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Abstract

It is well-known that the approximate factor models have the rotation indeterminacy.
It has been considered that the principal component (PC) estimators estimate some ro-
tations of the true factors and factor loadings, but the rotation matrix commonly used
in the literature depends on the PC estimator itself. This raises a question: what does
the PC estimator consistently estimate? This paper aims to explore the answer. We
first show that, assuming a quite general weak factor model with the r signal eigenval-
ues diverging possibly at different rates, there always exists a unique rotation matrix
composed only of the true factors and loadings, such that it rotates the true model to
the identifiable model satisfying the standard r2 restrictions. We call the rotated factors
and loadings the pseudo-true parameters. We next establish the consistency and asymp-
totic normality of the PC estimator for this pseudo-true parameter. The results give an
answer for the question: the PC estimator consistently estimates the pseudo-true pa-
rameter. We also investigate similar problems in the factor augmented regression. Finite
sample experiments confirm the excellent approximation of the theoretical results.

Keywords. Weak factor model, Rotation matrix, Consistency and asymptotic normality,
Factor augmented regression.

1 Introduction

High-dimensional factor models have become an increasingly important analytical tool for
psychology, finance, economics, biology, and so on. They are quite useful in reducing the
high dimensionality of data by the low-rank approximation. For example, Chamberlain and
Rothschild (1983) first introduce the approximate factor model to finance, and estimation
and inferential methods are developed by Connor and Korajczyk (1986, 1993), Stock and
Watson (2002a,b), Bai and Ng (2002), and Bai (2003), Fan et al. (2013), among many others.
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1.1 Factor model and estimator

Consider the high-dimensional data matrix X ∈ RT×N generated by the latent factor model:

X = F∗B∗′ +E, (1)

where F∗ = (f∗1 , . . . , f
∗
T )

′ with f∗t ∈ Rr is a matrix of latent factors, B∗′ = (b∗
1, . . . ,b

∗
N ) with

b∗
i ∈ Rr is a matrix of factor loadings, E ∈ RT×N is an idiosyncratic error matrix with

E[E] = 0, and N,T → ∞ while r is fixed. Throughout the paper, we suppose that B∗ and
F∗ are of full column rank and the largest eigenvalue of E[T−1E′E] is uniformly bounded
in N and T , but we do not require any specific structure in (F∗,B∗), such as diagonality
of B∗′B∗ and/or F∗′F∗, or sparseness of B∗. For the later use, define λk as the kth largest
eigenvalue of the signal part, T−1F∗B∗′B∗F∗′, and set Λ = diag(λ1, . . . , λr).

The principal component (PC) estimator, (F̂, B̂), is defined as a minimizer of ∥X−FB′∥2F
subject to the r2 restrictions, T−1F′F = Ir and B′B ∈ D(r), where D(r) is a set of all
the r × r diagonal matrices with r positive diagonal entries in non-increasing order. The
constraint minimization problem reduces to the eigenvalue problem of T−1XX′; the factor
estimator F̂ ∈ RT×r is obtained as

√
T times the r eigenvectors associated with the r largest

eigenvalues of T−1XX′, and the loading estimator B̂ ∈ RN×r is given by B̂ = T−1X′F̂. By
the construction, we can easily check T−1F̂′F̂ = Ir and B̂′B̂ ∈ D(r) with its kth diagonal
element equal to λ̂k, the kth largest eigenvalue of T−1XX′. Setting Λ̂ = diag(λ̂1, . . . , λ̂r),
we can write B̂′B̂ = Λ̂.

1.2 Problem statement: What does the PC estimator estimate?

The large body of influential literature, including Bai (2003), Bai and Ng (2002, 2006, 2023),
analyses the asymptotic properties of the PC estimator (F̂, B̂) relative to the “rotated pa-
rameter” (F∗Ĥ,B∗Ĥ′−1), where1

Ĥ = B∗′B∗(T−1F∗′F̂)Λ̂−1. (2)

Typically, they discuss the asymptotic approximations,

f̂t = Ĥ′f∗t + op(1), b̂i = Ĥ−1b∗
i + op(1), (3)

and their associated asymptotic normality. However, it is questionable whether the results
in (3) really establish the consistency of the PC estimator, because the “rotated parameter”
(Ĥ′f∗t , Ĥ

−1b∗
i ) depends on the PC estimator itself (and thus depends on data X) through Ĥ.

Approximation (3) literary says “each of F̂ and B̂, which is a function of X, approximates
another function of X.” This does not reveal which parameters in model (1) the PC estimators
are actually estimating!

In view of this problem, we want a new rotation matrix that does not depend on data
and that rotates the true parameter to an identifiable one. Precisely, we want to construct
rotation matrix H composed only of the true parameter (F∗,B∗) such that the rotated

1The data-dependent rotation matrix Ĥ defined by (2) is usually denoted without the ‘hat’ in the literature;
see Bai (2003) and Bai and Ng (2023), for example.
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parameters, F0 := F∗H and B0 := B∗H′−1, satisfy the r2 restrictions,

1

T
F0′F0 = Ir and B0′B0 ∈ D(r). (4)

Thus the pseudo-true parameters F0 and B0 are separately identifiable. Then it is natural to
investigate the asymptotic behavior of (F̂, B̂) relative to (F0,B0) since the PC estimator is
obtained under the same restrictions. This approach is employed by Uematsu and Yamagata
(2023a,b), but they do not specify such matrix H. The first contribution of this article is,
under very mild conditions on model (1), to show the existence and its uniqueness (up to
sign indeterminacy) of H that rotates true parameter (F∗,B∗) to (F0,B0) satisfying (4).
This means that we can always rotate model (1) to the identifiable pseudo-true model,

X = F0B0′ +E, (5)

satisfying (4). As the second contribution, we will prove consistency and asymptotic nor-
mality of the PC estimator for the pseudo-true parameter. In light of the new asymptotic
results, we can say that the PC estimator consistently estimates the pseudo-true model in
(5) with (4). This is the first article to establish the asymptotic theory of the PC estimator
for the pseudo-true parameter that does not depend on data.

There are two remarks on our approach. First, Bai and Ng (2013) directly impose
the r2 restrictions on the structural parameters: T−1F∗′F∗ = Ir and B∗′B∗ ∈ D(r), and
prove Ĥ →p Ir. The same strategy is taken by many authors, including Freyaldenhoven
(2022). This approach is clearly different from ours, and seems restrictive since there is no
evidence that the true structural model satisfies such artificial restrictions. Second, our new
asymptotic results can be used for inference. Thanks to the obtained asymptotic normality
of the PC estimator, testing for general statistical hypotheses for (F0,B0) becomes feasible.
Apparently, as long as the asymptotic normality is considered in relation to data-dependent
rotations, we may encounter difficulties with hypothesis tests.

1.3 Weak factor models: Allowing different rates for signal eigenvalues

The majority of the literature on latent factor models, including Stock and Watson (2002a,b),
Bai (2003), Bai and Ng (2002, 2006, 2013), have employed the strong factor (SF) models,
where the signal eigenvalues satisfy λk ≍ N for all k = 1, . . . , r. This requirement is some-
what strong in view of real data. Therefore, in the present study, the new asymptotic
properties of the PC estimator are derived for the weak factor (WF) models that have pos-
sibly different divergence rates for the signal eigenvalues: λk ≍ Nαk with 0 < αk ≤ 1 for
k = 1, . . . , r. Observe that αr = 1 reduces to the SF model.

Recently, a growing body of literature has turned its attention to the WF models and
has provided their empirical support. Uematsu and Yamagata (2023a,b) and Wei and Zhang
(2023) consider the WF models induced by sparse factor loadings while in this article we allow
the WF models with non-sparse loadings. Onatski (2010) and Freyaldenhoven (2022) propose
methods to determine the number of factors for the WF models. Bai and Ng (2023, Section 5)
consider a model with “weaker loadings,” essentially assuming that B∗′B∗ is asymptotically
diagonal with the elements possibly diverging at different rates. The rates coincide the signal
eigenvalues if ∥T−1F∗′F∗∥2 is assumed to be bounded, and the model reduces to the WF
model in such a case. However, the assumption is stringent since it directly imposes the
restriction on the true parameter, (F∗,B∗). They consider the PC estimator in relation to
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various data-dependent rotation matrices, but are silent about asymptotic normality of b̂i

and f̂ ′tb̂i, and factor augmented regressions under (3), though they derive the asymptotic
normality of some rotation of b̂i. This article fill this important gap in the literature by
providing these results.

1.4 Factor-augmented regression

Our approach can apply to the factor augmented regressions, considered in Bai and Ng
(2006), Stock and Watson (2002a,b) and Ludvigson and Ng (2009), among others. They
are widely used in situations with a large number of predictors. Assuming that certain
unobserved common factors influence the movement of the predictors, the factors extracted
from the predictors can be used to forecast a particular series. To illustrate, consider a simple
factor augmented predictive regression model, yt+1 = γ∗′f∗t + ϵt+1, where yt is a variable of
interest and ϵt is an error term. As the predictive factor f∗t is not observable, it is usually
replaced by the PC estimator f̂t extracted from a larger set of predictors, X. Bai and Ng
(2006) employ the approximation (3) so that γ∗′f∗t = γ ′

Ĥ
f̂t + op(1), where γĤ = Ĥ−1γ∗.

Although this result is theoretically important and interesting, this approximation literally
tells that the coefficient parameter γĤ on the PC estimator f̂t is viewed as a function of the
PC estimator (F̂, B̂) itself, through Ĥ.

A t-test for the significance of the kth PC factor in the regression is routinely reported
in empirical studies. However, due to the problem mentioned above, it does not seem to
be asymptotically justified; see Ludvigson and Ng (2009, Table 2) as an example. Testing
which factors are significant in factor augmented regressions is of great importance. This
is because the extracted PC factors are ordered by their importance in the covariability of
predictors, which may not correspond to their forecast power for the particular series of
interest; see further discussions in Bai and Ng (2008, 2009) and Cheng and Hansen (2015).
It is worth noting that using our approximation of the PC estimator to (F0,B0), such t-
tests are asymptotically justified because γ0′f̂t = γ0′f0t + op(1) with γ0 = H−1γ∗, which is a
function of the true parameters (F∗,B∗,γ∗). We provide a formal analysis of this, which is
new to the literature.

1.5 Organization and notations

The rest of the paper is structured as follows. In section 2 the rotation matrix H, which is
purely a function of signals (F∗,B∗), is derived and its uniqueness is proved. In section 3
the weak factor model is formally introduced and assumptions are made, then consistency
of the PC factor is shown in sections 4 and its asymptotic normality is proved in section 5.
Section 6 discusses the asymptotic properties of the estimators of factor augmented prediction
regressions. Section 7 discuss the experimental design and summarize the results. Section 8
contains some concluding remarks.

Denote by λk[A] the kth largest eigenvalue of a square matrix A. For any matrix M =
(mti) ∈ RT×N , we define the Frobenius norm and ℓ2-induced (spectral) norm as ∥M∥F =

(
∑

t,im
2
ti)

1/2 and ∥M∥2 = λ
1/2
1 (M′M), respectively. We denote by IN and 0T×N the N ×N

identity matrix and T ×N zero matrix, respectively. We use ≲ (≳) to represent ≤ (≥) up
to a positive constant factor. For any positive sequences an and bn, we write an ≍ bn if
an ≲ bn and an ≳ bn. All asymptotic results are for cases where N,T → ∞, and we do not
specifically mention it.
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2 Derivation of the Rotation Matrix

We derive the explicit form of rotation matrix H that rotates (1) to (5) with (4) under a
quite general assumption. For this purpose, we consider the eigenvalue problem of the r× r
matrix B∗′B∗ (T−1F∗′F∗). Let Λ and P denote the r × r diagonal matrix containing the
eigenvalues of B∗′B∗ (T−1F∗′F∗) in descending order and the r×r matrix whose columns are
composed of the corresponding normalized eigenvectors, respectively. Then, we may write

B∗′B∗ (T−1F∗′F∗)P = PΛ. (6)

To progress further, we impose minimal conditions on (6).

Assumption 1. (i) The smallest eigenvalues of B∗′B∗ and T−1F∗′F∗ are bounded away
from zero;
(ii) All the r diagonal elements of Λ are distinct.

Assumption 1 is very mild. Under Assumption 1, all the diagonal elements in Λ are
positive, bounded away from zero, and distinct. Moreover, Assumption 1(ii) implies the
linear independence of the column vectors in P, so that P−1 is well-defined. Let U =
P−1B∗′B∗P−1′ and V = P′ (T−1F∗′F∗)P. Then (6) immediately implies UV = Λ. The
first result is obtained as follows.

Lemma 1. If Assumption 1 is true, then U and V are invertible diagonal matrices.

Theorem 1. If Assumption 1 is true, then the rotation matrix that rotates (1) to (5)
satisfying (4) uniquely exists up to column sign change, and is explicitly given by

H = PV−1/2. (7)

In particular, we have B0′B0 = Λ in (4).

We emphasize that H consists only with the true parameters, F∗ and B∗, while Ĥ defined
in (2) depends on the PC estimators, F̂ and B̂. By (7) and Lemma 1, H is viewed as a matrix
of eigenvectors associated with Λ. Thus, it can be written as

H = B∗′B∗(T−1F∗′F0)Λ−1,

which can be regarded as a population version of Ĥ.
Theorem 1 indicates that, under a very mild assumption, the true structural model in (1)

can always be rotated to the pseudo-true model (5) satisfying the conditions in (4). These
two models, (1) and (5) with (4), are observationally equivalent. Thus, considering model
(5) with (4) is equivalent to choosing the specific rotation matrix H defined by (7) with
implicitly assuming the true model in (1).

3 Weak Factor Models

We formulate the WF models in preparation for deriving the asymptotic theory. We start
with introducing the assumptions on the idiosyncratic error term.

Assumption 2 (Idiosyncratic errors). For some constant M < ∞ that does not depending
on N and T , we have:
(i) E[et,i|b∗

i , f
∗
t ] = 0 and E[e4t,i] ≤ M for all i and t;
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(ii) E[{N− 1
2
∑N

i=1(et,ies,i − E[et,ies,i])}2] ≤ M for all t and s;
(iii) For all i, ∥E[es,iet,i]| ≤ |γs,t| for some γs,t such that

∑T
t=1 |γs,t| ≤ M ;

(iv) For all t, |E[et,iet,j ]| ≤ |τi,j | for some τi,j such that
∑N

j=1 |τi,j | ≤ M ;
(v) ∥E∥22 = Op(max {N,T});
(vi) The minimum eigenvalue of Σe = E[ete′t] is bounded away from zero.

The weak cross-sectional and serial correlations in Assumption 2(ii), (iii) and (iv) are
similar to Bai (2003, Assumption C). Assumption 2(i), (v), and (vi) are also frequently
imposed. We then strengthen Assumption 1 to explicitly characterize the WF models. Re-
call Λ = diag(λ1, . . . , λr) with λk the kth largest eigenvalue of T−1F∗B∗′B∗F∗′. The next
assumption is crucial to characterize the WF models.

Assumption 3 (Signal strength). There exist random or non-random variables d1, . . . , dr >
0 and constants 0 < αr ≤ · · · ≤ α1 ≤ 1 such that λk = d2kN

αk for k = 1, . . . , r with ordered
0 < λr < · · · < λ1 for large N . If dk’s are random, we have E[d4k] ≤ M for all k.

Hereafter, denote N = diag(Nα1 , . . . , Nαr) and D = diag(d1, . . . , dr), so that we can
write Λ = D2N. Under this condition, all the signal eigenvalues, λ1, . . . , λr, are distinct
and λk ≍ Nαk . If αr = 1, this reduces to the SF model. Compared with Assumption
3, Bai and Ng (2023, Section 5) and Freyaldenhoven (2022) impose the conditions that
N−1/2B∗′B∗N−1/2 tends to a diagonal matrix. They additionally suppose that T−1F∗′F∗

converges (in probability) to a positive definite matrix and Ir, respectively. These conditions
lead to λk ≍ Nαk , and thus their models are examples of our WF models. However, their
assumptions are much stronger than ours because they directly restrict the structure of
(F∗,B∗) in data generating process (1). They are unobserved and it does not seem possible
to identify them without extra exogenous information. On the contrary, our strategy is to
interpret the PC estimators (F̂, B̂) as the consistent estimators of F0 = F∗H and B0 =
B∗H′−1 in the pseudo-true model (5) with (4). This interpretation is always possible under
Assumption 1 as considered in Section 2. If necessary, we rotate back F0 to identify F∗ when
sufficient exogenous information exists for the purpose.

