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CAUSAL INFERENCE WITH AUXILIARY OBSERVATIONS

YUTA OTA, TAKAHIRO HOSHINO, AND TAISUKE OTSU

Abstract. In the evaluation of social programs, it is often difficult to conduct randomized con-
trolled experiments due to non-compliance; therefore the local average treatment effect (LATE)
is commonly applied. However, LATE identifies the average treatment effect only for a subpop-
ulation known as compliers and requires the monotonicity assumption. Given these limitations
of LATE, this paper proposes a study design and strategy to non-parametrically identify the
causal effects for larger populations (such as ATT and ATE) and to remove the monotonicity
assumption in the cases of non-compliance. Our strategy utilizes two types of auxiliary obser-
vations, one is an outcome before assignment and the other is a treatment before assignment.
These observations do not require specially designed experiments, and are likely to be observed
in baseline surveys of the standard experiment or panel data. We present the results for the
random assignment and those of multiply robust representations in the case where the random
assignment is violated. We then present details of the GMM estimation and testing methods
which utilize overidentified restrictions. The proposed methodology is illustrated by empirical
examples which revisit influential studies by Thornton (2008), Gerber et al. (2009), and Beam
(2016), as well as the data set from the Oregon Health Insurance Experiment and that from an
experimental data on marketing in a private sector.

1. Introduction

Knowledge of causal effects is important for those engaged in policy-making at governmental
or non-governmental organization levels, as well as for decision-makers within private sectors
(Imbens, 2024). Identification and estimation of the causal effects are typically carried out
under the untestable assumption of unconfoundedness, that is, independence between treatment
and potential outcomes of interest (Imbens and Rubin, 2015). The gold standard for achieving
unconfoundedness and inferring causal effects is randomized controlled experiments. However,
in many cases, such an experiment remains difficult or impossible to implement due to financial,
political, or ethical reasons (Athey and Imbens, 2017). In social program evaluations, it is
difficult to conduct a randomized controlled experiment because noncompliance with an assigned
treatment may occur, and the unconfoundedness will be violated (Imbens and Angrist, 1994).

In such cases, the local average treatment effect (LATE) can be identified using the assignment
of treatment as an instrumental variable (IV) under conditions weaker than unconfoundedness
(Imbens and Angrist, 1994; Angrist et al., 1996), and it consistently estimates a causal effect
in a non-parametric manner without restrictions on the effect heterogeneity. However, LATE
identifies the average treatment effect only for a subpopulation called compliers who react on
the assignment as intended by the researcher. As compilers may not be representative of the
entire population, it has been argued that LATE may not be a valid parameter for policy-
making (Robins and Greenland, 1996; Freedman, 2006; Pearl, 2009; Deaton, 2009; Heckman
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and Urzua, 2010; Aronow and Carnegie, 2013; Swanson and Hernán, 2014; Imbens, 2024). For
example, Imbens (2014) argued that “If the noncompliance is substantial, we are limited in the
questions we can answer credibly and precisely.” Therefore, even if LATE can be estimated, the
causal effects of larger populations, such as the average treatment effect on treated (ATT) and
average treatment effect (ATE) are still of interest. In addition, identifying LATE requires the
monotonicity (i.e., there are no defiers who oppositely react on the assignment as intended by
the researcher in the population or interest). If there are defiers in the population, LATE will
be biased as it converges to a weighted difference between the effect of the treatment among
compliers and defiers (Angrist et al., 1996; De Chaisemartin, 2017).

Given these limitations of LATE in the cases where non-compliance occurs, this paper presents
a study design and strategy to non-parametrically identify the causal effects for ATT and ATE
and to drop the monotonicity assumption. The strategy utilizes two types of auxiliary observa-
tions under the standard LATE assumptions consisting with the relevance between the assign-
ment and the treatment, the exclusion restriction, and the monotonicity. One is an outcome
before assignment that is commonly observed in baseline surveys of randomized experiments and
is also widely used in difference-in-differences (DID) designs. The other is a treatment (or an
other but similar treatment) before assignment that can be observed in the situations where the
treatment is available before assignment (e.g., the treatment is available on the market before
the experiment). Primarily supposing additional assumptions on the auxiliary observations,
the outcome before assignment is used to identify ATT and ATE, and the treatment before
assignment is used to drop the monotonicity. More specifically, by using the outcome before
assignment, ATT can be identified under a parallel trend assumption on subpopulations, similar
to that used in DID designs, and ATE can be identified by an extra assumption of another paral-
lel trend or homogeneity between certain subpopulations. Furthermore, by using the treatment
before assignment, the monotonicity can be dropped if either it is the same as the treatment
status when assigned to the control group or it is a kind of instrument variable for the outcome
through the treatment. Either of these strategies with auxiliary observations works alone, and
they can also work together. In addition to identification results in the random assignment,
this paper provides multiply robust representations in the case where the random assignment
is violated such as in observational studies. Throughout the paper, we assume that both the
assignment and treatment are binary.

One useful feature of these auxiliary observations is that they do not require specially designed
experiments because they are observed without any manipulation or intervention. So they are
likely to be observed in baseline surveys in standard experiments or several types of panel data
such as administrative data or marketing platform data, and also available in data sets from
existing studies. We now list some influential empirical studies, where LATE estimates may
suffer from the above limitations and have one or both of the auxiliary observations. We revisit
all these examples in our empirical illustrations. Each of Thornton (2008), Gerber et al. (2009)
and Beam (2016) reports insignificant causal estimates from encouragement design experiments,
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and in each case the complier fraction is less than one half.1 Importantly, each of the outcomes
before assignment is available in their baseline surveys so that we can use their original data
sets. As another example, based on the Oregon Health Insurance Experiment, which is a natural
experiment with a lottery, Finkelstein et al. (2012) and Taubman et al. (2014) estimated the
effects of enrolling in a health insurance called Medicaid by LATE. However, the population
in the experiment may structurally include defiers because only about 30% of those who won
the lottery actually enrolled, and there was another Medicaid program where people who had
lost the lottery could also be enrolled (Finkelstein et al., 2012). Indeed, their original data set
contains auxiliary data to apply our methodology: (i) a treatment status of an other public
assistance program before assignment, which can be used as the similar treatment before as-
signment, is available in their administrative data, and (ii) the outcomes before assignment are
also available in the data set of Taubman et al. (2014). We revisit these existing studies with
our methodology in Section 5. This paper also discusses alternative auxiliary observations and
augmented experiment designs.

Research on identification of other than the average treatment effect for compliers (here-
after, ATE(c)) with an IV has been limited, and it has discussed only under the use of basic
observations that are the assignment, treatment, and outcome. Most studies investigated valid
assumptions to establish equivalence between ATE and LATE. Martens et al. (2006) and Hernán
and Robins (2006) assumed homogeneity conditions that are guaranteed to hold under the null
hypothesis of no treatment effect, e.g., the case where the treatment effect is identical for all sub-
jects (Hernán and Robins, 2006; Tan, 2010). Also several studies assumed another homogeneity
condition, where ATE equals to LATE conditional on covariates (Angrist and Fernandez-Val,
2010; Aronow and Carnegie, 2013; Fricke et al., 2020). Instead of homogeneity, some studies
imposed restrictions on unobserved confounders with or without covariates (Wang and Tchet-
gen Tchetgen, 2018; Cui and Tchetgen Tchetgen, 2021; Hartwig et al., 2023). Applicability of
these approaches would be limited without covariates, and even with covariates; it would be
often difficult to test or argue that sufficient covariates are included to guarantee their condi-
tions. Alternatively, the marginal treatment effects identify general parameters, including ATT
and ATE, with a continuous instrument variable (Heckman and Vytlacil, 1999, 2005). However,
the assignment is binary in many cases of social experiments and identification of the marginal
treatment effects with a binary instrument needs parametric assumptions (Brinch et al., 2017).
It is also known that with continuous instruments estimation of ATE requires specification of
a parametric marginal treatment effect curve and its extrapolation (Cornelissen et al., 2016;
Sigstad, 2024). Unlike previous research, by using the outcome before assignment, our strat-
egy achieves non-parametric identification of ATT and ATE based on indirectly testable or
interpretable assumptions with or without covariates.

Toleration on defiers has been the focus of several studies on LATE. Most studies have in-
vestigated the relaxation of the monotonicity (Small et al., 2017; Klein, 2010; van’t Hoff et al.,
1Thornton (2008) employs two-stage least squares estimation, while Beam (2016) adopts the LATE estimator.
Gerber et al. (2009) report intention-to-treat estimates; however, as discussed in our empirical illustrations (Section
5), applying the LATE estimator to their data also fails to yield statistically significant effects. The fraction of
compliers in each case, which is also detailed in Section 5, is less than half.
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2023; Dahl et al., 2023). For example, Dahl et al. (2023) assumed that there are only compliers
or defiers in each supported value of the potential outcome. As another approach, De Chaise-
martin (2017) assumed a restriction on the characteristics of the target population that a certain
fraction of the compliers have the same average effect and population as the defiers. In contrast
to these studies, by making use of the treatment before assignment, our strategy drops entirely
the monotonicity assumption based on additional conditions on the auxiliary data.

Auxiliary variables and augmented experiment designs have been used in the literature to
adjust for post-treatment variables such as non-compliance, censoring by death, or surrogate
outcomes (Follmann, 2006; Ding et al., 2011; Mealli and Pacini, 2013; Gabriel and Gilbert,
2014; Jiang et al., 2016; Gabriel and Follmann, 2016; Yang and Small, 2016; Jiang and Ding,
2021). Much of this literature, following the principal stratification framework (Frangakis and
Rubin, 2002), focused on identifying principal causal effects (PCEs), which are the effects of
the treatment on the outcome conditioning on post-treatment variables between the treatment
and outcome. In contrast, we focus on the more policy-relevant effects of the post-assignment
variable on the outcome, i.e. the effect of the treatment itself under non-compliance. Although
several studies employed an outcome before assignment (Ding et al., 2011; Mealli and Pacini,
2013) or observations of a post-assignment variable at baseline, i.e. the treatment before assign-
ment under non-compliance (Follmann, 2006; Gabriel and Gilbert, 2014; Gabriel and Follmann,
2016), the way we use the auxiliary observations also differs from theirs. Some of this literature
proposed additional conditions to identify PCEs without the monotonicity (Ding et al., 2011;
Jiang et al., 2016). However, it has been shown that these approaches are limited to achieve
local identification even when further constraints are placed on the auxiliary variables. The as-
pects with partial relevance are covered in Section 2.2.2. Several studies on mediation analysis
also used augmented experiment designs (Mattei and Mealli, 2011; Imai et al., 2013), such as
directly or indirectly manipulating the mediation variables. These approaches are also different
from our objectives and methodology.

This paper proceeds as follows. Section 2 presents identification results for one or both uses of
the auxiliary observations. The results for the random assignment and those of multiply robust
representations in the case where the random assignment is violated are also provided. Section
3 presents the GMM estimation and testing methods which utilize overidentified restrictions. In
Section 4, we present identification results with alternative auxiliary observations or augmented
experiment designs. In Section 5, we present empirical illustrations of the proposed methods.
Section 6 concludes.

This paper contains supplementary materials. In Appendix A, we discuss extensions of our
identification results in Sections 2.1 and 2.2 to the case where the conditional ignorability holds
true. Appendix B presents proofs and derivations in the main paper. Appendix C illustrates
finite sample performances of the proposed methodology by Monte Carlo simulation. Appendix
D provides an additional result for an empirical illustration in Section 5.
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2. Identification

In this section, we present our identification results. Section 2.1 provides a strategy for iden-
tifying ATT and ATE, in addition to ATE for compliers (denoted by ATE(c)), in the case where
the researcher can observe an outcome Y pre before the assignment and maintain a monotonicity
assumption to rule out defiers. Section 2.2 presents a strategy for identifying ATE(c) in the case
where defiers may exist in the population but the researcher can observe a treatment Dpre before
the assignment. Furthermore, Section 2.3 presents a strategy for identifying ATE(c), ATT, and
ATE in the case where defiers may exist in the population but the researcher can observe both
Y pre and Dpre. While these sections assume that the assignment is randomized, Section 2.4
investigates the case where the random assignment is violated, such as in observational studies,
but ignorability conditional on observed covariates holds true.

Let Z ∈ {0, 1} be an assignment indicator, D ∈ {0, 1} be a treatment status indicator, and
Y ∈ Y ⊂ R be an outcome of interest. Then let Dz ∈ {0, 1} be the potential treatment variable
realized only when Z = z, and Yzd ∈ Y be the potential outcome realized only when Z = z and
D = d. The basic assumption that underlies in this section is as follows:

Assumption 1.

(i): [Exclusion and consistency] It holds Yd = Yzd for each z ∈ {0, 1} and d ∈ {0, 1}, and

D = ZD1 + (1− Z)D0,

Y = ZDY11 + Z(1−D)Y10 + (1− Z)DY01 + (1− Z)(1−D)Y00.

(ii): [Relevance] Cov(D,Z) ̸= 0.

This assumption is standard in the literature of causal inference with non-compliance (e.g.,
Angrist et al., 1996). Note that the assumption Yd = Yzd rules out direct effects of Z on the
potential outcomes. We introduce a principal strata variable (Frangakis and Rubin, 2002):

U =



a if D1 = 1, D0 = 1,

c if D1 = 1, D0 = 0,

d if D1 = 0, D0 = 1,

n if D1 = 0, D0 = 0.

(1)

The compliers (U = c) react on the assignment as intended by the researcher, and other three
strata do not. The always-takers (U = a) are always treated, the never-takers (U = n) are never
treated, and the defiers (U = d) react conversely to the assignment.

Our causal effects of interest are the average treatment effect (ATE = E[Y1 − Y0]), average
effect of treatment on the treated (ATT = E[Y1−Y0|D1 = 1]), and compliers’ average treatment
effect or local average treatment effect (ATE(c) = E[Y1−Y0|U = c]). To describe our identifica-
tion strategy, it is insightful to express these estimands by using the notation µu

d = E[Yd|U = u]
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and pu = P(U = u) for d ∈ {1, 0} and u ∈ {c, a, n, d} as follows

ATE(c) = µc
1 − µc

0,

ATT =
pc(µc

1 − µc
0) + pa(µa

1 − µa
0)

pc + pa
,

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0). (2)

Identification of all parameters on the right-hand side of each estimand leads to identification
of the estimands on the left-hand side.

Remark 1. [Alternative definitions of ATT] To the best of our knowledge, the definition of
ATT under two-sided noncompliance has received little attention in the econometrics literature.
In this paper, we propose and formalize three distinct and meaningful definitions of ATT:

ATTD1 = E[Y1 − Y0|D1 = 1] =
pc(µc

1 − µc
0) + pa(µa

1 − µa
0)

pc + pa
,

ATTD0 = E[Y1 − Y0|D0 = 1] =
pa(µa

1 − µa
0) + pd(µd

1 − µd
0)

pa + pd
, (3)

ATTD = E[Y1 − Y0|D = 1]

=
pa(µa

1 − µa
0) + P(Z = 1)pc|Z=1(µ

c|Z=1
1 − µ

c|Z=1
0 ) + P(Z = 0)pd|Z=0(µ

d|Z=0
1 − µ

d|Z=0
0 )

pa + P(Z = 1)pc|Z=1 + P(Z = 0)pd|Z=0
,

where µ
u|Z=z
d = E[Yd|U = u, Z = z] and pu|Z=z = P(U = u|Z = z). The object ATTD1 captures

the treatment effect for those who receive treatment when incentivized, and corresponds to ATT
identified by LATE under one-sided compliance. Under one-sided compliance, the restriction
D0 = 0 forces individuals who would otherwise act as always-takers to behave as compliers.
As a result, LATE identified under one-sided compliance coincides with a weighted average
of the treatment effects for the compliers and always-takers in a hypothetical setting without
enforcement—that is, under two-sided compliance. The object ATTD0 captures the treatment
effect for individuals who receive treatment in the absence of incentives. This is conceptually
close to ATT identified by a DID design in non-experimental settings. In the absence of defiers,
this object coincides with the treatment effect of always-takers. The object ATTD represents the
treatment effect for individuals who actually received treatment within the experiment. Under
random assignment, this becomes a weighted average of the treatment effects for compliers,
always-takers, and defiers, weighted by the proportion (pa,P(Z = 1)pc,P(Z = 0)pd) for each
group treated.

A key insight is that all these objects for ATT are identifiable once the corresponding com-
ponents on the right-hand side are identified. Throughout the paper, we focus on the definition
ATT := ATTD1 , while we also comment on identification for the other objects, ATTD0 and
ATTD.

2.1. Observable outcome before assignment. To begin with, we consider the case where
the researcher can observe an outcome variable Y pre before the assignment. In this subsection,
we impose the monotonicity assumption.

Assumption 2. [Monotonicity] Dz is weakly monotone in z, i.e., P(D1 ≥ D0) = 1.
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U Y D Z Y pre

c or a Y1 1 1 Y pre

n Y0 0 1 Y pre

a Y1 1 0 Y pre

c or n Y0 0 0 Y pre

Table 1. Observable Y pre

This assumption says that there is no defiers in the population, i.e., P(U = d) = 0. Assump-
tions 1 and 2 implies that ATE takes the following form:

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ).

It is known that ATE(c) is identified under Assumptions 1 and 2 (Angrist et al., 1996), whereas
ATT and ATE are not identified in general under the same assumptions. This subsection
provides a strategy to identity ATT and ATE when the researcher can access to the outcome
variable Y pre before the assignment in addition to the main observable (Y,D,Z).

Assumption Y.

(i): [Observable pre-treatment outcome] An outcome variable Y pre ∈ Y is observable at a
time before the treatment D is realized.

(ii): [Random assignment] Z is independent from (Y pre, D1, D0, Y11, Y10, Y01, Y00).

The observations from randomized experiments can be divided into the four rows in Table 1
according to the values of D and Z. As described below, the parameters in (2) other than µa

0

and µn
1 are identified under Assumptions 1 and 2 without using Y pre. On the other hand, the

outcomes to compute µa
0 and µn

1 are never directly observed because of their definitions (i.e.,
always-takers always receive treatment and never-takers never receive treatment). To address
this problem, we introduce the auxiliary outcome Y pre.

First of all, Table 1 suggests that the following objects are identified:

µa
1 = E[Y |Z = 0, D = 1], pa = P(D = 1|Z = 0),

µn
1 = E[Y |Z = 1, D = 0], pn = P(D = 0|Z = 1),

pc = P(D = 1|Z = 1)− pa,

µc
1 =

(pc + pa)E[Y |Z = 1, D = 1]− paµa
1

pc
,

µc
0 =

(pc + pn)E[Y |Z = 0, D = 0]− pnµn
0

pc
. (4)

Therefore, under Assumptions 1, 2, and Y, we can identify ATE for compliers as ATE(c) =

µc
1 − µc

0, which is an alternative expression for the standard LATE (note that this identification
step does not use Y pre).

In order to identify ATT and ATE, it remains to identify µa
0 and µn

1 by using the auxiliary
data Y pre. To this end, we add the following assumptions.

Assumption 3.
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(i): [Parallel trend of nonreactive strata] E[Y0 − Y pre|U = a] = E[Y0 − Y pre|U = n].
(ii): [Homogeneity of nonreactive strata] E[Y1 − Y0|U = a] = E[Y1 − Y0|U = n].

Assumption 3 (i) is an analog of the parallel trend assumption on the types a and n whose
participation decisions are not affected by Z. It should be noted that this assumption can be
tested if at least one additional pre-treatment outcome is available. Assumption 3 (ii) requires
homogeneous treatment effects on the types a and n. Note that in the conventional identification
analysis for ATE, we typically impose homogeneity over all types. On the other hand, we only
require homogeneity over the types a and n. To see how Assumption 3 (i) is utilized to identify
µa
0, observe that

µa
1 − µa

0 = E[Y1 − Y pre|U = a]− E[Y0 − Y pre|U = a]

= E[Y1 − Y pre|U = a]− E[Y0 − Y pre|U = n]

= µa
1 − µa

pre − µn
0 + µn

pre, (5)

where µa
pre = E[Y pre|U = a], µn

pre = E[Y pre|U = n], and the second equality uses Assumption 3
(i). Since µa

pre and µn
pre are identified by

µa
pre = E[Y pre|Z = 0, D = 1],

µn
pre = E[Y pre|Z = 1, D = 0], (6)

we can identify µa
0 using (5), which shows that µa

0 = µa
pre + µn

0 − µn
pre, and thus ATT is also

identified by (2). Finally, Assumption 3 (ii) guarantees identification of µn
1 as µn

1 = µn
0 +

µa
1 − µa

0 so that ATE is identified by the expression in (2). Assumption 3 (ii) is considered
natural in this setup because both always-takers and never-takers are units who determine their
treatment status D without being influenced by the value of the assignment indicator Z. In
other words, unlike compliers and defiers, they are units who are not influenced by the provision
of information, incentives, or resistance to coercion due to receiving an assignment, or units
who are considered to be influenced to a small extent by these factors. Furthermore, it is
thought that units for whom the hidden cost of receiving treatment is smaller than the size of
the treatment effect will become always-takers, and units for whom the hidden cost is larger will
become never-takers.

Combining these results, identification of the causal objects in (2) is established as follows.

Theorem 1. Consider the setup of this subsection.

(i): Under Assumptions 1, 2, ATE(c) is identified.
(ii): Under Assumptions 1, 2, Y, 3 (i), ATT is identified.
(iii): Under Assumptions 1, 2, Y, 3, ATE is identified.

Based on this theorem, we can estimate these causal objects by taking sample counterparts,
and conduct statistical inference based on standard methods, such as the delta method and
bootstrap.
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Remark 2. [Alternative assumptions] Assumption 3 (i) posits parallel trends between always-
takers and never-takers (i.e., between non-reactive strata). Alternatively, µa

0 can also be identi-
fied by assuming parallel trends between different strata. One alternative is to assume parallel
trends between always-takers and compliers (i.e., between strata with D1 = 1):

E[Y0 − Y pre|U = a] = E[Y0 − Y pre|U = c].

Other alternatives can be formulated by assuming parallel trends between strata defined by
their potential treatment status. For example, one could assume trends are parallel based on
the value of D0 or D1, i.e., E[Y0 − Y pre|D0 = 1] = E[Y0 − Y pre|D0 = 0] or E[Y0 − Y pre|D1 =

1] = E[Y0 − Y pre|D1 = 0]. These alternative assumptions are testable if at least one additional
pre-treatment outcome is available. See Appendix B.3 for the proofs of identification of µa

0 under
these assumptions.

Remark 3. [Partial identification] If we relax Assumption 3 (ii) and allow for E[Y1 − Y0|U =

a] ̸= E[Y1 − Y0|U = n], ATE is no longer point identified. Instead, ATE is partially identified
within an interval determined by µn

1 = E[Y1|U = n]. If we assume that µn
1 lies in a known

interval [µn,min
1 , µn,max

1 ], then the identified set for ATE is obtained as

ATE ∈

 ∑
u∈{c,a}

puATE(u) + pn(µn,min
1 − µn

0 ),
∑

u∈{c,a}

puATE(u) + pn(µn,max
1 − µn

0 )

 ,

where ATE(u) = E[Y1 − Y0|U = u]. Since ATE(c) and ATE(a) are point identified, only
ATE(n) is subject to partial identification. A small proportion of never-takers (i.e., smaller
value of pn) leads to a relatively tight and informative identified set for ATE. In practice, for
binary outcomes, we can set µn,min

1 = 0 and µn,max
1 = 1, reflecting the logical limits on potential

outcomes (see Manski 2003). For continuous outcomes, µn,min
1 and µn,max

1 may be set based on
the theoretical support of Y . For example, if it is theoretically guaranteed that treatment effects
are non-negative, setting µn,min

1 = µn
0 may be reasonable.

Remark 4. [Overidentification] The above argument for establishing Theorem 1 (iii) is based
on showing just identification of the 11 parameters, (µu

1 , µ
u
0 , p

u) for u ∈ {c, a, n} and µu
pre for

u ∈ {a, n}. Indeed by introducing the parameter µc
pre, we have two additional restrictions:

µc
pre =

(pc + pa)E[Y pre|Z = 1, D = 1]− paµa
pre

pa
,

µn
pre =

(pc + pn)E[Y pre|Z = 0, D = 0]− pcµc
pre

pn
. (7)

These additional moment conditions can be incorporated by using the GMM approach.

Remark 5. [Alternative definitions of ATT] Under Assumptions 1, 2, and Y, we can express
the objects ATTD0 and ATTD in (3) as

ATTD0 = µa
1 − µa

0, ATTD =
pa(µa

1 − µa
0) + P(Z = 1)pc(µc

1 − µc
0)

pa + P(Z = 1)pc
.
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Since all components on the right-hand side of each expression are identified under the approach
described above, Theorem 1 (ii) remains valid regardless of whether ATT is defined by ATTD0

or ATTD.

2.2. Observable treatment before assignment. This subsection focuses exclusively on ATE(c)
as the estimand in the presence of defiers (i.e., without requiring the monotonicity in Assump-
tion 2). Clearly ATE(c) cannot be identified under Assumption 1. In this subsection, we assume
that the researcher can observe a treatment variable Dpre before the assignment in addition to
the main observable (Y,D,Z).

Assumption D.

(i): [Observable pre-assignment treatment indicator] A treatment variable Dpre ∈ {0, 1} is
observable at a time before the assignment.

(ii): [Random assignment] Z is independent from (Dpre, D1, D0, Y11, Y10, Y01, Y00).

