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Abstract

This paper studies the cyclical behavior of employment duration. We estimate

a proportional hazard model with competing risks, distinguishing different types of

separations. A higher unemployment rate at the start of an employment relationship

increases the probability of job-to-job transitions, while its effect on employment-to-

unemployment transitions is close to zero. We find similar patterns when we distinguish

the separations by different reasons and contrast quits and firings. We then build a

simple job-ladder model to interpret our empirical results. The cyclical behavior of

opportunities for job-to-job transitions plays an important role in the cyclical behavior

of match quality.
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1 Introduction

In a frictional labor market, firms and workers may not always be able to find their best

match. When a firm and a worker meet, they have to decide whether to form a match or

keep looking for an alternative partner. If a match is not formed, a result can be “mismatch

unemployment,” that is, a co-existence of vacancy and unemployment because potential

benefit from a match (the “match quality”) is too low.1 Even if a match is formed, the match

quality may not be very high—the match may be formed just because it is too costly for both

parties to keep looking for alternative partners. This type of “mismatch employment,” caused

by labor market frictions, is one of the important reasons for misallocation of productive

resources in the macroeconomic context.2

When the quality of a match is not perfect, reallocating workers across firms can improve

overall economic efficiency. Given that a frictional labor market often involves various exter-

nalities among market participants, there can be potential gains from government policies.

Therefore, it is of interest to know how newly-formed match qualities can differ depending on

various economic situations. From a macroeconomic viewpoint, since the degree of frictions

in the labor market may vary over different phases of the business cycle, it is natural to ask

whether a better-quality match is formed during booms than recessions. We approach this

question by analyzing employment durations of workers.

The main idea behind our study is that a worker-firm match with a higher match quality

would last longer. If a worker has a better match with a particular firm compared to another

firm, it is more likely that he would feel better off working in the former firm, and thus he is

less likely to leave that firm. From the firm’s perspective, if a worker is a better match than

another worker, it is less likely that the firm wants to fire that worker. Especially when a

match is formed efficiently from the viewpoint of a worker-firm pair, a high match quality

implies a high surplus, and it requires a large negative shock to break that match.

The advantage of our approach, compared to the alternative approach of directly measur-

ing productivity and wages from matched employer-employee data, is that we can consider

a broader concept of match quality that does not show up in output or wages, such as the

attachment of a worker to a particular firm or the worker’s geographical preferences.3 Our

approach is in the spirit of the revealed preferences theory—to the extent that what we

eventually care about is aggregate welfare, rather than output itself, this is an advantage

1The issue of mismatch unemployment has received considerable attention recently, in the context of the
Great Recession. See, for example, Şahin et al. (2014).

2There has been a substantial amount of recent research on misallocation of productive resources in the
macroeconomic context, following Restuccia and Rogerson (2008) and Hsieh and Klenow (2009).

3Nosal and Rupert (2007) and Nunn (2013) emphasize the importance of considering non-wage charac-
teristics in analyzing workers’ job choices.
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rather than a shortcoming.

At the general level, theoretical predictions about how the business cycle affect the newly-

formed match quality is ambiguous. In the prototypical Mortensen and Pissarides (1994)

model (modified so that the initial match quality is allowed to be stochastic), in which the

match is formed efficiently from the viewpoint of the individual match, a high aggregate

productivity in booms allows a relatively low-quality match to be formed. If this effect

is strong, the average quality of new matches tends to be countercyclical. However, the

result also depends on the cyclicality of the job arrival rate, and it is also affected by other

elements such as the effectiveness of on-the-job search. When match formation/separation is

not individually efficient, the disagreement between workers and firms may have conflicting

cyclical effects. On the worker side, the unemployment rate is high during recessions, and

jobseekers compete for a relatively small number of job openings. Thus the workers may be

willing to accept a job that is not so desirable. On the firm side, labor market conditions

are favorable for hiring firms during recessions, because there are a relatively small number

of hiring firms. Thus the firm is able to wait until finding a worker with a high match

quality. In addition, it is also possible to think about situations where the new match

quality distribution itself varies cyclically.

In the following, we first empirically study the effects of aggregate labor market conditions

on employment duration using data from the National Longitudinal Survey of Youth (NLSY)

1979 cohort. We use the Cox (1972) proportional hazard model for job separations. Our main

innovation is that we estimate the effects of the unemployment rate separately for different

types of job separations. We consider two different methods for dividing separations into

different types. First, we consider the distinction between different transition types after the

separation: job-to-job transitions (EE transitions) and separation into unemployment (EU

transitions).4 Second, we separate job spells by reasons for why the job ended; in particular,

separations by quits or by firings. We find that a higher unemployment rate at the formation

of the match has contrasting effects on subsequent EE and EU transitions. The distinction

between quits and firings results in a similar contrasting outcome.

In order to interpret our empirical results, we build a simple job-ladder model to study

the match quality over the business cycle. The model-generated data exhibits a similar

pattern as the empirical results. It turns out that the cyclicality of the opportunities for EE

transitions is essential in generating the observed pattern.

The pioneering work by Bowlus (1995) also studies the employment duration over the

business cycle. We first replicate her study using our dataset. Our dataset includes a longer

4In our dataset, there is no distinction between unemployment and not in the labor force. We label all
nonemployment as “unemployment” in this paper.

2



time period, and more importantly, we are able to include prime-aged workers. We show that

Bowlus’ (1995) result, which indicates that the unemployment rate at the start of the job

has a negative effect on employment durations, is substantially weaker in our dataset which

includes a longer time series. In macroeconomic literature, her result has been interpreted

as evidence that matches formed during booms are of higher quality,5 but in our dataset

the result seems more nuanced. The main difference of our study from Bowlus (1995) is

that we show that once we look at different types of job separations separately, we can draw

a clearer conclusion on the effect of the business cycle on employment duration. Similarly

to Bowlus (1995), a recent paper by Mustre-del-Rio (2014) also finds that a match formed

during a boom lasts longer. His methodology is different from ours and he focuses on the

contrast between the effect of the unemployment rate at the time of job separation versus the

effect of the unemployment rate at the time of match formation. Finally, using a matched

employer-employee data set, Kahn (2008) also finds that job spells are shorter when a match

is formed during a recession. However, this relationship reverses after controlling for firm

fixed effects.

There is an additional reason why it is important that we distinguish the types of job

separations. In the estimation of Bowlus (1995) and Mustre-del-Rio (2014), the current

unemployment rate is included as an independent variable. However, it is well known that

different types of job separations can exhibit different cyclical properties. For example, the

EE transition rate is known to be procyclical and the EU transition rate is countercyclical

(similarly, the quit rate is procyclical and the firing rate is countercyclical), and thus the cur-

rent unemployment rate has the opposite effect on employment duration and these opposing

forces can cancel each other out. In our estimation, we can estimate both effects separately.