4 Consistency

We reconsider statistical consistency of the PC estimator. As noted in the introduction, the
majority of the existing results have considered “consistency” for the rotated parameter by
Ĥ, which is a function of the PC estimator. In this section, we derive consistency for the
pseudo-true parameters obtained by H in (5). Accordingly, we will make further assumptions
on this pseudo-true model for investigating the asymptotics.

Write B∗ = (b∗
1, . . . ,b

∗
N )′ = (B∗

1, . . . ,B
∗
r) and F∗ = (f∗1 , . . . , f

∗
T )

′ = (F∗
1, . . . ,F

∗
r); the

same notational rule applies to the other matrices.

Assumption 4 (Factors and Loadings). For some constant M < ∞ that does not depending
on N and T , we have:
(i) E ∥f0t ∥42 ≤ M and E ∥b0

i ∥42 ≤ M ;
(ii) E ∥N− 1

2
∑N

i=1 b
0
i et,i∥22 ≤ M for each t;

(iii) E ∥T− 1
2
∑T

t=1 f
0
t et,i∥22 ≤ M for each t;

(iv) E ∥T− 1
2N− 1

2
∑T

t=1

∑N
j=1 b

0
j [et,iet,j − E(et,iet,j)]∥22 ≤ M for each i;

(v) E ∥(NT )−
1
2
∑T

s=1

∑N
i=1 f

0
t [es,iet,i − E(es,iet,i)]∥22 ≤ M for each t;

(vi) the r × r matrix satisfies E ∥T− 1
2N− 1

2
∑T

t=1

∑N
i=1 b

0
i ei,tf

0′
t ∥22 ≤ M .
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The moment restrictions in Assumption 4(iii),(v),(vi) are essentially the same as As-
sumptions D, F1 and F2 in Bai (2003), and Assumption 4(ii) and (iv) are similar moment
restrictions related to b0

i .
Following the analysis conducted by Bai and Ng (2023), we use other data-dependent

rotations of F∗ and B∗ than Ĥ, such as

Ĥ4 = B∗′B̂Λ̂−1, H̃4 = B0′B̂Λ̂−1, H̃ = B0′B0(T−1F0′F̂)Λ̂−1,

Q̂ = T−1F̂′F∗, Q̃ = T−1F̂′F0,

and others appear in the appendix. These rotation matrices are theoretically important since
the discrepancy between the PC estimator and the parameter rotated by such matrices can
converge faster. By the definition, we immediately obtain F∗Ĥ4 = F0H̃4, B∗Q̂′ = B0Q̃′,
and F∗Ĥ = F0H̃. Employing these rotation matrices, we achieve the “consistency” results
for the data-dependent counterparts:

Lemma 2. Suppose that Assumptions 1–4 hold. If N1−αr

T → 0, then we have

(i)
1√
T
∥F̂− F∗Ĥ4∥F =

1√
T
∥F̂− F0H̃4∥F = Op

(
N1−αr

T

)
+Op

(
N− 1

2
αr

)
,

(ii)
1√
N

∥B̂−B∗Q̂′∥F =
1√
N

∥B̂−B0Q̃′∥F = Op

(
1√
T

)
+Op

(
N− 1

2
− 1

2
αr

)
,

(iii) H̃4, Q̃, H̃ are Op(1). If additionally α1 < 2αr, then we have H̃4, Q̃, H̃
p−→ Ir.

Lemma 2(i) is in line with the result in Bai and Ng (2023, Proposition 6(i)). Lemma 2(ii)
differs from the corresponding results in Bai and Ng (2023, Proposition 6(ii)), but related to
Wei and Zhang (2023, Proposition 3.4). Interestingly, Lemma 2(i)(ii) do not depend on the
value of α1, which may lead to the fast convergence rates. The boundedness of the rotation
matrices with “tilde” implied by Lemma 2(iii) is key to deriving the asymptotic normality
for the pseudo-true parameters in the next section. In contrast, the rotation matrices with
“hat” are not necessarily bounded unless additional conditions are imposed on F∗.

Theorem 2. Suppose that Assumptions 1–4 hold. If α1 < 2αr and N1−αr

T → 0, then we
have

(i)
1√
T
∥F̂− F0∥F = Op

(
N1−αr

T

)
+Op

(
N− 1

2
αr

)
,

(ii)
1√
N

∥B̂−B0∥F = Op

(
1√
T

)
+Op

(
Nα1− 3

2
αr− 1

2

)
+ op

(√
N1−αr

T

)
,

(iii)
1√
NT

∥Ĉ−C∗∥F = Op

(
1√
T

)
+Op

(
N

1
2
α1− 1

2
αr− 1

2

)
+ op

(
N1−αr

T

)
,

where Ĉ = F̂B̂′ and C∗ = F∗B∗′ = F0B0′.

This consistency theorem is new as it involves the pseudo-true parameter (F0,B0) rather
than the data-dependent parameter as in Lemma 2 and Bai and Ng (2023). This means
that Theorem 2 achieves the consistency of the PC estimator for the pseudo-true parameter.
Compared to Lemma 2, the additional condition α1 < 2αr is imposed, but it can be inter-
preted as a cost for separate identification of the kth factor and the kth loading for each
k = 1, . . . , r. The same interpretation can also be applied to the comparison of Lemma 2(ii)
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and Theorem 2(ii), the latter of which depends on both α1 and αr. As a result, the con-
vergence rate of B̂ in Theorem 2(ii) cannot be faster than that in Lemma 2(ii). Meanwhile,
the convergence speed of F̂ in Theorem 2(i) are not sacrificed. In fact, we can show that
Theorem 2(i) is as fast as that of T−1/2∥F̂− F∗Ĥ∥F under the same conditions.

In the case of SF models (i.e., αr = 1) in Theorem 2, the rates in (i) and (ii) become
1
T + 1√

N
and 1√

T
+ 1

N , respectively. They are the same as those in Lemma 2. This is
remarkable because Theorem 2 reveals the consistency of the PC estimators in SF models,
whereas Lemma 2 or Bai and Ng (2002) does not. Moreover, these rates are smaller than
those in Bai and Ng (2002) for the SF models, which are 1√

T
+ 1√

N
.

Regarding the common component estimator, Ĉ, the rate given by Theorem 2(iii) is
faster than that shown by Wei and Zhang (2023, Proposition 3.6); their rate is equivalent to
replacing N

1
2
α1− 1

2
αr− 1

2 in (iii) with Nα1−αr− 1
2 .

5 Asymptotic Normality

We derive the asymptotic normality of the PC estimator centered by the pseudo-true pa-
rameter. The significance of this normality lies in justification of testing for restrictions on
the pseudo-true parameters that are not data-dependent. We emphasize that testing for a
general restriction, excluding a zero restriction, on the true parameter rotated by a data-
dependent rotation is formally impossible. To facilitate the discussion, we suppose a central
limit theorem.

Assumption 5 (CLT). The following holds for each i and t:

D−1N− 1
2

N∑
i=1

b0
i et,i

d−→ N(0,Γt),
1√
T

T∑
t=1

f0t et,i
d−→ N(0,Φi),

where

Γt = lim
N→∞

N∑
i=1

N∑
j=1

E[D−1N−1/2b0
i et,iet,jb

0′
j N

−1/2D−1],

Φi = lim
T→∞

1

T

T∑
t=1

T∑
s=1

E[f0t et,ies,if0′s ].

They are bounded and positive definite for all t and i.

We first derive the asymptotic normality of the PC estimator with respect to the rotated
parameters by data-dependent rotation matrices.

Lemma 3. Suppose that Assumptions 1–5 hold.
(i) If αr > 1/2 and N

3
2−αr

T → 0, we have

DN
1
2 (f̂t − Ĥ′

4f
∗
t )

d−→ N(0,Γt).

(ii) If α1 < 2αr, N1−αr√
T

→ 0 and
√
T

Nαr → 0, we have

√
T (b̂i − Q̂b∗

i )
d−→ N(0,Φi).
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Lemma 3(i) is similar to Bai and Ng (2023, Proposition 7(i)). Lemma 3(ii) is new
and theoretically useful in comparison to the existing results, such as Bai and Ng (2023,
Proposition 7(ii)). Lemma 3(ii) is also similar to the result of Wei and Zhang (2023), but
they impose a sparsity assumption to B∗, which is more restrictive than ours. In the case
where N ≍ T , the conditions for Lemma 3(i) and (ii) are simplified to αr > 1/2. The lemma
leads to the next theorem:

Theorem 3. Suppose that Assumptions 1–5 hold.
(i) If αr > 1/2, 2α1 < 3αr, N

3
2−αr

T → 0, and Nα1−αr√
T

→ 0, we have

DN
1
2 (f̂t − f0t )

d−→ N(0,Γt).

(ii) If α1 < 2αr,
√
TN

1
2
α1− 3

2
αr → 0, and N1−αr√

T
→ 0, we have

√
T (b̂i − b0

i )
d−→ N(0,Φi).

(iii) If αr > 1/2, N
3
2−αr

T → 0, and
√
TN

1
2
α1− 3

2
αr → 0, we have

ĉt,i − c∗t,i√
Vt,i + Ut,i

d−→ N(0, 1),

where Vt,i = b0
i
′
D−1N− 1

2ΓtD
−1N− 1

2b0
i and Ut,i = T−1f0t

′
Φif

0
t .

Theorem 3 allows us to construct confidence intervals of the PC estimators for each of
r (pseudo-true) factors and factor loadings. On the other hand, Lemma 3, Bai (2003), and
Wei and Zhang (2023), among others are not generally applicable as the rotated parameters
depend on the estimator itself; the only exception is the test for the (true) factors or factor
loadings are jointly equal to zero.

In comparison to Lemma 3(i) and (ii), Theorem 3(i) and (ii) require the additional
conditions. The conditions for Theorem 3(iii) are weaker than those for Theorem 3(i) and
(ii) because the estimation of C∗ does not require separate identification of the factors and
factor loadings, and Lemma 3 applies directly. When N ≍ T , the conditions for Theorem
3(i) are simplified to αr > 1/2 and 2α1 < 3αr, those for Theorem 3(ii) and (iii) reduce to
αr > 1/2 and α1 < 3αr−1. When the SF model (i.e., αr = 1) is considered, the conditions for
Theorem 3(i) and (ii) reduce to

√
N/T → 0 and

√
T/N → 0, respectively, which are identical

to those in Bai (2003, Theorems 1&2) for the case with the data-dependent rotation.
To conduct statistical inference based on Theorem 3, the unknowns should be replaced

with estimators. In Theorem 3(i), the scaling matrix DN1/2 can be consistently esti-
mated by (B̂′B̂)1/2 because Assumption 3 gives (B0′B0)1/2 = DN1/2. As for Γt and
Φi, the choice of the estimators depend on the dependence structure of et,i. In general,
we may use Γ̂t = (B̂′B̂)−1/2Ω̂t(B̂

′B̂)−1/2 with Ω̂t appropriately chosen. For example,
when cross-sectional independence and time-series heteroskedasticity are allowed, choose
Ω̂t =

∑N
i=1 b̂iê

2
t,ib̂

′
i, where Ê = X − F̂B̂′ = (êt,i). For Φi, when et,i is serially corre-

lated and heteroskedastic over i, the HAC estimator of Newey and West (1987) can be
employed: Φ̂i = V̂0,i +

∑L
ℓ=1(1 − ℓ/(L + 1))(V̂ℓ,i + V̂′

ℓ,i), where L > 0 is a slowly diverg-
ing sequence and V̂ℓ,i = T−1

∑T
t=ℓ+1 f̂têt,iêt−ℓ,if̂

′
t−ℓ. Finally, for Theorem 3(iii), we may

construct V̂t,i = b̂′
i(B̂

′B̂)−1/2Γ̂t(B̂
′B̂)−1/2b̂i and Ût,i = T−1f̂ ′tΦ̂if̂t.
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6 Factor-Augmented Regression

We consider factor augmented regression models. Assuming that certain unobserved common
factors influence the predictors, the factors extracted from the predictors can be used to
forecast a particular series; see Stock and Watson (2002a). In such an analysis, significance
tests of each factor is important because the estimated factors ordered by the magnitude of
the associated eigenvalues may not correspond to their forecast power for a particular series
of interest; see further discussions in Bai and Ng (2008, 2009) and Cheng and Hansen (2015).

Consider the factor augmented regression model

yt+h = γ∗′f∗t + β′wt + ϵt+h, (8)

where f∗t is a vector of latent factors, wt is a vector of exogenous variables, ϵt is an error
term, and (γ∗′,β′)′ is a coefficient vector. Since f∗t is unobservable, it is replaced by the PC
estimator f̂t estimated from a set of many predictors, X. Following Bai and Ng (2006, 2023),
we may choose the data-dependent rotation matrix Ĥ. Then, under approximation (3) and
some boundedness condition on γĤ := Ĥ−1γ∗, we have

γ∗′f∗t = γ ′
Ĥ
f̂t − γ ′

Ĥ
(f̂t − Ĥ′f∗t ) = γ ′

Ĥ
f̂t + op(1).

Since f̂t is observed, we can estimate its coefficient vector, and denote it as γ̂. We may derive
the asymptotic normality for the discrepancy, γ̂ − γĤ, and construct the associated t-ratio.
However, it is questionable whether using such statistics is justified as the “parameter” γĤ

depends on the PC estimator through Ĥ. Despite the problem, such tests are routinely
reported in empirical studies; see Ludvigson and Ng (2009) among many others.

As in the previous section, we consider f̂t as the estimator of f0t . To facilitate this
perspective, we introduce H and rewrite model (8) to the pseudo-true model:

yt+h = γ0′f0t + β′wt + ϵt+h, (9)

where γ0 := H−1γ∗ and f0t = H′f∗t . Observe that γ0 is a function of the parameters, F∗, B∗,
and γ∗. Therefore, tests for general parameter restrictions on γ0 seem justified. Rewrite (9)
to the matrix form:

Y = F0γ0 +Wβ + ϵ = Z0δ0 + ϵ, (10)

where Y = (y1+h, . . . , yT+h)
′, ϵ = (ϵ1+h, . . . , ϵT+h)

′, W = (w1, . . . ,wT )
′, δ0 = (γ0′,β′)′, and

Z0 = (F0,W) = (z01, . . . , z
0
T )

′. We make the assumptions to derive the asymptotic theory.

Assumption 6. (i) ∥γ0∥2 ≤ M and ∥β∥2 ≤ M ;
(ii) E(ϵt+h|yt, z0t , yt−1, z

0
t−1, · · · ) = 0 for any h > 0;

(iii) T−1/2Z0′ϵ
d−→ N(0,Σz0ϵ), T−1Z0′Z0 p−→ Σz0 , where Σz0ϵ and Σz0 are positive definite

and bounded;
(iv) E ∥T−1/2N− 1

2
∑T

t=1

∑N
i=1 b

0
i ei,tw

′
t∥22 ≤ M and E ∥T−1/2N− 1

2
∑T

t=1

∑N
j=1 b

0
j [ϵt+het,j −

E(ϵt+het,j)]∥22 ≤ M ;
(v) For all t, |E (ϵt+het,i)| ≤ |τi| for some τi such that

∑N
i=1 |τi| ≤ M .

Assumption 6(i) and (ii) are standard. Assumption 6(iii) is for identification of δ0 and
asymptotic normality of its estimator. Assumption 6(iv) and (v) permit weak correlations
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between the errors in the factor model and in the augmented regression model. They imply
W′EB0 = Op(

√
TNα1) and 1

T N
− 1

2B0′E′ϵ = Op

(
1√
T
+ 1√

Nαr

)
.

6.1 Asymptotic normality

In model (10), unknown f0t is replaced with the estimated factor f̂t. Then (10) is written as

Y = F̂γ0 +Wβ + u = Ẑδ0 + u, (11)

where u = ϵ− (F̂−F0)γ0 and Ẑ = (F̂,W) = (ẑ1, . . . , ẑT )
′. The estimator of δ0 is obtained

as δ̂ = (Ẑ′Ẑ)−1Ẑ′Y. Using (11), we have
√
T (δ̂ − δ0) = (T−1Ẑ′Ẑ)−1T− 1

2 Ẑ′ϵ− (T−1Ẑ′Ẑ)−1T− 1
2 Ẑ′(F̂− F0)γ0. (12)

In the right-hand side of (12), the first term tends to a normal distribution with mean zero,
and the second term causes potential bias in δ̂.

The following theorem ensures that the effect of the replacement by the PC estimator is
asymptotically negligible and a test for a general restriction on γ0 is asymptotically valid.

Theorem 4. Suppose that Assumptions 1–6 hold. If α1 < 2αr, N1−αr√
T

→ 0, and
√
TN

1
2
α1− 3

2
αr →

0, we have
√
T (δ̂ − δ0)

d−→ N(0,Σδ0),

where Σδ0 = Σ−1
z0

Σz0ϵΣ
−1
z0

.