Assumption D (i) is considered natural when the treatment of interest is available before
the assignment (e.g. ever had medical check-up). Assumption D (ii) is a standard assumption
for random assignment of Z. Intuitively, Dpre is used for untangling the mixtures of principal
strata in observations. The observations from randomized experiments can be divided into the
four rows in Table 2 (left) according to the values of D and Z. All rows are mixtures of two
principal strata. If we assume absence of defiers, the parameters µc

1, µ
c
0, µ

a
1, µ

n
0 , p

c, pa, pn and
ATE(c) are identified by using the single principal stratum moments from the second and third
rows. Otherwise we have to deal with the mixtures, and we employ Dpre to overcome this issue.
We first present an identification strategy for ATE(c) under a naive assumption on Dpre in
Section 2.2.1 to grasp an intuition, and then discuss identification under a relaxed assumption
in Section 2.2.2.

2.2.1. Stable case. To conduct identification analysis for ATE(c) in the presence of defiers, we
impose the following assumption.

Assumption 4. [Stable treatment status] P(D0 = Dpre) = 1.

Assumption 4 says that Dpre plays the role of Dz when Z = 0. Since the treatment Dpre

occurs before the assignment of Z, this assumption is reasonable if the treatment status is stable.
The relationships of the observables and principal strata variable can be summarized as in Table
2. Due to Assumption D, we do not have rows for the cases of D ̸= Dpre with Z = 0.

Indeed the first four rows of this table (right panel) suggest that the following objects are
identified:

µc
1 = E[Y |Z = 1, D = 1, Dpre = 0], pc = P(D = 1, Dpre = 0|Z = 1),

µa
1 = E[Y |Z = 1, D = 1, Dpre = 1], pa = P(D = 1, Dpre = 1|Z = 1),

µn
0 = E[Y |Z = 1, D = 0, Dpre = 0], pn = P(D = 0, Dpre = 0|Z = 1),

µd
0 = E[Y |Z = 1, D = 0, Dpre = 1], pd = P(D = 0, Dpre = 1|Z = 1). (8)
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U Y D Z
c or a Y1 1 1
n or d Y0 0 1
a or d Y1 1 0
c or n Y0 0 0

U Y D Z Dpre

c Y1 1 1 0
a Y1 1 1 1
n Y0 0 1 0
d Y0 0 1 1

a or d Y1 1 0 1
c or n Y0 0 0 0

Table 2. Case where monotonicity is not assumed with (right) and without
(left) Dpre

Furthermore, the last two rows of this table (right panel) can be utilized to identify

µd
1 =

(pa + pd)E[Y |Z = 0, D = 1]− paµa
1

pd
,

µc
0 =

(pc + pn)E[Y |Z = 0, D = 0]− pnµn
0

pc
. (9)

Therefore, under Assumption D, we can identify ATE for compliers and defiers as ATE(c) =

µc
1 − µc

0 and ATE(d) = µd
1 − µd

0, respectively.
Combining these results, our identification results for this case are presented as follows.

Theorem 2. Under Assumptions 1, 4, and D, ATE(c), ATE(d), and pu for all u ∈ {a, c, d, n}
are identified.

Based on this theorem, we can estimate these causal objects by taking sample counterparts,
and conduct statistical inference based on standard methods. There are several ways to utilize
this theorem for empirical analyses. First, we can estimate the probability of defiers pd as a
diagnostics for the monotonicity assumption. Second, we can formally test the validity of the
local average treatment analysis by testing the null of ATE(c) = ATE(d). Our proof shows that
this null is equivalent that the identification formulae for ATE(c) are same for the cases with or
without Dpre. Finally, although we cannot identify ATT or ATE, this theorem can be utilized
to obtain tighter identified sets for these objects compared to the conventional ones.

Remark 6. [Overidentification] The above argument for establishing Theorem 2 shows just
identification of the 10 parameters, µc

1, µ
c
0, µ

d
1, µ

d
0, µ

a
1, µ

n
0 and pu for u ∈ {c, a, n, d}. Indeed the

last two rows of Table 2 (right panel) imply the additional moment conditions:

pa + pd = P(D = 1|Z = 0, Dpre = 1) = P(D = 1|Z = 0),

pc + pn = P(D = 0|Z = 0, Dpre = 0) = P(D = 0|Z = 0),
(10)

which can be incorporated by using the GMM approach.

2.2.2. Unstable case . This subsection relaxes Assumption 4 (i.e., D0 = Dpre almost surely).
Without this assumption, the relationships of the observables and principal strata variable are
summarized in Table 3. Since we allow D0 ̸= Dpre, each principal strata of the first four rows
is not uniquely identified. The fifth and seventh rows for the cases of D ̸= Dpre with Z = 0 are
added to Table 2 (right) . We call this case as the unstable case.

Instead of Assumption 4, we impose the following assumptions.
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U Y D Z Dpre

c or a Y1 1 1 0
c or a Y1 1 1 1
n or d Y0 0 1 0
n or d Y0 0 1 1
a or d Y1 1 0 0
a or d Y1 1 0 1
c or n Y0 0 0 0
c or n Y0 0 0 1

Table 3. Unstable case with Dpre

Figure 1. Relationship with (right) and without (left) Dpre. The bi-directed
arrows indicate common causes.

Assumption 5.

(i): [Exclusion restriction on treatment before assignment] E[YD1 |U = u,Dpre] = E[YD1 |U =

u] for each u ∈ {c, a, n, d}.
(ii): [Exclusion restriction through treatment before assignment] P(D0 = 1|Dpre, D1) =

P(D0 = 1|Dpre).
(iii): [Relevance condition on treatment before assignment] Cov(D0, D

pre) ̸= 0.

As described below, ATE(c), ATE(d), and pu for all u ∈ {a, c, d, n} are identified under
Assumption 5. Assumptions 5 (i) and (iii) together imply Dpre works as an instrumental variable
for YD1 through D0. Assumption 5 (ii) implies that D1 relates to D0 only through Dpre; in other
words, Dpre fully mediates the common cause between D1 and D0. Figure 1 (left) provides the
general relationship without Dpre for comparison. Figure 1 (right) illustrates a relationship with
Dpre satisfying Assumption 5. This relationship arises naturally in certain settings. Dpre is
expected to account many causes of D0 and not affect YD1 when there is no incentive before the
assignment. Moreover, as long as Dpre satisfies the assumptions, it does not need to correspond
to the same treatment as the one eventually assigned. A similar treatment may also satisfy
the assumptions. For example, if the goal is to estimate the effect of coupon usage for product
A, the coupon usage status for a different product B may serve as Dpre, which is likely to be
associated with D but unlikely to affect sales of product A.

Our Assumption 5 (i) adopts a similar principle to the auxiliary independence assumption
that has been used to identify PCEs (Ding et al., 2011; Jiang et al., 2016; Jiang and Ding, 2021).
While this literature has established conditions for identifying PCEs without monotonicity, these
results are limited to local identification. In contrast, although our estimand differs, our approach
achieves point identification of ATE(c) and ATE(d) without monotonicity by leveraging Dpre

and additional Assumptions 5 (ii) and (iii).
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We now present the identification result under Assumptions 1, D, and 5. First, note that the
following objects are identified under Assumptions 1 and D:

δ(z,d,d′) = E[Yd|Dz = d,Dpre = d′], δ(z,d) = E[Yd|Dz = d],

π(z,d,d′) = P(Dz = d,Dpre = d′), ρ(z,d,d′) = P(Dz = d|Dpre = d′). (11)

Then µa
1, µ

c
1, µ

d
0, µ

n
0 , and pu for u ∈ {a, c, d, n} are identified as follows. Observe that

µu
b =

δ(1,b,b′)ρ(0,1−b′,1−b′) − δ(1,b,1−b′)ρ(0,1−b′,b′)

ρ(0,1−b′,1−b′) − ρ(0,1−b′,b′)
,

pu = π(1,b,b′)ρ(0,b′,b′) + π(1,b,1−b′)ρ(0,b′,1−b′), (12)

where

(b, b′) =


(1, 1) for u = a

(1, 0) for u = c

(0, 1) for u = d

(0, 0) for u = n

.

Intuitively, the first four rows in Table 3 provide δ(z,d,d′) and π(z,d,d′), which are weighted averages
of expectations from subjects of D0 = Dpre and D0 ̸= Dpre, and the last four rows in Table 3
provide ρ(z,d,d′), which is a fraction of the subjects of D0 = Dpre and D0 ̸= Dpre. µu

b is identified
by a weighted difference of expectations from subjects of D0 = Dpre and D0 ̸= Dpre. pu is
identified by a weighted average of expectations from subjects of D0 = Dpre and D0 ̸= Dpre.

Identification of µc
1 is outlined as follows. Note that

δ(1,1,0) = E[Y1|D1 = 1, Dpre = 0]

= E[Y1|U = c,Dpre = 0]P(D0 = 0|D1 = 1, Dpre = 0)

+E[Y1|U = a,Dpre = 0]P(D0 = 1|D1 = 1, Dpre = 0) (13)

= E[Y1|U = c]P(D0 = 0|Dpre = 0) + E[Y1|U = a]P(D0 = 1|Dpre = 0)

= µc
1ρ(0,0,0) + µa

1ρ(0,1,0),

where the third equality follows from Assumptions 5 (i) and (ii). δ(1,1,0) consists of the subject
with D0 = Dpre and the subject with D0 ̸= Dpre both have D1 = 1. Since it is conditional
on Dpre = 0, the subject with D0 = Dpre is a complier and the subject with D0 ̸= Dpre is an
always-taker. Then δ(1,1,0) will be the sum of µc

1ρ(0,0,0) and µa
1ρ(0,1,0), where ρ(0,0,0) is the fraction

of D0 = Dpre and ρ(0,1,0) is the fraction of D0 ̸= Dpre among those with Dpre = 0. Similarly, we
have

δ(1,1,1) = µa
1ρ(0,1,1) + µc

1ρ(0,0,1). (14)

Therefore, eliminating the term µa
1 from these equations yields identification of µc

1:

µc
1 =

δ(1,1,0)ρ(0,1,1) − δ(1,1,1)ρ(0,1,0)

ρ(0,1,1) − ρ(0,1,0)
. (15)

Here zero-division is avoided by Assumption 5 (iii).
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Furthermore, pc can be identified as follows:

pc = P(D1 = 1, D0 = 0)

= P(D1 = 1, Dpre = 0)P(D0 = 0|D1 = 1, Dpre = 0)

+P(D1 = 1, Dpre = 1)P(D0 = 0|D1 = 1, Dpre = 1) (16)

= P(D1 = 1, Dpre = 0)P(D0 = 0|Dpre = 0)

+P(D1 = 1, Dpre = 1)P(D0 = 0|Dpre = 1)

= π(1,1,0)ρ(0,0,0) + π(1,1,1)ρ(0,0,1),

where the third equality follows from Assumption 5 (ii). Using the identified parameters above,
µd
1 and µc

0 are identified as

µd
1 =

(pd + pa)δ(0,1) − paµa
1

pd
, µc

0 =
(pc + pn)δ(0,0) − pnµn

0

pc
. (17)

Therefore, ATE(c) = µc
1 − µc

0 and ATE(d) = µd
1 − µd

0 are identified. Combining these results,
our identification results for this case are presented as follows.

Theorem 3. Under Assumptions 1, D, and 5, ATE(c), ATE(d), and pu for all u ∈ {a, c, d, n}
are identified.

Remark 7. [Switched version of Assumption 5] Under Assumption 5’ (which switches D0 and
D1 in Assumption 5), a similar identification approach can be applied. This assumption is
natural in settings where encouragement for treatment has been frequently (or extensively)
implemented in advance. Dpre is expected to account many causes of D1 and not affect YD0

when there are incentives before assignment. The identification result under 1, D, and 5’ is
following. Note that

µu
b′ =

δ(0,b′,b′)ρ(1,1−b,1−b′) − δ(0,b′,1−b′)ρ(1,1−b,b′)

ρ(1,1−b,1−b′) − ρ(1,1−b,b′)
,

pu = π(0,b′,b′)ρ(1,b,b′) + π(0,b,1−b′)ρ(1,b,1−b′), (18)

where (b, b′) is same as the one in (12). Using the identified parameters above, µc
1 and µd

0 are
identified as

µc
1 =

(pc + pa)δ(1,1) − paµa
1

pc
, µd

0 =
(pd + pn)δ(1,0) − pnµn

0

pd
. (19)

Remark 8. [Overidentification] The above argument for establishing Theorem 3 shows just
identification of the 10 parameters, µc

1, µ
c
0, µ

d
1, µ

d
0, µ

a
1, µ

n
0 and pu for u ∈ {c, a, n, d}. For identi-

fication under Assumption 5, the last four rows of Table 3 imply the additional two moment
conditions:

pa + pd = π(0,1,1) + π(0,1,0), pc + pn = π(0,0,1) + π(0,0,0). (20)

For identification under Assumption 5’, the first four rows of Table 3 imply the additional two
moment conditions:

pc + pa = π(1,1,1) + π(1,1,0), pn + pd = π(1,0,1) + π(1,0,0). (21)
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These moment conditions can be incorporated by using the GMM approach.

Remark 9. [Impose both Assumptions 5 and 5’] When both Assumptions 5 and 5’ hold, the
10 parameters, µc

1, µ
c
0, µ

d
1, µ

d
0, µ

a
1, µ

n
0 , and pu for u ∈ {c, a, n, d} are identified by (12) and (18).

Among these parameters, the six parameters, µa
1, µ

n
0 , and pu for u ∈ {c, a, n, d} are identified in

the two ways and can be incorporated by using the GMM approach.

Remark 10. [Special case] Assumption 4 (i.e., D0 = Dpre almost surely) obviously satisfies
Assumption 5. By imposing D0 = Dpre, (12) reduces to (8), and (20) reduces to (10) because
of ρ(0,1,1) = ρ(0,0,0) = 1, ρ(0,1,0) = ρ(0,0,1) = 0, and π(0,1,0) = π(0,0,1) = 0. Since (17) is the same
as (9), the identification results under Assumption 5 reduces to those in Section 2.2.1.

Remark 11. [Role of Dpre] To provide a more rigorous foundation for our arguments, we can
explicitly define the role of Dpre within the potential outcomes framework. Let Dzd′ ∈ {0, 1}
be the potential treatment status when Z = z and Dpre = d′, and let Ydd′ ∈ Y be the potential
outcome when D = d and Dpre = d′. With this more granular notation, the foundational
assumptions can be restated. In particular, Assumptions 1 (i) and D (ii) can be restated as

Assumption 1 (i)’: It holds Ydd′ = Yzdd′ for each z ∈ {0, 1} and d ∈ {0, 1} and d′ ∈ {0, 1} and
the observed variables D and Y are constructed from the potential outcomes via the following
consistency assumptions:

Dz = DpreDz1 + (1−Dpre)Dz0, D = ZD1 + (1− Z)D0,

Yd = DpreYd1 + (1−Dpre)Yd0, Y = DY1 + (1−D)Y0.

for each z ∈ {0, 1} and d ∈ {0, 1}.
Assumption D (ii)’: Z is independent from

(Dpre, D11, D10, D01, D00, Y111, Y101, Y011, Y001, Y110, Y100, Y010, Y000).
The identification results in Theorems 2 and 3 hold true even under this more formal setting.

This is because Assumptions 4 and 5, in the stable and unstable cases respectively, provide suffi-
cient restrictions to eliminate heterogeneity induced by Dpre, ensuring the original identification
strategies remain valid. See Appendix B for a detailed discussion.

2.3. Observe previous treatment and outcome. By combining the results in Sections 2.1
and 2.2.2, ATE(c), ATT, and ATE are identified without monotonicity. We now consider the
situation where both Y pre and Dpre are observed.

Assumption YD.
(i): [Observable pre-treatment outcome] An outcome variable Y pre ∈ Y is observable at a

time before the treatment D is realized.
(ii): [Observable pre-assignment treatment indicator] An treatment variable Dpre ∈ {0, 1}

is observable at a time before the assignment.
(iii): [Random assignment] Z is independent from (Y pre, Dpre, D1, D0, Y11, Y10, Y01, Y00).

Although both Y pre and Dpre are denoted with the superscript “pre” under Assumption YD,
this does not necessarily indicate that they are observed at the same point in time. The timing
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U Y D Z
c or a Y1 1 1
n or d Y0 0 1
a or d Y1 1 0
c or n Y0 0 0

U Y D Z Y pre Dpre

c or a Y1 1 1 Y pre 0
c or a Y1 1 1 Y pre 1
n or d Y0 0 1 Y pre 0
n or d Y0 0 1 Y pre 1
a or d Y1 1 0 Y pre 0
a or d Y1 1 0 Y pre 1
c or n Y0 0 0 Y pre 0
c or n Y0 0 0 Y pre 1

Table 4. Case where monotonicity is not assumed with (right) and without
(left) auxiliary data

relationship between Y pre and Dpre is discussed in connection with Assumption 6, which is
introduced below. The relationships of the observables and principal strata variable U can be
summarized as in Table 4.

First, note that the following objects are identified under Assumptions 1 and YD:

δ(z,d,d′) = E[Yd|Dz = d,Dpre = d′], δ(z,d) = E[Yd|Dz = d],

δpre
(z,d,d′) = E[Y pre|Dz = d,Dpre = d′], δpre

(z,d) = E[Y pre|Dz = d], (22)

π(z,d,d′) = P(Dz = d,Dpre = d′), ρ(z,d,d′) = P(Dz = d|Dpre = d′).

Under Assumption 5, µa
1, µ

c
1, µ

d
0, µ

n
0 and pu’s are identified in the same manner as in (12):

µu
b =

δ(1,b,b′)ρ(0,1−b′,1−b′) − δ(1,b,1−b′)ρ(0,1−b′,b′)

ρ(0,1−b′,1−b′) − ρ(0,1−b′,b′)
,

pu = π(1,b,b′)ρ(0,b′,b′) + π(1,b,1−b′)ρ(0,b′,1−b′), (23)

where

(b, b′) =


(1, 1) for u = a

(1, 0) for u = c

(0, 1) for u = d

(0, 0) for u = n

.

Similarly, µd
1 and µc

0 are identified in the same manner as in (17):

µd
1 =

(pa + pd)δ(0,1) − paµa
1

pd
, µc

0 =
(pc + pn)δ(0,0) − pnµn

0

pc
. (24)

These equations are restated here for ease of reference and are exactly identical to those in
Section 2.2.2. Then, under Assumptions 1, YD, and 5, we can identify ATE for compliers and
defiers as ATE(c) = µc

1 − µc
0 and ATE(d) = µd

1 − µd
0, respectively.

Next, as in the result from Section 2.1, µa
0 is represented under Assumption 3 (i) by (5), which

yields

µa
0 = µa

pre + µn
0 − µn

pre. (25)
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This expression is also reproduced here for ease of reference. Since monotonicity is not assumed
here, unlike in Section 2.1, µa

pre and µn
pre are not directly identified. To conduct identification

analysis for µa
pre and µn

pre, we impose the following assumption.

Assumption 6. [Exclusion restriction on treatment before assignment for pre-treatment out-
come] E[Y pre|U = u,Dpre] = E[Y pre|U = u] for each u ∈ {c, a, n, d}.

Assumption 6 is a counterpart of Assumption 5 (i) with YD1 replaced by Y pre. Therefore,
Assumptions 5 (iii) and 6 together imply Dpre works as an instrumental variable for Y pre through
D0. There are two possible types of Dpre that satisfy Assumptions 5 and 6. One is when Dpre

represents a treatment similar to D. For example, if the goal is to estimate the effect of coupon
usage for product A, the coupon usage status for a different product B can serve as Dpre, which
is likely to be related to D but unlikely to affect pre-treatment sales of product A. The other
case is when Dpre represents the same treatment as D, but is measured at a different time point,
after Y pre and before D. In this case, Dpre may be strongly associated with D, while Y pre is
unaffected by Dpre.

Under Assumptions 5 (ii), 5 (iii), and 6, µa
pre and µn

pre are identified as follows. Using the
same argument for identification of µu

b , except that δ(z,d,d′) is replaced by δpre
(z,d,d′), we have

µu
pre =

δpre
(1,b,b′)ρ(0,1−b′,1−b′) − δpre

(1,b,1−b′)ρ(0,1−b′,b′)

ρ(0,1−b′,1−b′) − ρ(0,1−b′,b′)
. (26)

We can identify µa
0 by (25) and thus ATT is also identified by (2). Finally, Assumption 3 (ii)

guarantees identification of µn
1 as µn

1 = µn
0+µa

1−µa
0 so that ATE is identified by the expression in

(2). Combining these results, identification of the causal objects in (2) is established as follows.

Theorem 4. Consider the setup of this subsection.
(i): Under Assumptions 1, YD, and 5, ATE(c) and ATE(d) are identified.
(ii): Under Assumptions 1, YD, 3 (i), 5, and 6, ATT is identified.
(iii): Under Assumptions 1, YD, 3, 5, and 6, ATE is identified.

Based on this theorem, we can estimate these causal objects by taking sample counterparts,
and conduct statistical inference based on standard methods.

Remark 12. [Alternative assumptions] If defiers exist, then Assumption 3 can be replaced with
another reasonable assumption on the targeted outcome and situation. The group that receives
treatment on their own initiative without any external incentives (i.e., the group of D0 = 1

including always-takers and defiers) may share common characteristics in that they expect to
have worse outcomes if they do not receive the treatment. In this case, Assumption 3 (i) may
be replaced with

Assumption 3 (i)’: E[Y0 − Y pre|U = a] = E[Y0 − Y pre|U = d].

In addition, the group that does not receive treatment even if they receive an external incentive
(the group of D1 = 0 including never-takers and defiers) may have common characteristics in
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that they expect the outcomes do not change much even if they receive treatment. In this case,
Assumption 3 (ii) may be replaced with

Assumption 3 (ii)’: E[Y1 − Y pre|U = n] = E[Y1 − Y pre|U = d].

Assumption 3 (i)’ can be used to identify µa
0, and Assumption 3 (ii)’ can be used to identify

µn
1 . ATT and ATE are identified in analogous ways. When using Assumption 3 (ii)’, any

homogeneity assumption is not required to identify ATE.

Remark 13. [Partial identification] Similar to Remark 3, we can obtain partial identification
of ATE under weaker assumptions. In this case, however, we allow for the existence of defiers.
If we assume that µn

1 lies in a known interval [µn,min
1 , µn,max

1 ], then the identified set for ATE is:

ATE ∈

 ∑
u∈{c,a,d}

puATE(u) + pn(µn,min
1 − µn

0 ),
∑

u∈{c,a,d}

puATE(u) + pn(µn,max
1 − µn

0 )

 ,

where ATE(u) = E[Y1 − Y0|U = u]. Since ATE(c), ATE(a), and ATE(d) are point identified,
only ATE(n) is subject to partial identification. Therefore, a small proportion of never-takers
(i.e., smaller value of pn) leads to a relatively tight and informative identified set for ATE.

Remark 14. [Switched version of Assumption 5] Even if Assumption 5 is replaced by Assump-
tion 5’, each estimand is identified in the same manner. Under Assumption 5’, µa

1, µ
d
1, µ

c
0, µ

n
0 and

pu’s are identified in the same manner as in Remark 7:

µu
b′ =

δ(0,b′,b′)ρ(1,1−b,1−b′) − δ(0,b′,1−b′)ρ(1,1−b,b′)

ρ(1,1−b,1−b′) − ρ(1,1−b,b′)
,

pu = π(0,b′,b′)ρ(1,b,b′) + π(0,b,1−b′)ρ(1,b,1−b′). (27)

Similarly, µc
1 and µd

0 are identified in the same manner as in (19) of Remark 7:

µc
1 =

(pc + pa)δ(1,1) − paµa
1

pc
, µd

0 =
(pd + pn)δ(1,0) − pnµn

0

pd
. (28)

Also µa
0 and µn

1 are identified in the same way as the above discussion. Finally, µn
pre is identified

by

µu
pre =

δpre
(0,b′,b′)ρ(1,1−b,1−b′) − δpre

(0,b′,1−b′)ρ(1,1−b,b′)

ρ(1,1−b,1−b′) − ρ(1,1−b,b′)
. (29)

Remark 15. [Overidentification] The above argument for establishing Theorem 4 (iii) is based
on showing just identification of the 14 parameters, (µu

1 , µ
u
0 , p

u) for u ∈ {c, a, n, d} and µu
pre for

u ∈ {a, n}. For the identification under Assumption 5, the last four rows of Table 4 (right panel)
suggest the additional two moment conditions followed.

pa + pd = π(0,1,1) + π(0,1,0), pc + pn = π(0,0,1) + π(0,0,0). (30)

In addition, by introducing two more parameters (µc
pre, µ

d
pre), we have further four additional

restrictions under Assumption 5:

µa
pre =

(pa + pd)δpre
(0,1) − pdµd

pre

pa
, µn

pre =
(pc + pn)δpre

(0,0) − pcµc
pre

pn
, (31)
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where µc
pre and µd

pre are identified by (26) and δpre
(z,d) = E[Y pre|Dz = d]. For the identification

under Assumption 5’, the first four rows of Table 4 (right) suggest the additional two moment
conditions followed.

pc + pa = π(1,1,1) + π(1,1,0), pn + pd = π(1,0,1) + π(1,0,0). (32)

In addition, by introducing two more parameters (µc
pre, µ

d
pre), we have further four additional

restrictions under Assumption 5’:

µa
pre =

(pc + pa)δpre
(1,1) − pcµc

pre

pa
, µn

pre =
(pn + pd)δpre

(1,0) − pdµd
pre

pn
, (33)

where µc
pre and µd

pre are identified by (29) and δpre
(z,d) = E[Y pre|Dz = d]. These additional six

moment conditions can be incorporated by using the generalized method of moments. Equations
(30) and (32) are reproduced here for ease of reference and and are exactly identical to (20) and
(21) in Remark 8, respectively.

