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1 Introduction

Evidence suggests that the distance to a college impedes students from applying to that

particular college (e.g., Acton et al. (2024)). Additionally, research indicates that improving

access to schools increases enrollment among girls more than boys in many developing coun-

tries (e.g., Burde and Linden (2013) and Muralidharan and Prakash (2017)). While many

developed countries have numerous schools within reach, gender differences in the costs asso-

ciated with distance from home may still persist. Consequently, even in developed countries,

the economic significance of college distance may vary between men and women. As college

choice can substantially impact lifetime earnings in many developed countries (e.g., Hoekstra

(2009) and Dale and Krueger (2014)), disparities in access to colleges could contribute to

gender income differences.

This effect may be particularly pronounced for medical schools. Graduating from a

medical school is a prerequisite for sitting for the national examination required for a medical

license, which qualifies one for a medical profession. Therefore, if gender differences in

preferences about distance from home exist, the distance to medical schools could lead to an

uneven gender representation in the medical profession, leading to gender income differences

as this is one of the high-income occupations.

This study examines the geography of public medical school opportunities by constructing

an equilibrium model of the medical school market wherein students strategically apply to

schools and admission probabilities at particular institutions are endogenously determined.

Relying on entrance examination data for Japanese public medical schools, we use this model

to estimate gender differences in preferences related to distance from home and analyze how

these differences affect gender disparities in medical school admissions in Japan.

Focusing on the entrance examination for Japanese public medical schools offers several

advantages for our analysis. First, the proportion of female students is smaller than that

of male students in Japan, indicating a significant gender gap in admissions to Japanese

medical schools (MEXT, School Basic Survey). Importantly, the gender gap in admission
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may be at least partially attributed to the distance to public medical schools. As shown in

Table 1, female applicants, on average, apply to medical schools situated approximately 20

kilometers (or 10%) closer to their residence than their male counterparts. This pattern may

reflect structural and socio-cultural factors, including familial expectations, safety concerns,

or limited access to information and preparatory resources. Notably, public medical schools

in Japan are geographically dispersed to promote equitable access to healthcare across re-

gions. However, their admissions capacity does not necessarily correspond to the regional

distribution of applicants. Consequently, applicants residing in areas with smaller admission

capacities may face intensified competition. If female applicants are more geographically

constrained in their application choices, such regional imbalances may disproportionately

hinder their admission prospects. Thus, the spatial distribution of medical schools may

serve as a structural barrier contributing to persistent gender disparities in medical school

admissions.

Table 1: Distance (km) by gender: Students who applied to medical schools

mean sd p25 p50 p75

Female 205.1 256.7 39.5 93.1 266.6
Male 228.2 287.0 43.1 117.8 284.2
Total 220.4 277.4 39.5 109.3 280.7

Note: The distance is determined by calculating the distance from the address of each municipal
office in the student’s high school’s prefecture to the university’s address and then taking the
median of these distances. Authors constructed this table using data provided by a college Prep
School in Japan

Second, focusing on Japanese public medical schools has several technical advantages. A

key characteristic of the higher education market is that students cannot purchase a service

from a school without an admission, and the probability of admission is influenced by the

school’s demand and supply, which is constrained by its capacity. This feature complicates

the construction of an equilibrium model, which can partially be mitigated by narrowing

our focus to Japanese public medical schools. This enables the construction of a relatively
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simple equilibrium model, as follows:

1) As each student in Japan is allowed to apply to only one public university, or at most

two, we can avoid the complexities associated with a multiple-choice model. 2) The number

of Japanese public medical schools is limited to 50, which constrains the choice set for each

applicant. 3) Because the capacity and tuition of Japanese public universities are heavily

regulated, we can treat the supply-side decision as fixed. 4) Public medical schools have lower

tuition fees compared to private medical schools and are generally more prestigious. It is,

therefore, reasonable to assume that admitted students will enroll and treat entering private

medical schools as an option, in the event of failing the examination for public universities.