In general, Σδ0 can be estimated by Σ̂δ0 = (T−1Ẑ′Ẑ)−1Σ̂z0ϵ(T
−1Ẑ′Ẑ)−1, where Σ̂z0ϵ

is a consistent estimator. For example, when ϵt is heteroskedastic, we may use Σ̂z0ϵ =
T−1

∑T+h
t=1+h ẑtϵ̂

2
t ẑ

′
t, where ϵ̂t+h = yt+h − δ̂′ẑt.

The rate conditions for Theorem 4 (and Theorem 5 below) are identical to the cor-
responding results for approximations with data-dependent rotations, such as (F̂, B̂) ≈
(F∗Ĥ4,B

∗Q̂′), where Ĥ4Q̂
p−→ Ir by Bai and Ng (2023, Lemma 3). They imply the as-

sociated approximations γ̂ ≈ Ĥ−1
4 γ∗ and γ̂ ≈ Q̂γ∗, respectively; see Lemma B.9. However,

for such approximations the “parameter” estimated by γ̂ depends on X, and thus the only
justifiable inference is about the joint significance, H0 : γ

∗ = 0.

6.2 Forecasting

We consider the h-step ahead forecast. From (9), the expectation of yT+h conditional on
{z0T , . . . , z01} is computed as yT+h|T := E(yT+h | z0T , . . . , z01) = δ0′z0T , which is the infeasible
h-step ahead forecast of y at time T . After estimating the forecast regression (11), yT+h|T
is estimated by ŷT+h|T = δ̂′ẑT . Thus the estimation error, ŷT+h|T − yT+h|T , is derived as

ŷT+h|T − yT+h|T = (δ̂ − δ0)′ẑT + γ∗′H−1′(f̂T −H′f∗T ).

Theorem 5. Suppose that Assumptions 1–6 hold. If
√
TN

1
2
α1− 3

2
αr → 0, 1

2 < αr, and

11



N
3
2−αr

T → 0, we have

ŷT+h|T − yT+h|T

σT+h|T

d−→ N(0, 1),

where σ2
T+h|T = T−1z0′TΣδ0z

0
T + γ0′D−1N−1/2ΓTN

−1/2D−1γ0.

We may estimate σ2
T+h|T by σ̂2

T+h|T = T−1ẑ′T Σ̂δ0 ẑT + γ̂ ′(B̂′B̂)−1/2Γ̂T (B̂
′B̂)−1/2γ̂ for

some consistent estimators Σ̂δ0 and Γ̂T . The rate conditions for Theorem 5 are identical to
the corresponding results with data-dependent rotations; see Lemma B.10.

Finally, we consider the out-of-sample forecast error. By yT+h = yT+h|T +ϵT+h, we define
the out-of-sample forecast error as

vT+h|T = ŷT+h|T − yT+h = ŷT+h|T − yT+h|T − ϵT+h.

Assuming that ϵt ∼ i.i.d.N
(
0, σ2

ϵ

)
, we have vT+h|T ∼ N(0, σ2

ϵ + σ2
T+h|T ). The variance of

vT+h|T can be estimated by σ̂2
ϵ + σ̂2

T+h|T , where σ̂2
ϵ = T−1

∑T+h
t=1+h ϵ̂

2
t and σ̂2

T+h|T is given
above. This result yields the confidence band for ŷT+h|T . If normality assumption is not plau-
sible, bootstrap confidence interval should be computed; see Gonçalves and Perron (2014).

7 Monte Carlo Experiments

We check finite sample performance of the PC estimator relative to the pseudo-true pa-
rameter in comparison to that relative to the “parameter” rotated by other data-dependent
rotations. Section 7.1 treats the approximate factor models. Section 7.2 considers the factor-
augmented regression models.

7.1 Approximate factor models

We discuss estimation accuracy of the PC estimator (F̂, B̂) against the pseudo-true parameter
(F0,B0) and other existing data-dependent rotations, (F∗Ĥ,B∗′Ĥ−1′) and (F∗Ĥ4,B

∗′Q′).
We also examine the multivariate normal approximation for f̂t and b̂i. Furthermore, we
investigate the size of tests, such as H0 : ft,k = f0

t,k and H0 : bi,k = b0i,k, which are only
justified in our proposed approach.

7.1.1 Experimental design

We choose r = 2 throughout, and generate ft,k ∼ i.i.d.U(µk −
√
3, µk +

√
3) with µk = 1 for

t = 1, . . . , T and k = 1, 2, to form F = (ft,k). Applying the Gram-Schmidt procedure to F,
we obtain F0 such that F0′F0/T = I2. We next generate two types of loading matrices:

1. Non-sparse factor loadings: B0 =
(
b0
1,b

0
2

)
=
(
N (α1−1)/2gi,1, N

(α2−1)/2gi,2
)
, where gi,1

is 2 for i = 1, . . . , N/2 and 1 for the rest, and gi,2 is 1/2 for i = 1, . . . , N/2 and −1 for
the rest.

2. Sparse factor loadings: B0 =
(
b0
1,b

0
2

)
, where b0i,1 is 2 for i = 1, . . . , N1 and 0 for the

rest, and b0i,2 is 1 for i = 1, . . . , N2/2, −1 for i = N2/2 + 1, . . . , N2, and zero for the
rest, where Nk are the closest even number to Nαk for k = 1, 2.
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These designs ensure that b0′
k b

0
k ≍ Nαk . We construct F∗ = F0H−1 and B∗ = B0H′,

where H =
(

1 0.5
0.5 2

)
. Then the data is generated by X = F∗B∗′ + E, where E = (et,i) with

et,i ∼ i.i.d.N(0, σ2
e) and σ2

e = 0.5. We consider six models: (α1, α2) = (1.0, 1.0), (1.0, 0.9),
(1.0, 0.8), (0.9, 0.7), (0.8, 0.6), and (0.7, 0.5), where (1.0, 1.0) is the SF model. We consider
sample sizes, T = N = 50, 100, 200, 500. All the results are based on 50,000 replications.

The PC estimate, F̂, is computed as
√
T times r eigenvectors of T−1XX′ corresponding

to its first r largest eigenvalues. The loading estimator is computed as B̂ = X′F̂/T . Using
the correlation between F0 and F̂, the signs and the orders of the r columns of F̂ and B̂
are adjusted to fit to those of F0, when necessary, so that F̂ and B̂ can be regarded as the
estimates of F0 and B0 (i.e. no sign indeterminacy). This adjustment is for experimental
purposes only; this may be irrelevant in practice.

To save space, we only report the results for the models with non-sparse loadings. The
results with sparse loadings are very similar and are available in the online appendix.

7.1.2 Estimation accuracy and normal approximation

To assess the convergence results for the PC estimator (F̂, B̂) and their product, Figure 1
summarizes the averages over the replications of the relevant norm losses. Figure 1(i) reports
T− 1

2 ∥F̂−F0∥F, T− 1
2 ∥F̂−F∗Ĥ4∥F, and T− 1

2 ∥F̂−F∗Ĥ∥F while Figure 1(ii) compares N− 1
2 ∥B̂−

B0∥F, N− 1
2 ∥B̂−B∗Q̂∥F, and N− 1

2 ∥B̂−B∗Ĥ−1∥F. Figure 1(iii) shows (NT )−
1
2 ∥Ĉ−C∗∥F.
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Figure 1: Plots of (i) T− 1
2 ∥F̂− F∥F; (ii) N− 1

2 ∥B̂−B∥F; (iii) (NT )−
1
2 ∥Ĉ−C∗∥F
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Each block in the figure is the result for a particular sample size. Within the block, the
vertical axis shows the magnitude of the average norm loss, and the horizontal axis indicates
the value of α2, which identifies one of the six models considered, hence, the weakness of the
model – the smaller the value, the weaker the factor model.

It is clear from Figure 1(i) and (ii) that the norm loss of the PC estimator (F̂, B̂) against
(F0,B0) is the smallest compared with those against (F∗Ĥ4,B

∗Q̂′) and (F∗Ĥ,B∗Ĥ′), closely
followed by the former approximation. The approximation by (F0,B0) improves as the model
weakens especially when the sample size is small. This superiority eventually disappears as
the sample size increases. It is interesting that (F0,B0) achieves the best performance
because the theoretical results of Lemma 2 and Theorem 2 suggest that the (F∗Ĥ4,B

∗Q̂′)
approximation may be more accurate. A similar comment applies to (iii).

Next, we check the quality of the joint normal approximations of the PC estimators, by
comparing the following statistics with the χ2

r distribution:

Q2
f (∆f̂t) := (B0′B0)

1
2 (∆f̂t)

′Γ−1
t (∆f̂t)(B

0′B0)
1
2 , Q2

b(∆b̂i) := T (∆b̂i)
′Φ−1

i (∆b̂i)

with ∆f̂t = f̂t − f0t , f̂t − Ĥ′
4f

∗
t , f̂t − Ĥ′f∗t , Γt = σ2

eIr, ∆b̂i = b̂i − b0
i , b̂i − Q̂b

∗
i , b̂i − Ĥ−1b∗

i ,
and Φi = σ2

eIr. We assess the accuracy of the tail behavior by computing the frequencies of
Q2

· > χ2
r,0.95 over the replications, where χ2

r,0.95 is the 95-percentile of a χ2
r distribution. The

closer the size (frequency) is to 5%, the more accurate the approximation by the statistics.
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Figure 2: Plots of frequencies of Q2
· > χ2

r,0.95 for (i) Q2
f (∆f̂t); (ii) Q2

b(∆b̂i)

Figure 2 shows the frequencies. The PC estimator performs the best in the case when
centered at (f0t ,b

0
i ) compared to those when centered at the data-dependent statistics,

(Ĥ′
4f

∗
t , Q̂b∗

i ) and (Ĥ′f∗t , Ĥb∗
i ). The result is interesting because Lemma 3 and Theorem

3 suggest that centering by (Ĥ′
4f

∗
t , Q̂b∗

i ) may provide a better approximation with a finite
sample. We note that there are sudden performance improvements for all the statistics for
N = T = 200 and 500, which we believe to be a finite sample phenomenon.
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7.1.3 Test of linear restrictions

We report the performance of testing for H0 : f1,k = f0
1,k, H0 : b1,k = b01,k, and H0 : c1,1 = c∗1,1

using the statistics,

zf,k =

√
Nαkγ

(k,k)
t (f̂1,k − f0

1,k), zb,k =

√
Tϕ

(k,k)
1 (b̂1,k − b01,k), zc =

ĉ1,1 − c∗1,1
σc

,

respectively, where γ
(k,k)
1 = (Γ−1

1 )k,k, ϕ
(k,k)
1 = (Φ−1

1 )k,k, and σ2
c = σ2

e [b
0′
1 (B

0′B0)−1b0
1 +

T−1f0′1 f01 ]. We check the empirical size of the 5% test, i.e., by computing the frequencies
of their exceeding 1.96 in modulus over the replications. Again, the results are the first to
asymptotically justify such tests in approximate factor models.
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Figure 3: Size of the 5% level tests for (i) H0 : f1,k = f0
1,k; (ii) H0 : b1,k = b01,k; (iii)

H0 : c1,1 = c∗1,1.

Figure 3(i) shows that our proposed test has an empirical size very close to the nominal
level for all the cases. Figure 3(ii) indicates a moderate over-rejection in the very weak
models, but it decreases as the sample size increases. A similar comment applies to (iii).
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7.2 Factor augmented regressions

We examine the normal approximation of the coefficient estimates and the size of the tests
for, e.g., H0 : γk = γ0k . Again, this is only justified in our proposed approach. Finally, we
investigate the empirical coverage of the confidence interval for the h-step ahead forecast,
ŷT+h|T , against both the conditional mean (yT+h|T ) and the actual value (yT+h).

7.2.1 Experimental design

Using f0t and H in Section 7.1.1, we generate

yt+h = f0′t γ0 +w′
tβ + ϵt+h, t = 1, . . . , T, (13)

where γ0 = (1, . . . , 1)′ ∈ Rr, β = (1, . . . , 1)′ ∈ RL, ϵt ∼ i.i.d.N
(
0, σ2

ϵ

)
, and wt = (wt,1, . . . , wt,L)

′

with wt,ℓ =
∑r

k=1 ρℓ[f
0
t,k − E

(
f0
k

)
] + εw,t,ℓ, where εw,t,ℓ ∼ i.i.d.N(0, σ2

w,ℓ), ℓ = 1, . . . , L, and
σw,ℓ is chosen such that Cov(f0

t,k, wt,ℓ) =: ρℓ for all k given ℓ. Note that f0′t γ0 = f∗′t γ∗ with
γ∗ = Hγ0 and f∗′t = f0′t H−1 in (13). We choose L = 1, σw,ℓ = 1, ρℓ = 0.5 for all ℓ, and
σϵ = 1, so that the population R2 of the augmented regression (13) is 3/4. We have chosen
α = 0.05 and h = 1. All the results are obtained by 50,000 replications as in Section 7.1.1.

The infeasible estimator of γ0 is defined as γ̂0 = (
∑T−h

t=1 f̃0t f̃
0′
t )−1

∑T−h
t=1 f̃0t yt+h, where f̃0′t is

tth rows of the T×r matrix MwF
0 with Mw = IT−W(W′W)−1W′ and W = (w1, . . . ,wT )

′.
The feasible estimator of γ0 is defined by replacing F0 with F̂ in γ̂0, and denoted by γ̂.

7.2.2 Estimation accuracy and normal approximation

Figure 4 reports the norm losses, ∥γ̂0 − γ0∥F, ∥γ̂ − γ0∥F and ∥γ̂ − Ĥ−1γ∗∥F. Replacing F0

with the consistent estimator F̂ has no significant effect, but approximating F̂ with F∗Ĥ
leads to much worse performance, the inaccuracy of which is exaggerated as the underlining
factor model becomes weaker. As the sample size increases, all norm losses decrease.
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Figure 4: Plots of ∥γ̂ − γ∥F.

Next, we consider approximations of the three statistics to the χ2
r distribution:

Q2
γ (∆γ̂) = T (∆γ̂)′Σ−1

γ0 (∆γ̂) ,

where ∆γ̂ = γ̂0−γ0, γ̂−γ0, γ̂−Ĥ−1γ∗, and Σγ0 = σ2
ϵ

(
F0′MwF

0
)−1. We assess the accuracy

of the tail behavior of the distribution by computing the frequencies of Q2
γ(∆γ̂) > χ2

r,0.95

over the replications. The closer the rejection frequency is to 5%, the more accurate the
approximation by the statistics. Figure 5 summarizes the frequencies. The approximation of
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F̂ to F∗Ĥ gives about 60% of rejection frequency for the weakest model, grossly exceeding 5%.
In contrast, our approximation relative to the pseudo true parameter looks very accurate,
apart from the weakest model. Actually, this weakest model with (α1, α2) = (0.7, 0.5) is
weak enough to violate the conditions in Theorem 4, αr > 0.5 and α1 < 3αr − 1 for N ≍ T .
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Figure 5: Plots of frequencies of Q2 (∆γ̂) > χ2
r,0.95

7.2.3 Test of linear restrictions

We report the size of the 5% level test for H0 : γk = γ0k vs. H1 : γk ̸= γ0k for k = 1, . . . , r using
the statistics z (∆γk) = [Tσ

(k,k)
γ0 ]

1
2∆γk for ∆γk = γ̂0k − γ0k and γ̂k − γ0k , where σ

(k,k)
γ0 is the

kth diagonal element of Σ−1
γ0 . The rejection frequencies are computed in terms of N(0, 1).

Figure 6 confirms to our theory; the tests have the correct size except the weakest model,
but it does not satisfy the conditions in Theorem 4.
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Figure 6: Size of the 5% level tests for (i) H0 : γ1 = γ01 ; (ii) H0 : γ2 = γ02 .
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7.2.4 Coverage by the confidence interval

We examine the empirical coverage of the 1 − α confidence interval for the h-step ahead
forecast, ŷT+h|T = f̂ ′T γ̂+w′

T β̂, against the conditional mean, yT+h|T = f0′T γ0+w′
Tβ, as well

as the actual value, yT+h. Denoting by y
(n)
T+h|T , y

(n)
T+h, and ŷ

(n)
T+h|T , the values for the nth

replication for n = 1, . . . , R, we compute the average coverages of yT+h|T and yT+h by

CIα(y) = R−1
R∑

n=1

1{y(n) ∈ [LB(n)
α,y, UB(n)

α,y]}, y = yT+h|T , yT+h,

where UB
(n)
α,yT+h|T , LB

(n)
α,yT+h|T = ŷ

(n)
T+h|T ± z1−α/2σT+h|T and UB

(n)
α,yT+h , LB

(n)
α,yT+h = ŷ

(n)
T+h|T ±

z1−α/2(σ
2
T+h|T + σ2

ϵ )
1
2 with z1−α/2 defined as P(|Z| ≤ z1−α/2) = 1 − α for Z ∼ N(0, 1) and

σ2
T+h|T = σ2

ϵ z
0′
T

(
Z0′Z0

)−1
z0T + σ2

eγ
0′(B0′B0)−1γ0, where Z0 = (F0,W) = (z01, . . . , z

0
T )

′. We
consider α = 0.9, 0.95. Figure 7 shows that the empirical coverages are very close to the
nominal level for all the models with the coverage accuracy improving as the sample size
increases.
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Figure 7: Empirical converges of (i) 90%; (ii) 95% confidence intervals for yT+h|T and yT+h.