The distinction between EE and EU transitions results in strikingly contrasting out-

comes: a high unemployment rate at the start of a match increases the probability that it

ends with an EE transition but it has almost no (or slightly negative) effect on the probability

that it ends with an EU transition. As is expected, an increase in the current unemployment

rate reduces the probability that the job spell ends as an EE transition, but it increases the

probability that it ends with an EU transition. We find a similar pattern when we make

a distinction by causes—the result for quits is similar to the EE transition and the result

for firings (and other reasons) is similar to the EU transition. This is as expected, because

fired workers tend to move to nonemployment after separation, while those who quit tend

5For example, this is an implication of the models by Moscarini (2001) and Barlevy (2002). These
models consider on-the-job search and share some features with our job-ladder model, although our model
is substantially simpler. In Costain and Reiter (2008), this relationship between match quality and business
cycles plays an important role in explaining labor market volatility.
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to move on to new jobs.6

The contrasting effect on different types of separations calls for a theoretical interpreta-

tion. To this end, we build a quantitative job-ladder model that features both endogenous

separation and on-the-job search. We estimate the model-generated data in the same way

as we treat the NLSY data. There, EE transitions and EU transitions are both considered

as separations. Theoretically, both types of separations tend to happen for a match with a

low match quality. However, there are some important differences between different types of

separations. The matches that endogenously end as EU transitions are at the bottom of the

match quality distribution; that is, of very small match surplus. In contrast, it is possible

that the matches that end in EE transitions have a decent match quality—workers quit

because they find a job with even higher match quality. The responses of EU transitions are

governed by variations in the creation of “very bottom” jobs over the cycle. The creation

of very bottom jobs are mainly affected by the behavior of the reservation match quality for

the unemployed. For EE transitions, the average level of match quality is more important,

and thus the overall distribution matters. During recessions, the improvement of match

quality is slow because there are fewer opportunities to move to a better job. This leads to

a lower level of average match quality during recessions. This in turn implies that matches

created by EE transitions during recessions are of lower quality than the ones created during

booms, because they tend to originate from a lower-quality matches. This effect governs the

cyclicality of new match quality through EE transitions.

In the next section, we describe the dataset. Section 3 describes the empirical methodol-

ogy, in particular cause-specific and subhazard regressions. We present the estimation results

in Section 4. Section 5 describes the theoretical framework and results. Section 6 concludes.

2 Data description

We use data from the NLSY 1979 cohort in this study. A total of 12,686 individuals born

between 1957 and 1964 participated in this survey. These individuals were interviewed

annually from 1979 through 1994 and biennially thereafter until the survey ended in 2012.

The data set we use in this study covers all the survey years until 2010. The survey collects

detailed information about each job a respondent holds or previously held. We use the

Employer History Roster (Beta Version) for employment histories for all the individuals

participating in the survey. This roster alleviates the more involved linking process across

6See Akerlof, Rose, and Yellen (1989) for a discussion.
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different survey years.7

Our analysis is based on making a differentiation across job separations. There are two

particular features of the data that we use to make such a distinction. First, the panel

aspect of the data allows us to keep track of what happens after separating from the current

employer, i.e., whether the worker becomes unemployed or finds another job immediately.

Second, the data provides detailed information about the reason why a job spell ended.

A detailed description of the reasons for job separations is available in Appendix B. In

particular, we observe whether the job ended due to the worker’s quit decision to take or

look for another job or due to the firm’s firing decision.

Using these two pieces of information, we make two classifications for job separations.

In the first classification, we distinguish employment-to-employment transitions, EE, from

transitions to unemployment, EU . When a worker loses his job, but is able to find a new

job within one month, we call this separation an EE transition.8 An exception is the case

where the separation is due to an obvious layoff or firing. We check the reason for separation

for each job spell, and if the reason is either “layoff, job eliminated” or “discharged or fired,”

we do not categorize that separation as an EE transition. The reason for this exception is

that, by EE transition, we want to capture the behavior of a worker voluntarily moving to

a new job—this is how the EE transition is modeled in Section 5. We call all separations

that are not EE transitions EU transitions.

The second classification is based on the information about the reason why a job spell

ended. We define three categories for the reasons of job separations: quits, firings, and

other reasons. Our interest in quits partly comes from the intuition that, from a worker’s

perspective, job spells should be shorter for those jobs created during a recession because

workers are willing to take a low match-quality job foreseeing that they will quit to take

or look for a better job. Accordingly, it is natural to categorize quits due to reasons other

than to take or look for another job into “other reasons.” The firm-side incentives imply

longer spells for jobs created during a recession, because these matches are expected to be

high quality, and firms are less likely to fire these workers. Thus, the “firings” category

includes discharges and layoffs. Termination of temporary and seasonal jobs are included

in “other reasons” category, because these jobs are set for a fixed term regardless of match

7Obtaining some of the job characteristics, e.g., class of worker and union status, still requires linking
across different survey years. We describe in detail the construction of our dataset in Appendix A.

8This is in line with the identification of EE transitions in the literature. Studies that use Monthly
Current Population Survey, such as Fallick and Fleischman (2004), rely on survey responses that are one
month apart from each other. Tjaden and Wellschmied (2014), who use the Survey of Income and Program
Participation dataset, define job-to-job transitions as those transitions in which the worker works in two
consecutive months without reporting unemployment in between (in addition to the ones identified from the
occupational switch).
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quality. Separations due to closings are also included in “other reasons” category since all

jobs regardless of match quality are terminated with this type of job separation.9

Under each classification, our sample consists of multiple job spells for each individual.

We measure the duration of a job spell in months. Some of the job spells are right-censored

due to the finite horizon of the survey and loss of follow-up. We include the unemployment

rate at the start of the job, u0, to analyze the effect of aggregate labor market conditions

when the job is created. We also include the current unemployment rate, ut, as a time-

varying regressor to capture on-going labor market conditions. We obtain data from the

Bureau of Labor Statistics for the national unemployment rate. The time series is not

seasonally adjusted so that it is consistent with the data from NLSY. The other explanatory

variables include personal and job characteristics at the start of a job such as age, gender,

race, education, and whether the job is protected by a union.

3 Estimation strategy

The Cox (1972) proportional hazard model is widely applied to duration data when time

to a failure event is of interest. In the analysis of employment duration, the failure event

of interest is job separation. In our analysis, there are multiple types (“causes”) of job

separations, and only the first of these causes for job separation, if any, is observed. In

other words, each cause for job separation is a competing risk for the other causes. In this

section, we start with a description of Cox’s proportional hazard model when there is a single

cause for the failure event. Then, we describe two alternative approaches proposed in the

literature when there are competing risks: cause-specific hazard regressions and regression

on a subhazard function.10

3.1 Cox Proportional Hazard Model

Let the hazard function for job separations be:

h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
.