5) Because enrollment in medical school implies students’ primary aim to become qualified

doctors, we assume that students applying to medical schools do not seriously consider other

departments. Thus, it is reasonable to treat medical school admissions as a distinct market,

with other departments serving as outside options. These factors contribute to a more

manageable modeling environment for analyzing the admissions market in Japanese public

medical schools.

This model incorporates the institutional features of the Japanese public university en-

trance examination. As explained in more detail below, applicants to public universities in

Japan must take two examinations whose combined results determine the applicants’ ad-

mission outcomes. The first exam is the National Center Test for University Admissions

(hereafter referred to as the Center Test)1. After receiving their Center Test scores, students

decide which public university to apply to. Thereafter, each public university conducts its

own entrance examination as a second exam and selects successful candidates based on both

the Center Test scores and the results of the second exam.

We obtain individual-level micro data collected by a preparatory school in Japan for

students who took the Center Test in 2011. These data include the university each student

applied to, the results of their applications (success or failure), Center Test scores, gender,

1This test was renamed the Center Test for University Admissions in 2021. As this study analyzes data
from before 2021, we use the term “the Center Test.”
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and the prefecture of the high school that students belong to. Additionally, we use market

–level data, which include the number of applicants and admitted students by university.

Combining the individual- and market-level datasets, we adopt an estimation approach

developed and widely applied in industrial organization literature (e.g., Petrin, 2002; Berry,

Levinsohn, and Pakes, 2004; Goolsbee and Petrin, 2004; Train and Whinston, 2007). A key

distinction from previous studies is that our estimation explicitly incorporates the equilib-

rium condition determining the minimum admission scores. Specifically, for each parameter

value in the model, we simultaneously derive both the college-specific mean utilities and

the equilibrium minimum scores through a contraction mapping procedure: the former is

obtained by matching predicted application shares to their observed counterparts, as pro-

posed by Berry, Levinsohn, and Pakes (1995), and the latter by ensuring that the predicted

numbers of admitted students align precisely with the observed admission capacities at each

institution.

Our results suggest that females incur greater costs associated with distance, measured

by the Euclidean distance between the prefecture of the student’s high school and that of the

university. In other words, we find evidence that gender differences in the costs associated

with distance from home impact college choice decisions in a developed country such as

Japan.

Based on the estimated model, we conduct two counterfactual simulations. First, we

consider a policy in which the government provides financial aid to offset distance-related

costs. We find that this policy increases the number of male applicants by 98 percent and

that of female applicants by 130 percent. Consequently, as expected, this policy increases

the proportion of female applicants to medical schools from 0.33 to 0.37.

In actuality, however, this policy reduces the proportion of admitted females from 0.23

to 0.21. This is due to competition effects: while the number of applicants increases, the

capacity of medical schools remains unchanged. Consequently, admission to medical schools

becomes more competitive, crowding out less qualified students and leading to a decline in
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the share of female admits.

After obtaining a seemingly surprising result from the previous counterfactual simulation,

we conduct a second one. Assuming that gender differences in preferences regarding the

distance from home reflect social constraints on female students, we consider an affirmative

action policy in which the government provides financial aid exclusively to females to offset

gender differences in the cost of distance. It should be noted that, unlike the proposal to

introduce a gender quota as an affirmative action policy for female students, our proposed

affirmative action policy allows female students to compete under the same conditions as

male students. Therefore, an increase in female student dropouts owing to this affirmative

action policy is not a matter of concern.

We find that this policy increases the number of female applicants to medical schools

by 10 percent, while reducing that of male applicants by 2 percent. Consequently, the

proportion of admitted females rises from 0.23 to 0.28. Furthermore, this affirmative action

policy is financially feasible, with the average financial aid per admitted female students by

university ranging from 10,000 to 150,000 Japanese yen per year. These figures can serve as

a basis for a constructive policy debate.