8 Conclusion

In the literature, including (Bai, 2003) and (Bai and Ng, 2023), the PC estimators have been
considered as estimating (F∗Ĥ,B∗Ĥ−1′), where F∗ and B∗ are the true parameters in model
(1) and Ĥ defined in (2). Since the “rotated parameters” depend on the PC estimators via
Ĥ, however, this does not mean establishing the consistency of the PC estimator. A natural
question is what the PC estimator estimates. To answer the question, we have achieved some
theoretical results. First, under a quite general condition, we have proved the existence and
uniqueness of rotation matrix H that depends only on the true parameters, (F∗,B∗), and
that rotates the true model in (1) to the pseudo-true model in (5) satisfying (4) (Theorem
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1). Next, thanks to the identifiability of the obtained pseudo-parameters, (F0,B0), we have
proved the consistency and asymptotic normality of the PC estimators for them (Theorems
2 and 3). From these observations, we can say that the PC estimator consistently estimates
the pseudo-true parameter that is uniquely determined by the true model in (1).

Another significant aspect of this paper is that for asymptotic theory we have considered
the WF models, which allow the r largest eigenvalues of B∗F∗′F∗B∗′ to diverge at possibly
different rates Nαk for α1 ≥ · · · ≥ αr > 0. This modeling framework is important in
view of real data analyses, but it makes the theory difficult. Remarkably, the asymptotic
normality of the PC estimator (Theorem 3) can be used for statistical inference for each of
r (pseudo-true) factors and factor loadings. On the other hand, the normal approximation
with data-dependent rotation matrices is not generally applicable to inference.

We have considered a similar problem in the factor augmented regression; using the ap-
proximation with the data-dependent rotation matrix F̂ ≈ F∗Ĥ, the model slope coefficients
on the regressor F̂ depend on Ĥ−1, which is a function of the regressor F̂ itself. Thus, a t-test
for the significance of the kth PC factor in the regression does not seem to be asymptotically
justified though it is routinely reported in empirical studies; for an example, see (Ludvigson
and Ng, 2009, Table 2). Using our approximation F̂ ≈ F0, such a test is asymptotically
justified. We have established the consistency and the asymptotic normality of the least
squares estimator of factor augmented regression coefficients allowing for WF models.

We have carried out extensive finite sample experiments for different divergence rates
of the factor strength. The results show that the accuracy of the approximation of the PC
estimators by the pseudo-true parameters is almost always better than the data-dependent
ones. Importantly, the size of the t-tests of H0 : ft,k = f0

t,k and H0 : bi,k = b0i,k are very
close to the significance level. We note that such t-tests are only justified by our approach.
Similarly, the accuracy of the least squares estimators and the joint normality approximation
for the factor augmented regression with our rotation is shown to be almost always better
than those with the data-dependent rotations, such as in Bai and Ng (2006). The size of the
t-test for significance of each regression coefficient is shown to be very close to the level of
significance. Again, such t-tests are only asymptotically justified by our article.

Finally, we comment on the estimation of the structural parameters (F∗,B∗). As dis-
cussed in Uematsu and Yamagata (2023a), to directly identify the true loading matrix B∗,
r2 (or more) constraints should be imposed along with the cross-sectional ordering of xt,i.
Such restrictions are informed exogenously. One way to identify structural parameters is to
look for constraints, guided by economic and financial theory; see discussions in Stock and
Watson (2016). Another is to use exogenous shocks that result in structural breaks in the
statistical model. Recently, Yamamoto and Hara (2022) proposed a method to identify fac-
tor augmented regression models using changes in unconditional shock variances. Extending
our approach to these methods would be a useful direction for future research.

Acknowledgment

We are grateful to Naoko Hara, Kazuhiko Hayakawa, and Yohei Yamamoto for helpful dis-
cussions and useful comments.

Funding

This work was supported by JSPS KAKENHI (grant numbers 20H01484, 21H00700, 21H04397
and 23H00804).

19



References

Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica 71,
135–171.

Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models.
Econometrica 70, 191–221.

Bai, J. and S. Ng (2006). Confidence intervals for diffusion index forecasts and inference
with factor-augmented regressions. Econometrica 74, 1133–1150.

Bai, J. and S. Ng (2008). Forecasting economic time series using targeted predictors. Journal
of Econometrics 146(2), 304–317.

Bai, J. and S. Ng (2009). Boosting diffusion indices. Journal of Applied Econometrics 24(4),
607–629.

Bai, J. and S. Ng (2013). Principal components estimation and identification of static factors.
Journal of Econometrics 176, 18–29.

Bai, J. and S. Ng (2023). Approximate factor models with weaker loadings. Journal of
Econometrics.

Chamberlain, G. and M. Rothschild (1983). Arbitrage, factor structure and mean-variance
analysis in large asset markets. Econometrica 51, 1281–1304.

Cheng, X. and B. E. Hansen (2015). Forecasting with factor-augmented regression: A fre-
quentist model averaging approach. Journal of Econometrics 186(2), 280–293.

Connor, G. and R. A. Korajczyk (1986). Performance measurement with the arbitrage pricing
theory: A new framework for analysis. Journal of Financial Economics 15, 373–394.

Connor, G. and R. A. Korajczyk (1993). A test for the number of factors in an approximate
factor modela test for the number of factors in an approximate factor model. Journal of
Finance 48, 1263–1291.

Fan, J., Y. Liao, and M. Mincheva (2013). Large covariance estimation by thresholding
principal orthogonal complements. Journal of the Royal Statistical Society Series B 75,
603–680.

Freyaldenhoven (2022). Factor models with local factors - determining the number of relevant
factors. Journal of Econometrics 229, 80–102.

Gonçalves, S. and B. Perron (2014). Bootstrapping factor-augmented regression models.
Journal of Econometrics 182(1), 156–173.

Ludvigson, C. S. and S. Ng (2009). Macro factors in bond risk premia. Review of Financial
Studies 22, 5027–5067.

Newey, W. K. and K. D. West (1987). A simple, positive semi-definite, heteroskedasticity
and autocorrelation consistent covariance matrix. Econometrica 55, 703–708.

Onatski, A. (2010). Determining the number of factors from empirical distribution of eigen-
values. Review of Economics and Statistics 92, 1004–1016.

20



Stock, J. and M. Watson (2016). Chapter 8 - dynamic factor models, factor-augmented vector
autoregressions, and structural vector autoregressions in macroeconomics. Volume 2 of
Handbook of Macroeconomics, pp. 415–525. Elsevier.

Stock, J. H. and M. W. Watson (2002a). Forecasting using principal components from a large
number of predictors. Journal of the American Statistical Association 97, 1167–1179.

Stock, J. H. and M. W. Watson (2002b). Macroeconomic forecasting using diffusion indexes.
Journal of Business & Economic Statistics 30, 147–162.

Uematsu, Y. and T. Yamagata (2023a). Estimation of sparsity-induced weak factor models.
Journal of Business & Economic Statistics 41, 213–227.

Uematsu, Y. and T. Yamagata (2023b). Inference in sparsity-induced weak factor models.
Journal of Business & Economic Statistics 41, 126–139.

Wei, J. and Y. Zhang (2023). Does principal component analysis preserve the sparsity in
sparse weak factor models? arXiv:2305.05934.

Yamamoto, Y. and N. Hara (2022). Identifying factor-augmented vector autoregression
models via changes in shock variances. Journal of Applied Econometrics 37(4), 722–745.

21



Supplementary Material for

Revisiting Asymptotic Theory for Principal Component
Estimators of Approximate Factor Models

Peiyun Jiang†, Yoshimasa Uematsu∗, Takashi Yamagata‡

†Graduate School of Management, Tokyo Metropolitan University
∗Department of Social Data Science, Hitotsubashi University

‡Department of Economics and Related Studies, University of York
‡Institute of Social Economic Research, Osaka University

A Proofs of the Main Results

A.1 Proofs for the results in Section 2

Proof of Lemma 1. The eigen-decomposition of B∗′B∗ (T−1F∗′F∗) yields

UV = Λ = Λ′ = V′U′ = VU.

Since U, V, and Λ are invertible under Assumption 1, we obtain

Λ−1U = V−1 = UΛ−1 and VΛ−1 = U−1 = Λ−1V. (A.1)

From the first equation in (A.1), we have (Λ−1U)ij = (UΛ−1)ij for any i, j ∈ {1, . . . , r : i ̸=
j}, which entails (1/λi − 1/λj)uij = 0. Because λi’s are distinct and bounded away from
zero by Assumption 1, it must reduce uij = 0; that is, U is a diagonal matrix. In the same
way, V is also a diagonal matrix from the second equation in (A.1). This completes the
proof.

Proof of Theorem 1. For F0 = F∗H and B0 = B∗H−1′ with H = PV−1/2, Lemma 1 gives

T−1F0′F0 = V−1/2P′ (T−1F∗′F∗)PV−1/2 = V−1/2VV−1/2 = I

and

B0′B0 = V1/2P−1B∗′B∗P−1′V1/2 = V1/2UV1/2 = UV = Λ (diagonal).

Therefore (4) holds.
Finally, we prove the uniqueness of H. Suppose there exists another rotation matrix H̄

such that T−1H̄′F∗′F∗H̄ = I and H̄−1B∗′B∗H̄−1′ becomes diagonal (with elements ordered
decreasingly). Then we must have

H̄−1′H̄−1 = T−1F∗′F∗ = P−1′VP−1 = H′−1
H−1,

which is equivalent to H̄H̄′ = HH′. Thus it is written as H̄ = HQ for some orthogonal

1



matrix Q. We further have

H̄−1B∗′B∗H̄−1′ = Q′H−1B∗′B∗H−1′Q = Q′ΛQ,

which must be diagonalized. Since Λ is a diagonal matrix with distinct elements in descend-
ing order and Q is orthogonal, the only choice of Q is Q = I. Hence, the construction of H
is unique. This completes the proof.

A.2 Proofs for the results in Section 4

Proof of Lemma 2. (i) Since Λ̂ and F̂ are the eigenvalues and eigenvectors of XX′/T , re-
spectively, we have

T−1XX′F̂ = F̂Λ̂.

Meanwhile, XX′ can be expanded as

XX′ = F0B0′B0F0′ + F0B0′E′ +EB0F0′ +EE′.

Thus, we obtain

F̂ =
1

T

(
F0B0′B0F0′ + F0B0′E′ +EB0F0′ +EE′

)
F̂Λ̂−1.

From B̂ = X′F̂/T , we can see that

B̂ =
1

T
B0F0′F̂+

1

T
E′F̂,

B0′B̂ =
1

T
B0′B0F0′F̂+

1

T
B0′E′F̂,

B0′B̂Λ̂−1 =
1

T
B0′B0F0′F̂Λ̂−1 +

1

T
B0′E′F̂Λ̂−1,

H̃4 = H̃+
1

T
B0′E′F̂Λ̂−1,

where H̃ = 1
T B

0′B0F0′F̂Λ̂−1. Then, we have

F̂− F∗Ĥ4 = F̂− F0H̃4 =

(
1

T
EE′F̂+

1

T
EB0F0′F̂

)
Λ̂−1.

Lemma B.1(iii) yields
∥∥∥B0′E′

∥∥∥
F
= Op(

√
TNα1). Thus the inequality ∥AB∥F ≤ ∥A∥2 ∥B∥F

gives ∥∥∥EE′F̂
∥∥∥
F
≤ λ1[EE′]∥F̂∥F = Op (N + T )

√
T .
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Therefore, we obtain the first result:

1√
T

∥∥∥F̂− F∗Ĥ4

∥∥∥
F

≤
∥∥∥∥ 1

T 3/2
EE′F̂Λ̂−1

∥∥∥∥
F

+

∥∥∥∥ 1

T 3/2
EB0F0′F̂Λ̂−1

∥∥∥∥
F

≤

∥∥∥EE′F̂
∥∥∥
F

T 3/2

∥∥∥Λ̂−1
∥∥∥
F
+

∥∥∥∥ 1

T 3/2

(
EB0N− 1

2

)(
N

1
2F0′F̂N− 1

2

)
N

1
2 Λ̂−1

∥∥∥∥
F

= Op

((
N

T
+ 1

)
N−αr

)
+Op

(
N− 1

2
αr

)
= Op

(
N1−αr

T

)
+Op

(
N− 1

2
αr

)
.

(ii) By the definition,

B̂ =
1

T
X′F̂ =

1

T
B0F0′F̂+

1

T
E′F̂,

implies

B̂−B0Q̃′ =
1

T
E′(F̂− F0H̃4) +

1

T
E′F0H̃4, (A.2)

where Q̃′ = T−1F0′F̂. Using H̃4 = Op(1) in Lemma 2(iii), Lemma B.3(i) and∥∥∥∥ 1T E′F0H̃4

∥∥∥∥
F

= Op

(
1

T

√
NT

)
= Op

(√
N

T

)
,

we have
1√
N

∥∥∥B̂−B0Q̃′
∥∥∥
F

=
1√
N

∥∥∥∥ 1T E′(F̂− F0H̃4) +
1

T
E′F0H̃4

∥∥∥∥
F

≤ 1√
N

[
Op

(√
N1−αr

T

N1− 1
2
αr

T

)
+Op

(
N1− 1

2
αr

T

)
+Op

(
N− 1

2
αr

)]
+

1√
N

Op

(√
N

T

)

= Op

(
1√
T

)
+Op

(
N− 1

2
− 1

2
αr

)
,

if N1−αr

T → 0.
(iii) Let H̃2 = (F0′F0)−1F0′F̂ = F0′F̂/T = Q̃′. A comparable result to Lemma 2(i) is

1√
T

∥∥∥F̂− F0H̃2

∥∥∥
F

≤ 1√
T

∥∥∥F̂− F0H̃4

∥∥∥
F
+

1√
T

∥∥∥F0(H̃2 − H̃4)
∥∥∥
F

= Op

(
N1−αr

T

)
+Op

(
N− 1

2
αr

)
+Op(∆1),
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where we have used Lemmas B.5(ii), B.6(i), and ∆1 is defined by (B.10). Suppose that
N1−αr

T → 0 holds, 1√
T

∥∥∥F̂− F0H̃2

∥∥∥
F

= op(1) implies that H̃2 = Op(1). If ∥H̃2∥F → ∞,

then
∥∥∥ 1√

T
(F̂− F0H̃2)

∥∥∥2
F
= tr(Ir − H̃′

2H̃2) will diverge, which contradicts the prior result.

If ∥H̃4∥F → ∞, then
∥∥∥ 1√

T
(F̂− F0H̃4)

∥∥∥2
F
= tr(Ir − H̃′

4H̃2 − H̃′
2H̃4 + H̃′

4H̃4) will diverge.

This contradiction implies that H̃4 is Op(1). Similarly, 1√
T

∥∥∥F̂− F0H̃
∥∥∥
F
= op(1) implies that

H̃ = Op(1), which is indicated by Wei and Zhang (2023, Proof of Lemma A.4).
Next, we show the probability limit of the rotation matrices assuming that N1−αr

T → 0

and α1 < 2αr. Given Lemma B.4(i), we obtain Q̃
p−→ Ir. Lemmas B.5(ii), B.6(i), and

B.3(iii) imply∥∥∥Q̃′ − H̃4

∥∥∥
F
= Op(∆1),

∥∥∥Q̃′ − H̃
∥∥∥
F
= Op(∆NT ),

which are op(1) and ∆1, ∆NT are defined as (B.10), (B.1). Thus, we complete the proof.

Proof of Theorem 2. (i) Lemma B.3(iii) shows that
∥∥∥H̃′ − F̂′F0

T

∥∥∥
F
= Op (∆NT ), where ∆NT

is defined by (B.1). From Lemma B.4(i), we have

∥∥∥H̃− Ir

∥∥∥
F
≤

∥∥∥∥∥H̃− F0′F̂

T

∥∥∥∥∥
F

+

∥∥∥∥∥F0′F̂

T
− Ir

∥∥∥∥∥
F

= Op (∆NT ) .