The hazard function is the instantaneous probability that a job separation occurs at time T

conditional on surviving up to time t. Cox (1972) further imposes that the hazard function

for job separations, conditional on a set of explanatory variables at time t, X(t), takes the

9Inclusion of these type of job separations in the “firings” category does not change the conclusions.
10Both methods have their pros and cons—see, for example, Putter, Fiocco and Geskus (2006) for a general

discussion.
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following proportional form:

h(t|X(t)) = h0(t) exp(X(t)β), (1)

where X(t) are time-varying explanatory variables, β is a vector of parameters common

across all job spells, and h0(t) is the baseline hazard. The baseline hazard is also common

across all job spells, and its form is left unspecified. Cox (1972) describes a semi-parametric

approach for obtaining estimates of the model parameters, β̂, through the maximization of

the following partial likelihood function:

L =
∏

i:Ci=1

h(ti|Xi(ti))∑
j:tj≥ti

h(ti|Xj(ti))
=

∏
i:Ci=1

exp(Xi(ti)β)∑
j:tj≥ti

exp(Xj(ti)β)
, (2)

where Ci = 0 if the job spell is right-censored. Note that right-censored job spells enter the

partial likelihood function only through the denominator. Further, the baseline hazard can be

recovered non-parametrically after obtaining β̂ even though it cancels from the estimating

equation. The proportionality assumption implies that the hazard functions are strictly

parallel and inference is possible solely based on β̂. Specifically, a positive (negative) value

of β̂ implies that the probability of job separation increases (decreases) with an increase in

the value of the explanatory variable.

3.2 Cause-specific hazard functions

A standard application of the Cox proportional hazard model can be misleading when there

are competing events. The proportional hazard model in equation (1) assumes that the

explanatory variables affect the probability of job separation in the same way regardless of

its cause. However, the model is misspecified under such a restriction if the effect of one of

the explanatory variables is different for each cause-specific job separation. In this study, an

EE transition and an EU transition (or a quit and a firing) are competing events for job

separations, and the theory predicts that both the starting and current unemployment rate

affect the probability of job separation due to these causes in opposite directions.

Taking this issue into account, here we define a separate hazard function for each cause-

specific job separation. Formally, let k denote one of the K possible types of job separations.

The hazard function for a job separation due to type k is:

hk(t|X(t)) = h0,k(t) exp(X(t)βk). (3)

The specification in equation (3) is similar to the standard specification in equation (1) except
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that it is now separately defined for K different possible types for job separations. Both the

baseline hazard functions and the parameters are allowed to differ across different types of

job separations. The βk’s can be estimated separately for each cause-specific hazard function

by maximizing the partial likelihood function in equation (2). However, the occurrence of

a competing event is treated as right-censored in each of these estimations. While the

estimation procedure with cause-specific hazard functions is the same as with the standard

Cox proportional hazard model without competing risks, the interpretations of the parameter

estimates are different. Because the distributions of time to a job separation for each cause-

specific event are potentially dependent, the sign of the parameter estimates alone cannot

determine the effect of a covariate on the duration of employment. When the hazard functions

are estimated separately for each cause-specific job separation, the effect of a change in the

variable of interest on a cause-specific job separation depends nonlinearly on baseline hazard

functions and parameter estimates of the other cause-specific hazard functions.

To illustrate this point, let the baseline cumulative cause-specific hazard function be

Hk(t) =

∫ t

0

hk(s)ds.

Then, the probability of surviving from any event at time t is

S(t) = exp(−
K∑
k=1

Hk(t)).

The survival probability now depends on the baseline and parameter estimates not only from

the hazard regression of the event of interest, but also from the hazard regressions of the

other competing events. Further, the probability of failing from cause k before time t is:

Ik(t) =

∫ t

0

hk(s)S(s)ds. (4)

The probability in equation (4) is called the cumulative incidence function. The cumulative

incidence function represents the probability that failure from cause k occurs before time t.

Since this is an intuitively appealing object, below we measure the effect of a change in the

starting and current unemployment rates on different types of separations by constructing

cumulative incidence functions.
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3.3 Regression on a subhazard function

As an alternative to cause-specific hazard regressions, Fine and Gray (1999) propose a

methodology that allows inference on cumulative incidence functions solely based on es-

timates of β. They define a subhazard function for the competing risk k as follows:

h̄k(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t ∪ (T ≤ t ∩K ̸= k))

∆t
. (5)

The subhazard function shows the instantaneous probability of a job ending due to reason

k conditional on surviving up to time t or ending before time t due to a reason other than

k. Similarly to Cox’s proportional hazard model, Fine and Gray (1999) assume that the

subhazard function takes the form:

h̄k(t|X(t)) = h̄0,k exp(X(t)βk). (6)

The subhazard function in equation (6) can be estimated in a way that is analogous to

equation (2). The only difference in the estimation procedure is in the treatment of the risk

set. According to equation (5), job spells that have already ended due to another cause are

still considered to be in the risk set for the competing risk k. Since these observations can

potentially become right-censored and dropped from the risk set (but the censoring cannot

be observed because job spells have already ended), Fine and Gray (1999) weight them using

the Kaplan-Meier estimate of the survivor function for the censoring distribution.

One of the advantages of the estimation strategy proposed by Fine and Gray (1999)

is that inference can now be made solely based on β̂, because the subhazard function is

directly linked to the cumulative incidence function. Note that the baseline cumulative

incidence function and subhazard function for the competing risk k are related as follows:

Ik(t) = 1− exp

(
−
∫ t

0

h̄k(s)ds

)
.

The estimates of β have a similar interpretation to the standard Cox proportional hazard

model. A positive (negative) value of β̂k implies that increasing the value of the explanatory

variable increases (decreases) the probability of job separation due to cause k.
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4 Results

4.1 Sample restrictions

Following Bowlus (1995), we restrict the dataset to include only private sector employment.

Jobs that start before the individual completes all schooling or is younger than 16 years old

are dropped from the sample. Further, jobs with missing information and those lasting less

than a month are not included in the sample. Unlike Bowlus (1995), we include females in

our sample. Bowlus (1995) restricts the sample to only males on the grounds that females

are likely to quit for reasons other than poor match quality, such as marriage, pregnancy,

and childcare. We do not make such a restriction on our sample, because it is likely that

distinctions among job separations can control for these differences.

The original dataset consists of multiple job spells for each individual. If there is an

individual-specific unobserved component, the job spells for the same individual are poten-

tially correlated and the estimates of β are biased. To address the concerns about unob-

served heterogeneity, we follow Bowlus (1995) and randomly select one spell per individual.

Bowlus (1995) argues that such a restriction on the sample (under certain restrictions on

the distribution of unobserved heterogeneity) produces unbiased estimates of β.11 However,

the estimates for the baseline hazard functions are still biased, because longer spells are

now overrepresented in the sample. Since cumulative incidence functions are constructed

from the estimates of the baseline hazard functions, they are also potentially biased. While

the bias in cumulative incidence function calculations is problematic for inference from the

cause-specific hazard regressions, this is not a concern for the subhazard regressions because

inference is possible solely based on the estimates of β.