Remark 16. [Impose both Assumptions 5 and 5’] When both Assumptions 5 and 5’ hold
true, the 14 parameters, µc

1, µ
c
0, µ

d
1, µ

d
0, µ

a
1, µ

n
0 ,µu

pre for u ∈ {c, a, n, d} and pu for u ∈ {c, a, n, d}
are identified by (23), (26), (27), and (29). µa

0 and µn
1 are identified in the same way as the

above discussion. Among these parameters, the eight parameters, µa
1, µ

n
0 ,µa

pre, µ
n
pre, and pu for

u ∈ {c, a, n, d} are identified in the two ways. These additional moment conditions can be
incorporated by using the GMM approach.

Remark 17. [Stable case] As discussed in Remark 10, Assumption 5 can be replaced with
Assumption 4 (i.e., D0 = Dpre almost surely). Under Assumption 4, (23) becomes µu

b = δ(1,b,b′)

and pu = π(1,b,b′), and (26) becomes µu
pre = δpre

(1,b,b′), and (30) becomes pa + pd = π(0,1,1) and
pc+pn = π(0,0,0) because of ρ(0,1,1) = ρ(0,0,0) = 1, ρ(0,1,0) = ρ(0,0,1) = 0, and π(0,1,0) = π(0,0,1) = 0.
(24) and (31) remain the same.

Remark 18. [Alternative definitions of ATT] Under Assumptions 1 and YD (iii), we can
express ATTD0 and ATTD as

ATTD0 =
pa(µa

1 − µa
0) + pd(µd

1 − µd
0)

pa + pd
,

ATTD =
pa(µa

1 − µa
0) + P(Z = 1)pc(µc

1 − µc
0) + P(Z = 0)pd(µd

1 − µd
0)

pa + P(Z = 1)pc + P(Z = 0)pd
. (34)

Because all components on the right-hand side of each expression are identified under the ap-
proach described above, Theorem 4 (ii) remains valid regardless of whether ATT is defined by
ATTD0 or ATTD.

Remark 19. [Role of Dpre] The identification result in Theorem 4 holds true even under the
more formal model defined by Assumption 1(i)’. This is because Assumptions 5 and 6 provide
sufficient restrictions to eliminate heterogeneity induced by Dpre, ensuring the original identifi-
cation strategies remain valid. See Appendix B for further details.

2.4. Identification under ignorability condition. In observational studies, it is often the
case that the random assignment is violated. In this subsection we show that our identification
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argument can be extended to the case where certain ignorability condition is satisfied. Let
X ∈ X ⊂ Rq be a vector of q-dimensional covariates. We focus on the case of Section 2.3 here.
The results for the remaining cases in Sections 2.1 and 2.2 are presented in Appendix A.

Consider the setup of Section 2.3. In observational studies, Assumption YD (iii) is replaced
with the following.

Assumption YD. (iii)’ [Ignorability] Conditionally on X, Z is independent from
(Dpre, Y pre, D1, D0, Y11, Y10, Y01, Y00).

This is a standard ignorability or unconfoundedness condition commonly imposed in the
literature of causal inference with observational studies. Based on the discussion in Section 2.3,
it is sufficient for identification of the causal estimands in (2) to identify

δ(z,d,d′) = E[Yd|Dz = d,Dpre = d′], δ(z,d) = E[Yd|Dz = d],

δpre
(z,d,d′) = E[Y pre|Dz = d,Dpre = d′], δpre

(z,d) = E[Y pre|Dz = d], (35)

π(z,d,d′) = P(Dz = d,Dpre = d′), ρ(z,d,d′) = P(Dz = d|Dpre = d′),

for each z ∈ {0, 1} and d, d′ ∈ {0, 1}. To establish multiply robust representations of δ(z,d,d′),
δpre
(z,d,d′), δ(z,d), δ

pre
(z,d), π(z,d,d′), and ρ(z,d,d′) under Assumption YD (iii)’, we introduce parametric

models

ez(X;α) for P(Z = z|X),

p(z,d,d′)(X;β) for P(D = d,Dpre = d′|Z = z,X),

m(z,d,d′)(X; γ) for E[Y |Z = z,D = d,Dpre = d′, X],

mpre
(z,d,d′)(X; γpre) for E[Y pre|Z = z,D = d,Dpre = d′, X],

m(z,d)(X;λ) for E[Y |Z = z,D = d,X],

mpre
(z,d)(X;λpre) for E[Y pre|Z = z,D = d,X],

p(z,d,d′)(X; η) for P(D = d|Z = z,Dpre = d′, X),

for each z ∈ {0, 1} and d, d′ ∈ {0, 1}, where α, β, γ, γpre, λ, λpre, and η are finite dimensional
parameters. By using these parametric models, multiply robust representations of the population
objects δ(z,d,d′), δpre

(z,d,d′), δ(z,d), δ
pre
(z,d), π(z,d,d′), and ρ(z,d,d′) are obtained as follows.

Theorem 5. Under Assumptions 1 and YD (i)-(ii), and YD (iii)’, it holds

δ(z,d,d′) = E
[
I{Z = z}
ez(X;α)

I{D = d,Dpre = d′}
p(z,d,d′)(X;β)

Y

]
−E

[I{Z = z}I{D = d,Dpre = d′} − ez(X;α)p(z,d,d′)(X;β)

ez(X;α)p(z,d,d′)(X;β)
m(z,d,d′)(X; γ)

]
,(36)

δ(z,d) = E

[
I{Z = z}
ez(X;α)

I{D = d}∑
j∈{0,1} p(z,d,j)(X;β)

Y

]

−E

[
I{Z = z}I{D = d} − ez(X;α)

∑
j∈{0,1} p(z,d,j)(X;β)

ez(X;α)
∑

j∈{0,1} p(z,d,j)(X;β)
m(z,d)(X;λ)

]
,
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δpre
(z,d,d′) = E

[
I{Z = z}
ez(X;α)

I{D = d,Dpre = d′}
p(z,d,d′)(X;β)

Y pre
]

−E
[I{Z = z}I{D = d,Dpre = d′} − ez(X;α)p(z,d,d′)(X;β)

ez(X;α)p(z,d,d′)(X;β)
mpre

(z,d,d′)(X; γpre)

]
,

δpre
(z,d) = E

[
I{Z = z}
ez(X;α)

I{D = d}∑
j∈{0,1} p(z,d,j)(X;β)

Y pre

]

−E

[
I{Z = z}I{D = d} − ez(X;α)

∑
j∈{0,1} p(z,d,j)(X;β)

ez(X;α)
∑

j∈{0,1} p(z,d,j)(X;β)
mpre

(z,d)(X;λpre)

]
,

π(z,d,d′) = E
[
I{Z = z}
ez(X;α)

I{D = d,Dpre = d′}
]
− E

[
I{Z = z} − ez(X;α)

ez(X;α)
p(z,d,d′)(X;β)

]
,

ρ(z,d,d′) = E

[
I{Z = z}
ez(X;α)

I{Dpre = d′}∑
k∈{0,1} p(z,k,d′)(X;β)

I{D = d}

]

−E

[
I{Z = z}I{Dpre = d′} − ez(X;α)

∑
k∈{0,1} p(z,k,d′)(X;β)

ez(X;α)
∑

k∈{0,1} p(z,k,d′)(X;β)
p(z,d,d′)(X; η)

]
,

for each z ∈ {0, 1} and d, d′ ∈ {0, 1}.

By taking the sample counterparts of these representations, we can construct multiply ro-
bust estimators for δ(z,d,d′), δpre

(z,d,d′), δ(z,d), δ
pre
(z,d), π(z,d,d′), and ρ(z,d,d′). Then the 16 parameters

µu
1 , µ

u
0 , µ

u
pre, p

u for u ∈ {c, a, n, d} are over-identified under Assumptions 1, YD (i)-(ii), YD (iii)’,
3, 5, and 6 by the moment restrictions of (23)-(26) and (30)-(31). Just identification of the 16
parameters is guaranteed by the 16 moments of (23)-(26), and the four moments of (30)-(31)
provide overidentifying restrictions.

We close this subsection by summarizing the multiply robust properties of the estimators
based on Theorem 5 and the moment restrictions.

Proposition 1. Suppose Assumptions 1, YD (i)-(ii), YD (iii)’, 3, 5, and 6 hold true. Then

(i): δ(z,d,d′) can be consistently estimated if either {ez(X;α), p(z,d,d′)(X;β)} or m(z,d,d′)(X; γ)

is correctly specified,
(ii): δ(z,d) can be consistently estimated if either {ez(X;α), p(z,d,d′)(X;β)} or m(z,d)(X;λ)

is correctly specified,
(iii): δpre

(z,d,d′) can be consistently estimated if either {ez(X;α), p(z,d,d′)(X;β)} or mpre
(z,d,d′)(X; γpre)

is correctly specified,
(iv): δpre

(z,d) can be consistently estimated if either {ez(X;α), p(z,d,d′)(X;β)} or mpre
(z,d)(X;λpre)

is correctly specified,
(v): π(z,d,d′) can be consistently estimated if either ez(X;α) or p(z,d,d′)(X;β) is correctly

specified,
(vi): ρ(z,d,d′) can be consistently estimated if either {ez(X;α), p(z,d,d′)(X;β)} or p(z,d,d′)(X; η)

is correctly specified,
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(vii): ATE(c) and ATE(d) can be consistently estimated if either {ez(X;α), p(z,d,d′)(X;β)},
{m(z,d,d′)(X; γ),m(z,d)(X;λ), p(z,d,d′)(X;β), p(z,d,d′)(X; η)},
or {m(z,d,d′)(X; γ),m(z,d)(X;λ), ez(X;α), p(z,d,d′)(X; η)} is correctly specified,

(viii): ATT and ATE can be consistently estimated if either {ez(X;α), p(z,d,d′)(X;β)},
{m(z,d,d′)(X; γ),m(z,d)(X;λ),mpre

(z,d,d′)(X; γpre),mpre
(z,d)(X;λpre), p(z,d,d′)(X;β), p(z,d,d′)(X; η)}

or {m(z,d,d′)(X; γ),m(z,d)(X;λ),mpre
(z,d,d′)(X; γpre),mpre

(z,d)(X;λpre), ez(X;α), p(z,d,d′)(X; η)}
is correctly specified.

Furthermore, the multiply robust estimator for ATE(c) and ATE(d) are asymptotically lo-
cally efficient if {ez(X;α), p(z,d,d′)(X;β),m(z,d,d′)(X; γ),m(z,d)(X;λ), p(z,d,d′)(X; η)} are correctly
specified, and also the multiply robust estimators for ATT and ATE are asymptotically locally
efficient if
{ez(X;α), p(z,d,d′)(X;β),m(z,d,d′)(X; γ),m(z,d)(X;λ),mpre

(z,d,d′)(X; γpre),mpre
(z,d)(X;λpre), p(z,d,d′)(X; η)}

are correctly specified.

Remark 20. [Switched version of Assumption 5] Under Assumption 5’, the moment restrictions
above are replaced with (27)-(29) and (32)-(33). Just identification of the 16 parameters is
guaranteed by the 16 moments of (25) and (27)-(29), and the four moments of (32)-(33) provide
overidentifying restrictions.

Remark 21. [Impose both Assumptions 5 and 5’] Under both Assumptions 5 and 5’, the
moment restrictions above are replaced with (23), (25), (26), (27), and (29). Among the 16
parameters, µu

1 , µ
u
0 , µ

u
pre, p

u for u ∈ {c, a, n, d}, the eight parameters, µa
1, µ

n
0 ,µa

pre, µ
n
pre, and pu for

u ∈ {c, a, n, d} are identified in the two ways. δ(z,d) and δpre
(z,d) are not used in this identification

argument.

Remark 22. [Special case] Under Assumption 4 instead of Assumption 5, the moment restric-
tions are obtained from the discussion in Remark 17, and the moments ρ(z,d,d′) are not used in
this identification argument.

Remark 23. [Alternative definitions of ATT] Under Assumptions 1 and YD (iii)’, we can
express ATTD0 and ATTD as

ATTD0 =
pa(µa

1 − µa
0) + pd(µd

1 − µd
0)

pa + pd
,

ATTD =
pa(µa

1 − µa
0) + P(Z = 1)pc|Z=1(µ

c|Z=1
1 − µ

c|Z=1
0 ) + P(Z = 0)pd|Z=0(µ

d|Z=0
1 − µ

d|Z=0
0 )

pa + P(Z = 1)pc|Z=1 + P(Z = 0)pd|Z=0
.

Since all components on the right-hand side of ATTD0 are identified under the approach de-
scribed above, Proposition 1 (vi) remains valid even when ATT is defined by ATTD0 . Moreover,
while ATTD contains parameters conditional on Z, extending Assumptions 5 (i)-(iii) and 6 to
be conditional on covariates (e.g., replace Assumption 5(i) with E[YD1 |U = u,Dpre, X = x] =

E[YD1 |U = u,X = x]) allows for identification of µu
1(x) for u ∈ {c, a, d}, µu

0(x) for u ∈ {c, n, d},
µu

pre(x) for u ∈ {c, a, n, d}, and pu(x) for u ∈ {c, a, n, d}, where µu
d(x) = E[Yd|U = u,X = x],

µu
pre(x) = E[Y pre|U = u,X = x], and pu(x) = P(U = u|X = x). The parameters on the
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right-hand side of ATTD with the exception of µa
0 are then obtained by integrating x out as

µ
c|Z=1
d =

∫
µc
d(x)f(x|Z = 1)dx for d ∈ {0, 1}, pc|Z=1 =

∫
pc(x)f(x|Z = 1)dx,

µ
d|Z=0
d =

∫
µd
d(x)f(x|Z = 0)dx for d ∈ {0, 1}, pd|Z=0 =

∫
pd(x)f(x|Z = 0)dx,

µa
1 =

∫
µa
1(x)f(x)dx, pa =

∫
pa(x)f(x)dx,

where f(x|Z = z) and f(x) are the conditional density of X|Z = z and marginal density of X,
respectively. Finally, the remaining parameter µa

0 is identified from (25). The inputs required for
(25) (i.e., µa

pre, µ
n
pre, and µn

0 ) are identified by integrating x out for their respective conditional
counterparts µa

pre(x), µn
pre(x), and µn

0 (x) in the manner shown above.

3. Estimation

In this section, we briefly discuss estimation and testing methods for ATE identified by The-
orems 4 and 5 above. The methods for ATE(c) and ATT can be obtained in the same manner.
The results for the remaining cases in Section 2.1 and 2.2 are presented in Appendix A.

First, we consider estimation of ATE based on Theorem 4 (iii). Let δ̂(z,d,d′), δ̂pre
(z,d,d′), δ̂(z,d),

δ̂pre
(z,d), π̂(z,d,d′), and ρ̂(z,d,d′) be the empirical (conditional) moments of δ(z,d,d′), δpre

(z,d,d′), δ(z,d),
δpre
(z,d), π(z,d,d′), ρ(z,d,d′), respectively, and ζ̂ and ζ be their vectorizations. Also let θ be a 14-

dimensional vector given by (µu
1 , µ

u
0 , p

u) for u ∈ {c, a, n, d} and µu
pre for u ∈ {a, n}, which

provides an identification formula for ATE as

ATE(θ) = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0).

Then the minimum distance estimator for ATE is obtained as ω̂ for

(θ̂, ω̂) = arg min
θ,ω

g(ζ̂, θ, ω)′Ψg(ζ̂, θ, ω), (37)

where the vector of moment conditions g(ζ, θ, ω) = 0 is obtained by stacking the equations (23)-
(26) and ω = ATE(θ) (and also (30)-(31)) under Assumptions 1, YD, 3, 5, and 6. The weight
matrix Ψ may be chosen to achieve the asymptotic efficiency (see, e.g., Newey and McFadden,
1994). Statistical inference on ω can be conducted by the Wald statistic, likelihood ratio-type
statistic, or bootstrap method.
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Next, if the parameters ζ are identified by the ignorability condition as in Theorem 5, their
estimating equations are given by

g1(W, ζ, α, β, γ, γpre, λ, λpre, η)

=



 δ(z,d,d′) −
I{Z=z}
ez(X;α)

I{D=d,Dpre=d′}
p(z,d,d′)(X;β) Y

+
I{Z=z}I{D=d,Dpre=d′}−ez(X;α)p(z,d,d′)(X;β)

ez(X;α)p(z,d,d′)(X;β) m(z,d,d′)(X; γ)


(z,d,d′) δ(z,d) −

I{Z=z}
ez(X;α)

I{D=d}∑
j∈(1,0) p(z,d,j)(X;β)Y

+
I{Z=z}I{D=d}−ez(X;α)

∑
j∈(1,0) p(z,d,j)(X;β)

ez(X;α)
∑

j∈(1,0) p(z,d,j)(X;β) m(z,d)(X;λ)


(z,d) δpre

(z,d,d′) −
I{Z=z}
ez(X;α)

I{D=d,Dpre=d′}
p(z,d,d′)(X;β) Y pre

+
I{Z=z}I{D=d,Dpre=d′}−ez(X;α)p(z,d,d′)(X;β)

ez(X;α)p(z,d,d′)(X;β) mpre
(z,d,d′)(X; γpre)


(z,d,d′) δpre

(z,d) −
I{Z=z}
ez(X;α)

I{D=d}∑
j∈(1,0) p(z,d,j)(X;β)Y

pre

+
I{Z=z}I{D=d}−ez(X;α)

∑
j∈(1,0) p(z,d,j)(X;β)

ez(X;α)
∑

j∈(1,0) p(z,d,j)(X;β) mpre
(z,d)(X;λpre)


(z,d){

π(z,d,d′) −
I{Z=z}
ez(X;α)I{D = d,Dpre = d′}+ I{Z=z}−ez(X;α)

ez(X;α) p(z,d,d′)(X;β)
}
(z,d,d′) ρ(z,d,d′) −

I{Z=z}
ez(X;α)

I{Dpre=d′}∑
k∈(1,0) p(z,k,d′)(X;β)I{D = d}

+
I{Z=z}I{Dpre=d′}−ez(X;α)

∑
k∈(1,0) p(z,k,d′)(X;β)

ez(X;α)
∑

k∈(1,0) p(z,k,d′)(X;β) p(z,d,d′)(X; η)


(z,d,d′)

ξ1(W,α)

ξ2(W,β)

ξ3(W,γ)

ξ4(W,γpre)

ξ5(W,λ)

ξ6(W,λpre)

ξ7(W,η)



,

where W means the whole observables, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 and ξ7 are estimating equations
for the parameters α, β, γ, γpre, λ, λpre, and η, respectively. Combining this with the moment
conditions g(ζ, θ, ϑ) = 0, the GMM estimator of ATE is obtained as ω̃ for

(ζ̃, θ̃, α̃, β̃, γ̃, γ̃pre, λ̃, λ̃pre, η̃, ω̃)

= arg min
ζ,θ,α,β,γ,γpre,λ,λpre,η,ω

[
g(ζ, θ, ω)

1
n

∑n
i=1 g1(Wi, ζ, α, β, γ, γ

pre, λ, λpre, η)

]′
Ψ1

×

[
g(ζ, θ, ω)

1
n

∑n
i=1 g1(Wi, ζ, α, β, γ, γ

pre, λ, λpre, η)

]
,

where Ψ1 is a weighting matrix. The conventional GMM theory applies to obtain the asymptotic
properties of the estimator and statistical inference on ω.

Remark 24. [Switched version of Assumption 5] Under Assumptions 1, YD, 3, 5’, and 6, the
vector of moment conditions g(ζ, θ, ω) = 0 is obtained by stacking the equations (25), (27)-(29)
and (32)-(33).
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Remark 25. [Impose both Assumptions 5 and 5’] Under Assumptions 1, YD, 3, 5, 5’, and 6,
the vector of moment conditions g(ζ, θ, ω) = 0 is obtained by stacking the equations (23), (25),
(26), (27), and (29).

Remark 26. [Special case] Under Assumption 4 instead of Assumption 5, the vector of moment
conditions g(ζ, θ, ω) = 0 is obtained by stacking the equations following the discussion in Remark
17.

4. Extensions

In this section, we present three alternative experimental designs to identify and estimate
causal objects using auxiliary observations: (I) the case where the treatment status and outcome
are observable at the baseline survey (Section 4.1), (II) the case with a two-regime randomization
(Section 4.2), and (III) the case with a post treatment variable (Section 4.3).

4.1. Identification with baseline measure of treatment and outcome. In Section 2.3,
we derive identification results under the assumptions that are plausible when Dpre represents
a different but similar treatment from D, or represents the same treatment but is measured at
a different time point from Y pre. This section considers identification in the case where Dpre

represents the same treatment as D and is measured at the same time as Y pre (e.g., at baseline).
While this setting may be more feasible in practice due to the ease of data collection, it makes
satisfying the parallel trend assumption of Assumption 3 (i) challenging.

As in Remark 17, the parameters µa
1, µ

c
1, µ

d
0, µ

n
0 , and pu are identified under Assumptions 1,

YD, and 4 based solely on the observables (Z,D, Y,Dpre). On the other hand, Assumption 3
(i), which is required to identify µa

0, implicitly assumes the absence of treatment during the
observation period of Y pre. This implicit assumption is violated by the relationship between
Dpre and Y pre in the setting of this section. Therefore, we introduce alternative assumptions to
identify µa

0.

Assumption YD-a. The observable Y pre satisfies

Y pre = DpreY pre
1 + (1−Dpre)Y pre

0 ,

where Y pre
d′ is the potential outcome realized only when Dpre = d′.

This is a natural assumption in the present setting, where Dpre and Y pre are observed at
the same time point. The relationships of the observables and principal strata variable are
summarized as in Table 5 (left).

As suggested by Assumption YD-a and Table 5 (left), unlike in Remark 17, Y pre is observed
after being potentially influenced by Dpre. Therefore, identification of µa

0 based on Assumption
3 is no longer valid in this setting. To address this issue, we introduce Assumption 3a as a
replacement for Assumption 3.

Assumption 3a.
(i): [Parallel trend of strata with D0 = 1] E[Y0 − Y pre

1 |U = a] = E[Y0 − Y pre
1 |U = d].

(ii): [Parallel trend of strata with D0 = 0] E[Y1 − Y pre
0 |U = c] = E[Y1 − Y pre

0 |U = n].
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U Y D Z Y pre Dpre

c Y1 1 1 Y pre
0 0

a Y1 1 1 Y pre
1 1

n Y0 0 1 Y pre
0 0

d Y0 0 1 Y pre
1 1

a or d Y1 1 0 Y pre
1 1

c or n Y0 0 0 Y pre
0 0

R U Y D Z Dpre

1 c or a Y1 1 1 0
1 c or a Y1 1 1 1
1 n or d Y0 0 1 0
1 n or d Y0 0 1 1
1 a or d Y1 1 0 0
1 a or d Y1 1 0 1
1 c or n Y0 0 0 0
1 c or n Y0 0 0 1
0 all Y0 0 - -

Table 5. Case of baseline measure (left) and Two-regime design (right)

Now Assumption 3a (i) implies

µa
1 − µa

0 = E[Y1 − Y pre
1 |U = a]− E[Y0 − Y pre

1 |U = a]

= E[Y1 − Y pre
1 |U = a]− E[Y0 − Y pre

1 |U = d],

which can be written as

µa
0 = E[Y pre

1 |U = a] + µd
0 − E[Y pre

1 |U = d]. (38)

By using (2) and (38), we can identify ATT. Similarly, Assumption 3a (ii) implies

µn
1 = µc

1 − E[Y pre
0 |U = c] + E[Y pre

0 |U = n]. (39)

Based on (38) and/or (39), we can identify ATE under three scenarios. The identification results
for this case are summarized as follows.

Theorem 6. Consider the setup of this subsection.
(i): Under Assumptions 1, YD, YD-a, and 4, ATE(c) is identified.
(ii): Under Assumptions 1, YD, YD-a, 4, and 3a (i), ATT is identified.
(iii): Suppose Assumptions 1, YD, YD-a, and 4 hold true. If either (a) Assumptions 3a

(i) and 3 (ii); (b) Assumptions 3a (ii), and 3 (ii); or (c) Assumptions 3a (i) and 3a (ii)
holds true, then ATE is identified.

When Assumption 4 is extended to the unstable case (i.e., D0 ̸= Dpre), the identification
argument for µa

0 and µn
1 becomes problematic due to lack of identifiable structure for E[Y pre

d |U =

u].

4.2. Two-regime design. In this subsection, we consider a two-regime setting, where we do
not need to observe Y pre. First, subjects are randomly assigned to one of two regimes R ∈ {1, 0}.
In the group with R = 1, we observe (Y,D,Z,Dpre). In the group with R = 0, D = 0 is forced
so that we observe Y = Y0. In other words, we block access to the treatment for a randomly
selected subgroup. In this case, the relationships of the observables and principal strata variable
are summarized in Table 5 (right panel). In this setup, we impose the following assumptions.

