria, Gu, and Luo (2021) and impose the following

restriction.

ASSUMPTION 2. For any product j, there is a value of duration d∗j – which can vary across

products – such that βdep(j, n) = βdep(j, d∗j) for any duration n ≥ d∗j . �

Importantly, as established in Proposition 6 in Aguirregabiria, Gu, and Luo (2021), the value

of d∗j is identified from the data as long as it is not larger than (T − 1)/2. I reproduce here this

result from Aguirregabiria, Gu, and Luo (2021).

PROPOSITION. Let d∗j be the value of duration defined in Assumption 2 above. For any

product j and any duration n with 2n+1 ≤ T , define the pair of histories Aj,n = (j,0n−1, j,0n+1)

14Note that in a myopic model (i.e., δi = 0) all the continuation values vαi
(j, d) are zero, such that equation

(35) implies the identification of βdep(j, n+ 1)− βdep(j, n) from logP(A)− logP(B). Here, I do not impose this
restriction and consider that consumers can be forward-looking.
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and Bj,n = (j,0n, j,0n). If d∗j ≤ (T−1)/2, then the value d∗j is point identified from the following

expression:

d∗j = max{n : logP(Aj,n)− logP(Bj,n) 6= 0} � (36)

An important implication of Assumption 2 is that the continuation value function is such

that vαi
(j, n) = vαi

(j, d∗j) for any duration n ≥ d∗j . Combining this property with equation (35),

we have that for n = d∗j − 1:

logP(A)− logP(B) = − βdep(j, d∗j) + βdep(j, d∗j − 1) (37)

such that the (local) depreciation rate βdep(j, d∗j) − βdep(j, d∗j − 1) is identified. If βdep(j, d) is

a linear function, i.e., βdep(j, d) = β
dep

j d, then equaton (37) implies the identification of the

product-specific depreciation rate βdep

j .

4 Estimation

Let θ be the vector of parameters (γ, β̃sc
kj, β

dep

j , k, j ∈ {1, 2, ..., J} with k > j). The dataset is

{yit, zit, eit : i = 1, 2, ..., N ; t = 1, 2, ..., T}. Let z̃i and ẽi the vectors with the time series of prices

{zit : t = 1, 2, ..., T} and {eit : t = 1, 2, ..., T}, respectively.

In the identification results in section 3, a sufficient statistic for αi was represented as a

binary indicator that combines the condition yi ∈ {A ∪ B}, where A and B are two choice

histories, and restrictions on prices, that we can represent as r(z̃i, ẽi) = 0. That is:

si ≡ s (yi, z̃i, ẽi) = 1{yi ∈ A ∪B and r(z̃i, ẽi) = 0} (38)

We have shown that:

P(yi|z̃i, ẽi, si = 1) =
exp{c(yi, z̃i, ẽi)

′θ}
exp{c(A, z̃i, ẽi)′θ}+ exp{c(B, z̃i, ẽi)′θ}

(39)

where c(yi, z̃i, ẽi) is a vector of known statistics.

There are many pairs of histories A and B that provide sufficient statistics for αi and have
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identification power for θ. Let index these sufficient statistics by m ∈ {1, 2, ...,M}. We also

index by m the different elements that define sufficient statistic smi , that is: the corresponding

pair of choice histories, (Am, Bm); the restrictions on prices, rm(z̃i, ẽi) = 0; and the identifying

statistics, cm(yi, z̃i, ẽi). Note that we can use m also to index different sub-periods in the

panel dataset.15 Given these M sufficient statistics, we can define the following conditional

log-likelihood function:

L(θ) =
M∑

m=1

N∑
i=1

1{yi ∈ Am ∪Bm} 1{rm(z̃i, ẽi) = 0} log

(
exp{cm(yi, z̃i, ẽi)

′θ}
exp{cm(Am, z̃i, ẽi)′θ}+ exp{cm(Bm, z̃i, ẽi)′θ}

)
(40)

The CML estimator is the value of θ that maximizes L(θ), which is a globally concave function.

In many possible applications, such as those using weekly or daily supermarket scanner data,

price stickiness implies such that the restrictions rm(z̃i, ẽi) = 0 hold for a non-negligible fraction

of observations. Nevertheless, imposing exactly these restrictions typically implies loosing a

substantial amount of observations. This is exactly the issue that motivates the Kernel Weighted

CML in Honoré and Kyriazidou (2000). In the log-likelihood function, we replace the indicator

1{rm(z̃i, ẽi) = 0} with a weight that depends inversely on the magnitude of vector |rm(z̃i, ẽi)|

such that we put more weight in the log-likelihood of observations for which |rm(z̃i, ẽi)| is close

to zero. More specifically, we consider the following Kernel Weighted conditional log-likelihood

function:

LKW (θ) =
M∑

m=1

N∑
i=1

1{yi ∈ Am ∪Bm} K
(
rm(z̃i, ẽi)

bN

)
log

(
exp{cm(yi, z̃i, ẽi)

′θ}
exp{cm(Am, z̃i, ẽi)′θ}+ exp{cm(Bm, z̃i, ẽi)′θ}

)
(41)

where K(.) is a kernel density function that satisfies the regularity condition K(v) → 0 as

||v|| → ∞, and bN is a bandwidth parameter such that bN → 0 and NbN → ∞ and N → ∞.

As shown by Honoré and Kyriazidou (2000), this estimator is consistent and asymptotically

normal. If prices zit and eit have discrete support, the rate of convergence of the estimator is
15For instance, we can divide a panel dataset with T = 12 periods into three different sub-panels with four

time periods each, and construct sufficient statistics separately for each sub-panel.
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N−1/2. Otherwise, with continuous prices, the rate of convergence is slower than N−1/2.

5 Conclusions

This paper presents a Fixed Effects dynamic panel data model of demand for different products

where consumers are forward looking. I apply and extend recent results from Aguirregabiria,

Gu, and Luo (2021) to establish the identification of all structural parameters in this model.

Several extensions of the results in this paper are interesting topics for further research.

First, an important motivation for the estimation of structural models is using them for coun-

terfactual experiments that consist in evaluating the effects on agents’ behavior of hypothetical

changes in structural parameters or/and exogenous variables. Recent research by Aguirregabiria

and Carro (2021), Davezies, D’Haultfoeuille, and Laage (2021), and Pakel and Weidner (2021)

present new positive results on the identification of average marginal effects and counterfactuals

in Fixed Effects discrete choice models. It would be interesting applying these results to this

dynamic demand model.

Second, the specification of the sources of demand dynamics in the model of this paper,

though relatively flexible, is restrictive. For instance, the model does not accommodate some

forms of consumer learning for experienced goods used in the literature with Random Effects

models (e.g., Ching, 2010).

Third, the model assumes that consumers buy at most one unit of the product per period.

However, it is well-known that forward-looking consumers can buy for inventory (Hendel and

Nevo, 2006; Hendel and Nevo, 2013). It would be interesting and useful to extend the model to

incorporate the possibility of consumers purchasing multiple units/

Fourth, in the same spirit as the the recent work by Mysliwski, Sanches, Junior, and Srisuma,

(2020), this dynamic demand can be combined with a dynamic game of price competition. The

assumption on the two price components – persistent and transitory – is consistent with an

equilibrium of a dynamic pricing game with i.i.d. firms’ private information.

Last but not least, eventually, empirical applications using the model and identification

results in this paper will be key judges of the relative merits and limitations of this framework.
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