4.2 Preliminary estimation

As a preliminary step, we first repeat Bowlus’s (1995) analysis. First, we run her estimation

with the same time period as hers (from 1979 to 1988). For comparability, we exclude

females from our sample in this section along with other restrictions in the previous section.

Also only in this section, we use the weekly employment status instead of monthly. In the

subsequent sections, we use monthly employment status so that it can be directly comparable

to the model in Section 5.

Table 1 presents the estimation results. The first column is from Table 1 in Bowlus

(1995), and the second column is from our sample which covers the same time period as hers.

11See pp. 340-341 of Bowlus (1995) for detailed discussions. She argues that even when the unobservables
do not have the correct distribution, inference is still possible and when a variable has a significant impact
on the hazard rate, this indicates that the variable’s impact is real and not due to the misspecification bias.
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Variable
Bowlus
Sample

Our sample
(Short Panel)

Our sample
(Long Panel)

u0 .050* .052** .007
(.023) (.016) (.014)

ut −.460* −.321* .389***
(.183) (.126) (.098)

u2
t .028* .018* −.025***

(.011) (.008) (.006)
HS −.260** −.170*** −.107*

(.066) (.045) (.045)
COL −.521*** −.790*** −.545***

(.106) (.080) (.067)
AGE −.152 −.027 .262***

(.112) (.085) (.026)
SQAGE −.003 .001 −.005***

(.003) (.002) (.001)
NWHITE .090 .069 .171***

(.068) (.039) (.035)
UNION −.174* −.481*** −.360***

(.076) (.048) (.043)

Occurrence: 1392 2873 3456
# of observations: 2135 4330 4073
# of right-censored: 743 1457 617

Table 1: Replication of Bowlus (1995). The first column is taken from Bowlus (1995, Ta-
ble 1). The second and third columns are the replication of her results with our samples
from 1979 to 1988 and from 1979 to 2010, respectively. UNION=1 if the job is covered
under a union contract or collective bargaining agreement; NWHITE=1 if the respondent is
black or hispanic; SQAGE=age squared; HS=1 if the respondent is a high school graduate,
and COL=1 if he completed 16 or more years of education. Standard errors are given in
parentheses. * indicates significant at 5%, ** indicates significant at 1%, and *** indicates
significant at 0.1%.
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Despite the retrospective corrections of the samples and randomness in selecting spells, our

result is qualitatively very similar to hers. In particular, u0 has a significantly positive effect

on separation probability, indicating that the match quality is higher for the jobs that are

created in booms.

Next, we extend the sample period to the same as the current analysis (from 1979 to 2010)

and repeat the analysis. We maintain the same sample restrictions as Bowlus (1995). The

third column in Table 1 presents the estimation results from the longer panel. Now the effect

of u0 becomes statistically insignificant. The difference is likely due to the age of samples—

Bowlus’ (1995) samples consist of very young workers, whose labor market experiences are

very different from older workers. To the extent that we are interested in the behavior of

typical worker-firm match, our samples are more representative of the entire economy than

hers. Below, in our main analysis, we show that the effect of u0 is more transparent once we

take different types of separations into account.

4.3 EE and EU transitions

In this section, we treat movement to another job and transition to non-employed status as

competing risks. Table 2 presents our main estimation results. The first two columns show

the estimation results from the cause-specific hazard regressions for EE transitions and EU

transitions. The last two columns show the results from the subhazard resgressions. The

coefficients of interest are those for the unemployment rate at the start of the job spell, u0,

and the current unemployment rate, ut, for EE transitions and EU transitions.

The effects of the explanatory variables can be directly inferred from the estimates of

the subhazard regressions. The effect of u0 is positive and statistically significant for EE

transitions. The positive sign implies that a high unemployment rate at the start of a job

spell increases the probability that the worker moves from his current job to another job. In

contrast, for the job separations that results in EU transitions, the sign of the coefficient for

u0 is negative, which implies that a high unemployment rate at the start of a job reduces

the probability that the worker experiences EU transition in the future.

In the aggregate data, the cyclical behavior of the EE and EU flow rates are qualitatively

different. While the EE flow rate is strongly procyclical, the EU flow rate is strongly coun-

tercyclical. This macro-level observation suggests that they also respond to ut in opposite

directions. The negative coefficient for ut from the subhazard regression for EE transitions

indicates that the probability that a job spell ends with an EE transition is lower during

recessions. In contrast, the coefficient estimate from the subhazard regression for the EU

transitions is positive and statistically significant. The positive coefficient implies that the
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Cause-Specific Hazard Subhazard

Variable EE EU EE EU

u0 .043** −.029 .134*** −.050**
(.015) (.015) (.020) (.018)

ut −.035* .096*** −.188*** .086***
(.016) (.014) (.023) (.019)

HS .042 −.255*** .186** −.236***
(.055) (.046) (.055) (.045)

COL −.066 −1.080*** .419*** −.948***
(.067) (.078) (.066) (.076)

AGE .388*** .105*** .263*** −.040
(.028) (.022) (.025) (.021)

SQAGE −.007*** −.002*** −.005*** .000
(.000) (.000) (.000) (.000)

NWHITE −.008 .272*** −.116** .283***
(.038) (.036) (.038) (.035)

GEN −.191*** .247*** −.287*** .309***
(.037) (.035) (.036) (.035)

UNION −.501*** −.366*** −.226*** −.105*
(.050) (.046) (.048) (.043)

Occurrence: 3111 3276 3111 3276

# of observations: 7551
# of right-censored observations: 1164

Table 2: Estimation results for hazard functions under EE and EU classifications.
UNION=1 if the job is covered under a union contract or collective bargaining agreement;
GEN=1 if the respondent is female; NWHITE=1 if the respondent is black or hispanic;
SQAGE=age squared; HS=1 if the respondent is a high school graduate, and COL=1 if
he completed 16 or more years of education. Standard errors are given in parentheses. *
indicates significant at 5%, ** indicates significant at 1%, and *** indicates significant at
0.1%
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probability that a job spell ends with an EU transition is higher during a recession. Both

of these estimates are consistent with the cyclical behavior of EE and EU flows.

The results for the effect of ut are crucial for isolating the effect of u0, as the dura-

tion of a job spell is affected by the current cyclical fluctuations. Both Bowlus (1995) and

Mustre-del-Rio (2014) include the unemployment rate as an explanatory variable for hazard

regressions. However, the model suffers from misspecification bias if ut has opposite effects

on the decisions of workers and firms. In both of these papers, the coefficient estimate for

ut is statistically insignificant when it is added linearly to the model. Bowlus (1995) fur-

ther adds the squared value of ut to the right-hand side variables, and the estimates for

the explanatory variables involving ut are significant in her results. By distinguishing job

separations according to their causes, we separately identify the effects of current cyclical

fluctuations on the duration of a job spell ended with EE transitions and EU transitions.