Assumption 3b.
(i): [Random regime assignment] R is independent from (Dpre, D1, D0, Y11, Y10, Y01, Y00).
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U Y D Z Y pre Dpost

c or a Y1 1 1 Y pre 0
c or a Y1 1 1 Y pre 1
n or d Y0 0 1 Y pre 0
n or d Y0 0 1 Y pre 1
a or d Y1 1 0 Y pre 0
a or d Y1 1 0 Y pre 1
c or n Y0 0 0 Y pre 0
c or n Y0 0 0 Y pre 1

Table 6. Case of treatment after main observations Dpost instead of Dpre

(ii): [Block to treatment for R = 0] E[Y |R = 0] = E[Y0|R = 0].

Under Assumptions 1, D, and 5, identification of µc
1, µc

0, µd
1, µd

0, µa
1, µn

0 , and pu for u ∈
{c, a, n, d} in (23) and (24) is achieved in the same way as in Section 2.2.2. So it remains to
identify µa

0 and µn
1 for identification of ATT and ATE. Now for the data with R = 0 (i.e., the

last row of Table 5 (right panel)), Assumption 3b implies

µa
0 =

E[Y0]− (pcµc
0 + pnµn

0 + pdµd
0)

pa
=

E[Y |R = 0]− (pcµc
0 + pnµn

0 + pdµd
0)

pa
. (40)

By the same argument in Section 2.3, Assumption 3b (iii) guarantees identification of µn
1 as

µn
1 = µn

0 + µa
1 − µa

0. Combining these results, we obtain the following identification results.

Theorem 7. Consider the setup of this subsection.
(i): Under Assumptions 1, D, and 5, ATE(c) and ATE(d) are identified.
(ii): Under Assumptions 1, D, 3b, and 5, ATT is identified.
(iii): Under Assumptions 1, D, 3b, 3 (ii), and 5, ATE is identified.

When we additionally observe the treatment Dpre for the group with R = 0, our identification
analysis can be modified by splitting the last row of Table 5 (right panel) into two rows depending
on the value of Dpre.

4.3. Treatment after main observations. In this subsection, we assume that in addition to
the main observations (Z,D, Y ) and Y pre, the researcher observes:

Dpost ∈ {0, 1} : treatment indicator to be observed at the time after the main observations.(41)

The relationships of the observables and principal strata variable are summarized in Table 6.
In this case, we impose the following assumptions.

Assumption YD-c. Assumption YD holds true with replacement of “Dpost” with “Dpre”.

Assumption 5c. Assumption 5 holds true with replacement of “Dpost” with “Dpre”.

Assumption 6c. Assumption 6 holds true with replacement of “Dpost” with “Dpre”.

An example of this setup is when, following an encouragement experiment, the treatment
status is subsequently observed to serve as Dpost during a period in which the encouragement is
absent. Also the status of a similar subsequently observed treatment may serve as Dpost. The
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parameters µc
1, µc

0, µd
1, µd

0, µa
1, µn

0 , and pu for u ∈ {c, a, n, d} are identified under Assumption
5c. By the same argument in 2.3, Assumptions 3 and 6 guarantee identification of µa

0 and µn
1 .

Combining these results, we obtain the following identification results.

Theorem 8. Consider the setup of this subsection.

(i): Under Assumptions 1, YD-c, and 5c, ATE(c) and ATE(d) are identified.
(ii): Under Assumptions 1, YD-c, 3 (i), 5c, and 6c, ATT is identified.
(iii): Under Assumptions 1, YD-c, 3, 5c, and 6c, ATE is identified.

5. Empirical illustrations

This section presents empirical illustrations for each of the following cases: with Y pre (Section
5.1), with Dpre (Section 5.2), and with both Y pre and Dpre (Section 5.3). For the case with
Y pre, we revisit three important empirical studies that use randomized encouragement designs:
Thornton (2008), Gerber et al. (2009), and Beam (2016). For the case with Dpre and with both
Y pre and Dpre, we revisit other influential empirical studies by Finkelstein et al. (2012) and
Taubman et al. (2014) both of which examine the effects of enrolling in Medicaid using the data
set from the Oregon Health Insurance Experiment (OHIE). Furthermore, Section 5.4 presents
an application of the case with both Y pre and Dpre in marketing.

5.1. Randomized encouragement design with Y pre. We illustrate the identification method
of Theorem 1 in Section 2.1 by revisiting three important empirical studies in the literature.
Thornton (2008), Gerber et al. (2009), and Beam (2016) used randomized encouragement de-
signs to investigate the causal effects of knowing one’s HIV status on contraceptive behavior,
the effects of a newspaper subscription on political attitudes, and the effects of job fair partic-
ipation on the intention to work abroad, respectively. Since enforcing treatment was difficult
in these studies, they employed encouragement designs with incentives. Thornton (2008) used
two-stage least squares estimation, while Beam (2016) adopted the LATE estimator. Gerber
et al. (2009) reported intention-to-treat (ITT) estimates; however, we find that applying the
LATE estimator to their data also fails to produce statistically significant effects. Using the
identification method proposed in Section 2.1, we revisit their data to estimate ATT and ATE
under Assumptions 1, 2, Y, and 3. The outcomes variable from each baseline survey is employed
as Y pre. Among the outcomes we analyze, the "Voted" outcome from Gerber et al. (2009) can be
used for an assessment of the parallel trend assumption (Assumption 3(i)). This is because its
baseline survey provides a history of past voting behavior. A visualization of this pre-treatment
data supports our parallel trend assumption (see Appendix D for details). Causal objects are
estimated by taking the sample counterparts. Standard errors and p-values are calculated based
on 2000 bootstrap resamples in all analyses. The results are shown in Table 7.

Across all three studies we revisit, the fractions of compliers are estimated to be less than
half, and ATE(c) is not statistically significant. These findings are consistent with the original
studies. In the re-analysis of Thornton (2008), the estimated ATT and ATE for the "Purchase
Condom" outcome are negative and statistically significant, with magnitudes larger than the
insignificant estimate of ATE(c). This is driven by ATE(a), the effect on those who would

28



have learned their results even without an incentive, which is also estimated to be significantly
negative. Given that the sample contains far more HIV-negative subjects than HIV-positive
subjects, this may suggest that learning one’s HIV-negative status could discourage condom
purchases. For the “Having sex” outcome in Thornton (2008), as well as for all outcomes from
Gerber et al. (2009) and Beam (2016), the estimates for ATT and ATE are all statistically
insignificant, suggesting that the interventions in those studies may have had no discernible
effect on the overall population in addition to the complier subpopulation.

Thornton (2008) Gerber et al. (2009) Beam (2016)
Purchase condom Having sex Voted in 2005 Plan to abroad Passport

pc
0.425 ∗∗∗ 0.438 ∗∗∗ 0.243 ∗∗∗ 0.337 ∗∗∗ 0.337 ∗∗∗

(0.033) (0.027) (0.029) (0.043) (0.043)

pa
0.390 ∗∗∗ 0.376 ∗∗∗ 0.225 ∗∗∗ 0.136 ∗∗∗ 0.136 ∗∗∗

(0.032) (0.027) (0.020) (0.014) (0.014)

pn
0.185 ∗∗∗ 0.186 ∗∗∗ 0.532 ∗∗∗ 0.527 ∗∗∗ 0.527 ∗∗∗

(0.012) (0.011) (0.021) (0.041) (0.041)

ATE(c) −0.022 0.014 0.015 −0.061 −0.012
(0.061) (0.075) (0.111) (0.076) (0.058)

ATE(a) −0.127 ∗ 0.006 0.122 −0.087 0.031
(0.058) (0.065) (0.068) (0.080) (0.042)

ATT −0.072 ∗ 0.010 0.067 −0.068 0.000
(0.035) (0.035) (0.056) (0.056) (0.037)

ATE −0.083 ∗∗ 0.009 0.096 −0.078 0.016
(0.035) (0.034) (0.051) (0.056) (0.027)

n 1, 008 1, 328 1, 079 865 865

Note: ATE(a) is defined as µa
1 − µa

0 .

Table 7. Estimates and standard errors. Standard errors in parentheses.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

5.2. Oregon Health Insurance Experiment with Dpre. This subsection revisits Finkelstein
et al. (2012) to illustrate the identification result in Theorem 10, which is an analogue to Theorem
3 in Section 2.2.2 under the ignorability condition. Using the data set from OHIE, Finkelstein
et al. (2012) estimated the effects of enrolling in a health insurance known as Medicaid by LATE,
focusing on outcomes related to health care utilization, financial strain, and health. However, the
population in the experiment may structurally include defiers because only about 30% of those
who won the lottery actually enrolled, and there was another Medicaid program where people
who had lost the lottery could also be enrolled (Finkelstein et al., 2012). We revisit the data set
to estimate ATE(c) using the pre-treatment variable, Dpre , under Assumptions 1, D (i), D (ii)’,
and 5. Note that this method does not require the monotonicity assumption. TANF (another
public assistance program) enrollment status in year prior to OHIE, which is available in the
administrative data from the data set, is used as Dpre. For this re-analysis, we focus on the 24
outcomes obtained from their mail survey. The analysis uses a total sample of 23,777, excluding
observations with missing values for each outcome. The sample size for each specific outcome
is reported in the fourth column of Table 8 (for the outcomes related to health care utilization
and financial strain) and 9 (for the outcomes related to health). As Assuming ignorability given
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Monotonicity Without monotonicity
ATE(c) ATE(c) ATE(d) n

Health care utilization:

Prescription drugs currently 0.092
∗∗∗

0.038 −0.151
18, 332

(0.029) (0.046) (0.180)

Outpatient visit 0.210 ∗∗∗ 0.163 ∗∗∗ −0.016
23, 528

(0.026) (0.038) (0.157)

ER visits 0.026 −0.057 −0.364 ∗
23, 550

(0.024) (0.049) (0.223)

Inpatient hospital admissions 0.008 0.032 0.125
23, 609

(0.014) (0.019) (0.080)

Blood cholesterol checked 0.111 ∗∗∗ 0.116 ∗ 0.140
23, 426

(0.026) (0.050) (0.228)

Blood tested for high blood sugar/diabetes 0.089 ∗∗∗ 0.104 ∗ 0.166
23, 410

(0.027) (0.045) (0.198)

Financial strain:

Any out of pocket medical expenses −0.197 ∗∗∗ −0.126 ∗∗ 0.149
23, 462

(0.026) (0.051) (0.225)

Owe money for medical expenses currently −0.180 ∗∗∗ −0.145 ∗∗ −0.006
23, 487

(0.027) (0.047) (0.212)
Borrowed money or skipped other bills
to pay medical bills

−0.151 ∗∗∗ −0.085 ∗ 0.167
23, 446

(0.026) (0.044) (0.190)

Refused treatment because of medical debt −0.036 ∗ −0.033 −0.020
22, 605

(0.014) (0.029) (0.128)

Table 8. Estimates and standard errors. Standard errors in parentheses.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

household number who listed in that lottery, as in Finkelstein et al. (2012), the causal objects are
estimated by inverse probability weighting. Standard errors and p-values are calculated based
on 800 bootstrap resamples in the analyses. Although the principal strata probabilities differ
slightly for each outcome due to different sample compositions, we find no significant differences
among them. The average probabilities across outcomes for compliers, always-takers, never-
takers, and defiers are (0.37, 0.06, 0.50, and 0.08), respectively, which suggests the presence of
defiers. Estimated ATE(c) and ATE(d) are shown in the second and third columns in Table 8
and Table 9. For comparison, the first column of Table 1 shows the ATE(c) estimates assuming
monotonicity, which are consistent with to the result from Finkelstein et al. (2012).

Under monotonicity condition, statistically significant estimates of ATE(c) were reported
for 21 out of 24 outcomes. However, when we account for the existence of defiers and estimate
ATE(c) using our method, five of these outcomes were no longer statistically significant. Notably,
no new outcome becomes significant in our analysis. Furthermore, among the 16 outcomes
that remain significant, 11 outcomes exhibit weaker ATE(c) estimates compared to those of
LATE. These results suggest that failing to account for the existence of defiers may lead to
overestimation of the causal effects.
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Monotonicity Without monotonicity
ATE(c) ATE(c) ATE(d) n

Health:
Self-reported health
good/very good/excellent

0.134 ∗∗∗ 0.069 −0.181
23, 397

(0.027) (0.050) (0.226)

Self-reported health not poor 0.101 ∗∗∗ 0.072 ∗∗∗ −0.041
23, 397

(0.018) (0.029) (0.125)

Health about the same or gotten better 0.113 ∗∗∗ 0.073 ∗ −0.081
23, 443

(0.024) (0.037) (0.163)
# of days physical health good,
past 30 days

1.631 ∗∗ 0.313 −4.703
21, 415

(0.592) (1.007) (4.548)
# of days physical or mental health
did not impair usual activity, past 30 days

1.322 ∗ 0.725 −1.569
21, 915

(0.574) (0.906) (4.029)

# of days mental health good, past 30 days 2.173 ∗∗∗ 2.831 ∗∗∗ 5.369
21, 632

(0.641) (1.052) (4.464)
Did not screen positive for depression,
last two weeks

0.080 ∗∗∗ 0.117 ∗∗ 0.258
23, 406

(0.027) (0.050) (0.223)

Health (Mechanisms):

Have usual place of clinic-based care 0.340 ∗∗∗ 0.265 ∗∗∗ −0.035
21, 577

(0.028) (0.040) (0.177)

Have personal doctor 0.277 ∗∗∗ 0.257 ∗∗∗ 0.180
23, 537

(0.028) (0.046) (0.202)
Got all needed medical care,
last six months

0.238 ∗∗∗ 0.198 ∗∗∗ 0.049
22, 940

(0.024) (0.043) (0.193)

Got all needed drugs, last six months 0.194 ∗∗∗ 0.254 ∗∗∗ 0.481 ∗∗
22, 860

(0.020) (0.049) (0.228)
Didn’t use ER for nonemergency,
last six months

0.003 0.000 −0.009
23, 566

(0.015) (0.025) (0.112)
Quality of care received last six months
good/very good/excellent

0.143 ∗∗∗ 0.101 ∗∗ −0.044
16, 336

(0.027) (0.042) (0.163)

Very happy or pretty happy 0.192 ∗∗∗ 0.157 ∗∗∗ 0.021
23, 450

(0.026) (0.042) (0.180)

Table 9. Estimates and standard errors. Standard errors in parentheses.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

5.3. Oregon Health Insurance Experiment with Y pre and Dpre. This subsection revisits
Taubman et al. (2014) to illustrate Theorem 5 in Section 2.4. Using the data set from OHIE as
in Finkelstein et al. (2012), Taubman et al. (2014) estimated the effects of enrolling in Medicaid
by LATE, focusing on outcomes of emergency department use. We revisit the data set using
Y pre and Dpre to estimate ATE(u) for u ∈ (c, a, n, d), ATT, and ATE without the monotonicity
assumption (i.e., in the presence of defiers). The emergency department use in the year prior to
OHIE and TANF enrollment status in year prior to OHIE is used as Y pre and Dpre, respectively.
We suppose Assumptions 1, YD (i)-(ii), YD (iii)’, 3 (i), 3 (ii)’, 5, and 6. Following Taubman et al.
(2014), we analyze two outcomes related to outpatient visits: a binary indicator for "Percent
with any visits" and a count measure for the "Number of visits". The total sample size is 24,646.
For the analysis of the "Number of visits" outcome, we exclude observations with missing values,
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Monotonicity Without monotonicity
ATE(c) ATE(a) ATE(n) ATE(d) ATT ATE

Percent with
any visits

0.065 ∗∗ 0.045 0.174 ∗ 0.147 −0.011 0.066 ∗ 0.101
(0.025) (0.037) (0.076) (0.092) (0.128) (0.026) (0.050)

Number of visits 0.288 ∗ 0.280 ∗ 0.518 −0.355 0.201 0.319 ∗∗∗ −0.038
(0.111) (0.125) (0.419) (0.432) (0.406) (0.087) (0.250)

Note: ATE(u) is defined as µu
1 − µu

0 for each stratum u ∈ {c, a, n, d}.
Table 10. Estimates and standard errors. Standard errors in parentheses.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

resulting in a sample size of 24,615. Assuming ignorability given household number who listed in
that lottery, as in Taubman et al. (2014), the causal objects are estimated by the multiply robust
estimators. Standard errors and p-values are calculated based on 800 bootstrap resamples in
the analyses. The estimated probabilities for complier, always-taker, never-taker, and defier are
(0.33, 0.07, 0.51, 0.09) for both outcomes, suggesting the presence of defiers. Estimated causal
effects are shown in Table 10. For comparison, the first column of Table 1 shows the ATE(c)
estimates assuming monotonicity, which are consistent with to the result from Taubman et al.
(2014).2

Regarding ATE(c), relaxing the monotonicity assumption lowers the point estimate for the
"Percent with any visits" outcome, causing it to lose statistical significance. This suggests
that ATE(c) estimated under the monotonicity assumption in the original study may be an
overestimate. In contrast, ATT is estimated to be significantly positive for both outcomes.
Furthermore, the magnitude of ATT estimates slightly exceeds that of ATE(c) estimated under
monotonicity. Therefore, when viewed from the perspective of ATT, our results reinforce the
conclusion that Medicaid enrollment increases emergency department utilization. Finally, ATE
is not statistically significant for either outcome. This result suggests that the inclusion of
never-takers and defiers dilutes the increase in ED utilization from Medicaid enrollment.

5.4. Application in marketing using Y pre and Dpre. Using the proposed methods in Section
2.3, we evaluate the cannibalization effect associated with introduction of a new product. It is
difficult to measure the effect because of changes in market structures. We use data from
a randomized encouragement design experiment conducted by a Japanese alcoholic beverage
manufacturer on a new product in the beer category. The experiment was conducted in May
2023 at stores of a major retail chain. There are 133,733 subjects in the experiment, 80,000 in
the treatment group, and 53,733 in the control group. Let Z be the coupon assignment and D

be whether or not each subject purchased the new product in the week following the coupon
assignment. As outcomes of interest, we consider four spending measures per subject from this
manufacturer, defined by category scope (beer only vs. beer and RTD) and by whether the new
product is included or excluded. These outcomes are measured over a one-week period following
the coupon assignment. For each outcome, let Y pre be measured for one week in March 2023,

2Our estimate for the "Number of visits" outcome is smaller than the estimate reported in Taubman et al. (2014).
This is likely because variables such as the number of ED visits have been censored in the publicly available data
to ensure de-identification.
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before the new product is released. Let Dpre be whether or not each subject purchased the new
product during the week in May before the experiment. We suppose Assumptions 1, YD, 3, 5,
and 6. Causal objects were estimated by the taking sample counterparts. Standard errors and
p-values were calculated based on 2000 bootstrap resamples in the analyses. The results are
presented in Table 11.

In all estimates, the total sales of the category including the new product increase significantly,
and the change in the total sales of the category excluding the new product is not significant.
These results indicate that there is no cannibalization within the category and that the entry
of the new product increases the total sales of the category. Comparing the estimated values
of LATE, ATT, and ATE shows that LATE underestimates increased sales. In addition, the
estimated probabilities for complier, always-taker, never-taker, and defier are (0.015, 0.001,
0.971, 0.013). The large proportion of never-takers indicates that there are few purchasers of
the new product, no matter whether consumers have coupons or not. Since getting consumers to
buy this new product may lead to an increase in total sales for the category, it would probably
be worth spending more on sales promotion to get more new purchasers. Furthermore, the fact
that ATE is larger than ATE(c) suggests that the treatment effect can be larger for never-takers
than for compliers. Since never-takers might be induced to purchase with a higher incentive,
providing coupons with a stronger incentive can be an effective sales promotion strategy.

Including the new product Excluding the new product
Beer only Beer and RTD Beer only Beer and RTD

ATE(c) 537.8 ∗∗∗ 570.1 ∗ -10.9 21.5
(159.3) (268.6) (154.0) (260.7)

ATT 550.3 ∗∗∗ 578.3 ∗ -21.6 6.3
(148.0) (250.6) (143.7) (242.5)

ATE 713.4 ∗∗∗ 681.9 ∗∗ -165.2 -196.7
(203.6) (261.9) (147.8) (222.2)

Note: The All figures are in Japanese Yen (JPY).

Table 11. Estimates and standard errors. Standard errors in parentheses.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

6. Conclusion

This paper presents a new strategy to overcome the well-known limitations of the LATE frame-
work in settings with non-compliance. We address two central challenges in the LATE literature:
identifying causal effects for broader populations (i.e., ATT and ATE) under assumptions that
avoid untestable homogeneity or parametric restrictions, and relaxing the monotonicity assump-
tion.

In developing our framework, we propose a study design that employs two auxiliary observa-
tions commonly available in baseline surveys or administrative panel data. By invoking a sub-
population parallel-trends condition on pre-treatment outcomes, we establish point identification
of ATT without covariates. We then show that under an additional parallel-trends or subgroup-
homogeneity assumption, ATE is also identified. Independently, by using a pre-assignment
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treatment indicator as an instrument for the potential treatment variable, our framework allows
for the violation of the monotonicity assumption. Recognizing that practical applications often
depart from strict randomization, we extend these identification results through multiply robust
representations, guaranteeing consistent estimation even in observational settings. Furthermore,
we present the GMM estimators that leverage over-identified moment conditions to achieve effi-
ciency gain. We demonstrate the practical utility of our method through empirical illustrations
that revisited Thornton (2008), Gerber et al. (2009), and Beam (2016), and analyze data sets
from the Oregon Health Insurance Experiment (Finkelstein et al., 2012; Taubman et al., 2014)
and a marketing experiment in the private sector. By broadening the target population and
accommodating defiers, our method yields insights that extend beyond the traditional LATE
approach.

Several avenues for future research warrant investigation. First, a promising research direc-
tion lies in partial identification of treatment effects. A significant body of literature, including
a foundational work by Balke and Pearl (1997) and more recent contributions by Machado et al.
(2013), has focused on deriving informative bounds on ATE—or simply identifying its sign. In
this context, utilizing our key identifying assumptions (such as those in Assumptions 3, 3’, 5, and
6) by introducing auxiliary variables, or relaxing those assumptions into inequality constraints,
could yield informative bounds for various estimands. While Remarks 3 and 13 illustrate bounds
for ATE when Assumption 3 (ii) is excluded, a more comprehensive analysis would be a valuable
direction. As explored by Machado et al. (2013), such an approach is particularly powerful for
determining the sign of an effect. Extending our framework in this manner would therefore
contribute to this important literature by enabling a more refined discussion on identifying the
sign of ATE. Second, the key assumptions of this paper, such as the parallel-trends and homo-
geneity in Assumptions 3 and 3’ and the exclusion restrictions in Assumptions 5 and 6, could
potentially be relaxed by replacing them with assumptions conditioned on covariates. While
Remark 23 briefly touches on conditional identification in relation to identification of ATTD, a
more rigorous discussion of the conditional case is desirable. Third, extending the framework to
multi-valued or continuous instruments and treatments would enhance its applicability beyond
binary regimes. Finally, integrating modern machine learning-based methods for nuisance pa-
rameter estimation—such as double/debiased machine learning (Chernozhukov et al., 2018)—is
expected to bring greater efficiency and robustness in high-dimensional settings. Collectively,
these extensions would further empower researchers to conduct credible policy evaluations in
complex experimental and observational contexts.
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Appendix A. Identification and estimation

A.1. Identification under ignorability condition. In this section we show that our iden-
tification argument in Sections 2.1 and 2.2 can be extended to the case where the following
ignorability condition is satisfied. Let X ∈ X ⊂ Rq be a vector of q-dimensional covariates.

A.1.1. Observable outcome before assignment. Consider the setup in Section 2.1. In observa-
tional studies, Assumption Y (ii) is replaced with

Assumption Y. (ii)’ [Ignorability] Conditionally on X, Z is independent from
(Y pre, D1, D0, Y11, Y10, Y01, Y00).

This is a standard ignorability or unconfoundedness condition commonly imposed in the
literature of causal inference with observational studies. Based on the discussion in Section 2.1,
it is sufficient for identification of the causal estimands in (2) to identify

δ(z,d) = E[Yd|Dz = d], δpre
(z,d) = E[Y pre|Dz = d], π(z,d) = P(Dz = d),

for each z ∈ {0, 1} and d ∈ {0, 1}. To derive multiply robust representations of δ(z,d), δpre
(z,d), and

π(z,d) under Assumption Y (ii)’, we introduce parametric models

ez(X;α) for P(Z = z|X),

p(z,d)(X;β) for P(D = d|Z = z,X),

m(z,d)(X;λ) for E[Y |Z = z,D = d,X],

mpre
(z,d)(X;λpre) for E[Y pre|Z = z,D = d,X],

for each z ∈ {0, 1} and d ∈ {0, 1}, where α, β, λ, λpre and η are finite dimensional parameters.
By using these parametric models, multiply robust representations of the population objects
δ(z,d), δpre

(z,d), and π(z,d) are obtained as follows.

Theorem 9. Under Assumptions 1, Y (i), and (ii)’, it holds

δ(z,d) = E
[
I{Z = z}
ez(X;α)

I{D = d}
p(z,d)(X;β)

Y

]
−E

[I{Z = z}I{D = d} − ez(X;α)p(z,d)(X;β)

ez(X;α)p(z,d)(X;β)
m(z,d)(X;λ)

]
,

δpre
(z,d) = E

[
I{Z = z}
ez(X;α)

I{D = d}
p(z,d)(X;β)

Y pre
]

−E
[I{Z = z}I{D = d} − ez(X;α)p(z,d)(X;β)

ez(X;α)p(z,d)(X;β)
mpre

(z,d)(X;λpre)

]
,

π(z,d) = E
[
I{Z = z}
ez(X;α)

I{D = d}
]
− E

[
I{Z = z} − ez(X;α)

ez(X;α)
p(z,d)(X;β)

]
.