Several studies analyze college choice models through the lens of structural models (e.g.,

Arcidiacono (2005), Howell (2010) and Fu et al. (2022)). The closest related work is by Fu

et al. (2022), who estimate a model of high school students’ college choices and analyze how

uneven access to colleges impacts student welfare. Compared to their study, we focus on

a different question: how distance to colleges affects gender differences in medical school

admissions. Additionally, we construct an equilibrium model, whereas their study addresses

a decision problem. This equilibrium model is crucial for our analysis, as we cannot assess

competition effects without it. Our results suggest that reducing distance costs increases the

share of female applicants, but it does not increase the share of admitted females due to com-

petition effects. Therefore, without considering equilibrium dynamics, policy implications

may be misleading.
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Equilibrium models of the college market have been analyzed in various studies (e.g.,

Epple et al. (2006), Bordon and Fu (2015), Epple et al. (2017), Epple et al. (2019), and

Fillmore (2023)). Following the pioneering work of Fu (2014), more recent studies, such

as Kapor (2020), Bleemer (2021), and Cook (2024), have explicitly modeled application

decisions while accounting for the possibility of rejection after applying.

Although we build on this line of research, the specific structure of the Japanese public

education system allows us to construct a much more simplified model. This simplification

makes the identification of our model and the interpretation of the results more transparent

and intuitive. We can apply standard discrete choice demand estimation methods that incor-

porate both micro-level and aggregate data (e.g., Petrin (2002), Berry et al. (2004), Goolsbee

and Petrin (2004), and Train and Winston (2007)). Equipped with this simple model, we

address the economic impact of college distance on gender disparities in admissions—an issue

not explored in previous literature.

Some studies have argued that gender differences in time flexibility (e.g., Bertrand et al.

(2010) and Goldin (2014)) and willingness to commute (e.g., Barbanchon et al. (2021)) help

to explain the persistent gender wage gap in developed countries. This study examines a

related but somewhat overlooked factor: how gender differences in preferences on distance

from home influence college choices, potentially affecting future earnings. We find existence

of such gender differences, which impact the gender composition in Japanese medical schools.

The paper is organized as follows. The next section explains the institutional background

of the Japanese medical education system and the entrance examination for medical schools.

In the third section, we present our equilibrium model for the medical school admission

market. The fourth section describes the dataset, model specification, and empirical pro-

cedure and presents estimation results and model fits. In the fifth section, we conduct two

counterfactual policy experiments: financial aid to offset distance-related costs and financial

aid exclusively for females to mitigate gender differences in the cost of distance. The final

section concludes.
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2 Institutional Background

2.1 Medical Education System in Japan

In Japan, medical education is offered through 81 medical schools across the nation, cat-

egorized into three types: 42 national, 8 prefectural, and 31 private institutions2. In this

study, we collectively refer to national and prefectural institutions as public universities (50

medical schools in total). Tuition fees differ significantly between public and private medical

schools, with the latter being approximately ten times more expensive. Additionally, public

medical schools limit applicants to only one institution per application round, whereas pri-

vate medical schools allow unrestricted applications. Due to these fundamental differences

between the two types, we consider them as separate markets; therefore, this study’s main

analysis focuses on public medical schools.

Unlike in the United States, where medical school typically follows undergraduate edu-

cation, Japanese medical schools provide a six-year continuous program that students enter

directly after graduating from high school. This structure resembles the systems in some

European countries.3 Although some Japanese medical schools have introduced programs

for college graduates, these positions represent less than 10% of the total enrollment (Kozu,

2006).

Japan’s rapidly aging population has led to increasing healthcare demands, but the sup-

ply of physicians has remained insufficient. Recognizing this growing disparity between

healthcare demand and physician supply, the Japanese government has gradually increased

its medical school enrollment capacity. In the early 2000s, the enrollment capacity was just

2The National Defense Medical College operates independently from the framework of these universities.
Its entrance examination schedule differs significantly from that of other universities, and due to the lack of
applicant data, it has been excluded from this analysis.