The opposite signs for different causes support the discussion about the effect of ut raised in

Bowlus (1995).12

While the estimates from the subhazard regressions provide a direct inference on the

effects of u0 and ut on EE transitions and EU transitions, using these estimates to make

inferences about the overall duration of employment can be misleading. The subhazard

functions for different reasons of job separations are estimated separately, and the probability

of job separation can potentially exceed one when the value of one of the explanatory variables

is changed.

To evaluate the overall behavior of employment durations, we use the coefficient estimates

from the cause-specific hazard regressions. Note that the estimates of the coefficients from the

cause-specific regressions alone are not informative about the effects of u0 and ut, although

the signs agree with the estimates from the subhazard regressions. Therefore, we obtain

the cumulative incidence functions for each job separation category using the coefficient and

baseline hazard estimates from the cause-specific hazard regressions. By construction, the

probability of job separation is less than one at any point in time.

Figure 1 shows the cumulative incidence functions for each cause-specific job separations.

The cumulative incidence functions are drawn for a 29 year-old high-school graduate white

male whose job is not protected by a union. The unemployment rate is set equal to the

average value of the unemployment rate for the survey years, 6.15%, and it is assumed to

be equal to this value for all of the time periods from the start of the job. The plots for

both termination types are stacked so that the differences show the probability of observing

12Bowlus’ (1995) motivation for including the current unemployment rate non-linearly in her analysis is
to capture the countercyclicality of firings. Because we make a distinction across job spells according to
transition type and reason, we do not need to maintain this non-linearity assumption. Hence, we drop u2

t

from our analysis.
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Figure 1: Cumulative incidence functions for quits, firings, and other reasons. The cumula-
tive incidence functions are stacked so that the distance between two curves represents the
probabilities of the different events.

the corresponding cause-specific job separation before time t. At any time t, the difference

between the sum of cumulative incidence functions and one represents the survival proba-

bility. From the survival probability, we can calculate that the median duration of a job is

10 months.

Figure 2 shows the effects of a change in u0 on the cumulative incidence functions for EE

transitions and EU transitions. In each plot, the solid curve shows the cumulative incidence

functions when u0 is equal to its sample mean for the period under study, 6.15%. The

dashed and dotted curves correspond to the cumulative incidence functions when u0 is one

standard deviation, 1.71 percentage points, above or below its sample mean. The current

unemployment rate is still kept at its average value for all of the remaining time periods.

It can be seen that the quantitative magnitude of the effect of u0 on the EE transition

probability is significantly larger than the effect on the EU transition probability.

Similar results hold for the effects of ut. Figure 3 shows the change in the cumulative

incidence functions for cause-specific job separations after a change in ut. In each plot, the

solid curves show the cumulative incidence functions when ut is equal to its sample mean.

The dashed and dotted curves correspond to the cumulative incidence functions when ut is

permanently one standard deviation above or below its sample mean for all the periods after

the job spell has started.

Comparing Figures 2 and 3, the effect of u0 on the probability of EE movements is

of quantitatively comparable order to the effect of ut. The effect of aggregate economic
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Figure 2: Changes in cumulative incidence functions in response to a change in u0.
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Figure 3: Changes in cumulative incidence functions in response to a change in ut.
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conditions (here represented by ut) on worker flows is well documented and extensively

studied. These figures show that the effect of u0 on worker flows is also quantitatively

important.

4.4 Quits, firings, and other reasons

In this section, we distinguish job spells based on the reasons for job separation. The first

three columns show the estimation results from the cause-specific hazard regressions for job

separations due to quits, firings, and other reasons, respectively. The last three columns

show the results from the subhazard regressions.

Table 3 paints a very similar picture as Table 2, with quits corresponding to EE transi-

tions and firings (and other reasons) corresponding to EU transitions. The unemployment

rate upon match has a positive effect on quits and small negative effect on firings. The

current unemployment rate has a negative effect on quits and a positive effect on firings

and other reasons. Again, these effects of ut can easily be understood by the procyclical

aggregate quit rate and countercyclical aggregate firing rate.

Figures 4, 5, and 6 correspond to Figures 1, 2, and 3 in the previous subsection. The

results are very similar, with quits corresponding to EE transitions and firing (and other

reasons) corresponding to EU transitions. In the following model analysis, we focus solely

on the EE-and-EU distinction, mainly because of the difficulty in defining quits and firings

at a theoretical level. However, given these direct associations, we believe that the quits-

and-firings distinction can also be interpreted similarly.13

5 Model

In this section, we analyze a simple job-ladder model in order to interpret our empirical

findings in a more formal setting.14 Our model focuses on a worker’s decision of whether to

accept a job with a given match quality. Firms’ decisions are not modeled explicitly—one

interpretation is that firms’ decisions are implicit in the distribution of offered match quality

13One alternative interpretation of the difference in results between quits and firings is the different mo-
tivations for workers and firms. For matches where workers’ decisions are important in the match forma-
tion/separation, workers tend to take low-quality jobs in recessions and they tend to quit into another job
in future. For matches where firms’ decisions are important, the match quality improves during recessions
because the firms can wait longer until a good match comes along, and they are less likely to end up with
firings in the future. This interpretation is not explicitly considered in the model in the next section—we
leave it to future research to investigate this (and other potential) interpretation further.

14Given that the fit of the model to the empirical results turns out to be very good, another possible
interpretation of this paper’s exercise is that we are estimating the job-ladder model with indirect inference
(Smith (1993) and Gouriéroux and Monfort (1996)), using the Cox model as the auxiliary model.
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Cause-Specific Hazard Subhazard

Variable Quits Firings Other Quits Firings Other

u0 .182*** −.065** −.175*** .396*** −.123*** −.272***
(.017) (.023) (.019) (.021) (.032) (.024)

ut −.131*** .161*** .135*** −.423*** .179*** .174***
(.019) (.021) (.017) (.025) (.031) (.023)

HS .023 −.250*** −.173** .149* −.185** −.097
(.060) (.069) (.055) (.061) (.069) (.055)

COL −.083 −1.316*** −.707*** .382*** −1.028*** −.454***
(.074) (.131) (.082) (.074) (.129) (.079)

AGE .646*** .089** .070** .541*** −.060 −.065**
(.040) (.035) (.024) (.048) (.034) (.023)

SQAGE −.012*** −.002*** −.002*** −.010*** .001 .001
(.001) (.001) (.001) (.001) (.001) (.000)

NWHITE .084** .286*** .114** .017 .236*** .053
(.042) (.055) (.042) (.042) (.054) (.042)

GEN −.083** −.252*** .313*** −.130*** −.294*** .341***
(.041) (.056) (.041) (.040) (.055) (.041)

UNION −.510*** −.156** −.520*** −.241*** .179** −.255***
(.056) (.064) (.056) (.054) (.062) (.053)

Occurrence: 2536 1398 2453 2536 1398 2453

# of observations: 7551
# of right-censored observations: 1164

Table 3: Estimation results for hazard functions under quits, firing, and other reasons clas-
sifications. UNION=1 if the job is covered under a union contract or collective bargaining
agreement; NWHITE=1 if the respondent is black or hispanic; SQAGE=age squared; HS=1
if the respondent is a high school graduate, and COL=1 if he completed 16 or more years
of education. Standard errors are given in parentheses. * indicates significant at 5%, **
indicates significant at 1%, and *** indicates significant at 0.1%
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Figure 4: Cumulative incidence functions for quits, firings, and other reasons. The cumula-
tive incidence functions are stacked so that the distance between two curves represents the
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Figure 5: Changes in cumulative incidence functions in response to a change in u0.
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Figure 6: Changes in cumulative incidence functions in response to a change in ut.