By taking the sample counterparts of these representations, we can construct multiply robust
estimators for δ(z,d), δpre

(z,d), and π(z,d). Then the 12 parameters µu
1 , µ

u
0 , µ

u
pre, p

u for u ∈ {c, a, n}
are over-identified under Assumptions 1, 2, Y (i), Y(ii)’, and 3 by the moment restrictions of
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(4)-(7). Just identification of the 12 parameters is guaranteed by the first 12 moments of (4)-(6),
and the three moments of (7) provide overidentifying restrictions. By summarizing the multiply
robust properties of the estimators based on Theorem 1 and the moment restrictions, we obtain
the following results.

Proposition 2. Consider the setup of Section 2.1. Suppose Assumptions 1, 2, Y (i), Y(ii)’,
and 3 hold true. Then

(i): δ(z,d) can be consistently estimated if either
{ez(X;α), p(z,d)(X;β)} or m(z,d)(X;λ) is correctly specified,

(ii): δpre
(z,d) can be consistently estimated if either

{ez(X;α), p(z,d)(X;β)} or mpre
(z,d)(X;λpre) is correctly specified,

(iii): π(z,d) can be consistently estimated if either ez(X;α) or p(z,d)(X;β) is correctly spec-
ified,

(iv): ATE(c) can be consistently estimated if either
{ez(X;α), p(z,d)(X;β)}, {m(z,d)(X;λ), p(z,d)(X;β)}, or {ez(X;α),m(z,d)(X;λ)} is cor-
rectly specified,

(v): ATT and ATE can be consistently estimated if either {ez(X;α), p(z,d)(X;β)},
{p(z,d)(X;β),m(z,d)(X;λ),mpre

(z,d)(X;λpre)}, or {ez(X;α),m(z,d)(X;λ),mpre
(z,d)(X;λpre)} is

correctly specified.

Furthermore, the multiply robust estimator for ATE(c) is asymptotically locally efficient if
{ez(X;α), p(z,d)(X;β),m(z,d)(X;λ)} are correctly specified, and also the multiply robust esti-
mators for ATT and ATE are asymptotically locally efficient if
{ez(X;α), p(z,d)(X;β),m(z,d)(X;λ),mpre

(z,d)(X;λpre)} are correctly specified.

A.1.2. Observable treatment before assignment. Consider the setup in Section 2.2. In observa-
tional studies, Assumption D (ii) is replaced with

Assumption D. (ii)’ [Ignorability] Conditionally on X, Z is independent from
(Dpre, D1, D0, Y11, Y10, Y01, Y00).

Based on the discussion of the previous subsection, it is sufficient for identification of the
causal estimands in (2) to identify

δ(z,d,d′) = E[Yd|Dz = d,Dpre = d′], δ(z,d) = E[Yd|Dz = d],

π(z,d,d′) = P(Dz = d,Dpre = d′), ρ(z,d,d′) = P(Dz = d|Dpre = d′).

2



for each z ∈ {0, 1} and d, d′ ∈ {0, 1}. To establish multiply robust representations of δ(z,d,d′),
δ(z,d), π(z,d,d′), and ρ(z,d,d′) under Assumption D (ii)’, we introduce parametric models

ez(X;α) for P(Z = z|X),

p(z,d,d′)(X;β) for P(D = d,Dpre = d′|Z = z,X),

m(z,d,d′)(X; γ) for E[Y |Z = z,D = d,Dpre = d′, X],

m(z,d)(X;λ) for E[Y |Z = z,D = d,X],

p(z,d,d′)(X; η) for P(D = d|Z = z,Dpre = d′, X),

for each z ∈ {0, 1} and d, d′ ∈ {0, 1}, where α, β, γ, λ and η are finite dimensional parameters.
By using these parametric models, multiply robust representations of the population objects
δ(z,d,d′), δ(z,d), π(z,d,d′), and ρ(z,d,d′) are obtained as follows.

Theorem 10. Consider the setup of this subsection. Under Assumptions D (i) and (ii)’, it
holds

δ(z,d,d′) = E
[
I{Z = z}
ez(X;α)

I{D = d,Dpre = d′}
p(z,d,d′)(X;β)

Y

]
−E

[I{Z = z}I{D = d,Dpre = d′} − ez(X;α)p(z,d,d′)(X;β)

ez(X;α)p(z,d,d′)(X;β)
m(z,d,d′)(X; γ)

]
,

δ(z,d) = E

[
I{Z = z}
ez(X;α)

I{D = d}∑
j∈(1,0) p(z,d,j)(X;β)

Y

]

−E

[
I{Z = z}I{D = d} − ez(X;α)

∑
j∈(1,0) p(z,d,j)(X;β)

ez(X;α)
∑

j∈(1,0) p(z,d,j)(X;β)
m(z,d)(X;λ)

]
,

π(z,d,d′) = E
[
I{Z = z}
ez(X;α)

I{D = d,Dpre = d′}
]
− E

[
I{Z = z} − ez(X;α)

ez(X;α)
p(z,d,d′)(X;β)

]
,

ρ(z,d,d′) = E

[
I{Z = z}
ez(X;α)

I{Dpre = d′}∑
k∈(1,0) p(z,k,d′)(X;β)

I{D = d}

]

−E

[
I{Z = z}I{Dpre = d′} − ez(X;α)

∑
k∈(1,0) p(z,k,d′)(X;β)

ez(X;α)
∑

k∈(1,0) p(z,k,d′)(X;β)
p(z,d,d′)(X; η)

]
.

By taking the sample counterparts of these representations, we can construct multiply robust
estimators for δ(z,d,d′), δ(z,d), π(z,d,d′), and ρ(z,d,d′). Then the 10 parameters µc

1, µ
c
0, µ

d
1, µ

d
0, µ

a
1, µ

n
0 ,

and pu for u ∈ {c, a, n, d} are over-identified under Assumptions 1, D (i), D (ii)’, and 5 by the
moment restrictions of (12), (17), and (20). Just identification of the 10 parameters is guaranteed
by the 10 moments of (12) and (17), and the two moments of (20) provide overidentifying
restrictions.

We close this subsection by summarizing the multiply robust properties of the estimators
based on Theorem 3 and the moment restrictions.
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Proposition 3. Consider the setup of this subsection. Suppose Assumptions 1, D (i), D (ii)’,
and 5 hold true. Then

(i): δ(z,d,d′) can be consistently estimated if either {ez(X;α), p(z,d,d′)(X;β)}
or m(z,d,d′)(X; γ) is correctly specified,

(ii): δ(z,d) can be consistently estimated if either {ez(X;α), p(z,d,d′)(X;β)}
or m(z,d)(X;λ) is correctly specified,

(iii): π(z,d,d′) can be consistently estimated if either ez(X;α)

or p(z,d,d′)(X;β) is correctly specified,
(iv): ρ(z,d,d′) can be consistently estimated if either {ez(X;α), p(z,d,d′)(X;β)}

or p(z,d,d′)(X; η) is correctly specified,
(v): ATE(c) and ATE(d) can be consistently estimated if either {ez(X;α), p(z,d,d′)(X;β)},

{m(z,d,d′)(X; γ),m(z,d)(X;λ), p(z,d,d′)(X;β), p(z,d,d′)(X; η)}
or {m(z,d,d′)(X; γ),m(z,d)(X;λ), ez(X;α), p(z,d,d′)(X; η)} is correctly specified.

Furthermore, the multiply robust estimator for ATE(c) and ATE(d) are asymptotically lo-
cally efficient if {ez(X;α), p(z,d,d′)(X;β),m(z,d,d′)(X; γ),m(z,d)(X;λ), p(z,d,d′)(X; η)} are correctly
specified.

Remark 27. [Switched version of Assumption 5] Under Assumption 5’ (which switches D0 and
D1 in Assumption 5), the moment restrictions above are replaced with (18), (19), and (21). Just
identification of the 10 parameters is guaranteed by the 10 moments of (18), (19), and the two
moments of (21) provide overidentifying restrictions.

Remark 28. [Impose both Assumptions 5 and 5’] Under both Assumptions 5 and 5’, the mo-
ment restrictions above are replaced with (12) and (18). Among the 10 parameters, µc

1, µ
c
0, µ

d
1, µ

d
0, µ

a
1, µ

n
0 ,

and pu for u ∈ {c, a, n, d}, the six parameters, µa
1, µ

n
0 , and pu for u ∈ {c, a, n, d} are identified in

the two ways. The moments of δ(z,d) is not used for identification.

Remark 29. [Special case] Under Assumption 4 (i.e., D0 = Dpre) instead of Assumption 5, the
moment restrictions follow the discussion in Remark 10, and the moments of ρ(z,d,d′) are not
used for identification.

A.2. Estimation.

A.2.1. Observable outcome before assignment. In this subsection, we briefly discuss estimation
and testing methods for ATE identified by Theorems 1 and 9 above. The methods for ATE(c)
and ATT can be obtained in the same manner.

First, we consider estimation of ATE based on Theorem 1 (iii). Let δ̂(z,d) , δ̂pre
(z,d), and π̂(z,d)

be the empirical (conditional) moments of δ(z,d) = E[Yd|Dz = d], δpre
(z,d) = E[Y pre|Dz = d], and

π(z,d) = P(Dz = d), respectively, and ζ̂ and ζ be their vectorizations. Also let θ be a 11-
dimensional vector given by (µu

1 , µ
u
0 , p

u) for u ∈ {c, a, n} and µu
pre for u ∈ {a, n}, which provides

a formula for ATE as

ATE(θ) = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ).
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Then the GMM estimator for ATE is obtained as ω̂ for

(θ̂, ω̂) = arg min
θ,ω

g(ζ̂, θ, ω)′Ψg(ζ̂, θ, ω), (42)

where the vector of moment conditions g(ζ, θ, ω) = 0 is obtained by stacking the equations
(4)-(6) and ω = ATE(θ) (and also (7)). The weight matrix Ψ may be chosen to achieve the
asymptotic efficiency (see, e.g., Newey and McFadden, 1994). Statistical inference on ω can be
conducted by the Wald statistic, likelihood ratio-type statistic, or bootstrap method.

Next, if the parameters ζ are identified by the ignorability condition as in Theorem 9, their
estimating equations are given by

g1(W, ζ, α, β, γ, γpre)

=



{
δ(z,d) −

I{Z=z}
ez(X;α)

I{D=d}
p(z,d)(X;β)Y +

I{Z=z}I{D=d}−ez(X;α)p(z,d)(X;β)

ez(X;α)p(z,d)(X;β) m(z,d)(X;λ)
}
(z,d){

δpre
(z,d) −

I{Z=z}
ez(X;α)

I{D=d}
p(z,d)(X;β)Y

pre +
I{Z=z}I{D=d}−ez(X;α)p(z,d)(X;β)

ez(X;α)p(z,d)(X;β) mpre
(z,d)(X;λpre)

}
(z,d){

π(z,d) −
I{Z=z}
ez(X;α)I{D = d}+ I{Z=z}−ez(X;α)

ez(X;α) p(z,d)(X;β)
}
(z,d)

ξ1(W,α)

ξ2(W,β)

ξ3(W,λ)

ξpre
3 (W,λpre)


,

where W mean the whole observables, ξ1, ξ2, ξ3, and ξpre
3 are estimating equations for the param-

eters α, β, λ, and λpre, respectively. Combining this with the moment conditions g(ζ, θ, ϑ) = 0,
the GMM estimator of ATE is obtained as ω̃ for

(ζ̃, θ̃, α̃, β̃, λ̃, λ̃pre, ω̃)

= arg min
ζ,θ,α,β,λ,λpre,ω

[
g(ζ, θ, ω)′,

1

n

n∑
i=1

g1(Wi, ζ, α, β, λ, λ
pre)′

]
Ψ1

×

[
g(ζ, θ, ω)

1
n

∑n
i=1 g1(Wi, ζ, α, β, λ, λ

pre)

]
,

where Ψ1 is a weighting matrix. The conventional GMM theory applies to obtain the asymptotic
properties of the estimator and statistical inference on ω.

A.2.2. Observable treatment before assignment. In this subsection, we briefly discuss estimation
and testing methods for ATE(c) identified by Theorems 3 and 10 above.

First, we consider estimation of ATE(c) based on Theorem 3. Let δ̂(z,d,d′), δ̂(z,d), π̂(z,d,d′),
ρ̂(z,d,d′) be the empirical (conditional) moments of δ(z,d,d′), δ(z,d), π(z,d,d′), ρ(z,d,d′), respectively,
and ζ̂ and ζ be their vectorizations. Also let θ be a 10-dimensional vector given by µc

1, µ
c
0, µ

d
1, µ

d
0, µ

a
1, µ

n
0 ,

and pu for u ∈ {c, a, n, d} , which provides a formula for ATE(c) as

ATE(c)(θ) = µc
1 − µc

0,
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Then the GMM estimator for ATE(c) is obtained as ω̂ for

(θ̂, ω̂) = arg min
θ,ω

g(ζ̂, θ, ω)′Ψg(ζ̂, θ, ω), (43)

where the vector of moment conditions g(ζ, θ, ω) = 0 is obtained by stacking the equations (12),
(17), and ω = ATE(c)(θ) (and also (20)). The weight matrix Ψ may be chosen to achieve the
asymptotic efficiency (see, e.g., Newey and McFadden, 1994). Statistical inference on ω can be
conducted by the Wald statistic, likelihood ratio-type statistic, or bootstrap method.

Next, if the parameters ζ are identified by the ignorability condition as in Theorem 5, their
estimating equations are given by

g1(W, ζ, α, β, γ, η)

=



 δ(z,d,d′) −
I{Z=z}
ez(X;α)

I{D=d,Dpre=d′}
p(z,d,d′)(X;β) Y

+
I{Z=z}I{D=d,Dpre=d′}−ez(X;α)p(z,d,d′)(X;β)

ez(X;α)p(z,d,d′)(X;β) m(z,d,d′)(X; γ)


(z,d,d′) δ(z,d) −

I{Z=z}
ez(X;α)

I{D=d}∑
j∈{0,1} p(z,d,j)(X;β)Y

+
I{Z=z}I{D=d}−ez(X;α)

∑
j∈{0,1} p(z,d,j)(X;β)

ez(X;α)
∑

j∈{0,1} p(z,d,j)(X;β) m(z,d)(X;λ)


(z,d){

π(z,d,d′) −
I{Z=z}
ez(X;α)I{D = d,Dpre = d′}+ I{Z=z}−ez(X;α)

ez(X;α) p(z,d,d′)(X;β)
}
(z,d,d′) ρ(z,d,d′) −

I{Z=z}
ez(X;α)

I{Dpre=d′}∑
k∈{0,1} p(z,k,d′)(X;β)I{D = d}

+
I{Z=z}I{Dpre=d′}−ez(X;α)

∑
k∈{0,1} p(z,k,d′)(X;β)

ez(X;α)
∑

k∈{0,1} p(z,k,d′)(X;β) p(z,d,d′)(X; η)


(z,d,d′)

ξ1(W,α)

ξ2(W,β)

ξ3(W,γ)

ξ4(W,λ)

ξ5(W,η)



,

where W mean the whole observables, ξ1, ξ2, ξ3, ξ4, and ξ5 are estimating equations for
the parameters α, β, γ, λ and η, respectively. Combining this with the moment conditions
g(ζ, θ, ϑ) = 0, the GMM estimator of ATE(c) is obtained as ω̃ for

(ζ̃, θ̃, α̃, β̃, γ̃, λ̃, η̃, ω̃)

= arg min
ζ,θ,α,β,γ,λ,η,ω

[
g(ζ, θ, ω)

1
n

∑n
i=1 g1(Wi, ζ, α, β, γ, λ, η)

]′
Ψ1

×

[
g(ζ, θ, ω)

1
n

∑n
i=1 g1(Wi, ζ, α, β, γ, λ, η)

]
,

where Ψ1 is a weighting matrix. The conventional GMM theory applies to obtain the asymptotic
properties of the estimator and statistical inference on ω.

Remark 30. [Switched version of Assumption 5] Under Assumption 5’ (which switches D0 and
D1 in Assumption 5), the vector of moment conditions g(ζ, θ, ω) = 0 is obtained by stacking the
equations (18), (19), and (21).
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Remark 31. [Supposing both Assumptions 5 and 5’] Under both Assumptions 5 and 5’, the
vector of moment conditions g(ζ, θ, ω) = 0 is obtained by stacking the equations (12) and (18).

Remark 32. [Special case] Under Assumption 4 (i.e., D0 = Dpre) instead of Assumption 5, the
vector of moment conditions g(ζ, θ, ω) = 0 is obtained by stacking the equations following the
discussion in Remark 10.

Appendix B. Mathematical appendix

B.1. Derivation of expressions in Remark 1. Suppose Assumption 1 holds. For clarity and
reader’s convenience, we first restate the key notation used in this section. For u ∈ {c, a, n, d},
d ∈ {1, 0}, and z ∈ {1, 0}, we define

µu
d := E[Yd|U = u], pu := P(U = u),

µ
u|Z=z
d := E[Yd|U = u, Z = z], pu|Z=z := P(U = u|Z = z).

Using this notation, the estimands ATTD1 , ATTD0 , and ATTD can expressed as

ATTD1 := E[Y1 − Y0|D1 = 1]

= E[Y1 − Y0|D1 = 1, D0 = 0]P(D0 = 0|D1 = 1) + E[Y1 − Y0|D1 = 1, D0 = 1]P(D0 = 1|D1 = 1)

=
pc(µc

1 − µc
0) + pa(µa

1 − µa
0)

pc + pa
,

ATTD0 := E[Y1 − Y0|D0 = 1]

= E[Y1 − Y0|D1 = 1, D0 = 1]P(D1 = 1|D0 = 1) + E[Y1 − Y0|D1 = 0, D0 = 1]P(D1 = 0|D0 = 1)

=
pa(µa

1 − µa
0) + pd(µd

1 − µd
0)

pa + pd
,

ATTD := E[Y1 − Y0|D = 1]

= E[Y1 − Y0|D1 = 1, Z = 1]P(Z = 1|D = 1) + E[Y1 − Y0|D0 = 1, Z = 0]P(Z = 0|D = 1)

= E[Y1 − Y0|D1 = 1, Z = 1]
P(D1 = 1|Z = 1)P(Z = 1)

P(D = 1)

+E[Y1 − Y0|D0 = 1, Z = 0]
P(D0 = 1|Z = 0)P(Z = 0)

P(D = 1)

= {(µa|Z=1
1 − µ

a|Z=1
0 )pa||Z=1 + (µ

c|Z=1
1 − µ

c|Z=1
0 )pc|Z=1}P(Z = 1)

P(D = 1)

+{(µa|Z=0
1 − µ

a|Z=0
0 )pa|Z=0 + (µ

d|Z=0
1 − µ

d|Z=0
0 )pd|Z=0}P(Z = 0)

P(D = 1)

=
pa(µa

1 − µa
0) + P(Z = 1)pc|Z=1(µ

c|Z=1
1 − µ

c|Z=1
0 ) + P(Z = 0)pd|Z=0(µ

d|Z=0
1 − µ

d|Z=0
0 )

P(D = 1)

=
pa(µa

1 − µa
0) + P(Z = 1)pc|Z=1(µ

c|Z=1
1 − µ

c|Z=1
0 ) + P(Z = 0)pd|Z=0(µ

d|Z=0
1 − µ

d|Z=0
0 )

pa + P(Z = 1)pc|Z=1 + P(Z = 0)pd|Z=0
.

7



B.2. Proof of Theorem 1. First, under Assumptions 1, 2, and Y, the parameters µa
1, µ

n
0 , p

a, pn, pc, µc
1,

and µc
0 are identified as

µa
1 = E[Y1|D1 = 1, D0 = 1] = E[Y1|D0 = 1] = E[Y |Z = 0, D = 1],

µn
0 = E[Y0|D1 = 0, D0 = 0] = E[Y0|D1 = 0] = E[Y |Z = 1, D = 0],

pa = P(D1 = 1, D0 = 1) = P(D0 = 1) = P(D = 1|Z = 0),

pn = P(D1 = 0, D0 = 0) = P(D1 = 0) = P(D = 0|Z = 1),

pc = P(D1 = 1)− pa = P(D = 1|Z = 1)− pa.

In the expressions above, the second equality holds by Assumption 2, and the third equality
holds by Assumptions 1 and Y. The parameters for compliers are then identified as

µc
1 =

(pc + pa)E[Y1|D1 = 1]− paµa
1

pc
=

(pc + pa)E[Y |D = 1, Z = 1]− paµa
1

pc
,

µc
0 =

(pc + pn)E[Y0|D0 = 0]− pnµn
0

pc
=

(pc + pn)E[Y |D = 0, Z = 0]− pnµn
0

pc
.

Thus, ATE for compliers is identified as ATE(c) = µc
1 − µc

0.
Next, by adding Assumption 3 (i), we identify µa

0. The derivation is as follows:

µa
1 − µa

0 = E[Y1|U = a]− E[Y0|U = a]

= E[Y1|U = a]− E[Y0|U = a]− E[Y pre|U = a] + E[Y pre|U = a]

= {E[Y1|U = a]− E[Y pre|U = a]} − {E[Y0|U = a]− E[Y |U = a]}

= E[Y1 − Y pre|U = a]− E[Y0 − Y pre|U = a]

= E[Y1 − Y pre|U = a]− E[Y0 − Y pre|U = n]

= E[Y1|U = a]− E[Y pre|U = a]− E[Y0|U = n] + E[Y pre|U = n]

= µa
1 − E[Y pre|U = a]− µn

0 + E[Y pre|U = n]

= µa
1 − µa

pre − µn
0 + µn

pre,

where

µa
pre = E[Y pre|D1 = 1, D0 = 1] = E[Y pre|D0 = 1] = E[Y pre|Z = 0, D = 1],

µn
pre = E[Y pre|D1 = 0, D0 = 0] = E[Y pre|D1 = 0] = E[Y pre|Z = 1, D = 0].

The fifth equality holds by Assumption 3 (i). By rearranging the terms, we obtain µa
0 = µa

pre +

µn
0 − µn

pre. Since all components are identified, ATT is identified as

ATT =
pc(µc

1 − µc
0) + pa(µa

1 − µa
0)

pc + pa
.

Finally, Assumption 3 (ii) implies µn
1 − µn

0 = µa
1 − µa

0, which allows us to identify µn
1 as µn

1 =

µn
0 + (µa

1 − µa
0). Therefore, ATE is identified as

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ).
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B.3. Proof of Remark 2. Under the alternative parallel trends assumption between always-
takers and compliers, E[Y0 − Y pre|U = a] = E[Y0 − Y pre|U = c], we show that the parameter µa

0

is identified. Note that

µa
1 − µa

0 = E[Y1 − Y pre|U = a]− E[Y0 − Y pre|U = a]

= E[Y1 − Y pre|U = a]− E[Y0 − Y pre|U = c]

= µa
1 − µa

pre − µc
0 + µc

pre,

where µa
pre = E[Y pre|U = a] and µc

pre = E[Y pre|U = c]. Note that µa
pre and µc

pre are identified by

µa
pre = E[Y pre|Z = 0, D = 1],

µc
pre =

(pc + pn)E[Y pre|Z = 0, D = 0]− pnµn
pre

pn
,

where µn
pre = E[Y pre|Z = 1, D = 0]. Therefore, solving the initial identity for µa

0 yields final
identification result

µa
0 = µa

pre + µc
0 − µc

pre.

The second alternative is based on strata defined by D0. Under the assumption that E[Y0 −
Y pre|D0 = 1] = E[Y0 − Y pre|D0 = 0], the parameter µa

0 is also identified. First, this assumption
allows us to express E[Y0|D0 = 1] in terms of observable quantities. By applying the assumption,
we obtain

E[Y1|D0 = 1]− E[Y0|D0 = 1] = E[Y1 − Y pre|D0 = 1]− E[Y0 − Y pre|D0 = 1]

= E[Y1 − Y pre|D0 = 1]− E[Y0 − Y pre|D0 = 0]

= E[Y1|D0 = 1]− E[Y pre|D0 = 1]− E[Y0|D0 = 0] + E[Y pre|D0 = 0].

By definition, E[Y0|D0 = 1] is also a weighted average of the outcomes for always-takers and
compliers

E[Y0|D0 = 1] =
paµa

0 + pdµd
0

pa + pd
.

Equating these these two expressions for E[Y0|D0 = 1] and solving for µa
0 imply the identification

result

µa
0 =

P(D0 = 1){E[Y pre|D0 = 1] + E[Y0|D0 = 0]− E[Y pre|D0 = 0]} − pdµd
0

pa
.