By the definition of B̂ and expanding X, we obtain

F̂ =
1

T
XX′F̂Λ̂−1 = XB̂Λ̂−1 = F0B0′B̂Λ̂−1 +EB̂Λ̂−1.

Then, 1
T F

0′F̂ = H̃4 +
1
T F

0′EB̂Λ̂−1. Applying Lemmas 2(i), B.6(i), and B.4(i), we show the
first result:

1√
T

∥∥∥F̂− F0
∥∥∥
F

≤ 1√
T

∥∥∥F̂− F0H̃2

∥∥∥
F
+

1√
T

∥∥∥F0(H̃2 − Ir)
∥∥∥
F

=
1√
T

∥∥∥∥ 1T EE′F̂Λ̂−1 +
1

T
EB0F0′F̂Λ̂−1 − 1

T
F0F0′EB̂Λ̂−1

∥∥∥∥
F

+Op (∆NT )

≤ Op

((
N

T
+ 1

)
N−αr

)
+Op

(
N− 1

2
αr

)
+Op (∆1) +Op (∆NT )

= Op

((
N

T
+ 1

)
N−αr

)
+Op

(
N− 1

2
αr

)
+

[(
N1−αr

T

)2

+

(
N1−αr

T

) 3
2

+

√
N1−αr

T
N−αr +

N1−αr

T
+

1√
TNαr

]
Op (1)

+

(
N1−αr

T
+N

1
2
α1−αr

N1−αr

T
+N

1
2
α1− 3

2
αr +

N
1
2
α1−αr

√
T

)
Op(1)

= Op

(
N1−αr

T

)
+Op

(
N− 1

2
αr

)
,
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where ∆1 and ∆NT are defined by (B.10) and (B.1), if N1−αr

T → 0 and 1
2α1 < αr. Note that

N
1
2
α1− 3

2
αr = N− 1

2
αrN

1
2
α1−αr ≲ N− 1

2
αr ,

N
1
2
α1−αr

√
T

=
N

1
2
α1− 1

2
αr

√
T

N− 1
2
αr ≲ N− 1

2
αr ,

N
1
2
α1−αr

N1−αr

T
≲ N1−αr

T
.

(ii) The proof of Lemma 2(ii) and Lemma B.4(i) imply

1√
N

∥∥∥B̂−B0
∥∥∥
F

≤ 1√
N

∥∥∥B̂−B0Q̃′
∥∥∥
F
+

1√
N

∥∥∥B0Q̃′ −B0
∥∥∥
F

= Op

(
1√
T

)
+Op

(
N− 1

2
− 1

2
αr

)
+Op

(
N

1
2
α1− 1

2

)
Op (∆NT )

= Op

(
1√
T

)
+Op

(
N− 1

2
− 1

2
αr

)
+

(
N

1
2
+ 1

2
α1−αr

T
+Nα1− 3

2
αr− 1

2 +
N

1
2
+α1−2αr

T
+

Nα1−αr− 1
2

√
T

)
Op(1)

= Op

(
1√
T

)
+Op

(
Nα1− 3

2
αr− 1

2

)
+ op

(√
N1−αr

T

)
,

where the final equality is because

N
1
2
+ 1

2
α1−αr

T
=

N1−αr

T
N

1
2
α1− 1

2 = o

(
N1−αr

T

)
,

N
1
2
+α1−2αr

T
=

N
1
2
+ 1

2
α1−αr

T
N

1
2
α1−αr = o

(
N1−αr

T

)
,

Nα1−αr− 1
2

√
T

=

√
Nα1−αr

T
N

1
2
α1− 1

2
− 1

2
αr = o

(√
N1−αr

T

)
,

if N1−αr

T → 0 and α1 < 2αr.
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(iii) Applying Lemmas 2 and B.5(vi), we obtain

1√
NT

∥∥∥Ĉ−C∗
∥∥∥
F

≤ 1√
NT

∥∥∥F̂B̂′ − F0H̃4B̂
′
∥∥∥
F
+

1√
NT

∥∥∥F0H̃4B̂
′ − F0H̃4H̃

−1
4 B0′

∥∥∥
F

=
1√
NT

∥∥∥(F̂− F0H̃4)B̂
′
∥∥∥
F
+

1√
NT

∥∥∥F0H̃4(B̂−B0H̃2 +B0H̃2 −B0H̃
′−1
4 )′

∥∥∥
F

≤ 1√
NT

∥∥∥(F̂− F0H̃4)B̂
′
∥∥∥
F
+

1√
NT

∥∥∥F0H̃4

∥∥∥
F

∥∥∥∥ 1T E′F̂−B0 1

T
(B̂′B0)−1B̂′E′F̂

∥∥∥∥
F

≤ 1√
NT

∥∥∥(F̂− F0H̃4)B̂
′
∥∥∥
F
+

1√
NT

∥∥∥F0H̃4

∥∥∥
F

∥∥∥∥ 1T E′F̂

∥∥∥∥
F

= Op

(
N

1
2
α1− 1

2

)[
Op

(
N1−αr

T

)
+Op

(
N− 1

2
αr

)]
+Op

(
1√
T

)
+Op

(
N− 1

2
− 1

2
αr

)
= Op

(
1√
T

)
+Op

(
N

1
2
α1− 1

2
αr− 1

2

)
+ op

(
N1−αr

T

)
.

A.3 Proofs for the results in Section 5

Proof of Lemma 3. (i) We multiply B̂(B̂′B̂)−1 to the both side of X = F0B0′ +E, then, we
have,

XB̂(B̂′B̂)−1 = F0B0′B̂(B̂′B̂)−1 +EB̂(B̂′B̂)−1

F̂ = F0H̃4 +EB0Q̃′(B̂′B̂)−1 +E(B̂−B0Q̃′)(B̂′B̂)−1.

Since F∗Ĥ4 = F0H̃4, the t-th row of F̂ is given by

f̂ ′t − f∗t
′Ĥ4 = f̂ ′t − f0t

′
H̃4 = e′tB

0Q̃′(B̂′B̂)−1 + e′t(B̂−B0Q̃′)(B̂′B̂)−1.

That is

f̂t − Ĥ′
4f

∗
t = f̂t − H̃′

4f
0
t = (B̂′B̂)−1Q̃B0′et + (B̂′B̂)−1(B̂−B0Q̃′)′et.

Then, we have

DN
1
2 (f̂t − Ĥ′

4f
∗
t )

= DN
1
2 (f̂t − H̃′

4f
0
t )

= DN
1
2 (B̂′B̂)−1Q̃B0′et +DN

1
2 (B̂′B̂)−1

(
B̂−B0Q̃′

)′
et. (A.3)

We first consider the first term on the right-hand side of the above equation. By the order
(B.3), N− 1

2 B̂′B̂N− 1
2 −N− 1

2B0′B0N− 1
2 = Op(∆NT ) = op(1) if N1−αr

T → 0 and α1 < 2αr. It
implies that

D−1N− 1
2 B̂′B̂N− 1

2D−1 p−→ D−1N− 1
2B0′B0N− 1

2D−1 = Ir.
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Now D−1N− 1
2B0′et

d−→ N(0,Γt) by Assumption 5 and Q̃− Ir = Op(∆NT ). The first term
on the right-hand side of (A.3) is thus asymptotically normal, and we obtain

DN
1
2 (B̂′B̂)−1Q̃B0′et = DN

1
2 (B̂′B̂)−1B0′et(Ir + op(1)),

whose asymptotic distribution is

DN
1
2 (B̂′B̂)−1N

1
2DD−1N− 1

2B0′et
d−→ N(0,Γt).

Next, the second term on the right-hand side of (A.3) is op(1) by Lemmas B.7 if αr > 1/2

and N
3
2−αr

T → 0. Collecting these results, we obtain (i):

DN
1
2 (f̂t − Ĥ′

4f
∗
t )

d−→ N(0,Γt).

(ii) Recall (A.2)

B̂−B∗Q̂′ = B̂−B0Q̃′ =
1

T
E′(F̂− F0H̃4) +

1

T
E′F0H̃4.

The i-th row is given by

b̂′
i − b∗

i
′Q̂′ = b̂′

i − b0
i
′
Q̃′ =

1

T
e′i(F̂− F0H̃4) +

1

T
e′iF

0H̃4

b̂i − Q̂b∗
i = b̂i − Q̃b0

i =
1

T
(F̂− F0H̃4)

′ei +
1

T
H̃′

4F
0′ei.

We have
√
T (b̂i − Q̂b∗

i ) =
√
T (b̂i − Q̃b0

i ) =
1√
T
H̃′

4F
0′ei +

1√
T
(F̂− F0H̃4)

′ei. (A.4)

By Lemmas B.5(ii), B.6(i) and B.4(i),

H̃′
4 − Ir = H̃′

4 − H̃′
2 + H̃′

2 − Ir = Op(∆1) +Op(∆NT ) = op(1), if N
1−αr

T
→ 0 and α1 < 2αr.

Under Assumption 5, the first term on the right-hand side of (A.4) is thus asymptotically
normal. That is

1√
T
H̃′

4F
0′ei =

1√
T
F0′ei + (H̃′

4 − Ir)
1√
T
F0′ei =

1√
T
F0′ei +Op(∆NT ),

whose asymptotic distribution is N(0,Φi).
Next, the second term on the right-hand side of (A.4) is bounded by∥∥∥∥ 1√

T
ei

′(F̂− F0H̃4)

∥∥∥∥
F

= Op

(
N1−αr

√
T

)
+Op

(√
TN−αr

)
+Op

(
N− 1

2
αr

)
,

from Lemma B.3(iv). It is negligible if N1−αr√
T

→ 0 and
√
T

Nαr → 0 are satisfied. Collecting
these results, we obtain (ii)

√
T (b̂i − Q̂b∗

i )
d−→ N(0,Φi).

if α1 < 2αr, N1−αr√
T

→ 0, and
√
T

Nαr → 0.
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Proof of Theorem 3. (i)

DN
1
2 (f̂t − f0t ) = DN

1
2 (f̂t − H̃′

4f
0
t ) +DN

1
2 (H̃′

4 − Ir)f
0
t .

We only consider the second term on the right-hand side of the above equation. Lemmas
B.5(ii), B.6(i), and B.4(i) imply

N
1
2 (H̃′

4 − Ir) = N
1
2

(
H̃′

4 − H̃′
2 + H̃′

2 − Ir

)
≤ N

1
2
α1Op(∆1) +N

1
2
α1Op(∆NT ) = op(1),

if N
3
2−αr

T → 0, Nα1− 3
2
αr → 0, and Nα1−αr√

T
→ 0. Note that

N1+ 1
2
α1−αr

T
=

N
3
2
−αr

T
N

1
2
α1− 1

2 → 0.

Using the result in Lemma 3, we obtain

DN
1
2 (f̂t − f0t )

d−→ N(0,Γt).

(ii)
√
T (b̂i − b0

i ) =
√
T (b̂i − Q̃b0

i ) +
√
T (Q̃− Ir)b

0
i .

The second term on the right-hand side of the above equation is bounded by∥∥∥√T (Q̃− Ir)b
0
i

∥∥∥
F
=

√
TOp (∆NT ) = op(1),

if
√
TN

1
2
α1− 3

2
αr → 0, N1−αr√

T
→ 0, and α1 < 2αr hold. Thus, we have

√
T (b̂i − b0

i )
d−→ N(0,Φi).

(iii) By the definition of ĉt,i,

ĉt,i − c∗t,i

= b̂′
if̂t − b0

i
′
f0t

= b̂′
if̂t − (H̃−1

4 b0
i )

′H̃
′
4f

0
t

= (H̃−1
4 b0

i )
′(f̂t − H̃′

4f
0
t ) + (b̂i − H̃−1

4 b0
i )

′H̃′
4f

0
t + (b̂i − H̃−1

4 b0
i )

′(f̂t − H̃′
4f

0
t ). (A.5)

The first term on the right-hand side of (A.5) is

(H̃−1
4 b0

i )
′(f̂t − H̃′

4f
0
t ) = (H̃−1

4 b0
i )

′(B̂′B̂)−1Q̃B0′et + (H̃−1
4 b0

i )
′(B̂′B̂)−1

(
B̂−B0Q̃′

)′
et.

By Lemma 3(i), we have, if αr > 1/2 and N
3
2−αr

T → 0,

b0
i
′
DN

1
2 (f̂t − H̃′

4f
0
t )

d−→ N(0,b0
i
′
Γtb

0
i ).
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Next, consider the second term on the right-hand side of (A.5),
√
T (b̂i − H̃−1

4 b0
i )

′H̃′
4f

0
t

=
√
T (b̂i − Q̃b0

i )
′H̃′

4f
0
t +

√
T (H̃−1

4 b0
i − Q̃b0

i )
′H̃′

4f
0
t

=
√
T (b̂i − Q̃b0

i )
′H̃′

4f
0
t +Op(

√
T∆NT ),

where H̃−1
4 − Q̃ = Op(∆NT ) by Lemmas B.5(vi) and B.6(iii). Applying the result in Lemma

3(ii), if α1 < 2αr, N1−αr√
T

→ 0, and
√
TN

1
2
α1− 3

2
αr → 0, we have

√
T (b̂i − H̃−1

4 b0
i )

′H̃′
4f

0
t

d−→ N(0, f0
′

t Φif
0
t ).

The third term on the right-hand side of (A.5) is dominated by the first and the second terms.
Note that N1−αr√

T
= (N

3
2−αr

T )
1
2N

1
4
− 1

2
αr → 0 if αr > 1/2 and N

3
2−αr

T → 0 hold. Therefore, we

come to that if αr > 1/2, N
3
2−αr

T → 0, and
√
TN

1
2
α1− 3

2
αr → 0, we have

ĉt,i − c∗t,i
σc(t,i)

d−→ N(0, 1), with σ2
c(t,i) = Vt,i + Ut,i,

where Vt,i = b0
i
′
D−1N− 1

2ΓtD
−1N− 1

2b0
i , Ut,i = T−1f0t

′
Φif

0
t . Thus, we complete the proof.

A.4 Proofs for the results in Section 6

Proof of Theorem 4. By the definition of δ̂, we have the following decomposition:
√
T (δ̂ − δ0)

=

(
1

T
Ẑ′Ẑ

)−1 1√
T
Ẑ′ϵ+

(
1

T
Ẑ′Ẑ

)−1 1√
T
Ẑ′(F0 − F̂)γ0

=

(
1

T
Z0′Z0

)−1 1√
T
Z0′ϵ+

(
1

T
Z0′Z0

)−1 1√
T
(Ẑ− Z0)′ϵ+

[(
1

T
Ẑ′Ẑ

)−1

−
(
1

T
Z0′Z0

)−1
]

1√
T
Ẑ′ϵ

+

(
1

T
Ẑ′Ẑ

)−1 1√
T
Ẑ′(F0 − F̂)γ0.

The third term is bounded by Op (∆NT ) because

1

T
Ẑ′Ẑ

=
1

T
Z0′Z0 +

1

T
(Ẑ− Z0)′Ẑ+

1

T
Z0′(Ẑ− Z0)

=
1

T
Z0′Z0 +

1

T
(F̂− F0)′F̂+

1

T
F0′(F̂− F0)

=
1

T
Z0′Z0 +Op (∆NT ) ,
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by Lemma B.4(i). The second and fourth terms are bounded by∥∥∥∥∥
(
1

T
Z0′Z0

)−1 1√
T
(Z0 − Ẑ)′ϵ

∥∥∥∥∥
F

= Op

(
N1−αr

√
T

)
+Op

( √
T

Nαr

)
+ op

(
N

1
2
α1−αr

)
,∥∥∥∥∥

(
1

T
Ẑ′Ẑ

)−1 1√
T
Ẑ′(F0 − F̂)γ0

∥∥∥∥∥
F

= Op

(
N1−αr

√
T

)
+Op

(√
TN

1
2
α1− 3

2
αr

)
+Op

(
N

1
2
α1−αr

N1−αr

√
T

)
+Op

(
N

1
2
α1−αr

)
,

where we have used Lemmas B.8(ii) and (i). Collecting these non-dominating terms,

√
T (δ̂ − δ0) =

(
1

T
Z0′Z0

)−1 1√
T
Z0′ϵ

+Op

(
N1−αr

√
T

)
+Op

(√
TN

1
2
α1− 3

2
αr

)
+Op

(
N

1
2
α1−αr

N1−αr

√
T

)
+Op

(
N

1
2
α1−αr

)
.

If α1 < 2αr, N1−αr√
T

→ 0,
√
TN

1
2
α1− 3

2
αr → 0, and under Assumption 6(iii)

(
1

T
Z0′Z0

)−1 1√
T
Z0′ϵ

d−→ N(0,Σδ0),

thus, we complete the proof.