(the distribution is assumed to be the same over time) and labor market frictions. Another

interpretation is that the match formation/separation decision is efficient so that workers’

decisions and firms’ decisions agree with each other.

As is mentioned in the previous section, there can be interpretations that are not captured

in this simple model. This model should therefore be viewed as a first step, and although

it is indeed quite surprising that this model can quantitatively capture the above empirical

patterns quite well, it does not rule out alternative (possibly more complex) interpretations.

5.1 Setup

The model setup is the standard job-ladder model.15 An infinitely-lived worker is either

employed or unemployed. We assume that his utility is linear and he consumes what he

receives each period. An employed worker receives a wage of zx. The component z is the

aggregate productivity and x is the match quality. z follows a Markov process according to

F (z′|z), where ′ (prime) represents the next period. We assume that x is constant for a given

job. At the beginning of the following period, an employed worker can receive two different

shocks. First, he may receive a job offer from another employer. The probability of this

15Moscarini and Postel-Vinay (2014) use a similar model in their analysis of the Great Recession.
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shock is λe(z
′) ∈ [0, 1]. Note that this probability is a function of the next period aggregate

state z′. The match quality of this new job is randomly drawn from a distribution that is

constant over time, G(x). After seeing the match quality, the worker chooses whether to

stay in the same job, move to the new job, or move to unemployment. The second shock is a

separation shock with probability δ(z′) ∈ [0, 1] which forces him to move to unemployment.

We assume that λe(z
′) + δ(z′) ≤ 1 for all z′.

An employed worker’s Bellman equation can be written as

W (x, z) =zx+ βEx′,z′ [λe(z
′)max{W (x′, z′),W (x, z′), U(z′)}

+ (1− λe(z
′)− δ(z′))max{W (x, z′), U(z′)}+ δ(z′)U(z′)].

Here, W (x, z) is the value function of an employed worker, U(z) is the value function of an

unemployed worker, and β is the discount factor. The operator Ex′,z′ [·] takes the expected

value with regard to x′ and z′.

An unemployed worker receives a job offer with probability λu(z
′) ∈ [0, 1]. While un-

employed, he receives a flow value of b, which can be interpreted as the combination of

unemployment insurance benefit, home production, and the value of leisure. After observing

the match quality of the offer, he chooses whether to take that job. An unemployed worker’s

Bellman equation is therefore

U(z) = b+ βEx′,z′ [λu(z
′)max{W (x′, z′), U(z′)}+ (1− λu(z

′))U(z′)] .

5.2 Calibration

One period is set as one month. The discount factor is set at β = 0.99
1
3 , as in Gertler and

Trigari (2009). Following Hall and Milgrom (2008), we choose b so that it is 71% of the

average wage. F (z′|z) approximates an AR(1) process:

log(zt+1) = ρz log(zt) + ϵt,

where ϵt ∼ N(0, σ2
z). We set ρz = 0.95

1
3 , again following Gertler and Trigari (2009). For σz,

we target the cyclicality of the wages of new hires. This is because it is commonly considered

that existing workers’ wages tend to be sticky, and here what affects the match formation is

the wages at the time of contact between the worker and the firm. Shimer (2005b) estimates

the standard deviation of labor productivity to be 2 percent quarterly, after HP-filtering

with parameter 105. In Pissarides (2009), the elasticity of job changers’ wages with respect

to labor productivity is estimated to be 1.70. Haefke et al. (2013) estimates this elasticity to
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be 1.31 for new hires from non-employment and 2.02 for job changers, although the standard

errors are large (Table 8). This provides the target of the quarterly standard deviation of

wages for new matches to be from 2.6 percent to 4.0 percent. We set σz to be 0.01, which

gives us 3.1 percent value for this target.

The logarithm of the match quality shock is normally distributed with its mean normal-

ized to zero, log(x) ∼ N(0, σ2
x). The dispersion in x directly affects the gains from switching

to another employer. Tjaden and Wellschmied (2014) estimate the average wage gain upon

job-to-job transition to be 3.3%, and we target this value. This gives us σx = 0.035.

The labor market frictions, λu(z), λe(z), and σ(z), are calibrated using labor market

flows. First, we assume that λe(z) is proportional to λu(z); λe(z) = αλu(z).
16 We set

α = 0.27 to target an average job-to-job flow rate of 1.4% per month, again taken from

Tjaden and Wellschmied (2014).

We assume that λu(z) and δ(z) take the following form:

λu(z) = λ̄u + ϕλ log(z),

and

δ(z) = δ̄ − ϕδ log(z).

The average values, λ̄u and δ̄, are set so that the model replicates the gross flow rate for

unemployment to employment and employment to unemployment. Krusell et al. (2015)

calculate these values (with adjustments for measurement errors) as 0.235 and 0.014 per

month, using the Current Population Survey dataset.17 The parameter values are λ̄u = 0.242

and δ̄ = 0.014. The parameters governing the fluctuations, ϕλ and ϕδ, are set so that the

fluctuations of the corresponding flow rates in the model mimics the behavior of the data.

Krusell et al. (2015) calculate the standard deviation of (quarterly averaged, logged, and

HP-filtered with parameter 1,600) these flows as 0.085 and 0.085. We obtain ϕλ = 1.10 and

ϕδ = 0.063. Table 4 summarizes the calibration.

5.3 Results

The model implies the steady-state value of unemployment at 5.6%. The standard deviation

of employment and the unemployment rate are 0.009 and 0.136. The corresponding empirical

16Shimer (2005a), Moscarini and Postel-Vinay (2014), and Mukoyama (2014) employ a similar assumption.
This property comes out naturally from a search and matching model where employed and unemployed
workers compete for the same set of vacancies, but they differ in the efficiency of search.