Note that under the monotonicity assumption (Assumption 2), this expression simplifies as the
term pdµd

0 drops out since there are no defiers.
The third alternative is to assume parallel trends between strata defined by D0, i.e.,

E[Y0 − Y pre|D1 = 1] = E[Y0 − Y pre|D1 = 0]

Following a similar derivation as above, the parameter µa
0 is identified as

µa
0 =

P(D1 = 1){E[Y pre|D1 = 1] + E[Y0|D1 = 0]− E[Y pre|D1 = 0]} − pcµc
0

pa
.
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B.4. Proof of Theorem 2. Under Assumptions 1, D, and 4, the parameters µc
1, µ

a
1, µ

n
0 , µ

d
0, p

c, pa, pn,
and pd are identified as

µc
1 = E[Y1|D1 = 1, D0 = 0] = E[Y1|D1 = 1, Dpre = 0] = E[Y |Z = 1, D = 1, Dpre = 0],

µa
1 = E[Y1|D1 = 1, D0 = 1] = E[Y1|D1 = 1, Dpre = 1] = E[Y |Z = 1, D = 1, Dpre = 1],

µn
0 = E[Y0|D1 = 0, D0 = 0] = E[Y0|D1 = 0, Dpre = 0] = E[Y |Z = 1, D = 0, Dpre = 0],

µd
0 = E[Y0|D1 = 0, D0 = 1] = E[Y0|D1 = 0, Dpre = 1] = E[Y |Z = 1, D = 0, Dpre = 1],

pc = P(D1 = 1, D0 = 0) = P(D1 = 1, Dpre = 0) = P(D = 1, Dpre = 0|Z = 1),

pa = P(D1 = 1, D0 = 1) = P(D1 = 1, Dpre = 1) = P(D = 1, Dpre = 1|Z = 1),

pn = P(D1 = 0, D0 = 0) = P(D1 = 0, Dpre = 0) = P(D = 0, Dpre = 0|Z = 1),

pd = P(D1 = 0, D0 = 1) = P(D1 = 0, Dpre = 1) = P(D = 0, Dpre = 1|Z = 1).

In each expression above, the second equality holds by Assumption 4, and the third equality
holds by Assumptions 1 and D. Also µd

1 and µc
0 are identified as

µd
1 =

(pa + pd)E[Y1|D0 = 1]− paµa
1

pd
=

(pa + pd)E[Y |Z = 0, D = 1]− paµa
1

pd
,

µc
0 =

(pc + pn)E[Y0|D0 = 0]− pnµn
0

pc
=

(pc + pn)E[Y |Z = 0, D = 0]− pnµn
0

pc
.

Therefore, ATE for compliers and ATE for defiers are identified as

ATE(c) = µc
1 − µc

0, ATE(d) = µd
1 − µd

0.

B.5. Proof of Theorem 3. For clarity, we first recall the notation relevant to this subsection:

δ(z,d,d′) := E[Yd|Dz = d,Dpre = d′], δ(z,d) := E[Yd|Dz = d],

π(z,d,d′) := P(Dz = d,Dpre = d′), ρ(z,d,d′) := P(Dz = d|Dpre = d′).

Under Assumptions 1 and D, these quantities are identified from the observed data as

δ(z,d,d′) = E[Y |Z = z,D = d,Dpre = d′],

δ(z,d) = E[Y |Z = z,D = d],

π(z,d,d′) = P(Z = z,D = d,Dpre = d′),

ρ(z,d,d′) = P(D = d|Z = z,Dpre = d′),

for each z ∈ {0, 1} and d, d′ ∈ {0, 1}.
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First, we present the identification result for µc
1, µ

a
1, µ

n
0 , and µd

0. Using Assumptions 5 (i)-(ii),
we express δ(1,d,d′) for d, d′ ∈ {0, 1} as

δ(1,d,d′) = E[Yd|D1 = d,Dpre = d′]

= E[Yd|D1 = d,D0 = 1− d,Dpre = d′]P(D0 = 1− d|D1 = d,Dpre = d′)

+E[Yd|D1 = d,D0 = d,Dpre = d′]P(D0 = d|D1 = d,Dpre = d′)

= E[Yd|D1 = d,D0 = 1− d]P(D0 = 1− d|Dpre = d′)

+E[Yd|D1 = d,D0 = d]P(D0 = d|Dpre = d′)

= µ
(d,1−d)
d ρ(0,1−d,d′) + µ

(d,d)
d ρ(0,d,d′),

where the third equality holds by Assumptions 5 (i)-(ii), and in the last line, we use the shorthand
notations µ(d,1−d)

d := E[Yd|D1 = d,D0 = 1− d] and µ
(d,d)
d := E[Yd|D1 = d,D0 = d] for d ∈ {0, 1}.

By setting d′ = 0 and d′ = 1, respectively, we obtain the following system of equations

δ(1,d,0) = µ
(d,1−d)
d ρ(0,1−d,0) + µ

(d,d)
d ρ(0,d,0),

δ(1,d,1) = µ
(d,1−d)
d ρ(0,1−d,1) + µ

(d,d)
d ρ(0,d,1). (44)

Next, we solve this system for the µ terms. To find µ
(d,1−d)
d , we eliminate µ

(d,d)
d . Multiplying

the first equation in the system by ρ(0,d,1) and the second by ρ(0,d,0) yields

δ(1,d,0)ρ(0,d,1) = µ
(d,1−d)
d ρ(0,1−d,0)ρ(0,d,1) + µ

(d,d)
d ρ(0,d,0)ρ(0,d,1),

δ(1,d,1)ρ(0,d,0) = µ
(d,1−d)
d ρ(0,1−d,1)ρ(0,d,0) + µ

(d,d)
d ρ(0,d,0)ρ(0,d,1).

Subtracting the second new equation from the first eliminates the term with µ
(d,d)
d , we have

δ(1,d,0)ρ(0,d,1) − δ(1,d,1)ρ(0,d,0) = µ
(d,1−d)
d ρ(0,1−d,0)ρ(0,d,1) − µ

(d,1−d)
d ρ(0,1−d,1)ρ(0,d,0)

= {ρ(0,1−d,0)ρ(0,d,1) − ρ(0,1−d,1)ρ(0,d,0)}µ
(d,1−d)
d .

Then solving for µ
(d,1−d)
d , we obtain

µ
(d,1−d)
d =

δ(1,d,0)ρ(0,d,1) − δ(1,d,1)ρ(0,d,0)

ρ(0,1−d,0)ρ(0,d,1) − ρ(0,1−d,1)ρ(0,d,0)
.

The denominator in this expression can be simplified. Since ρ(0,1−d,d′) = 1− ρ(0,d,d′), we have

ρ(0,1−d,0)ρ(0,d,1) − ρ(0,1−d,1)ρ(0,d,0) = (1− ρ(0,d,0))ρ(0,d,1) − (1− ρ(0,d,1))ρ(0,d,0)

= ρ(0,d,1) − ρ(0,d,0)ρ(0,d,1) − ρ(0,d,0) + ρ(0,d,1)ρ(0,d,0)

= ρ(0,d,1) − ρ(0,d,0).

Substituting this result back yields

µ
(d,1−d)
d =

δ(1,d,0)ρ(0,d,1) − δ(1,d,1)ρ(0,d,0)

ρ(0,d,1) − ρ(0,d,0)
.

To avoid division by zero, Assumption 5 (iii) is required. Similarly, to solve for µ
(d,1−d)
d , we

follow a parallel procedure. Multiplying the first equation of the original system (44) by ρ(0,1−d,1)
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and the second by ρ(0,1−d,0), and then subtract the former from the latter to obtain

µ
(d,d)
d =

δ(1,d,1)ρ(0,1−d,0) − δ(1,d,0)ρ(0,1−d,1)

ρ(0,1−d,0) − ρ(0,1−d,1)
.

Finally, we obtain the four quantities of interest by setting d = 1 and d = 0 in the expressions
for µ

(d,1−d)
d and µ

(d,d)
d as

µc
1 =

δ(1,1,0)ρ(0,1,1) − δ(1,1,1)ρ(0,1,0)

ρ(0,1,1) − ρ(0,1,0)
, µd

0 =
δ(1,0,0)ρ(0,0,1) − δ(1,0,1)ρ(0,0,0)

ρ(0,0,1) − ρ(0,0,0)
,

µa
1 =

δ(1,1,1)ρ(0,0,0) − δ(1,1,0)ρ(0,0,1)

ρ(0,0,0) − ρ(0,0,1)
, µn

0 =
δ(1,0,1)ρ(0,1,0) − δ(1,0,0)ρ(0,1,1)

ρ(0,1,0) − ρ(0,1,1)
. (45)

Thus, the probabilities pu for u ∈ {c, a, n, d} are identified under Assumption 5 (ii) as

P(D1 = d,D0 = d′) = P(D1 = d,D0 = d′, Dpre = 0) + P(D1 = d,D0 = d′, Dpre = 1)

= P(D1 = d,Dpre = 0)P(D0 = d′|D1 = d,Dpre = 0)

+P(D1 = d,Dpre = 1)P(D0 = d′|D1 = d,Dpre = 1)

= P(D1 = d,Dpre = 0)P(D0 = d′|Dpre = 0)

+P(D1 = d,Dpre = 1)P(D0 = d′|Dpre = 1)

= π(1,d,0)ρ(0,d′,0) + π(1,d,1)ρ(0,d′,1),

where the third equality follows from Assumption 5 (ii). By setting (d, d′) = (1, 1), (d, d′) =

(1, 0), (d, d′) = (0, 1) and (d, d′) = (0, 0), respectively, we obtain the probabilities for always-
takers (pa), compliers (pc), defiers (pd), and never-takers (pn):

pa = π(1,1,1)ρ(0,1,1) + π(1,1,0)ρ(0,1,0), pc = π(1,1,0)ρ(0,0,0) + π(1,1,1)ρ(0,0,1),

pd = π(1,0,1)ρ(0,1,1) + π(1,0,0)ρ(0,1,0), pn = π(1,0,0)ρ(0,0,0) + π(1,0,1)ρ(0,0,1). (46)

Rewriting the results, such as those in equations (45) and (46), yields

µu
b =

δ(1,b,b′)ρ(0,1−b′,1−b′) − δ(1,b,1−b′)ρ(0,1−b′,b′)

ρ(0,1−b′,1−b′) − ρ(0,1−b′,b′)
,

pu = π(1,b,b′)ρ(0,b′,b′) + π(1,b,1−b′)ρ(0,b′,1−b′), (47)

where the indices (b, b′) correspond to type u as

(b, b′) =


(1, 1) for u = a

(1, 0) for u = c

(0, 1) for u = d

(0, 0) for u = n

.

Furthermore, µd
1 and µc

0 are also identified. These expressions are derived by rearranging the
law of total expectation; for example, δ(0,1) = E[Y1|D0 = 1] is the weighted average of µa

1 and
µd
1. This gives

µd
1 =

(pa + pd)δ(0,1) − paµa
1

pd
, µc

0 =
(pc + pn)δ(0,0) − pnµn

0

pc
.
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Therefore, the ATE for compliers and defiers are identified as

ATE(c) = µc
1 − µc

0, ATE(d) = µd
1 − µd

0.

B.6. Proof of Remark 7. The proof is analogous to that of Theorem 3. The difference is that
identification relies on Assumption 5’ instead of Assumption 5.

First, we express δ(0,d,d′) by conditioning on the value of D1. Following the same algebraic
steps as in Appendix B.5 (solving the system of equations for d′ = 0, 1), we obtain the identifiable
expressions for µ

(1−d,d)
d and µ

(d,d)
d . This requires Assumptions 5’ (i)-(iii). The results are

µ
(1−d,d)
d =

δ(0,d,1)ρ(1,d,0) − δ(0,d,0)ρ(1,d,1)

ρ(1,d,0) − ρ(1,d,1)
, µ

(d,d)
d =

δ(0,d,0)ρ(1,1−d,1) − δ(0,d,1)ρ(1,1−d,0)

ρ(1,1−d,1) − ρ(1,1−d,0)
.

By setting d = 1 and d = 0 in these equations, we can identify the following four quantities

µd
1 =

δ(0,1,1)ρ(1,1,0) − δ(0,1,0)ρ(1,1,1)

ρ(1,1,0) − ρ(1,1,1)
, µc

0 =
δ(0,0,1)ρ(1,0,0) − δ(0,0,0)ρ(1,0,1)

ρ(1,0,0) − ρ(1,0,1)
,

µa
1 =

δ(0,1,0)ρ(1,0,1) − δ(0,1,1)ρ(1,0,0)

ρ(1,0,1) − ρ(1,0,0)
, µn

0 =
δ(0,0,0)ρ(1,1,1) − δ(0,0,1)ρ(1,1,0)

ρ(1,1,1) − ρ(1,1,0)
.

Next, the probabilities pu for u ∈ {c, a, n, d} are identified under Assumption 5’ (ii). The
derivation follows a similar logic to that in B.5 , which yields a general expression

P(D1 = d,D0 = d′) = π(0,d′,0)ρ(1,d,0) + π(0,d′,1)ρ(1,d,1).

By setting (d, d′) = (1, 1), (d, d′) = (1, 0), (d, d′) = (0, 1), and (d, d′) = (0, 0), respectively, we
obtain the specific probabilities as

pa = π(0,1,0)ρ(1,1,0) + π(0,1,1)ρ(1,1,1), pc = π(0,0,0)ρ(1,1,0) + π(0,0,1)ρ(1,1,1),

pd = π(0,1,0)ρ(1,0,0) + π(0,1,1)ρ(1,0,1), pn = π(0,0,0)ρ(1,0,0) + π(0,0,1)ρ(1,0,1).

Rewriting (45) and (46) yields

µu
b′ =

δ(0,b′,b′)ρ(1,1−b,1−b′) − δ(0,b′,1−b′)ρ(1,1−b,b′)

ρ(1,1−b,1−b′) − ρ(1,1−b,b′)
,

pu = π(0,b′,b′)ρ(1,b,b′) + π(0,b,1−b′)ρ(1,b,1−b′),

where (b, b′) is same as the one in (47). Finally, µc
1 and µd

0 are identified using the law of total
expectation, analogous to the final step in Appendix B.5, that is

µc
1 =

(pc + pa)δ(1,1) − paµa
1

pc
, µd

0 =
(pn + pd)δ(1,0) − pnµn

0

pd
.

This implies identification of ATE(c) and ATE(d) as defined previously.

B.7. Proof of Remark 11.

B.7.1. Stable case. We demonstrate that Assumptions 1 (i)’, 1 (ii), D (i), D (ii)’, and 4 are
sufficient to identify ATE(c) and ATE(d). First, note that the parameters µc

1, µ
a
1, µ

n
0 , µ

d
0 and

13



pc, pa, pn, pd are identified as

µc
1 = E[Y1|D1 = 1, D0 = 0] = E[Y10|D10 = 1, Dpre = 0] = E[Y |Z = 1, D = 1, Dpre = 0],

µa
1 = E[Y1|D1 = 1, D0 = 1] = E[Y11|D11 = 1, Dpre = 1] = E[Y |Z = 1, D = 1, Dpre = 1],

µn
0 = E[Y0|D1 = 0, D0 = 0] = E[Y00|D10 = 0, Dpre = 0] = E[Y |Z = 1, D = 0, Dpre = 0],

µd
0 = E[Y0|D1 = 0, D0 = 1] = E[Y01|D11 = 0, Dpre = 1] = E[Y |Z = 1, D = 0, Dpre = 1],

pc = P(D1 = 1, D0 = 0) = P(D10 = 1, Dpre = 0) = P(D = 1, Dpre = 0|Z = 1),

pa = P(D1 = 1, D0 = 1) = P(D11 = 1, Dpre = 1) = P(D = 1, Dpre = 1|Z = 1),

pn = P(D1 = 0, D0 = 0) = P(D10 = 0, Dpre = 0) = P(D = 0, Dpre = 0|Z = 1),

pd = P(D1 = 0, D0 = 1) = P(D11 = 0, Dpre = 1) = P(D = 0, Dpre = 1|Z = 1),

where the second equality in each expression holds due to Assumption 4. Under this assumption,
an individual’s principal stratum uniquely determines their value of Dpre: for example, compliers
(D1 = 1, D0 = 0) must have Dpre = 0, while always-takers (D1 = 1, D0 = 1) must have Dpre = 1.
This fixed relationship ensures that the potential heterogeneity due to Dpre does not affect the
parameters defined for each principal stratum. The third equality in each line then follows from
Assumptions 1 (i)’ and D (ii)’.

Next, the remaining parameters, µd
1 and µc

0, are identified as

µd
1 =

(pa + pd)E[Y1|D0 = 1]− paµa
1

pd
=

(pa + pd)E[Y |Z = 0, D = 1]− paµa
1

pd
,

µc
0 =

(pc + pn)E[Y0|D0 = 0]− pnµn
0

pc
=

(pc + pn)E[Y |Z = 0, D = 0]− pnµn
0

pc
.

Thus, we identify ATE(c) = µc
1 − µc

0 and ATE(d) = µd
1 − µd

0.

B.7.2. Unstable case . We demonstrate that Assumptions 1 (i)’, 1 (ii), D (i), D (ii)’, and 5, are
sufficient to identify ATE(c) and ATE(d). Under Assumption 1 (i)’, Assumption 5 implies the
following conditions hold:

(i): [Exclusion restriction on treatment before assignment] E[YdDpre |D1Dpre = d,D0Dpre =

d′, Dpre] = E[Yd|D1 = d,D0 = d′] for each u ∈ {c, a, n, d}.
(ii): [Exclusion restriction through treatment before assignment] P(D0Dpre = 1|Dpre, D1Dpre) =

P(D0Dpre = 1|Dpre).
(iii): [Relevance condition on treatment before assignment] Cov(D0Dpre , Dpre) ̸= 0.

We use the following notation

δ(z,d,d′) = E[Ydd′ |Dzd′ = d,Dpre = d′], δ(z,d) = E[Yd|Dz = d],

π(z,d,d′) = P(Dzd′ = d,Dpre = d′), ρ(z,d,d′) = P(Dzd′ = d|Dpre = d′).

14



These quantities are identified from the observed data as

δ(z,d,d′) = E[Y |Z = z,D = d,Dpre = d′],

δ(z,d) = E[Y |Z = z,D = d],

π(z,d,d′) = P(Z = z,D = d,Dpre = d′),

ρ(z,d,d′) = P(D = d|Z = z,Dpre = d′).

for each z ∈ {0, 1} and d, d′ ∈ {0, 1}. First, we present the identification result for µc
1, µ

a
1, µ

n
0 ,

and µd
0. As a first step, using Assumption 5 (i)-(ii), we express δ(1,d,d′) for d, d′ ∈ {0, 1} as

δ(1,d,d′) = E[Ydd′ |D1d′ = d,Dpre = d′]

= E[Ydd′ |D1d′ = d,D0d′ = 1− d,Dpre = d′]P(D0d′ = 1− d|D1d′ = d,Dpre = d′)

+E[Ydd′ |D1d′ = d,D0d′ = d,Dpre = d′]P(D0d′ = d|D1d′ = d,Dpre = d′)

= E[Yd|D1 = d,D0 = 1− d]P(D0d′ = 1− d|Dpre = d′)

+E[Yd|D1 = d,D0 = d]P(D0d′ = d|Dpre = d′)

= µ
(d,1−d)
d ρ(0,1−d,d′) + µ

(d,d)
d ρ(0,d,d′),

where the third equality holds by Assumptions 5 (i)-(ii), and in the last line, we use the shorthand
notation µ

(d,1−d)
d := E[Yd|D1 = d,D0 = 1− d] and µ

(d,d)
d := E[Yd|D1 = d,D0 = d] for d ∈ {0, 1}.

Following the same procedure as in Appendix B.5, we obtain

µ
(d,1−d)
d =

δ(1,d,0)ρ(0,d,1) − δ(1,d,1)ρ(0,d,0)

ρ(0,d,1) − ρ(0,d,0)
.

To avoid division by zero, Assumption 5 (iii) is required. Applying a similar procedure to
eliminate µ

(d,1−d)
d instead of µ(d,d)

d , we obtain

µ
(d,d)
d =

δ(1,d,1)ρ(0,1−d,0) − δ(1,d,0)ρ(0,1−d,1)

ρ(0,1−d,0) − ρ(0,1−d,1)
.

Thus, the probabilities pu for u ∈ {c, a, n, d} are identified under Assumption 5 (ii) as

P(D1 = d,D0 = d′) = P(D1 = d,D0 = d′)

= P(D10 = d,D00 = d′, Dpre = 0) + P(D11 = d,D01 = d′, Dpre = 1)

= P(D10 = d,Dpre = 0)P(D00 = d′|D10 = d,Dpre = 0)

+P(D10 = d,Dpre = 1)P(D00 = d′|D10 = d,Dpre = 1)

= P(D10 = d,Dpre = 0)P(D00 = d′|Dpre = 0)

+P(D11 = d,Dpre = 1)P(D01 = d′|Dpre = 1)

= π(1,d,0)ρ(0,d′,0) + π(1,d,1)ρ(0,d′,1),

where the forth equality follows from Assumption 5 (ii). The rest follows by applying the same
procedure as in Appendix B.5 so that ATE(c) and ATE(d) can be identified.

We note that the discussion above also holds when replacing Assumption 5 with Assumption
5’.

15



B.8. Proof of Theorem 4 . This proof combines the results from the preceding sections
(Appendices B.2 and B.5). We first recall the relevant notation:

δ(z,d,d′) = E[Yd|Dz = d,Dpre = d′], δ(z,d) = E[Yd|Dz = d],

δpre
(z,d,d′) = E[Y pre|Dz = d,Dpre = d′], δpre

(z,d) = E[Y pre|Dz = d],

π(z,d,d′) = P(Dz = d,Dpre = d′), ρ(z,d,d′) = P(Dz = d|Dpre = d′).

These quantities are identified from the observed data under Assumptions 1 and YD. First, by
following the same identification strategy detailed in Appendix B.5, the parameters µc

1, µ
a
1, µ

n
0 , µ

d
0,

and pu for u ∈ {c, a, n, d} are identified under Assumptions 1, YD, and 5. This yields the general
solutions

µu
b =

δ(1,b,b′)ρ(0,1−b′,1−b′) − δ(1,b,1−b′)ρ(0,1−b′,b′)

ρ(0,1−b′,1−b′) − ρ(0,1−b′,b′)
, pu = π(1,b,b′)ρ(0,b′,b′) + π(1,b,1−b′)ρ(0,b′,1−b′),

where the pair (b, b′) corresponds to each type u as defined in Appendix B.5. Furthermore, the
parameters µd

1 and µc
0 are subsequently identified via the law of total expectation, using the

quantities already identified above:

µd
1 =

(pa + pd)δ(0,1) − paµa
1

pd
, µc

0 =
(pc + pn)δ(0,0) − pnµn

0

pc
.

This allows for identification of ATE(c) = µc
1 − µc

0 and ATE(d) = µd
1 − µd

0.
Next, we identify the remaining parameters required for ATT and ATE. Under Assumption

3 (i), µa
0 is identified as

µa
0 = µa

pre + µn
0 − µn

pre,

where µa
pre = E[Y pre|D1 = 1, D0 = 1] and µn

pre = E[Y pre|D1 = 0, D0 = 0].
Under Assumptions 5 (ii)-(iii) and 6, µa

pre and µn
preare identified using a procedure identical

to the one used to identify µu
d terms, with the sole modification of replacing Yd with Y pre. This

yields the corresponding solution:

µu
pre =

δpre
(1,b,b′)ρ(0,1−b′,1−b′) − δpre

(1,b,1−b′)ρ(0,1−b′,b′)

ρ(0,1−b′,1−b′) − ρ(0,1−b′,b′)
,

where the pair (b, b′) corresponds to each type u as defined in Appendix B.5. With µa
0 identified,

ATT is also identified as

ATT =
pc(µc

1 − µc
0) + pa(µa

1 − µa
0)

pc + pa
.

Finally, Assumption 3 (ii) guarantees identification of µn
1 as µn

1 = µn
0 + µa

1 − µa
0, which allows

the identification of ATE:

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0).

B.9. Proof of Remark 14. The proof presented here is nearly identical to Appendix B.8, with
the difference being the use of Assumption 5’ instead of Assumption 5.
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First, the parameters µc
0, µ

a
1, µ

n
0 , µ

d
1, and pu for u ∈ {c, a, n, d} are identified under Assumptions

1, YD, and 5’. This yields the general solutions:

µu
b′ =

δ(0,b′,b′)ρ(1,1−b,1−b′) − δ(0,b′,1−b′)ρ(1,1−b,b′)

ρ(1,1−b,1−b′) − ρ(1,1−b,b′)
, pu = π(0,b′,b′)ρ(1,b,b′) + π(0,b,1−b′)ρ(1,b,1−b′),

where the pair (b, b′) corresponds to each type u as defined in Appendix B.5. Furthermore, the
parameters µc

0 and µd
1 are subsequently identified via the law of total expectation, using the

quantities already identified above:

µc
1 =

(pc + pa)δ(1,1) − paµa
1

pc
, µd

0 =
(pn + pd)δ(1,0) − pnµn

0

pd
.

Therefore, ATE for compliers and ATE for defiers are identified. Under Assumption 3 (i), µa
0 is

identified as
µa
0 = µa

pre + µn
0 − µn

pre.

Under Assumption 5’(ii)-(iii) and 6, the µa
pre and µn

pre are identified as

µu
pre =

δpre
(1,b,b′)ρ(0,1−b′,1−b′) − δpre

(1,b,1−b′)ρ(0,1−b′,b′)

ρ(0,1−b′,1−b′) − ρ(0,1−b′,b′)
,

where the pair (b, b′) corresponds to each type u as defined in Appendix B.5. Then ATT is also
identified. Finally, Assumption 3 (ii) guarantees identification of µn

1 as µn
1 = µn

0 +µa
1−µa

0, which
allows identification of ATE.