Proof of Theorem 5. We start with the decomposition using the rotation matrix H

ŷT+h|T − yT+h|T

= γ̂ ′f̂T + β̂′wT − γ∗′fT − β′wT

=
(
γ̂ −H−1′γ∗)′ f̂T + γ∗′H−1

(
f̂T −HfT

)
+ (β̂ − β)′wT

= ẑ′T (δ̂ − δ0) + γ∗′H−1
(
f̂T −HfT

)
= T−1/2ẑ′T [

√
T (δ̂ − δ0)] + γ∗′H−1N−1/2

[
N1/2

(
f̂T −HfT

)]
= T−1/2z0′T [

√
T (δ̂ − δ0)] + T−1/2(ẑT − z0T )

′[
√
T (δ̂ − δ0)]

+ γ∗′H−1N−1/2
[
N1/2

(
f̂T − H̃4f

0
T

)]
+ γ∗′H−1

(
H̃4 − I

)
f0T . (A.6)
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Consider the first term on the right-hand side of the above equation,

T−1/2z0′T
√
T (δ̂ − δ0)

= T−1/2z0′T

(
1

T
Ẑ′Ẑ

)−1 1√
T
Ẑ′ϵ+ T−1/2z0′T

(
1

T
Ẑ′Ẑ

)−1 1√
T
Ẑ′(F0 − F̂)H−1γ∗

= T−1/2z0′T

(
1

T
Z0′Z0

)−1 1√
T
Z0′ϵ

+
1√
T

[
Op

(
N1−αr

√
T

)
+Op

(
N

1
2
α1−αr

N1−αr

√
T

)
+Op

(√
TN

1
2
α1− 3

2
αr

)
+Op

(
N

1
2
α1−αr

)]
,

where the term in the bracket is dominated by the first one if N1−αr√
T

→ 0,
√
TN

1
2
α1− 3

2
αr ,

and 1
2α1 < αr. The second term on the right-hand side of (A.6) is dominated by the first

one, thus, we ignore it.
Next, consider the third term in (A.6) and Lemma B.7 implies

γ∗′H−1N− 1
2

[
N1/2

(
f̂T − H̃4f

0
T

)]
= γ∗′H−1N− 1

2D−1

[
DN

1
2 (B̂′B̂)−1Q̃B0′et +DN

1
2 (B̂′B̂)−1

(
B̂−B0Q̃′

)′
et

]
= γ∗′H−1N− 1

2D−1
[
DN

1
2 (B̂′B̂)−1Q̃B0′et

]
+ γ∗′H−1N− 1

2

[
N

1
2 (B̂′B̂)−1

(
B̂−B0Q̃′

)′
et

]
= γ∗′H−1N− 1

2D−1
[
DN

1
2 (B̂′B̂)−1B0′et

]
+Op(∥N− 1

2 ∥F )Op(∆NT )

+Op(∥N− 1
2 ∥F )

[
Op(N

1
2
−αr) +Op

(
N

3
2
−αr

T

)
+Op

(√
N1−αr

T

)]
,

where the last two terms are dominated by the first one if N
3
2−αr

T → 0 and 1
2 < αr.

The fourth term in (A.6) becomes

γ∗′H−1
(
H̃4 − I

)
f0T =

1√
T
Op(

√
T∆NT ),

which is dominated by the first term in (A.6) if N1−αr√
T

→ 0,
√
TN

1
2
α1− 3

2
αr , and 1

2α1 < αr.

Collecting these terms, if
√
TN

1
2
α1− 3

2
αr , 1

2 < αr, and N
3
2−αr

T → 0, we obtain(
ŷT+h|T − yT+h|T

)
σT+h|T

d−→ N(0, 1),

where σ2
T+h|T = T−1z0′TΣδ0z

0
T + γ0′D−1N−1/2ΓTN

−1/2D−1γ0.
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B Related Lemmas and their Proofs

Lemma B.1. The followings hold under Assumptions 1–4:

(i)
1

NT
e′tE

′F0 = Op

(
1√
NT

)
+Op

(
1

T

)
,

(ii)
1

T
e′iEB0N− 1

2 = Op

(
1√
Nαr

)
+Op

(
1√
T

)
,

(iii) N− 1
2B0′E′ = Op(

√
T ),

(iv)
N− 1

2 F̂′F0N
1
2

T
= Op(1).

Proof of Lemma B.1. (i)

1

NT
e′tE

′F0

=
1

NT

N∑
i=1

T∑
s=1

et,ies,if
0′
s

=
1

NT

N∑
i=1

T∑
s=1

f0
′

s [et,ies,i − E(et,ies,i)] +
1

T

(
1

N

T∑
s=1

f0
′

s

N∑
i=1

E(et,ies,i)

)

= Op

(
1√
NT

)
+Op

(
1

T

)
.

Because for all i, |E (es,iet,i) | ≤ |γs,t| for some γs,t such that
∑T

t=1 |γs,t| ≤ M by Assumption
2(iii), and ∥f0s ∥2 is bounded by E ∥f0t ∥4 ≤ M in Assumption 4(i).
(ii)

1

T
e′iEB0N− 1

2

=
1

T

N∑
j=1

T∑
t=1

et,iet,jb
0′
j N

− 1
2

=
1

T

N∑
j=1

T∑
t=1

b0′
j N

− 1
2 [et,iet,j − E(et,iet,j)] +

1

T

T∑
t=1

N∑
j=1

b0′
j N

− 1
2E(et,iet,j)

= Op

(
1√
T

)
+Op

(
1√
Nαr

)
.

Under weak cross-sectional dependence as in Assumption 2(iv), (1/TN)
∑T

t=1

∑N
j=1 |E(et,iet,j)| ≤

(1/N)
∑N

j=1 |τi,j | = O
(
N−1

)
. By E ∥b0

i ∥4 ≤ M in Assumption 4(i), ∥b0
i ∥2 is bounded and

||b0′
j N

− 1
2 ||F ≤ ||b0′

j ||F ||N− 1
2 ||F ≤ 1√

Nαr
Op(1). The upper bounds in (i) and (ii) are not con-

sistent with Bai and Ng (2023, Assumption A3’), because we impose a moment restriction
related to b0

i in Assumption 4(iv).

12



(iii) Assumption 4(ii) implies

N− 1
2B0′E′EB0N− 1

2

T
=

1

T

T∑
t=1

(N− 1
2

N∑
i=1

b0
i et,i

)(
N− 1

2

N∑
i=1

b0
i et,i

)′ = Op(1),

where B0 = (b0
1, · · · ,b0

N )′. Thus,∥∥∥EB0N− 1
2

∥∥∥2
F
= tr(N− 1

2B0′E′EB0N− 1
2 ) = Op(T ),∥∥∥EB0N− 1

2

∥∥∥
F
= Op(

√
T ), and

∥∥EB0
∥∥
F
= Op(

√
TNα1).

(iv) A comparable result to Bai and Ng (2023, Lemma 1) is

N−1Λ̂
p−→ N−1Λ,

which can be obtained by (B.3). The equations 1
T XX′F̂ = F̂Λ̂ and F̂′F̂/T = Ir implies

1

T 2
N− 1

2 F̂′XX′F̂N− 1
2 = N−1Λ̂.

The dominating term of the left-hand side is

N− 1
2 F̂′F0N

1
2

T
N− 1

2B0′B0N− 1
2
N

1
2F0′F̂N− 1

2

T

p−→ N−1Λ.

Thus, N− 1
2 F̂′F0N

1
2

T = Op(1).

Lemma B.2. Suppose that Assumption 2 holds. If N1−αr

T → 0, we have λ̂k = λk

[
T−1XX′] ≍

Nαk with high probability.

Proof of Lemma B.2. Let σk[A] be k-th largest singular value of matrix A. By the definition
of WF models, we have

λk = λk

[
B∗F∗′F∗B∗′

T

]
= λk

[
B∗′B∗F

∗′F∗

T

]
≍ Nαk .

By the singular value version of Weyl’s inequalities,

σk+l−1[A+B] ≤ σk[A] + σl[B], 1 ≤ k, l ≤ min (N,T ).

We first show the upper bound for λ̂k:

σk[X] ≤ σk[F
∗B∗′] + σ1[E]√

λk

[
XX′

T

]
≤

√
λk

[
F∗B∗′B∗F∗′

T

]
+

√
λ1

[
EE′

T

]

λk

[
XX′

T

]
≤ λk

[
F∗B∗′B∗F∗′

T

]
+ λ1

[
EE′

T

]
+ 2

√
λk

[
F∗B∗′B∗F∗′

T

]
λ1

[
EE′

T

]

λk

[
XX′

T

]
≤ Nαk +

(
N

T
+ 1

)
+

√
Nαk

(
N

T
+ 1

)
.
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Next, the lower bound for λ̂k becomes

σk[X−E] ≤ σk[X] + σ1[E]

σk[F
∗B∗′] ≤ σk[X] + σ1[E]√

λk

[
F∗B∗′B∗F∗′

T

]
≤

√
λk

[
XX′

T

]
+

√
λ1

[
EE′

T

]
√
λk

[
XX′

T

]
≥

√
λk

[
F∗B∗′B∗F∗′

T

]
−

√
λ1

[
EE′

T

]
.

Thus, λ̂k = λk

[
XX′

T

]
≍ Nαk . Note that Nαk dominates N

T if N1−αr

T → 0.

Lemma B.3. Define

∆NT =
N1−αr

T
+N

1
2
α1−αr

N1−αr

T
+N

1
2
α1− 3

2
αr +

N
1
2
α1−αr

√
T

. (B.1)

Suppose that Assumptions 1–4 hold. Then, we have

(i)

∥∥∥∥ 1T E′(F̂− F0H̃4)

∥∥∥∥
F

= Op

(√
N1−αr

T

N1− 1
2
αr

T

)
+Op

(
N1− 1

2
αr

T

)
+Op

(
N− 1

2
αr

)
,

(ii)

∥∥∥∥ 1T B0′E′(F̂− F0H̃4)

∥∥∥∥
F

= Op

(
N

1
2
α1− 1

2
αr

)
+Op

(
N

1
2
α1− 1

2
αr

N1− 1
2
αr

T

)
,∥∥∥∥ 1TN− 1

2B0′E′(F̂− F0H̃4)

∥∥∥∥
F

= Op

(
N− 1

2
αr

)
+Op

(
N1−αr

T

)
,

(iii)

∥∥∥∥ 1T F0′(F̂− F0H̃)

∥∥∥∥
F

= Op (∆NT ) ,

(iv)

∥∥∥∥ 1T ei
′(F̂− F0H̃4)

∥∥∥∥
F

= Op

(
N1−αr

T

)
+Op

(
N−αr

)
+Op

(
1√

TNαr

)
.

Proof of Lemma B.3. (i) By the definition of F̂, we have the following decomposition:∥∥∥∥ 1T E′(F̂− F0H̃4)

∥∥∥∥
F

=

∥∥∥∥ 1

T 2
E′EE′F̂Λ̂−1 +

1

T 2
E′EB0F0′F̂Λ̂−1

∥∥∥∥
F

≤
∥∥∥∥ 1

T 2
E′EE′

∥∥∥∥
F

∥∥∥F̂Λ̂−1
∥∥∥
F
+

∥∥∥∥ 1T E′E

∥∥∥∥
F

∥∥∥B0N− 1
2

∥∥∥
F

∥∥∥∥N 1
2
1

T
F0′F̂N− 1

2N
1
2 Λ̂−1

∥∥∥∥
F

=
1

T 2
Op

(
N3/2 + T 3/2

)
Op

(√
TN−αr

)
+Op

(
N

T
+ 1

)
Op

(
N− 1

2
αr

)
= Op

(√
N1−αr

T

N1− 1
2
αr

T

)
+Op

(
N1− 1

2
αr

T

)
+Op

(
N− 1

2
αr

)
.
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Consider (ii)∥∥∥∥ 1T B0′E′(F̂− F0H̃4)

∥∥∥∥
F

=

∥∥∥∥ 1

T 2
B0′E′EE′F̂Λ̂−1 +

1

T 2
B0′E′EB0F0′F̂Λ̂−1

∥∥∥∥
F

≤
∥∥∥∥ 1

T 2
B0′E′

∥∥∥∥
F

∥∥EE′∥∥
F

∥∥∥F̂Λ̂−1
∥∥∥
F
+

∥∥∥∥N 1
2
1

T
N− 1

2B0′E′EB0N− 1
2

∥∥∥∥
F

∥∥∥∥N 1
2
1

T
F0′F̂N− 1

2N
1
2 Λ̂−1

∥∥∥∥
F

= Op

(
N

1
2
α1− 1

2
αr

(
N1− 1

2
αr

T
+N− 1

2
αr

))
+N

1
2
α1Op

(
N− 1

2
αr

)
= Op

(
N

1
2
α1− 1

2
αr

N1− 1
2
αr

T

)
+Op

(
N

1
2
α1− 1

2
αr

)
.

∥∥∥∥ 1TN− 1
2B0′E′(F̂− F0H̃4)

∥∥∥∥
F

=

∥∥∥∥ 1

T 2
N− 1

2B0′E′EE′F̂Λ̂−1 +
1

T 2
N− 1

2B0′E′EB0F0′F̂Λ̂−1

∥∥∥∥
F

≤
∥∥∥∥ 1

T 2
N− 1

2B0′E′
∥∥∥∥
F

∥∥EE′∥∥
F

∥∥∥F̂Λ̂−1
∥∥∥
F
+

∥∥∥∥ 1TN− 1
2B0′E′EB0N− 1

2

∥∥∥∥
F

∥∥∥∥N 1
2
1

T
F0′F̂N− 1

2N
1
2 Λ̂−1

∥∥∥∥
F

= Op

(
N1−αr

T

)
+Op

(
N−αr

)
+Op

(
N− 1

2
αr

)
= Op

(
N1−αr

T

)
+Op

(
N− 1

2
αr

)
.

Consider (iii)
1

T
F0′(F̂− F0H̃)

=
1

T
F0′
(
1

T
EE′F̂+

1

T
F0B0′E′F̂+

1

T
EB0F0′F̂

)
Λ̂−1

=
1

T 2
F0′EE′F̂Λ̂−1 +

1

T
B0′E′F̂Λ̂−1 +

1

T 2
F0′EB0F0′F̂Λ̂−1.

The first term on the right-hand side of the above equation is bounded by∥∥∥∥ 1

T 2
F0′EE′F̂Λ̂−1

∥∥∥∥
F

≤ Op

((
N

T
+ 1

)
N−αr

)
.
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Next, we consider the second term:∥∥∥∥ 1T B0′E′F̂Λ̂−1

∥∥∥∥
F

≤
∥∥∥∥ 1T B0′E′(F̂− F0H̃4)Λ̂

−1

∥∥∥∥
F

+

∥∥∥∥ 1T B0′E′F0H̃4Λ̂
−1

∥∥∥∥
F

≤
∥∥∥∥ 1T B0′E′(F̂− F0H̃4)

∥∥∥∥
F

∥∥∥Λ̂−1
∥∥∥
F
+

∥∥∥∥ 1T B0′E′F0

∥∥∥∥
F

∥∥∥H̃4Λ̂
−1
∥∥∥
F

= Op

(
N

1
2
α1−αr

N1−αr

T

)
+Op

(
N

1
2
α1− 3

2
αr

)
+Op

(√
TNα1

T
N−αr

)
,

where we have used Lemma B.3 (ii) and Assumption 4(vi). The third term is bounded by∥∥∥∥ 1

T 2
F0′EB0F0′F̂Λ̂−1

∥∥∥∥
F

≤
∥∥∥∥ 1

T 2
F0′EB0N− 1

2

∥∥∥∥
F

∥∥∥N 1
2F0′F̂N− 1

2N
1
2 Λ̂−1

∥∥∥
F
= Op

(
1√

TNαr

)
.

Collecting terms, we obtain∥∥∥∥ 1T F0′(F̂− F0H̃)

∥∥∥∥
F

≤ Op

((
N

T
+ 1

)
N−αr

)
+Op

(
N

1
2
α1−αr

N1−αr

T

)
+Op

(
N

1
2
α1− 3

2
αr

)
+Op

(
N

1
2
α1−αr

√
T

)

= Op

(
N1−αr

T

)
+Op

(
N

1
2
α1−αr

N1−αr

T

)
+Op

(
N

1
2
α1− 3

2
αr

)
+Op

(
N

1
2
α1−αr

√
T

)
,

which is op(1) if N1−αr

T → 0 and 1
2α1 < αr.