17The time span that Krusell et al. (2015) analyze is from 1978 to 2009, which is almost identical to our
data period.
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Parameter Description Target/Source Value

β Discount Factor Gertler and Trigari (2009) 0.99
1
3

b Value of unemployment Hall and Milgrom (2008) 0.735

ρz Persistence of aggregate shocks Gertler and Trigari (2009) 0.95
1
3

σz Dispersion of aggregate shocks cyclicality of new hire’s wages 0.01

σx Dispersion of match quality Tjaden and Wellschmied (2014) 0.035

α λe(z) relative to λu(z) Tjaden and Wellschmied (2014) 0.27

λ̄u Average value of λu Krusell et al. (2015) 0.242

δ̄ Average value of δ Krusell et al. (2015) 0.014

ϕλ Fluctuation parameter of λu Krusell et al. (2015) 1.10

ϕδ Fluctuation parameter of δ Krusell et al. (2015) 0.063

Table 4: Calibration

Cause-Specific Hazard Subhazard

Variable EE EU EE EU

u0 .051*** −.005* .074*** −.085***
(.002) (.002) (.003) (.003)

ut −.084*** .090*** −.141*** .161***
(.002) (.002) (.003) (.003)

Occurrence: 95741 93014 95741 93014

# of observations: 188755

Table 5: Regression results from model generated data. Standard errors are given in paren-
theses. * indicates significant at 5%, ** indicates significant at 1%, and *** indicates signif-
icant at 0.1%

values are 0.010 and 0.113 in the data (Krusell et al. 2015).18 As in the data, the flow rate

for job-to-job transition and UE flow are procyclical and EU flow rate is countercyclical

(the corresponding correlation coefficients with the unemployment rate are −0.686, −0.876,

and 0.821). Thus the model represents the aggregate cyclical movement of the labor market

very well.

Now we turn to the micro-level behavior of employment duration. Table 5 presents the

results from running the same estimation as Section 4 on model-generated data. The model

predictions are largely consistent with the empirical result.

18For all summary statistics below, the variables are quarterly averaged, logged, and HP-filtered with
parameter 1,600.
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Figure 7: Average value of new x at each period, plotted against the unemployment rate

5.3.1 Intuitions

Interpreting the coefficients for ut is straightforward. Largely because of the movements

in λe(z) and δ(z), the EE flow rate is procyclical and the EU flow rate is countercyclical.

Interpreting the coefficients on u0 requires more information, as it is a reflection of the quality

of matches formed in the past.

The key to understanding these coefficients is what type of matches are created at each

point in time. Figure 7 plots the simulated average match quality for new workers, calculated

separately for the matches formed by EE transitions (“from another job”) and the matches

formed by UE transitions (“from U”). The average match quality is plotted against the

unemployment rate. One can see striking differences in these two series. First, the average

quality of matches formed by EE transitions is higher than that of matches formed by UE

transitions. This is natural because EE transitions are more selective. Second, they exhibit

a different relationship with the unemployment rate. Let us consider them one by one.

For the UE transition, because the distribution of new x is constant over the business

cycle, the average quality in Figure 7 reflects the reservation match quality. The reservation

match quality, in relation to the aggregate state z, is plotted in Figure 8.19

There are two properties that are notable in Figure 8. First, the reservation match quality

19The discreteness of the graph in Figure 8 comes from the grid points we use. This is also reflected in
the outcome for UE transitions in Figure 7.
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Figure 8: Reservation match quality for each z

is decreasing in z. This means that more of the “very bottom quality” jobs are created in

booms, and they are destroyed when a recession arrives. This is reflected in the (small

but) negative entry of u0’s influence on EU flow, although the mapping between the average

match quality and the coefficient is not exact.20 The jobs that are created in booms are more

likely to be separated into unemployment. Second, the slope is very small, compared to the

fluctuations in z. This is because there are multiple effects offsetting each other. First and

the most obvious effect is that when z is high, zx can be high even if x is low, so that even

a low x can be accepted. Second, because λu(z) is increasing in z, there are more chances

of obtaining another draw in booms, and this makes the worker more choosy during booms.

This raises the reservation match quality in booms—the exact opposite of the first effect.

The third effect is that because λe(z) is increasing in z, the worker is willing to take a low-x

match, thinking that there will soon be another chance on the job. This offsets (a part of)

the second motive of waiting in booms.

The fact that the profile in Figure 8 is close to flat implies that these effects almost

exactly offset each other. This is reflected in the small size in the coefficient of u0 for EU

20Another reason for the negative coefficient on u0 here is that ut does not adjust immediately to the
change in z. For example, when z decreases very rapidly, ut does not increase immediately and thus the
term with ut under-predicts the increase in the EU flow rate. A part of increase in the EU flow rate is thus
attributed to the fact that the recent unemployment rate was low, and to the extent that u0 is a reflection
of the recent unemployment rate, this effect can generate a negative coefficient on u0.
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Figure 9: Average value of x, plotted against the unemployment rate

transitions in the cause-specific hazard regression (although, once again, the mapping is not

exact because of the competing risks structure). It is almost statistically insignificant despite

generating a very large sample. We believe that this is in fact a favorable property of the

model, considering that the corresponding coefficient in Table 2 is insignificant.

It is relatively straightforward to understand the relationship between the unemployment

rate and the average new match quality for EE transitions in Figure 7. In booms, the average

match quality for existing matches is already good, because of the frequent opportunity for

job-to-job transitions (this can be seen from Figure 9 which plots the average match quality

for all matches). Thus the new match formed by a job-to-job transition in a boom should

have a higher match quality compared to the match formed in a recession. The pattern in

Figure 7 for EE transitions is reflected in the coefficient on u0 for EE in Table 5. Because

the average x of jobs created in recessions by job-to-job transitions are worse, these jobs will

have more opportunity to experience EE transitions in future.

In sum, the model provides theoretical intuitions for our empirical results in earlier sec-

tions. It is substantially easier to interpret the outcome by inspecting the mechanism in the

model than directly speculating what is in behind the regression coefficients from the data,

since we can directly observe the match quality in the model.

Finally, going back to the original question of whether a better quality match is created

during booms or recessions, we provide two answers. First, because the offered match quality
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Figure 10: Average value of x for newly formed match, plotted against the unemployment
rate

distributions in the job-ladder model is acyclical and it is still capable of generating the

regression coefficients that are empirically relevant, we can conclude that the cyclicality of

offered match quality distribution is not necessary in explaining the pattern of employment

duration. This is important because one possible explanation of Bowlus’ (1995) result is a

technology shock that is cohort-specific.21 Second, the change in job-to-job transition rate

is an essential driver of the quality distribution of new matches over the business cycle.

Figure 10 plots the overall average quality of new matches, and it is clearly procyclical. In

this sense, Bowlus’ (1995) takeaway that the quality of new matches is procyclical survives,

despite the fact that the coefficient on u0 for her Cox (1972) regression in our extended

samples is not statistically different from zero (in Table 1). We reach this conclusion from

an entirely different route from Bowlus (1995). Our approach is to distinguish different types

of separations and to build a model that matches the data properties in order to directly

observe the match quality of newly-formed matches.

21See, for example, Costain and Reiter (2008).
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6 Conclusion

In this paper, we empirically examined the effects of labor market conditions on the duration

of employment. Using data from NLSY 1979 cohort, we estimated a proportional hazard

model under the assumption that different causes of job separations are competing risks.