B.10. Proof of Remark 12. We provide a proof of identification of µa
0, µn

1 , ATT, and ATE.
Other parameters (i.e., µc

1, µ
c
0, µ

a
1, µ

n
0 , µ

d
1, µ

d
0, µ

c
pre, µ

a
pre, µ

n
pre, µ

d
pre, p

c, pa, pn, pd, and ATE(c) and
ATE(d)) are identified in the same way as the proof of Theorem 4.

Proof under Assumptions 3 (i)’ and 3 (ii). Under Assumption 3 (i)’ in addition to 1, YD, 5,
and 6, µa

0 and ATT are identified as

µa
1 − µa

0 = E[Y1|U = a]− E[Y0|U = a] + E[Y pre|U = a]− E[Y pre|U = a]

= E[Y1 − Y pre|U = a]− E[Y0 − Y pre|U = a]

= E[Y1 − Y pre|U = a]− E[Y0 − Y pre|U = d]

= µa
1 − µa

pre − µd
0 + µd

pre,

where the third equality uses assumption 3 (i)’. ATT is identified as

ATT =
pc(µc

1 − µc
0)− pa(µa

1 − µa
0)

pc + pa
.

Next, µn
1 and ATE are identified under Assumption 3 (ii) as

µn
1 = µn

0 + µa
1 − µa

0.

Therefore, ATE is identified as

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0).
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Proof under Assumptions 3 (i) and 3 (ii)’. Under Assumption 3 (i) in addition to 1, YD, 5,
and 6, µa

0 and ATT are identified in the same way as the proof of Theorem 4. Next, under
Assumption 3 (ii)’ in addition to 1, YD, 5, and 6, µn

1 and ATE are identified under Assumption
3 (ii)’ as

µn
1 − µn

0 = E[Y1|U = n]− E[Y0|U = n] + E[Y pre|U = n]− E[Y pre|U = n]

= E[Y1 − Y pre|U = n]− E[Y0 − Y pre|U = n]

= E[Y1 − Y pre|U = d]− E[Y0 − Y pre|U = n]

= µd
1 − µd

pre − µn
0 + µn

pre,

where the third equality uses assumption 3 (ii)’. Therefore, ATE is identified as

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0).

Proof under Assumptions 3 (i)’ and 3 (ii)’. Under Assumption 3 (i)’ in addition to 1, YD, 5,
and 6, µa

0 and ATT are identified in the same way as the proof under Assumptions 3 (i)’ and 3
(ii). Then under Assumption 3 (ii)’ in addition to 1, YD, 5, and 6, µn

1 and ATE are identified
in the same way as the proof under Assumptions 3 (i) and 3 (ii)’.

We note that the discussion above also holds when replacing Assumption 5 with Assumption
5’.

B.11. Proof of Remark 17. This proof demonstrates identification under the stable case,
where Assumption 4 holds. First, note that µc

1, µ
a
1, µ

n
0 , µ

d
0, p

c, pa, pn, pd are identified under As-
sumptions 1, YD, and 4 as

µc
1 = E[Y1|D1 = 1, D0 = 0] = E[Y1|D1 = 1, Dpre = 0] = E[Y |Z = 1, D = 1, Dpre = 0],

µa
1 = E[Y1|D1 = 1, D0 = 1] = E[Y1|D1 = 1, Dpre = 1] = E[Y |Z = 1, D = 1, Dpre = 1],

µn
0 = E[Y0|D1 = 0, D0 = 0] = E[Y0|D1 = 0, Dpre = 0] = E[Y |Z = 1, D = 0, Dpre = 0],

µd
0 = E[Y0|D1 = 0, D0 = 1] = E[Y0|D1 = 0, Dpre = 1] = E[Y |Z = 1, D = 0, Dpre = 1],

pc = P(D1 = 1, D0 = 0) = P(D1 = 1, Dpre = 0) = P(D = 1, Dpre = 0|Z = 1),

pa = P(D1 = 1, D0 = 1) = P(D1 = 1, Dpre = 1) = P(D = 1, Dpre = 1|Z = 1),

pn = P(D1 = 0, D0 = 0) = P(D1 = 0, Dpre = 0) = P(D = 0, Dpre = 0|Z = 1),

pd = P(D1 = 0, D0 = 1) = P(D1 = 0, Dpre = 1) = P(D = 0, Dpre = 1|Z = 1),

where each of the second equality holds by Assumption 4. The parameters µd
1 and µc

0 are
identified via the law of total expectation as

µd
1 =

(pa + pd)E[Y |Z = 0, D = 1, Dpre = 1]− paµa
1

pd

µc
0 =

(pc + pn)E[Y |Z = 0, D = 0, Dpre = 0]− pnµn
0

pc
.
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This allows for identification of ATE(c) = µc
1 − µc

0 and ATE(d) = µd
1 − µd

0. Next, we identify
the parameters required for ATT and the ATE. Under Assumption 3 (i), µa

0 is identified as

µa
0 = µa

pre + µn
0 − µn

pre.

This requires the identification of µa
pre and µn

pre. These terms are identified from the data as

µa
pre = E[Y pre|D1 = 1, D0 = 1] = E[Y pre|D1 = 1, Dpre = 1] = E[Y pre|Z = 1, D = 1, Dpre = 1],

µn
pre = E[Y pre|D1 = 0, D0 = 0] = E[Y pre|D1 = 0, Dpre = 0] = E[Y pre|Z = 1, D = 0, Dpre = 0].

In each line above, the second equality holds by Assumption 4. With µa
0 now identified, ATT is

also identified. Finally, Assumption 3 (ii) guarantees identification of µn
1 as µn

1 = µn
0 + µa

1 − µa
0,

which allows identification of ATE.
The above argument is based on showing just identification of the 14 parameters, (µu

1 , µ
u
0 , p

u)

for u ∈ {c, a, n, d} and µu
pre for u ∈ {a, n}. Indeed by introducing two more parameters

(µc
pre, µ

d
pre), we have four additional restrictions:

pa + pd = E[D = 1, Dpre = 1|Z = 0], pc + pn = E[D = 0, Dpre = 0|Z = 0],

µa
pre =

(pa + pd)E[Y pre|Z = 0, D = 1, Dpre = 1]− pdµd
pre

pa
,

µn
pre =

(pc + pn)E[Y pre|Z = 0, D = 0, Dpre = 0]− pcµc
pre

pn
.

Here µc
pre = E[Y pre|U = c] and µd

pre = E[Y pre|U = d] are identified by

µc
pre = E[Y pre|Z = 1, D = 1, Dpre = 0], µd

pre = E[Y pre|Z = 1, D = 0, Dpre = 1].

These additional moment conditions can be incorporated by using the GMM approach.

B.12. Proof of Remark 19. Under Assumption 1 (i)’, Assumption YD (iii) is replaced with
the following condition:

Assumption D (ii)’: Z is independent from
(Dpre, D11, D10, D01, D00, Y111, Y101, Y011, Y001, Y110, Y100, Y010, Y000).
We demonstrate that Assumptions 1 (i)’, 1 (ii), YD (i), YD (ii), YD (iii)’, 3, 5, and 6 are

sufficient to identify ATE(c), ATT, and ATE. Based on the discussion in Appendix B.7.2, the
parameters µc

1, µ
c
0, µ

a
1, µ

n
0 , µ

d
1, µ

d
0 and pc, pa, pn, pd are identified under Assumptions 1 (i)’, 1 (ii),

YD (i), YD (ii), YD (iii)’, and 5. Next, we identify the parameters required for ATT and ATE.
Assumption 3 (i) guarantees identification of µa

0 as µa
0 = µa

pre + µn
0 − µn

pre. This requires the
identification of µa

pre and µn
pre. Under Assumption 1 (i)’, Assumption 6 implies the following

conditions hold:
[Exclusion restriction on treatment before assignment for pre-treatment outcome] E[Y pre|D1Dpre =

d,D0Dpre = d′, Dpre] = E[Y pre|D1 = d,D0 = d′] for each u ∈ {c, a, n, d}.
Under Assumption 5 (ii)-(iii) and 6, µa

pre and µn
preare identified using a procedure identical

to the one used to identify µu
d terms in Appendix B.7.2, with the sole modification of replacing

Yd with Y pre. With µa
0 identified, ATT is also identified. Finally, Assumption 3 (ii) guarantees

identification of µn
1 as µn

1 = µn
0 + µa

1 − µa
0, which allows the identification of ATE.
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We note that the discussion above also holds when replacing Assumption 5 with Assumption
5’.

B.13. Proof of Theorem 5. Since the proofs are similar, we only provide a proof of the
multiply robust representation of δ(z,d,d′). Observe that the right hand side of (36) is written as

E
[
I{Z = z}
ez(X;α)

I{D = d,Dpre = d′}
p(z,d,d′)(X;β)

Y

]
−E

[I{Z = z}I{D = d,Dpre = d′} − ez(X;α)p(z,d,d′)(X;β)

ez(X;α)p(z,d,d′)(X;β)
m(z,d,d′)(X; γ)

]
,

= E
[
I{Z = z}
ez(X;α)

I{D = d,Dpre = d′}
p(z,d,d′)(X;β)

{Y −m(z,d,d′)(X; γ)}
]
+ E[m(z,d,d′)(X; γ)]. (48)

First, consider the case where ez(X;α) and p(z,d,d′)(X;β) are correctly specified. In this case,
the the first term of (48) is written as

E
[
I{Z = z}
ez(X;α)

I{D = d,Dpre = d′}
p(z,d,d′)(X;β)

{Y −m(z,d,d′)(X; γ)}
]

= EX

[
E
[
I{Z = z}
ez(X;α)

I{D = d,Dpre = d′}
p(z,d,d′)(X;β)

{Y −m(z,d,d′)(X; γ)}
∣∣∣∣X]]

= EX

[
P(Z = z|X)

ez(X;α)

P(D = d,Dpre = d
′ |Z = z,X)

p(z,d,d′)(X;β)
E[{Y −m(z,d,d′)(X; γ)}|Z = z,Dz = d,Dpre = d′, X]

]
= EX

[
E[{Y −m(z,d,d′)(X; γ)}|Z = z,Dz = d,Dpre = d′, X]

]
= EX

[
E[Yd|Z = z,Dz = d,Dpre = d′, X]−m(z,d,d′)(X; γ)

]
= EX

[
E[Yd|Dz = d,Dpre = d′, X]−m(z,d,d′)(X; γ)

]
= δ(z,d,d′) − E[m(z,d,d′)(X; γ)],

where the third equality holds by ez(X;α) = P(Z = z|X) and p(z,d,d′)(X;β) = P(D = d,Dpre =

d′|Z = z,X). Thus we obtain the conclusion.
Next, consider the case where m(z,d,d′)(X; γ) = E[Y |Z = z,D = d,Dpre = d′, X] is correctly

specified. In this case, the the first term of (48) is written as

E
[
I{Z = z}
ez(X;α)

I{D = d,Dpre = d′}
p(z,d,d′)(X;β)

{Y −m(z,d,d′)(X; γ)}
]

= EX

[
E
[
I{Z = z}
ez(X;α)

I{D = d,Dpre = d′}
p(z,d,d′)(X;β)

{Y −m(z,d,d′)(X; γ)}
∣∣∣∣X]]

= EX

[
P(Z = z|X)

ez(X;α)

P(D = d,Dpre = d
′ |Z = z,X)

p(z,d,d′)(X;β)
E[{Y −m(z,d,d′)(X; γ)|Z = z,Dz = d,Dpre = d′, X]

]

= EX

[
P(Z = z|X)

ez(X;α)

P(D = d,Dpre = d
′ |Z = z,X)

p(z,d,d′)(X;β)
{E[Y |Z = z,Dz = d,Dpre = d′, X]−m(z,d,d′)(X; γ)}

]
= 0,

where the fourth equality holds by m(z,d,d′)(X; γ) = E[Y |Z = z,D = d,Dpre = d′, X]. Thus, the
conclusion follows by δ(z,d,d′) = E[m(z,d,d′)(X; γ)].
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B.14. Proof of Theorem 6. We provide a proof of identification of µa
0, µn

1 , ATT, and ATE.
Other parameters (i.e., µc

1, µ
c
0, µ

a
1, µ

n
0 , µ

d
1, µ

d
0, p

c, pa, pn, pd,ATE(c) and ATE(d)) are identified in
the same way as the proof of Remark 17.

Proof under Assumptions 3a (i) and 3 (ii). Under Assumption 3a (i) in addition to 1 ,YD, YD-a,
and 4, µa

0 and ATT are identified as

µa
1 − µa

0 = E[Y1|U = a]− E[Y0|U = a] + E[Y pre
1 |U = a]− E[Y pre

1 |U = a]

= E[Y1 − Y pre
1 |U = a]− E[Y0 − Y pre

1 |U = a]

= E[Y1 − Y pre
1 |U = a]− E[Y0 − Y pre

1 |U = d]

= µa
1 − E[Y pre

1 |U = a]− µd
0 + E[Y pre

1 |U = d],

where

E[Y pre
1 |U = a] = E[Y pre|Z = 1, D = 1, Dpre = 1],

E[Y pre
1 |U = d] = E[Y pre|Z = 1, D = 0, Dpre = 1].

In the equation of µa
1 − µa

0, the third equality uses assumption 3a (i). Each equality in the
equations of E[Y pre

1 |U = a] and E[Y pre
1 |U = d] uses Assumptions 1, YD, YD-a and 4. ATT is

identified as
ATT =

pc(µc
1 − µc

0)− pa(µa
1 − µa

0)

pc + pa
.

Next, µn
1 and ATE are identified under Assumption 3 (ii) as

µn
1 = µn

0 + µa
1 − µa

0.

Therefore, ATE is identified as

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0).

Proof under Assumptions 3a (ii) and 3 (ii). Under Assumption 3a (ii) instead of 3a (i), µa
0,

ATT, µn
1 , and ATE are also identified as

µn
1 − µn

0 = E[Y1|U = n]− E[Y0|U = n] + E[Y pre
0 |U = n]− E[Y pre

0 |U = n]

= E[Y1 − Y pre
0 |U = n]− E[Y0 − Y pre

0 |U = n]

= E[Y1 − Y pre
0 |U = c]− E[Y0 − Y pre

0 |U = n]

= µc
1 − E[Y pre

0 |U = c]− µn
0 + E[Y pre

0 |U = n],

where

E[Y pre
0 |U = c] = E[Y pre|Z = 1, D = 1, Dpre = 0],

E[Y pre
0 |U = n] = E[Y pre|Z = 1, D = 0, Dpre = 0].

In the equation of µn
1 − µn

0 , the third equality uses Assumption 3a (ii). Each equality in the
equations of E[Y pre

0 |U = c] and E[Y pre
0 |U = n] uses Assumptions 1, YD, YD-a and 4. ATT is
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not yet identified. Next, µa
0 is identified under Assumption 3 (ii) as

µa
0 = µa

1 − µn
1 + µn

0 .

Then ATT and ATE are identified as

ATT =
pc(µc

1 − µc
0)− pa(µa

1 − µa
0)

pc + pa
,

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0).

Proof under Assumptions 3a (i) and 3a (ii). As mentioned above, under Assumptions 1, YD,
YD-a 4, and 3a (i), µa

0 and ATT are identified as

µa
0 = µa

1 − E[Y pre
1 |U = a]− µd

0 + E[Y pre
1 |U = d],

ATT =
pc(µc

1 − µc
0)− pa(µa

1 − µa
0)

pc + pa
.

Next, µn
1 and ATE are identified under Assumption 3a (ii) as

µn
1 = µn

0 + µa
1 − µa

0,

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0).

B.15. Proof of Theorem 8. The identification strategy from Theorem 4 applies directly, sub-
stituting Dpost for Dpre and relabeling Assumptions YD, 5, and 6 as YD-c, 5c, and 6c.

B.16. Proof of Theorem 9 and 10. The proofs for these theorems are analogous to the proof
of Theorem 5 and are therefore omitted.

Appendix C. Simulation

Using numerical simulations, we evaluate the finite sample properties of our estimators for
ATE(c), ATT, and ATE under six different setups. These setups vary based on the identifying
assumptions (with monotonicity vs. without monotonicity) and the assignment mechanism
(random assignment vs. ignorability). The setups without monotonicity are further divided: we
refer to setups based on Assumption 4 as the "stable case" and those based on Assumption 5 as
the "unstable case." The six cases are:

(1) Monotonicity with random assignment: Estimation using Y pre (Theorem 1)
(2) Monotonicity with ignorability: Estimation using Y pre (Theorem 9)
(3) Stable case with random assignment: Estimation using Y pre and Dpre (Remark 17)
(4) Stable case with ignorability: Estimation using Y pre and Dpre (Remark 22)
(5) Unstable case with random assignment: Estimation using Y pre and Dpre (Theorem 4)
(6) Unstable case with ignorability: Estimation using Y pre and Dpre (Theorem 5)

For each setup, we evaluate four scenarios by varying the sample sizes (n = 2000 or n = 10000)
and the distribution of the outcome variable (Normal and Bernoulli).

C.1. Data generating process. The data generation process in this simulation study is as
follows. For unit i, covariates are generated as Xi1, Xi2 ∼iid N(1, 0.3), Xi3, Xi4 ∼iid N(−1, 0.3),
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Wi1,Wi2,Wi3 ∼iid N(0, 0.3), and Vi1, Vi2, Vi3, Vi4 ∼iid N(0, 0.3). Add intercepts and put them
together into vectors Xi = (1, Xi1, . . . , Xi4)

′, Wi = (1,Wi1, . . . ,Wi3)
′, and Vi = (1, Vi1, . . . , Vi4)

′.
In the setup with monotonicity, the principal strata are generated by the logistic model:

logit(P(Ui = u|Wi)) =
exp(ϕ′

uWi)∑
v exp(ϕ′

vWi)
,

where u ∈ {c, a, n}, ϕc = (0.2, 0.1, 0.1,−0.1)′, ϕa = (0.15,−0.2, 0.2,−0.1)′, and ϕn = (0.15, 0.2,−0.2,−0.1)′.
On the other side, in the setup without monotonicity, D1 and D0 are generated by the

following logistic models:

logit(P(Di1 = 1|Wi1,Wi2)) =
exp(ζ ′

1(1,Wi1,Wi2)
′)

1 + exp(ζ ′
1(1,Wi1,Wi2)′)

,

logit(P(Di0 = 1|Wi1,Wi3)) =
exp(ζ ′0(1,Wi1,Wi3))

1 + exp(ζ ′0(1,Wi1,Wi3))
,

where ζ1 = (0.2, 0.3,−0.1)′ and ζ0 = (−0.2, 0.3,−0.1)′. In the stable case, Dpre
i is generated

such that Dpre
i = Di0. In the unstable case, Dpre

i is generated to be unequal to Di0 for a random
30% of the subjects (i.e., Dpre

i ̸= Di0), while for the remaining 70%, Dpre
i = Di0.

Then, the principal stratum is generated as

Ui =


a if (Di1, Di0) = (1, 1)

c if (Di1, Di0) = (1, 0)

d if (Di1, Di0) = (0, 1)

n if (Di1, Di0) = (0, 0)

.

The outcomes following the normal distribution are generated as

YiDi |Xi,Vi, Di ∼ N(α+ γ′X,Ui
Xi + γ′V Vi + βUiDi, σ

2),

where α = 2, γX,a = (1, 1,−1, 1)′, γX,c = (3, 1,−1, 1)′, γX,n = (−2, 1,−1, 1)′, γX,d = (−1, 1,−1, 1)′,
γV = (2,−1, 2,−2)′, βa = 1, βc = 2, βn = 1, βd = 3, and σ2 = 0.5. The outcomes following the
Bernoulli distribution are generated as

YiDi |Xi,Vi, Di ∼ Ber
(

exp(α+ γ′X,Ui
Xi + γ′V Vi + βUiDi)

1 + exp(α+ γ′X,Ui
Xi + γ′V Vi + βUiDi)

)
,

where γX,a = (1,−1, 1, 0.5)′, γX,c = (3,−1, 1.5, 1)′, γX,n = (−2,−1, 0.5, 0.5)′, γX,d = (−1,−1, 1, 1)′,
and the values of the other parameters are the same as those used to generate from the normal
distribution. The pre-assignment outcome Y pre or Y pre is generated as

Y pre
i = Y0i −∆i, ∆i ∼ N(δUi , 0.5),

for the normal distribution outcome with δc = 3, δa = 1, δn = 1, and δd = 2, and also

Y pre
i = Y0i −∆i, ∆i ∼ Ber(δUi),

for the Bernoulli distribution outcome with δc = 0.3, δa = 0.2, δn = 0.2, and δd = 0.1.
In the case of the random assignment, the assignment variable Z is randomly generated so

that half of the values are 1 and the other half are 0. In the cause of the conditional ignorability,
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Z is generated based on the following model:

logit(P(Zi = 1|Xi)) =
exp(κ′Xi)

1 + exp(κ′Xi)
,

where κ = (0.5, 1, 0.5, 0.5, 1)′. In the case of the random assignment, none of the covariates are
observed, and in the case of the conditional ignorability, only X of the covariates is observed.

C.2. Simulation result. For the ignorability setups, we assume that both the propensity score
and outcome models are correctly specified. For each of the six setups, we conduct 1000 simu-
lations and report the average estimate, standard error, and coverage rate. Standard errors are
calculated using 200 bootstrap resamples. The results are presented in Tables 12, 13, and 14.

For comparison, the first row of each table reports the LATE estimated using a standard
Wald-type estimator (for the random assignment scenarios only). The second and subsequent
rows report the results for our proposed method. Our method provides estimates not only for
the main estimands (ATE(c), ATT, and ATE), but also for the underlying parameters for each
principal stratum, such as µu

1 , µu
0 , pu, and ATE(u). The ability to obtain accurate estimates for

these underlying parameters is particularly valuable for policymakers, as they can be used to
inform the design and targeting of interventions.

Across all scenarios, our proposed method performs well. The estimates for each estimand
and parameter are nearly unbiased, and the empirical coverage rates are close to the 95% level.
As expected, the standard errors for the n = 2000 scenarios were two to three times larger than
for the n = 10000 scenarios. However, even with n = 2000, the estimates are sufficiently precise
to allow for a meaningful interpretation of the causal effects. For example, in the monotonicity
setup with a normal distribution and random assignment, the ATE is 1.34, with a standard
error of 0.19 for n = 2000.Furthermore, the performance of our estimator is consistent across
different assignment mechanisms, showing no significant degradation when moving from the
random assignment scenarios to the ignorability scenarios. As is theoretically expected, the
LATE is equivalent to the ATE(c) in the monotonicity setups. In contrast, in the setups without
monotonicity (both stable and unstable), the standard LATE is biased for the ATE(c). Our
proposed method provides reliable estimates even in these situations where the LATE is heavily
biased or imprecise. This highlights the utility of our proposed method.
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Random assignment Ignorability

n = 2000 n = 10000 n = 2000 n = 10000

θ θ̂ s.e. cover θ θ̂ s.e. cover θ θ̂ s.e. cover θ θ̂ s.e. cover

Normal distribution

LATE 2.00 1.99 0.53 0.94 2.00 2.01 0.24 0.95 - - - - - - - -

ATE(c) 2.00 1.99 0.53 0.94 2.00 2.01 0.24 0.95 2.00 1.99 0.72 0.94 2.00 1.99 0.32 0.94
ATE(a) 1.00 1.00 0.06 0.94 1.00 1.00 0.03 0.95 1.00 1.01 0.10 0.94 1.00 1.00 0.04 0.94
ATE(n) 1.00 1.00 0.06 0.94 1.00 1.00 0.03 0.95 1.00 1.01 0.10 0.94 1.00 1.00 0.04 0.94
ATT 1.51 1.51 0.27 0.94 1.51 1.51 0.12 0.96 1.51 1.51 0.36 0.94 1.51 1.51 0.16 0.94
ATE 1.34 1.34 0.19 0.93 1.34 1.34 0.08 0.96 1.34 1.35 0.25 0.94 1.34 1.34 0.11 0.94
µc
1 8.00 8.00 0.37 0.95 8.00 8.01 0.16 0.95 8.00 8.01 0.47 0.92 8.00 8.00 0.21 0.93

µa
1 5.00 5.00 0.17 0.94 5.00 5.00 0.08 0.95 5.00 5.02 0.27 0.94 5.00 5.01 0.12 0.94

µn
1 2.00 2.00 0.19 0.94 2.00 2.00 0.09 0.95 2.00 2.01 0.19 0.93 2.00 2.00 0.09 0.95

µc
0 6.00 6.01 0.46 0.95 6.00 6.00 0.20 0.96 6.00 6.01 0.67 0.95 6.00 6.01 0.30 0.94

µa
0 4.00 4.00 0.18 0.94 4.00 4.00 0.08 0.95 4.00 4.01 0.25 0.95 4.00 4.00 0.11 0.94

µn
0 1.00 1.00 0.19 0.95 1.00 1.00 0.08 0.95 1.00 1.00 0.17 0.93 1.00 1.00 0.07 0.94

pc 0.34 0.34 0.02 0.94 0.34 0.34 0.01 0.95 0.34 0.34 0.03 0.94 0.34 0.34 0.01 0.95
pa 0.33 0.33 0.02 0.94 0.33 0.33 0.01 0.95 0.33 0.33 0.02 0.94 0.33 0.33 0.01 0.94
pn 0.33 0.33 0.02 0.94 0.33 0.33 0.01 0.95 0.33 0.33 0.02 0.93 0.33 0.33 0.01 0.95

Bernoulli distribution

LATE 0.16 0.16 0.06 0.94 0.16 0.16 0.03 0.94 - - - - - - - -

ATE(c) 0.16 0.16 0.06 0.94 0.16 0.16 0.03 0.94 0.16 0.16 0.09 0.94 0.16 0.16 0.04 0.94
ATE(a) 0.11 0.11 0.04 0.94 0.11 0.11 0.02 0.95 0.11 0.11 0.06 0.95 0.11 0.11 0.03 0.93
ATE(n) 0.10 0.11 0.04 0.94 0.10 0.11 0.02 0.90 0.10 0.11 0.06 0.94 0.10 0.11 0.03 0.91
ATT 0.14 0.14 0.04 0.94 0.14 0.14 0.02 0.94 0.14 0.14 0.05 0.93 0.14 0.14 0.02 0.94
ATE 0.12 0.13 0.03 0.93 0.12 0.13 0.01 0.94 0.12 0.13 0.04 0.95 0.12 0.13 0.02 0.93
µc
1 0.80 0.80 0.04 0.93 0.80 0.80 0.02 0.95 0.80 0.80 0.06 0.96 0.80 0.80 0.03 0.94

µa
1 0.67 0.67 0.03 0.94 0.67 0.67 0.01 0.93 0.67 0.67 0.04 0.93 0.67 0.67 0.02 0.95

µn
1 0.39 0.40 0.05 0.94 0.39 0.40 0.02 0.93 0.39 0.41 0.06 0.95 0.39 0.40 0.03 0.93

µc
0 0.64 0.64 0.05 0.95 0.64 0.64 0.02 0.94 0.64 0.64 0.07 0.93 0.64 0.64 0.03 0.93

µa
0 0.56 0.56 0.04 0.95 0.56 0.56 0.02 0.94 0.56 0.56 0.06 0.95 0.56 0.56 0.03 0.94

µn
0 0.29 0.29 0.03 0.94 0.29 0.29 0.01 0.95 0.29 0.29 0.03 0.94 0.29 0.29 0.01 0.95

pc 0.34 0.34 0.02 0.94 0.34 0.34 0.01 0.95 0.34 0.34 0.03 0.95 0.34 0.34 0.01 0.94
pa 0.33 0.33 0.02 0.95 0.33 0.33 0.01 0.95 0.33 0.33 0.02 0.95 0.33 0.33 0.01 0.93
pn 0.33 0.33 0.02 0.94 0.33 0.33 0.01 0.94 0.33 0.33 0.02 0.94 0.33 0.33 0.01 0.95

Note: The values in the θ column are the true values calculated from 1, 000, 000 samples from the data
generation process. Columns θ̂, sd, and cover contain the average estimates, the average biases and coverage

rates over 1000 repeated drawings from the data generating process, respectively. ATE(u) is defined as µu
1 − µu

0

for each stratum u ∈ {c, a, n, d}. LATE is calculated by E[Y |Z=1]−E[Y |Z=0]
E[D|Z=1]−E[D|Z=0]

.