(iv) ∥∥∥∥ 1T e′i(F̂− F0H̃4)

∥∥∥∥
F

=

∥∥∥∥ 1T
(
1

T
e′iEE′F̂+

1

T
e′iEB0F0′F̂

)
Λ̂−1

∥∥∥∥
F

≤ Op

((
N

T
+ 1

)
N−αr

)
+

∥∥∥∥ 1T e′iEB0N− 1
2

∥∥∥∥
F

∥∥∥∥ 1TN
1
2F0′F̂N− 1

2N
1
2 Λ̂−1

∥∥∥∥
F

= Op

((
N

T
+ 1

)
N−αr

)
+

[
Op

(
1√
Nαr

)
+Op

(
1√
T

)]
Op

(
N− 1

2
αr

)
= Op

(
N1−αr

T

)
+Op

(
N−αr

)
+Op

(
1√

TNαr

)
,

since 1
T e

′
iEB∗N− 1

2 = Op

(
1√
Nαr

)
+Op

(
1√
T

)
by Lemma B.1(ii).

Lemma B.4. Suppose that Assumptions 1–4 hold. Then, we have

(i)

∥∥∥∥∥ F̂′F0

T
− Ir

∥∥∥∥∥
F

= Op(∆NT ),

(ii)

∥∥∥∥∥N 1
2

(
F̂′F0

T
− Ir

)∥∥∥∥∥
F

= Op(N
1
2
α1∆NT ).
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The result in the case of strong factors has been given by Bai and Ng (2013). For weak
factors, as N ≍ T , the convergence rate in (i) is reduced to N

1
2
α1− 3

2
αr +N

1
2
α1−αr− 1

2 , which
is faster than the convergence rate N

1
4
α1− 1

2
αr +N

1
2
−αr in Freyaldenhoven (2022) Lemma 3.

Proof of Lemma B.4. (i) Denote F̂ = (f̂1, · · · , f̂T )′ = (F̂1, · · · , F̂r) and F0 = (f01 , · · · , f0T )′ =
(F0

1, · · · ,F0
r). From the equation

1

T
F̂′F0 =

1

T
(F̂− F0H̃)′F0 + H̃′

=
1

T
(F̂− F0H̃)′F0 + Λ̂−1 1

T
F̂′F0Λ,

and Lemma B.3(iii),∥∥∥∥ 1T F̂′F0 − Λ̂−1 1

T
F̂′F0Λ

∥∥∥∥
max

≤
∥∥∥∥ 1T (F̂− F0H̃)′F0

∥∥∥∥
F

= Op (∆NT )

max
k,l

∣∣∣∣∣ F̂′
kF

0
l

T
− λl

λ̂k

F̂′
kF

0
l

T

∣∣∣∣∣ ≤ Op (∆NT )

max
k,l

∣∣∣∣∣ F̂′
kF

0
l

T

(
1− λl

λ̂k

)∣∣∣∣∣ ≤ Op (∆NT ) . (B.2)

Lemmas 7 and 8 of Freyaldenhoven (2022) showed that

F̂′
kF

0
l

T

p−→ 0 (k ̸= l),
F̂′
kF

0
k

T

p−→ 1, k = 1, · · · , r, l = 1, · · · , r.

It implies that, for the diagonal elements,

max
k

∣∣∣∣1− λk

λ̂k

∣∣∣∣ ≤ Op (∆NT )∣∣∣λ̂k − λk

∣∣∣ ≤ Op (∆NT ) . (B.3)

If k > l, then αk < αl and λl

λ̂k
will diverge. The order (B.2) implies that∣∣∣∣∣ F̂′

kF
0
l

T

∣∣∣∣∣ ≤ Op (∆NT )

∣∣∣∣∣ λ̂k

λ̂k − λl

∣∣∣∣∣ = op(∆NT ) (B.4)

and

N
1
2
αk

F̂′
kF

0
l

T
= N

1
2
αkop(∆NT ).

If k < l, then αk > αl and λl

λ̂k
→ 0. The order (B.2) implies that∣∣∣∣∣ F̂′

kF
0
l

T

∣∣∣∣∣ ≤ Op (∆NT ) (B.5)
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and

N
1
2
αk

F̂′
kF

0
l

T
= N

1
2
αkOp(∆NT ).

Now, we consider the case k = l and follow the Lemmas 7 and 8 of Freyaldenhoven (2022)
to find the upper bound of the term

∣∣∣N 1
2
αk

F̂′
kF

0
k

T

∣∣∣. We first consider the upper bound of the

matrix 1
T F̂

′
(
F0B0′B0F0′

T − XX′

T

)
F̂.

∥∥∥∥∥ 1T F̂′

(
F0B0′B0F0′

T
− XX′

T

)
F̂

∥∥∥∥∥
F

≤

∥∥∥∥∥ 1T F̂′

(
F0B0′E′

T
+

EB0F0′

T
+

EE′

T

)
F̂

∥∥∥∥∥
F

≤

∥∥∥∥∥ 1T F̂′F
0B0′E′

T
F̂

∥∥∥∥∥
F

+

∥∥∥∥∥ 1T F̂′EB0F0′

T
F̂

∥∥∥∥∥
F

+

∥∥∥∥ 1T F̂′EE′

T
F̂

∥∥∥∥
F

. (B.6)

Using B0′E′F0 = Op(
√
TNα1) and Lemma B.3 (ii), the first term on the right-hand side of

(B.6) becomes∥∥∥∥∥ 1T F̂′F
0B0′E′

T
F̂

∥∥∥∥∥
F

≤

∥∥∥∥∥ 1T F̂′F0B
0′E′

T
(F̂− F0H̃4)

∥∥∥∥∥
F

+

∥∥∥∥∥ 1T F̂′F0B
0′E′

T
F0H̃4

∥∥∥∥∥
F

≤

∥∥∥∥∥ F̂′F0

T

B0′E′(F̂− F0H̃4)

T

∥∥∥∥∥
F

+

∥∥∥∥∥N 1
2N− 1

2
F̂′F0

T
N

1
2N− 1

2
B0′E′F0

T
H̃4

∥∥∥∥∥
F

= Op

(
N

1
2
α1− 1

2
αr

N1− 1
2
αr

T

)
+Op

(
N

1
2
α1− 1

2
αr

)
+N

1
2
α1Op

(
1√
T

)
.

For the second and third terms on the right-hand side of (B.6),∥∥∥∥∥ 1T F̂′EB0F0′

T
F̂

∥∥∥∥∥
F

+

∥∥∥∥ 1T F̂′EE′

T
F̂

∥∥∥∥
F

≤

∥∥∥∥∥ 1T (F̂− F0H̃4)
′EB0F

0′F̂

T

∥∥∥∥∥
F

+

∥∥∥∥∥H̃′
4

F0′EB0

T

F0′F̂

T

∥∥∥∥∥
F

+

∥∥∥∥ 1T F̂′EE′

T
F̂

∥∥∥∥
F

≤ Op

(
N

1
2
α1− 1

2
αr

N1− 1
2
αr

T

)
+Op

(
N

1
2
α1− 1

2
αr

)
+Op

(
N

1
2
α1

√
T

)
+Op

(
N

T
+ 1

)
.
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Thus, ∥∥∥∥∥ 1T F̂′

(
F0B0′B0F0′

T
− XX′

T

)
F̂

∥∥∥∥∥
max

≤

∥∥∥∥∥ 1T F̂′

(
F0B0′B0F0′

T
− XX′

T

)
F̂

∥∥∥∥∥
F

≤ Op

(
N

1
2
α1− 1

2
αr

N1− 1
2
αr

T

)
+Op

(
N

1
2
α1− 1

2
αr

)
+Op

(
N

1
2
α1

√
T

)
+Op

(
N

T

)
. (B.7)

Next, using the following decomposition

1

T
F̂′

(
F0B0′B0F0′

T
− XX′

T

)
F̂

=
1

T
F̂′F

0B0′B0F0′

T
F̂− 1

T
F0′F

0B0′B0F0′

T
F0 +

(
1

T
F0′F

0B0′B0F0′

T
F0 − 1

T
F̂′XX′

T
F̂

)

=
1

T
F̂′F

0B0′B0F0′

T
F̂−Λ+

(
Λ− Λ̂

)
,

we get

1

T
F̂′F

0B0′B0F0′

T
F̂−Λ =

1

T
F̂′

(
F0B0′B0F0′

T
− XX′

T

)
F̂+

(
Λ̂−Λ

)
. (B.8)

Collecting (B.8), (B.7), and (B.3), we obtain

1

T
F̂′
k

F0B0′B0F0′

T
F̂k − λk ≤

∥∥∥∥∥ 1T F̂′

(
F0B0′B0F0′

T
− XX′

T

)
F̂

∥∥∥∥∥
max

+
∣∣∣λ̂k − λk

∣∣∣
≤ Op

(
N

1
2
α1− 1

2
αr

N1− 1
2
αr

T

)
+Op

(
N

1
2
α1− 1

2
αr

)
+Op

(
N

1
2
α1

√
T

)
+Op

(
N

T

)
+Op (∆NTN

αk) .

Then, from the equation

1

T
F̂′
k

F0B0′B0F0′

T
F̂k − λk =

( F̂′
kF

0
k

T

)2

− 1

λk +
r∑

l ̸=k

( F̂′
kF

0
l

T

)2

λl


and its upper bound, we have(

F̂′
kF

0
k

T

)2

− 1 ≤ Op

(
N

1
2
α1− 1

2
αr

N1− 1
2
αr

T
+N

1
2
α1− 1

2
αr +

N
1
2
α1

√
T

+
N

T
+∆NTN

αk

)
Op

(
N−αk

)
,

F̂′
kF

0
k

T
− 1 ≤ Op

(
N

1
2
α1− 1

2
αr

N1− 1
2
αr

T
+N

1
2
α1− 1

2
αr +

N
1
2
α1

√
T

+
N

T
+∆NTN

αk

)
Op

(
N−αk

)
.

(B.9)
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From orders (B.4), (B.5) and (B.9), we have∥∥∥∥∥ F̂′F0

T
− Ir

∥∥∥∥∥
F

≤ r

∥∥∥∥∥ F̂′F0

T
− Ir

∥∥∥∥∥
max

≤ max
k

{(
N

1
2
α1− 1

2
αr

N1− 1
2
αr

T
+N

1
2
α1− 1

2
αr +

N
1
2
α1

√
T

+
N

T

)
N−αk +∆NT

}
Op(1)

= Op(∆NT ) = op(1),

if N1−αr

T → 0 and 1
2α1 < αr.

(ii) From (i)∥∥∥∥∥N 1
2

(
F̂′F0

T
− Ir

)∥∥∥∥∥
F

≤ r

∥∥∥∥∥N 1
2

(
F̂′F0

T
− Ir

)∥∥∥∥∥
max

≤ N
1
2
α1Op(∆NT ) = op(1),

if N
3
2−αr

T → 0, Nα1− 3
2
αr → 0, and Nα1−αr√

T
→ 0. Because

N

T
N

1
2
α1−αr =

N
3
2
−αr

T
N

1
2
α1− 1

2 → 0,
N1− 1

2
αr

T
=

N
3
2
−αr

T
N

1
2
αr− 1

2 → 0.

Define

H̃1 = (B0′B0)(B̂′B0)−1, H̃2 = (F0′F0)−1F0′F̂,

H̃3 = (F̂′F0)−1F̂′F̂, H̃4 = (B0′B̂)(B̂′B̂)−1,

H̃ = B0′B0F
0′F̂

T
Λ̂−1, Q̃ =

F̂′F0

T
.

Lemma B.5 gives equivalence among the rotation matrices.

Lemma B.5. Suppose that Assumptions 1–4 hold. Then, we have,

(i) H̃4 − H̃ =
1

T
B0′E′F̂Λ̂−1,

(ii) H̃2 − H̃4 =
1

T
F0′EB̂Λ−1,

(iii) H̃3 − H̃1 =

(
1

T
F̂′F0

)−1 1

T
F̂

′
EB0(B̂′B0)−1,

(iv) H̃3 − H̃4 =

(
1

T
F̂′F0

)−1 1

T
F̂

′
EB̂Λ̂−1,

(v) H̃
′−1
1 − H̃2 =

1

T
Λ−1B0′E′F̂,

(vi) H̃
′−1
4 − H̃2 =

1

T
(B̂′B0)−1B̂′E′F̂,

Proof of Lemma B.5. (i) We proceed by left multiplying B0′ and right multiplying Λ̂−1 to
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the first equation, to get

B̂ =
1

T
X′F̂ =

1

T
B0F0′F̂+

1

T
E′F̂

B0′B̂ =
1

T
B0′B0F0′F̂+

1

T
B0′E′F̂

B0′B̂Λ̂−1 =
1

T
B0′B0F0′F̂Λ̂−1 +

1

T
B0′E′F̂Λ̂−1

H̃4 = H̃+
1

T
B0′E′F̂Λ̂−1.

(ii) By the definition of B̂ and expanding X, we obtain

F̂ =
1

T
XX′F̂Λ̂−1 = XB̂Λ̂−1 = F0B0′B̂Λ̂−1 +EB̂Λ̂−1

1

T
F0′F̂ = B0′B̂Λ̂−1 +

1

T
F0′EB̂Λ̂−1.

(iii) B0′B̂ in (i) implies

B̂′B0 =
1

T
F̂′F0B0′B0 +

1

T
F̂′EB0

H̃3 = H̃1 +

(
1

T
F̂′F0

)−1 1

T
F̂′EB0

(
B̂′B0

)−1
.

(iv) Multiplying B̂′ to the first equation in (i),

B̂′B̂ =
1

T
B̂′B0F0′F̂+

1

T
B̂′E′F̂

B̂′B̂ =
1

T
F̂′F0B0′B̂+

1

T
F̂′EB̂

H̃3 = H̃4 +

(
1

T
F̂′F0

)−1 1

T
F̂′EB̂

(
B̂′B̂

)−1
.

(v) Post-multiplying B0 to the transpose of the first equation in (i),

B̂′B0 =
1

T
F̂′F0B0′B0 +

1

T
F̂′EB0

H̃−1
1 = H̃′

2 +
1

T
F̂′EB0

(
B0′B0

)−1

H̃
′−1
1 = H̃2 +

(
B0′B0

)−1 1

T
B0′E′F̂.

(vi) The first equation in (iv) implies

H̃
′−1
4 = H̃2 +

(
B̂′B0

)−1 1

T
B̂′E′F̂.
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Lemma B.6. Suppose that Assumptions 1–4 hold. Then, we have,

(i)

∥∥∥∥ 1T F0′EB̂(B̂′B̂)−1

∥∥∥∥
F

= Op(∆1),

(ii)

∥∥∥∥ 1T F̂
′
EB0(B̂′B0)−1

∥∥∥∥
F

= Op(∆2),

(iii)

∥∥∥∥ 1T F̂
′
EB̂(B̂′B̂)−1

∥∥∥∥
F

= Op(∆1 +∆2).

where

∆1 =

(
N1−αr

T

)2

+

(
N1−αr

T

) 3
2

+

√
N1−αr

T
N−αr +

N1−αr

T
+

1√
TNαr

, (B.10)

∆2 = N
1
2
α1− 3

2
αr +N

1
2
α1−αr

N1−αr

T
+

N
1
2
α1−αr

√
T

.

Proof of Lemma B.6. (i) Using the results in the proof of Lemma 2, we show that∥∥∥∥ 1T F0′EB̂(B̂B̂)−1

∥∥∥∥
F

≤
∥∥∥∥ 1T F0′E

(
B̂−B0Q̃′

)(
B̂′B̂

)−1
∥∥∥∥
F

+

∥∥∥∥ 1T F0′EB0Q̃′
(
B̂′B̂

)−1
∥∥∥∥
F

≤ 1

T
Op(

√
NT )Op

(√
N1−αr

T

N1− 1
2
αr

T
+

N1− 1
2
αr

T
+N− 1

2
αr +

√
N

T

)
Op(N

−αr) +Op

(
1√

TNαr

)

= Op

((
N1−αr

T

)2
)

+Op

((
N1−αr

T

) 3
2

)
+Op

(√
N1−αr

T
N−αr

)
+Op

(
N1−αr

T

)
+Op

(
1√

TNαr

)
.