Making a distinction between different types of separations is the main contribution of this

paper, because it allowed us to test separately for both of these opposing forces rather than

estimating their net effect on the duration of employment.

Two functions, the cause-specific hazard function and the subhazard function, have been

widely used in the literature to estimate hazard models when there are competing risks. We

applied both of these in this paper and they produced results that are consistent with each

other. We found that an increase in the unemployment rate at the start of an employment

relation increases the probability that a separation with job-to-job transition occurs, but it

reduces the probability that it ends with the worker moving into unemployment.

The distinction based on reasons for the separation, which divides the separations into

quits, firings, and other reasons, yielded a similar result. This was as expected because

the majority of quits result in job-to-job transitions and fired workers tend to transit into

unemployment.

There can be several different interpretations for the different patterns of job-to-job tran-

sitions and transitions into unemployment (or quits and firings) in relation to the aggregate

condition at the time of match formation. In order to examine the mechanism formally,

we built a simple job-ladder model and calibrated it to match the U.S. data. The model

outcome is largely consistent with the empirical results.

The model allowed us to interpret the results in the empirical part more directly in the

context of match quality. The model outcome shows that the average quality of new matches

is procyclical. It also clarifies that job-to-job transitions play an important role in analyzing

the time-series of the average quality of new matches. Our result suggests that when studying

the issues of “mismatch” in the labor market, it is essential to take job-to-job transitions

into account.22

22Barlevy (2002) and Mukoyama (2014) emphasize the consequences of this “mismatch employment” on
aggregate productivity.
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Appendix

A Details of Data Construction and Summary Statis-

tics

We use the Employer History Roster (Beta version) provided by NLYS 1979. This roster

contains information about each of the up to 57 jobs every individual holds. We retrieved

the job start and end dates, employment status, and reason for job separations directly from

this roster. Class of worker and union status are spread out on a roster created separately

for each survey year. We created these variables by linking the rosters for each survey year.

We removed observations with inconsistent information. We use the job start and end dates

to calculate the duration of the job spells and the information on employment status to

determine censored observations.

Starting from 1980, each survey asks respondents about their school enrollment for each

month from the date of the last interview until the date of the current interview. We use

this information in all survey years to determine the last month a respondent was enrolled

in school. For those who did not attend school after 1980, we use the information in the

first survey in 1979 about the last date a respondent attended school. If the year of last

school enrollment is missing, we drop this individual from our sample. If only the month

of last school enrollment is missing, we insert May as the graduation month, which is the

modal month in our sample. For duration analysis, we drop job spells that start before all

schooling is completed.

To determine EE and EU transitions for a job spell, we compare the stop date of that

job spell with the start date of other job spells. If there is less than a month of difference

and the job did not end with a firing, we label this job as EE. There are some cases where

a respondent holds multiple jobs. For these cases, if the respondent already has another job

at the time the job ended, we labeled it as EE. All the other job spells are labeled as EU .

When creating the sample for the shorter panel, we restrict our dataset to the jobs that

start before the year 1988. This restriction reduces the maximum number of jobs that an

individual holds to 32. For the jobs that started before 1988, but ended after 1988, we change

the job ending date to the interview date in 1988 for that individual. We also label these

job spells as censored. Similarly, when we determine the date for last school enrollment, we

restrict our dataset to survey years until 1988. This process overwrites some of the jobs with

missing ending dates and the last school enrollment dates for respondents, which causes a

difference between the sample sizes of shorter and longer panels. Table 6 shows summary
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statistics from our short and long panel samples after imposing the restriction above.

Variable Explanation
Mean

(Short Panel)
Mean

(Long Panel)

u0 Unemployment rate at the start of the job 7.400 7.002
AGE Age of the respondent at the start of the job 22.606 25.231
HS =1 if obtained high school diploma or equivalent 0.659 0.703
COL =1 if completed 16 years of schooling 0.120 0.145
NWHITE =1 if black or Hispanic 0.407 0.389
UNION =1 if covered by union 0.218 0.184
GENDER =1 if female 0.000 0.461

# of Observations: 4330 7551
# of right-censored: 1457 1164
Median duration: 61 weeks 12 months

Table 6: Description and Means for Our Samples. Short panel uses survey years until 1988
and long panel uses survey years until 2010.

B List of Job Separation Reasons

Employer History Roster (Beta version) in NLSY 1979 provides the following reasons for job

separations. We categorize these reasons as [Q]-quit, [F]-firing, and [O]-other reasons.

1. Layoff, job eliminated [F]

2. Company, office or workplace closed [O]

3. End of temporary or seasonal job [O]

4. Discharged or fired [F]

5. Government program ended [O]

6. Quit for pregnancy, childbirth or adoption of a child [O]

7. Quit to look for another job [Q]

8. Quit to take another job [Q]

9. Other (SPECIFY) [O]

10. Quit because of ill health, disability, or medical problems [O]
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11. Moved to another geographic area [O]

12. Quit to spend time with or take care of children, spouse, parents, or other family

members [O]

13. Quit because didn’t like job, boss, coworkers, pay or benefits [O]

14. Quit to attend school or training [O]

15. Went to jail, prison, had legal problems [O]

16. Transportation problems [O]

17. Retired [O]

18. No desirable assignments available [O]

19. Job assigned through a temp agency or a contract firm became permanent [O]

20. Dissatisfied with job matching service [O]

21. Project completed or job ended [O]

22. Business failed or bankruptcy [O]

23. Sold business to another person or firm [O]

24. Business temporarily inactive [O]

25. Closed business down or dissolved partnership [O]

The last four reasons are related to self-employment jobs. Because we restrict our sample to

private sector employment only, our sample does not include any job spell that ends due to

one of these reasons.

Of our interest is how well quitsmatch with EE transitions. Table 7 shows the cross

tabulation of these job separation categories from our sample with the longer panel. About

three-fourths of quits turn out to be an EE transition.

C Computational Details of the Model

The Bellman equations are computed on discretized grids. We put 31 grid points in log(z)

dimension and 51 grid points on log(x) dimension. The upper and lower bounds of the log(z)

grid are set at plus and minus three standard deviations of the unconditional distribution
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Transition Type

Reason EE EU Total

Quits 1894 642 2536
Firings 0 1398 1398

Other reasons 1217 1236 2453

Total 3111 3276 6387

Table 7: Cross tabulation of job separations by transition type and reason from our longer
panel sample.

of log(z). The upper and lower bounds of the log(x) grid are set at plus and minus five

standard deviations of the log(x) draw. The stochastic processes are approximated with

Markov chains using Tauchen’s (1986) method.

The value functions are computed by the standard value function iteration. Once the

value functions and the policy function is computed, we simulate the model and generate

samples. The samples are treated in the same way as the NLSY samples, and used for

estimation. In the benchmark case, we simulate 200,000 people for 20,000 periods each. For

each observation, we randomly select one employment spell per person from the first 200

spells.
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