Table 12. Monotonicity setups
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Random assignment ignorability

n = 2000 n = 10000 n = 2000 n = 10000

θ θ̂ s.e. cover θ θ̂ s.e. cover θ θ̂ s.e. cover θ θ̂ s.e. cover

Normal distribution

LATE 2.00 -0.28 8.64 0.77 2.00 -0.06 0.88 0.27 - - - - - - - -

ATE(c) 2.00 1.98 0.49 0.94 2.00 2.00 0.22 0.95 2.00 1.98 0.66 0.93 2.00 2.00 0.30 0.95
ATE(a) 1.00 1.00 0.06 0.95 1.00 1.00 0.03 0.94 1.00 1.00 0.08 0.94 1.00 1.00 0.04 0.94
ATE(n) 1.00 1.00 0.06 0.95 1.00 1.00 0.03 0.94 1.00 1.00 0.08 0.94 1.00 1.00 0.04 0.94
ATE(d) 3.00 2.99 0.47 0.95 3.00 3.00 0.21 0.93 3.00 3.04 0.65 0.95 3.00 3.00 0.29 0.94
ATT 1.55 1.54 0.27 0.94 1.55 1.55 0.12 0.95 1.55 1.53 0.36 0.93 1.55 1.54 0.16 0.95
ATE 1.70 1.69 0.18 0.95 1.70 1.70 0.08 0.95 1.70 1.70 0.24 0.94 1.70 1.70 0.11 0.95
µc
1 8.01 8.00 0.22 0.94 8.01 8.00 0.10 0.94 8.01 8.02 0.23 0.94 8.01 8.01 0.10 0.95

µa
1 4.99 5.00 0.20 0.93 4.99 5.00 0.09 0.95 4.99 5.00 0.21 0.94 4.99 5.01 0.09 0.93

µn
1 2.00 2.00 0.22 0.96 2.00 1.99 0.10 0.94 2.00 1.99 0.20 0.94 2.00 2.00 0.09 0.94

µd
1 5.00 5.00 0.42 0.96 5.00 5.00 0.19 0.94 5.00 5.05 0.61 0.94 5.00 4.99 0.27 0.93

µc
0 6.01 6.02 0.44 0.95 6.01 6.00 0.19 0.95 6.01 6.04 0.63 0.93 6.01 6.01 0.29 0.95

µa
0 3.99 4.00 0.21 0.95 3.99 4.00 0.09 0.95 3.99 4.00 0.21 0.95 3.99 4.01 0.09 0.93

µn
0 1.00 1.00 0.21 0.94 1.00 0.99 0.10 0.93 1.00 0.99 0.19 0.95 1.00 1.00 0.08 0.93

µd
0 2.00 2.01 0.22 0.95 2.00 2.00 0.10 0.95 2.00 2.01 0.21 0.95 2.00 2.00 0.10 0.94

pc 0.30 0.30 0.01 0.95 0.30 0.30 0.01 0.93 0.30 0.30 0.02 0.95 0.30 0.30 0.01 0.94
pa 0.25 0.25 0.01 0.93 0.25 0.25 0.01 0.93 0.25 0.25 0.02 0.94 0.25 0.25 0.01 0.95
pn 0.25 0.25 0.01 0.94 0.25 0.25 0.01 0.93 0.25 0.25 0.01 0.94 0.25 0.25 0.01 0.94
pd 0.20 0.20 0.01 0.94 0.20 0.20 0.01 0.95 0.20 0.20 0.02 0.94 0.20 0.20 0.01 0.95

Bernoulli distribution

LATE 0.16 -0.23 2.64 0.63 0.16 -0.18 0.11 0.07 - - - - - - - -

ATE(c) 0.16 0.16 0.05 0.95 0.16 0.16 0.02 0.94 0.16 0.16 0.07 0.94 0.16 0.16 0.03 0.95
ATE(a) 0.11 0.11 0.05 0.95 0.11 0.11 0.02 0.94 0.11 0.11 0.05 0.95 0.11 0.11 0.02 0.95
ATE(n) 0.10 0.11 0.05 0.94 0.10 0.11 0.02 0.92 0.10 0.11 0.05 0.95 0.10 0.11 0.02 0.93
ATE(d) 0.33 0.33 0.07 0.93 0.33 0.33 0.03 0.94 0.33 0.33 0.10 0.95 0.33 0.33 0.04 0.94
ATT 0.14 0.14 0.04 0.95 0.14 0.14 0.02 0.94 0.14 0.14 0.05 0.95 0.14 0.14 0.02 0.94
ATE 0.17 0.17 0.03 0.94 0.17 0.17 0.01 0.93 0.17 0.17 0.04 0.95 0.17 0.17 0.02 0.94
µc
1 0.80 0.80 0.02 0.95 0.80 0.80 0.01 0.93 0.80 0.80 0.03 0.96 0.80 0.80 0.01 0.94

µa
1 0.67 0.67 0.03 0.94 0.67 0.67 0.01 0.95 0.67 0.67 0.03 0.95 0.67 0.67 0.02 0.93

µn
1 0.39 0.40 0.06 0.94 0.39 0.40 0.02 0.93 0.39 0.40 0.06 0.96 0.39 0.40 0.03 0.94

µd
1 0.61 0.61 0.06 0.95 0.61 0.61 0.03 0.95 0.61 0.62 0.09 0.94 0.61 0.61 0.04 0.93

µc
0 0.64 0.64 0.05 0.94 0.64 0.64 0.02 0.94 0.64 0.64 0.07 0.95 0.64 0.64 0.03 0.94

µa
0 0.56 0.56 0.05 0.95 0.56 0.56 0.02 0.94 0.56 0.56 0.05 0.94 0.56 0.56 0.02 0.95

µn
0 0.29 0.29 0.03 0.94 0.29 0.29 0.01 0.93 0.29 0.29 0.03 0.94 0.29 0.29 0.01 0.94

µd
0 0.28 0.29 0.03 0.94 0.28 0.29 0.01 0.95 0.28 0.29 0.03 0.94 0.28 0.29 0.02 0.95

pc 0.30 0.30 0.01 0.94 0.30 0.30 0.01 0.94 0.30 0.30 0.02 0.95 0.30 0.30 0.01 0.94
pa 0.25 0.25 0.01 0.96 0.25 0.25 0.01 0.96 0.25 0.25 0.01 0.95 0.25 0.25 0.01 0.95
pn 0.25 0.25 0.01 0.94 0.25 0.25 0.01 0.94 0.25 0.25 0.02 0.95 0.25 0.25 0.01 0.93
pd 0.20 0.20 0.01 0.94 0.20 0.20 0.01 0.96 0.20 0.20 0.02 0.93 0.20 0.20 0.01 0.95

Note: The values in the θ column are the true values calculated from 1, 000, 000 samples from the data
generation process. Columns θ̂, sd, and cover contain the average estimates, the average biases and coverage

rates over 1000 repeated drawings from the data generating process, respectively. ATE(u) is defined as µu
1 − µu

0

for each stratum u ∈ {c, a, n, d}. LATE is calculated by E[Y |Z=1]−E[Y |Z=0]
E[D|Z=1]−E[D|Z=0]

.

Table 13. Stable setups
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Random assignment Ignorability

n = 2000 n = 10000 n = 2000 n = 10000

θ θ̂ s.e. cover θ θ̂ s.e. cover θ θ̂ s.e. cover θ θ̂ s.e. cover

Normal distribution

LATE 2.00 -0.25 16.46 0.78 2.00 -0.08 0.88 0.26 - - - - - - - -

ATE(c) 2.00 2.02 0.65 0.95 2.00 2.03 0.29 0.94 2.00 2.01 0.80 0.95 2.00 2.04 0.35 0.95
ATE(a) 1.00 0.98 0.25 0.94 1.00 0.99 0.11 0.95 1.00 0.97 0.39 0.95 1.00 0.98 0.15 0.95
ATE(n) 1.00 0.98 0.25 0.94 1.00 0.99 0.11 0.95 1.00 0.97 0.39 0.95 1.00 0.98 0.15 0.95
ATE(d) 3.00 3.02 0.82 0.95 3.00 3.03 0.36 0.94 3.00 3.07 1.00 0.94 3.00 3.04 0.43 0.95
ATT 1.54 1.55 0.35 0.95 1.54 1.56 0.16 0.94 1.54 1.54 0.44 0.96 1.54 1.56 0.19 0.94
ATE 1.70 1.71 0.31 0.95 1.70 1.72 0.14 0.96 1.70 1.70 0.35 0.95 1.70 1.71 0.15 0.95
µc
1 8.00 7.98 0.43 0.94 8.00 7.99 0.19 0.95 8.00 8.01 0.49 0.96 8.00 8.00 0.21 0.95

µa
1 5.00 4.97 0.49 0.95 5.00 4.98 0.22 0.93 5.00 4.98 0.58 0.96 5.00 4.97 0.24 0.95

µn
1 2.00 1.97 0.47 0.94 2.00 1.98 0.21 0.93 2.00 1.96 0.54 0.94 2.00 1.97 0.22 0.95

µd
1 5.01 5.04 0.69 0.94 5.01 5.03 0.30 0.94 5.01 5.07 0.93 0.95 5.01 5.05 0.39 0.94

µc
0 6.00 5.96 0.50 0.94 6.00 5.97 0.22 0.92 6.00 6.00 0.67 0.94 6.00 5.97 0.30 0.93

µa
0 4.00 3.98 0.46 0.94 4.00 3.99 0.20 0.94 4.00 4.00 0.46 0.95 4.00 3.99 0.19 0.95

µn
0 1.00 0.99 0.40 0.94 1.00 0.99 0.18 0.94 1.00 0.99 0.37 0.94 1.00 0.99 0.16 0.95

µd
0 2.01 2.02 0.47 0.95 2.01 1.99 0.20 0.93 2.01 2.00 0.46 0.95 2.01 2.00 0.19 0.96

pc 0.30 0.30 0.01 0.94 0.30 0.30 0.01 0.92 0.30 0.30 0.02 0.94 0.30 0.30 0.01 0.93
pa 0.25 0.25 0.01 0.93 0.25 0.25 0.01 0.88 0.25 0.25 0.02 0.94 0.25 0.25 0.01 0.93
pn 0.25 0.25 0.01 0.94 0.25 0.25 0.01 0.91 0.25 0.25 0.01 0.94 0.25 0.25 0.01 0.92
pd 0.20 0.20 0.01 0.94 0.20 0.20 0.01 0.91 0.20 0.20 0.02 0.94 0.20 0.20 0.01 0.95

Bernoulli distribution

LATE 0.16 -0.22 1.27 0.64 0.16 -0.19 0.11 0.05 - - - - - - - -

ATE(c) 0.16 0.16 0.08 0.95 0.16 0.16 0.03 0.95 0.16 0.16 0.10 0.96 0.16 0.16 0.04 0.94
ATE(a) 0.11 0.11 0.09 0.94 0.11 0.11 0.04 0.94 0.11 0.11 0.10 0.95 0.11 0.11 0.04 0.95
ATE(n) 0.10 0.11 0.09 0.94 0.10 0.11 0.04 0.94 0.10 0.11 0.10 0.94 0.10 0.11 0.04 0.95
ATE(d) 0.33 0.33 0.11 0.94 0.33 0.33 0.05 0.94 0.33 0.33 0.14 0.94 0.33 0.33 0.06 0.94
ATT 0.14 0.14 0.06 0.96 0.14 0.14 0.02 0.95 0.14 0.14 0.07 0.94 0.14 0.14 0.03 0.95
ATE 0.17 0.17 0.06 0.96 0.17 0.17 0.02 0.95 0.17 0.17 0.06 0.94 0.17 0.17 0.03 0.95
µc
1 0.80 0.80 0.05 0.95 0.80 0.80 0.02 0.94 0.80 0.80 0.06 0.94 0.80 0.80 0.03 0.95

µa
1 0.67 0.67 0.06 0.94 0.67 0.67 0.03 0.94 0.67 0.67 0.07 0.93 0.67 0.67 0.03 0.94

µn
1 0.39 0.40 0.11 0.95 0.39 0.40 0.05 0.94 0.39 0.40 0.12 0.95 0.39 0.40 0.05 0.94

µd
1 0.61 0.62 0.09 0.94 0.61 0.61 0.04 0.95 0.61 0.62 0.12 0.93 0.61 0.62 0.05 0.94

µc
0 0.64 0.64 0.06 0.95 0.64 0.64 0.03 0.94 0.64 0.64 0.08 0.95 0.64 0.64 0.04 0.95

µa
0 0.56 0.56 0.09 0.94 0.56 0.56 0.04 0.96 0.56 0.56 0.10 0.94 0.56 0.56 0.04 0.94

µn
0 0.29 0.29 0.05 0.96 0.29 0.29 0.02 0.95 0.29 0.29 0.06 0.94 0.29 0.29 0.03 0.96

µd
0 0.29 0.29 0.06 0.94 0.29 0.28 0.03 0.95 0.29 0.29 0.07 0.95 0.29 0.29 0.03 0.95

pc 0.30 0.30 0.01 0.95 0.30 0.30 0.01 0.93 0.30 0.30 0.02 0.94 0.30 0.30 0.01 0.94
pa 0.25 0.25 0.01 0.94 0.25 0.25 0.01 0.90 0.25 0.25 0.02 0.94 0.25 0.25 0.01 0.92
pn 0.25 0.25 0.01 0.94 0.25 0.25 0.01 0.91 0.25 0.25 0.01 0.94 0.25 0.25 0.01 0.93
pd 0.20 0.20 0.01 0.94 0.20 0.20 0.01 0.92 0.20 0.20 0.02 0.93 0.20 0.20 0.01 0.94

Note: The values in the θ column are the true values calculated from 1, 000, 000 samples from the data
generation process. Columns θ̂, sd, and cover contain the average estimates, the average biases and coverage

rates over 1000 repeated drawings from the data generating process, respectively. ATE(u) is defined as µu
1 − µu

0

for each stratum u ∈ {c, a, n, d}. LATE is calculated by E[Y |Z=1]−E[Y |Z=0]
E[D|Z=1]−E[D|Z=0]

.

Table 14. Unstable setups
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Appendix D. Detail of empirical illustrations

D.1. Randomized encouragement design with Y pre.

Thornton (2008). We define the assignment indicator Z based on the monetary incentives of-
fered: subjects who received no incentive are assigned to Z = 0, while those who received
any positive-valued incentive are assigned to Z = 1. The treatment status D is an indicator
for whether an individual learned their HIV results. We focus on two outcomes Y measured
approximately two months after the results were available: an indicator for reported condom
purchases and an indicator for reported sexual activity. The corresponding pre-treatment out-
comes Y pre are defined using baseline survey data as indicators for reported condom use and
sexual activity in the year prior to the study.

Following Thornton (2008), the analysis for the "Purchase Condom" outcome is restricted to
the sample of respondents in the Balaka and Rumphi districts who tested for HIV, had age data,
were reinterviewed in 2005, and reported having sex in 2004. For the "Having Sex" outcome, the
sample is defined similarly but excludes the restriction of having had sex in 2004, as this variable
is used as Y pre for this analysis. For both analyses, the sample is restricted to individuals with
no missing values for Z, D, Y , and Y pre. Bootstrap resampling is clustered by villages.

Gerber et al. (2009). The assignment indicator Z is defined as 1 for subjects in the treatment
groups (free subscription to either the Washington Post or Washington Times) and 0 for the
control group. The treatment status D is an indicator for whether an individual reported
receiving either newspaper at the time of the follow-up survey. The outcome Y is an indicator
for self-reported voter turnout in the 2005 election, and the pre-treatment outcome Y pre is an
indicator for voter turnout in the 2004 election.

The sample is restricted to individuals who completed the follow-up survey and have no
missing values for Z, D, Y , and Y pre.

A limitation in this setup is that the treatment variable D was measured in a follow-up survey
conducted one week after the outcome, Y (the election), occurred. Consequently, this measure
may not perfectly capture the newspaper readership that actually influenced voting behavior.
Furthermore, as Gerber et al. (2009) note, "the wording of the question" may have caused
variance in how respondents interpreted it. Therefore, while the validity and interpretation of
our estimate under this setup warrant further discussion, this re-analysis serves primarily as a
methodological illustration of our proposed technique.

The baseline survey, which provides a history of past voting behavior, allows us to assess the
parallel trends assumption (Assumption 3 (i)). Figure 2 visualizes these pre-treatment turnout
trends for always-takers and never-takers. As the figure illustrates, the two groups exhibit clearly
parallel trends in their past voting behavior, providing strong support for the parallel trends
assumption. The steep increase in self-reported turnout shown in the figure reflects the electoral
cycle in Virginia: an off-year election (2001), a midterm election (2002), and a presidential
election (2004).
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Figure 2. Pre-Treatment Trend of the Outcome Variable ‘Voted’

Beam (2016). In our re-analysis, the assignment indicator Z is defined as 1 for subjects who
received a voucher to encourage job fair attendance and 0 otherwise. The treatment status D

is an indicator for whether an individual actually attended the job fair. We focus on outcomes
related to migration preparation. The first outcome Y is an indicator for whether the respondent
plans to look for work abroad in the next six months, with the corresponding pre-treatment
outcome Y pre being an indicator for planning to apply abroad at baseline. The second outcome
is an indicator for having a current passport at follow-up, with the corresponding Y pre being an
indicator for currently having a passport at baseline.

The sample consists of individuals who completed the follow-up survey. There are no missing
values for Z, D, Y , and Y pre. Bootstrap resampling is clustered at the neighborhood level.

D.2. Oregon Health Insurance Experiment with Dpre. Following Finkelstein et al. (2012),
our inverse probability weighting estimation includes dummy variables for the interaction be-
tween survey wave and the number of household members listed in the lottery as covariates. We
do not employ a multiply robust estimator as the sample size is insufficient to reliably construct
an outcome model. Also in line with Finkelstein et al. (2012), we utilize the provided survey
weights in our analysis. Bootstrap resampling is clustered by household unit, as defined by the
lottery list.

The estimated principal strata probabilities are shown in Table 15 and 16.

D.3. Oregon Health Insurance Experiment with Y pre and Dpre. In our multiply robust
estimation, we follow Taubman et al. (2014) and include covariates for the number of house-
hold members listed in the lottery and the corresponding pre-treatment outcome for each main
outcome. For stability in the outcome model estimation, the number of household members is
included as a continuous variable rather than as a set of dummy variables. The outcome model
mpre

(z,d,d′)(X; γpre) , which predicts the pre-treatment outcome itself, excludes the pre-treatment
outcome as a covariate. Bootstrap resampling is clustered by household unit, as defined by the
lottery list.
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pc pa pn pd

Health care utilization:

Prescription drugs currently 0.366
∗∗∗

0.065 ∗∗∗ 0.489 ∗∗∗ 0.081 ∗∗∗

(0.006) (0.002) (0.006) (0.003)

Outpatient visit 0.364
∗∗∗

0.060 ∗∗∗ 0.500 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

ER visits 0.364 ∗∗∗ 0.060 ∗∗∗ 0.500 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

Inpatient hospital admissions 0.365 ∗∗∗ 0.060 ∗∗∗ 0.500 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

Blood cholesterol checked 0.365 ∗∗∗ 0.059 ∗∗∗ 0.501 ∗∗∗ 0.075 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

Blood tested for high blood sugar/diabetes 0.364 ∗∗∗ 0.060 ∗∗∗ 0.500 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

Financial strain:

Any out of pocket medical expenses 0.364 ∗∗∗ 0.060 ∗∗∗ 0.500 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

Owe money for medical expenses currently 0.365 ∗∗∗ 0.060 ∗∗∗ 0.499 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)
Borrowed money or skipped other bills
to pay medical bills

0.364 ∗∗∗ 0.060 ∗∗∗ 0.500 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

Refused treatment because of medical debt 0.364 ∗∗∗ 0.060 ∗∗∗ 0.499 ∗∗∗ 0.077 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

Table 15. Estimates and standard errors. Standard errors in parentheses.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

The estimated principal strata probabilities are shown in Table 17.

D.4. Application in marketing using Y pre and Dpre. The estimated principal strata prob-
abilities are shown in Table 18.
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pc pa pn pd

Health:
Self-reported health
good/very good/excellent

0.365 ∗∗∗ 0.060 ∗∗∗ 0.500 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

Self-reported health not poor 0.365 ∗∗∗ 0.060 ∗∗∗ 0.500 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

Health about the same or gotten better 0.365 ∗∗∗ 0.060 ∗∗∗ 0.500 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)
# of days physical health good,
past 30 days

0.364 ∗∗∗ 0.060 ∗∗∗ 0.501 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)
# of days physical or mental health
did not impair usual activity, past 30 days

0.363 ∗∗∗ 0.059 ∗∗∗ 0.502 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

# of days mental health good, past 30 days 0.364 ∗∗∗ 0.060 ∗∗∗ 0.501 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)
Did not screen positive for depression,
last two weeks

0.364 ∗∗∗ 0.060 ∗∗∗ 0.500 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

Health (Mechanisms):

Have usual place of clinic-based care 0.363 ∗∗∗ 0.057 ∗∗∗ 0.508 ∗∗∗ 0.073 ∗∗∗

(0.005) (0.002) (0.006) (0.002)

Have personal doctor 0.364 ∗∗∗ 0.060 ∗∗∗ 0.500 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)
Got all needed medical care,
last six months

0.364 ∗∗∗ 0.060 ∗∗∗ 0.501 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

Got all needed drugs, last six months 0.363 ∗∗∗ 0.059 ∗∗∗ 0.502 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)
Didn’t use ER for nonemergency,
last six months

0.364 ∗∗∗ 0.060 ∗∗∗ 0.500 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)
Quality of care received last six months
good/very good/excellent

0.391 ∗∗∗ 0.086 ∗∗∗ 0.434 ∗∗∗ 0.089 ∗∗∗

(0.006) (0.003) (0.006) (0.003)

Very happy or pretty happy 0.365 ∗∗∗ 0.060 ∗∗∗ 0.500 ∗∗∗ 0.076 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

Table 16. Estimates and standard errors. Standard errors in parentheses.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

pc pa pn pd

Percent with
any visits

0.333 ∗∗∗ 0.065 ∗∗∗ 0.514 ∗∗∗ 0.088 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

Number of visits 0.333 ∗∗∗ 0.065 ∗∗∗ 0.515 ∗∗∗ 0.087 ∗∗∗

(0.005) (0.002) (0.005) (0.002)

Table 17. Estimates and standard errors. Standard errors in parentheses.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

pc pa pn pd

0.015 ∗∗∗ 0.001 ∗∗∗ 0.971 ∗∗∗ 0.013 ∗∗∗

(0.000) (0.000) (0.001) (0.000)

Table 18. Estimates and standard errors. Standard errors in parentheses.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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