(ii) Lemma B.3(ii) implies∥∥∥∥ 1T F̂′EB0
(
B̂′B0

)−1
∥∥∥∥
F

≤
∥∥∥∥ 1T (F̂− F0H̃4)

′EB0
(
B̂′B0

)−1
∥∥∥∥
F

+

∥∥∥∥ 1T H̃′
4

(
F0′EB0

)(
B̂′B0

)−1
∥∥∥∥
F

≤ Op

(
N

1
2
α1− 1

2
αr

(
N1− 1

2
αr

T
+ 1

)
N−αr

)
+Op

(√
TNα1

T
N−αr

)

= Op

(
N

1
2
α1− 3

2
αr

)
+Op

(
N

1
2
α1−αr

N1−αr

T

)
+Op

(
N

1
2
α1−αr

√
T

)
.
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(iii) Lemma B.3(i) implies∥∥∥∥ 1T F̂′EB̂
(
B̂′B̂

)−1
∥∥∥∥
F

≤
∥∥∥∥ 1T (F̂− F0H̃4)

′EB̂
(
B̂′B̂

)−1
∥∥∥∥
F

+

∥∥∥∥ 1T H̃′
4

(
F0′EB̂

)(
B̂′B̂

)−1
∥∥∥∥
F

≤
∥∥∥∥ 1T (F̂− F0H̃4)

′E(B̂−B0Q̃)
(
B̂′B̂

)−1
+

1

T
(F̂− F0H̃4)

′EB0Q̃
(
B̂′B̂

)−1
∥∥∥∥
F

+

∥∥∥∥ 1T H̃′
4

(
F0′EB̂

)(
B̂′B̂

)−1
∥∥∥∥
F

≤ Op(∆1) +Op(∆2),

where ∆1 +∆2 ≲ ∆NT if N1−αr

T → 0.

Lemma B.7. Suppose that Assumptions 1–4 hold. If N1−αr

T → 0, then, we have∥∥∥∥N 1
2 (B̂′B̂)−1

(
B̂−B0Q̃′

)′
et

∥∥∥∥
F

= Op(N
1
2
−αr) +Op

(
N

3
2
−αr

T

)
+Op

(√
N1−αr

T

)
.

Proof of Lemma B.7. (A.2) implies

(B̂−B0Q̃′)′et =
1

T
(F̂− F0H̃4)

′Eet + H̃′
4

1

T
F0′Eet

=
1

T
Λ̂−1

(
1

T
E′EE′F̂+

1

T
E′EB0F0′F̂

)′
et + H̃′

4

1

T
F0′Eet.

Consider the first term on the right-hand side of the above equation:∥∥∥∥N 1
2 (B̂′B̂)−1 1

T 2
Λ̂−1F̂′EE′Eet

∥∥∥∥
F

=

∥∥∥∥N 1
2 (B̂′B̂)−1N

1
2N− 1

2
1

T 2
Λ̂−1F̂′EE′Eet

∥∥∥∥
F

≤
∥∥∥∥N 1

2 (B̂′B̂)−1N
1
2N− 1

2
1

T 2
Λ̂−1

∥∥∥∥
F

∥∥∥F̂′
∥∥∥
F
∥E∥3sp ∥et∥F

≤ 1

T 2
N− 3

2
αr
√
T (N3/2 + T 3/2)

√
NOp(1)

= Op

(
N

3
2
−αr

T

√
N1−αr

T

)
+Op

(
N

1
2
− 3

2
αr

)
.
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Next, consider the upper bound of the second term.∥∥∥∥N 1
2 (B̂′B̂)−1 1

T 2
Λ̂−1F̂′F0B0′E′Eet

∥∥∥∥
F

≤
∥∥∥∥N 1

2 (B̂′B̂)−1N
1
2
1

T
Λ̂−1

∥∥∥∥
F

∥∥∥∥N− 1
2
1

T
F̂′F0N

1
2

∥∥∥∥
F

∥∥∥N− 1
2B0

∥∥∥
F
λ1[E

′E] ∥et∥F

≤ 1

T
N−αr(N + T )

√
NOp(1)

= Op

(
N

3
2
−αr

T

)
+Op

(
N

1
2
−αr

)
.

Consider the third term and Lemma B.1(i) implies∥∥∥∥N 1
2 (B̂′B̂)−1H̃′

4

1

T
F0′Eet

∥∥∥∥
F

≤
∥∥∥N 1

2 (B̂′B̂)−1H̃′
4

∥∥∥
F

∥∥∥∥ 1T F0′Eet

∥∥∥∥
F

≤ N− 1
2
αrN

(
1√
NT

+
1

T

)
Op(1)

= Op

(√
N1−αr

T

)
+Op

(
N1− 1

2
αr

T

)
.

If N1−αr

T → 0 holds, collecting these terms completes the proof.

Lemma B.8. Suppose that Assumptions 1–6 hold. If N1−αr

T → 0, then, we have

(i)
1

T
∥Ẑ′(F0 − F̂)∥F = Op (∆NT ) ,

(ii)
1√
T
∥(F̂− F0)′ϵ∥F = Op

(
N1−αr

√
T

)
+Op

( √
T

Nαr

)
+ op

(
N

1
2
α1−αr

)
.

Proof of Lemma B.8. (i) Because Ẑ includes F̂ and W, we have
1

T

∥∥∥F̂′(F0 − F̂)
∥∥∥
F

=
∥∥∥Q̃− Ir

∥∥∥
F
= Op (∆NT ) ,

1

T

∥∥∥W′(F0 − F̂)
∥∥∥
F

=
1

T

∥∥∥W′(F0 − F0H̃4 + F0H̃4 − F̂)
∥∥∥
F

≤ 1

T

∥∥∥W′F0(Ir − H̃4)
∥∥∥
F
+

1

T

∥∥∥W′(F0H̃4 − F̂)
∥∥∥
F

= Op (∆NT ) +Op

(
N1−αr

T

)
+Op

(
1

Nαr

)
+Op

(
1√

TNαr

)
.
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The final inequality is from
1

T

∥∥∥W′(F0H̃4 − F̂)
∥∥∥
F

=
1

T

∥∥∥∥W′
(
1

T
EE′F̂+

1

T
EB0F0′F̂

)
Λ̂−1

∥∥∥∥
F

≤ 1

T 2

∥∥∥W′EE′F̂Λ̂−1
∥∥∥
F
+

1

T 2

∥∥∥(W′EB0)F0′F̂Λ̂−1
∥∥∥
F

= Op

(
N1−αr

T
+

1

Nαr

)
+Op

(
1√

TNαr

)
= Op

(
N1−αr

T

)
+Op

(
1

Nαr

)
+Op

(
1√

TNαr

)
,

which is less than Op(∆NT ).
(ii) Using Lemmas B.5(ii), B.6(i), and B.4(i)∥∥∥H̃4 − Ir

∥∥∥
F

=
∥∥∥H̃4 − H̃2 + H̃2 − Ir

∥∥∥
F

=

∥∥∥∥− 1

T
F0′EB̂Λ−1 + H̃2 − Ir

∥∥∥∥
F

≤ Op(∆1) +Op(∆NT ) = Op(∆NT ),

if N1−αr

T → 0. Then,
1√
T

∥∥∥(F̂− F0)′ϵ
∥∥∥
F

≤ 1√
T

∥∥∥(F̂− F0H̃4)
′ϵ
∥∥∥
F
+

1√
T

∥∥∥(H̃4 − Ir)
′F0′ϵ

∥∥∥
F

≤ 1

T 3/2

∥∥∥Λ̂−1F̂′EE′ϵ
∥∥∥
F
+

1

T 3/2

∥∥∥Λ̂−1F̂′F0B0′E′ϵ
∥∥∥
F
+

1√
T

∥∥∥(H̃4 − Ir)
′F0′ϵ

∥∥∥
F

≤ Op

(
N1−αr

√
T

+

√
T

Nαr

)
+Op

( √
T

Nαr
+

1√
Nαr

)
+Op(∆NT )

= Op

(
N1−αr

√
T

)
+Op

( √
T

Nαr

)
+ op

(
N

1
2
α1−αr

)
,

since 1
T N

− 1
2B0′E′ϵ = Op

(
1√
T
+ 1√

Nαr

)
and N1−αr

T → 0.

Lemma B.9. Suppose that Assumptions 1–6 hold. If 1
2α1 < αr, N1−αr√

T
→ 0, and

√
TN

1
2
α1− 3

2
αr →

0 as N,T → ∞, we have
√
T (δ̂ − δ3)

d−→ N(0,Σδ0),√
T (δ̂ − δ4)

d−→ N(0,Σδ0),

where γj = H̃−1
j γ∗, δj = (γ ′

j ,β
′)′, j = 3, 4, Σδ0 = Σ−1

z0
Σz0ϵΣ

−1
z0

.
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Proof of Lemma B.9. The augmented regression model is rewritten as

yt+h = γ∗′f∗t + β′wt + ϵt+h

= γ∗′H̃
′−1
j f̂t + β′wt + ϵt+h + γ∗′H̃

′−1
j H̃jf

∗
t − γ∗′H̃

′−1
j f̂t.

(i) We start with j = 3.
1√
T
F̂′(F0H̃3 − F̂)H̃−1

3 γ∗ = 0

1√
T
W′(F0H̃3 − F̂)H̃−1

3 γ∗

=
1√
T
(W′F0 −W′F̂H̃−1

3 )γ∗

=
1√
T
(W′F0 −W′XB̂Λ̂−1Q̃)γ∗

=
1√
T
W′F0(Ir −B0′B̂Λ̂−1Q̃)− 1√

T
(W′E′B̂Λ̂−1Q̃)γ∗

=
√
TOp(∆NT ).

By the proof of Theorem 4, we have
√
T (δ̂ − δ3)

=

(
1

T
Ẑ′Ẑ

)−1 1√
T
Ẑ′ϵ+

(
1

T
Ẑ′Ẑ

)−1 1√
T
Ẑ′(F0H̃3 − F̂)H̃−1

3 γ∗

=

(
1

T
Z0′Z0

)−1 1√
T
Z0′ϵ+

(
1

T
Z0′Z0

)−1 1√
T
(Ẑ− Z0)′ϵ+

[(
1

T
Ẑ′Ẑ

)−1

−
(
1

T
Z0′Z0

)−1
]

1√
T
Ẑ′ϵ

+

(
1

T
Ẑ′Ẑ

)−1 1√
T
Ẑ′(F0H̃3 − F̂)H̃−1

3 γ∗

=

(
1

T
Z0′Z0

)−1 1√
T
Z0′ϵ+Op

(
N1−αr

√
T

)
+Op

(√
TN

1
2
α1− 3

2
αr

)
+Op

(
N1−αr

√
T

N
1
2
α1−αr

)
+Op

(
N

1
2
α1−αr

)
.

Thus,
√
T (δ̂ − δ3)

d−→ N(0,Σδ0) if 1
2α1 < αr, N1−αr√

T
→ 0, and

√
TN

1
2
α1− 3

2
αr → 0.

(ii) Let j = 4,
1√
T
F̂′(F0H̃4 − F̂)H̃−1

4 γ∗ =
√
T

(
1

T
F̂′F0 − H̃−1

4

)
γ∗ =

√
T

[
1

T
F̂′EB̂(B̂′B0)−1

]
γ∗ =

√
TOp(∆1 +∆2),

1√
T
W′(F0H̃4 − F̂)H̃−1

4 γ∗

=
√
T

(
− 1

T 2
W′EB0F0′F̂Λ̂−1 − 1

T 2
W′EE′F̂Λ̂−1

)
H̃−1

4 γ∗

= Op

(
N

1
2
α1−αr

)
+Op

(
N1−αr

√
T

+
√
TN−αr

)
.
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By the proof of Theorem 4, we have
√
T (δ̂ − δ4)

=

(
1

T
Ẑ′Ẑ

)−1 1√
T
Ẑ′ϵ+

(
1

T
Ẑ′Ẑ

)−1 1√
T
Ẑ′(F0H̃4 − F̂)H̃−1

4 γ∗

=

(
1

T
Z0′Z0

)−1 1√
T
Z0′ϵ+

(
1

T
Z0′Z0

)−1 1√
T
(Ẑ− Z0)′ϵ+

[(
1

T
Ẑ′Ẑ

)−1

−
(
1

T
Z0′Z0

)−1
]

1√
T
Ẑ′ϵ

+

(
1

T
Ẑ′Ẑ

)−1 1√
T
Ẑ′(F0H̃4 − F̂)H̃−1

4 γ∗

=

(
1

T
Z0′Z0

)−1 1√
T
Z0′ϵ+Op

(
N1−αr

√
T

)
+Op

(√
TN

1
2
α1− 3

2
αr

)
+Op

(
N1−αr

√
T

N
1
2
α1−αr

)
+Op

(
N

1
2
α1−αr

)
.

Thus,
√
T (δ̂ − δ4)

d−→ N(0,Σδ0) if 1
2α1 < αr, N1−αr√

T
→ 0, and

√
TN

1
2
α1− 3

2
αr → 0.

Lemma B.10. Under the assumptions of Theorem 5, if we use rotation matrices H̃3 or H̃4,
we obtain the same results as in Theorem 5.(

ŷT+h|T − yT+h|T
)

σT+h|T

d−→ N(0, 1),

where σ2
T+h|T = T−1z0′TΣδ0z

0
T + γ0′D−1N−1/2ΓTN

−1/2D−1γ0.

Proof of Lemma B.10. Expand the term

ŷT+h|T − yT+h|T

= γ̂ ′f̂T + β̂′wT − γ∗′fT − β′wT

=
(
γ̂ − Ĥ−1′

j γ∗
)′

f̂T + γ∗′Ĥ−1
j

(
f̂T − ĤjfT

)
+ (β̂ − β)′wT

= ẑ′T (δ̂ − δj) + γ∗′Ĥ−1
j

(
f̂T − ĤjfT

)
= T−1/2ẑ′T [

√
T (δ̂ − δj)] + γ∗′Ĥ−1

j N−1/2
[
N1/2

(
f̂T − H̃jf

0
T

)]
= T−1/2z0′T [

√
T (δ̂ − δj)] + T−1/2(ẑT − z0T )

′[
√
T (δ̂ − δj)]

+γ∗′Ĥ−1
j N−1/2

[
N1/2

(
f̂T − H̃4f

0
T

)]
+ γ∗′Ĥ−1

j N−1/2
[
N1/2

(
H̃4 − H̃j

)
f0T

]
.

(i) We start with j = 3. The second term on the righat-hand side of the above equation is
dominated by the first one, thus, we next focus on the first, third and fourth terms.

T−1/2z0′T
√
T (δ̂ − δ3)

= T−1/2z0′T

(
1

T
Z0′Z0

)−1 1√
T
Z0′ϵ

+T−1/2

[
Op

(
N1−αr

√
T

)
+Op

(√
TN

1
2
α1− 3

2
αr

)
+Op

(
N1−αr

√
T

N
1
2
α1−αr

)
+Op

(
N

1
2
α1−αr

)]
.
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γ∗′H−1N− 1
2

[
N1/2

(
f̂T − H̃4f

0
T

)]
= γ∗′H−1N− 1

2D−1
[
DN

1
2 (B̂′B̂)−1B0′et

]
+Op(∥N− 1

2 ∥F )Op(∆NT )

+Op(∥N− 1
2 ∥F )

[
Op(N

1
2
−αr) +Op

(
N

3
2
−αr

T

)
+Op

(√
N1−αr

T

)]
.

γ∗′H−1
(
H̃3 − H̃4

)
f0T

= γ∗′H−1N− 1
2N

1
2

(
H̃3 − H̃4

)
f0T = Op(∥N− 1

2 ∥F )Op(N
1
2
α1∆NT ),

where

N
1
2
α1∆NT =

N1+ 1
2
α1−αr

T
+N

1
2
α1−αr

N1+ 1
2
α1−αr

T
+Nα1− 3

2
αr +

Nα1−αr

√
T

.

Thus, if
√
TN

1
2
α1− 3

2
αr , 1

2 < αr, and N
3
2−αr

T → 0, we have(
ŷT+h|T − yT+h|T

)
σT+h|T

d−→ N(0, 1),

where σ2
T+h|T = T−1z0′TΣδ0z

0
T + γ0′D−1N−1/2ΓTN

−1/2D−1γ0.
(ii) Let j = 4,

T−1/2z0′T
√
T (δ̂ − δ4)

= T−1/2z0′T

(
1

T
Z0′Z0

)−1 1√
T
Z0′ϵ

+T−1/2

[
Op

(
N1−αr

√
T

)
+Op

(√
TN

1
2
α1− 3

2
αr

)
+Op

(
N1−αr

√
T

N
1
2
α1−αr

)
+Op

(
N

1
2
α1−αr

)]
.

γ∗′H−1N− 1
2

[
N1/2

(
f̂T − H̃4f

0
T

)]
= γ∗′H−1N− 1

2D−1
[
DN

1
2 (B̂′B̂)−1B0′et

]
+Op(∥N− 1

2 ∥F )Op(∆NT )

+Op(∥N− 1
2 ∥F )

[
Op(N

1
2
−αr) +Op

(
N

3
2
−αr

T

)
+Op

(√
N1−αr

T

)]
.

Thus, if
√
TN

1
2
α1− 3

2
αr , 1

2 < αr, and N
3
2−αr

T → 0, we have(
ŷT+h|T − yT+h|T

)
σT+h|T

d−→ N(0, 1),

where σ2
T+h|T = T−1z0′TΣδ0z

0
T + γ0′D−1N−1/2ΓTN

−1/2D−1γ0.
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