3In many European countries, such as Germany, France, Italy, and the UK, students join medical school
directly after obtaining a high school qualification. These programs typically provide six years of continuous
medical education (or 5-6 years in the UK), combining foundational and clinical training in one integrated
pathway that leads directly to licensure. Unlike in the United States and Canada, where medical school
requires an undergraduate degree, this approach allows students to qualify as doctors without prior university
study.
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under 8,000 students; by 2019, this increased to nearly 9,500 students (MEXT, School Basic

Survey). Despite this increase, significant challenges persist in both the geographical and

demographic distribution of medical students and practicing physicians.

First, the geographical distribution of Japan’s medical schools reflects the regional dispar-

ities, influencing both access to medical education and healthcare delivery. Public medical

schools are located across the country, with at least one institution in almost every pre-

fecture, indicating a deliberate effort to enhance regional healthcare and ensure equitable

distribution of physicians. By contrast, private medical schools are disproportionately con-

centrated in urban areas, particularly in the greater Tokyo region. This urban concentration

contributes to persistent disparities in physician density across regions. For instance, Tokyo

boasts 11 doctors per 1,000 people, compared to just 0.4 per 1,000 in northeastern Japan

(Suzuki et al., 2008).

Second, gender disparity is another significant characteristic of Japanese medical educa-

tion. While the proportion of female medical students has gradually increased over time,

their representation remains low compared to that in other developed countries. Since the

early 2000s, the percentage of female students in Japanese medical schools has increased

from approximately 30% to over 40% in the 2020s (MEXT, School Basic Survey). Despite

this progress, women remain underrepresented relative to their share in the general popu-

lation. Additionally, the acceptance rate for female applicants has consistently been lower

than that for male applicants. For instance, in 2017, 5.9% of female applicants successfully

gained admission to medical schools compared to 6.6% of male applicants. This is a sig-

nificant disparity compared to other competitive fields in Japan, such as science, where the

acceptance rates for male and female applicants were equal (11.6%), or engineering, where

female applicants had a slightly higher acceptance rate (12.2%) than their male counterparts

(Fukami et al., 2022).4

4In 2018, Tokyo Medical University, a private medical school, was found to have systematically discrimi-
nated against female applicants by manipulating their entrance examination scores. This scandal prompted
investigations into other medical schools and led to subsequent reforms in the admissions process (Wheeler,
2018). Responding to these findings, MEXT conducted an emergency investigation into fairness in medical
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2.2 Entrance Examination to Medical School

The admission process for Japanese medical schools is complex and distinct from those

in other countries, with written examinations serving as the primary selection criterion.

Japanese medical school admissions are integrated into the broader university entrance sys-

tem, differing from those in some countries where medical school admissions follow a sepa-

rate track. Medical school admissions are widely regarded as among the most challenging in

Japan, often considered significantly more difficult than entry into other academic programs.

This is due to the limited available capacity in medical schools compared to the high num-

ber of applicants, as well as the demanding curriculum and societal expectations on future

medical professionals.

The entrance exams to public universities, including public medical schools in Japan,

comprise two stages. Applications to public universities are submitted after the completion

of the first exam and before the second exam. The timeline of the 2011 university entrance

examination is illustrated in Figure 1. The Japanese university entrance examination system

is decentralized rather than centralized, with each university conducting its own examina-

tions and independently determining successful applicants. Each university determines the

weighting of the scores of the first and second stages in the overall evaluation and the dis-

tribution of the subject scores within each stage. These weightings are disclosed to the

applicants in advance. The enrollment capacity for each university and faculty is prede-

termined, and each university sets its admission cutoff scores to ensure that the number of

admitted students remains within this limit.

The first stage, known as the Center Test for University Admissions, is a standardized

national exam. The Center Test is conducted only once in a year. Students choose and take

subjects from the five available options (Japanese, Mathematics, English, Science, and Social

school admissions, covering entrance exams from 2016 to 2018 (MEXT, 2018). The investigation identified
six private universities that engaged in score manipulation based on gender and age, but no public univer-
sities were named for such misconduct. As our study focuses on entrance exams for public medical schools,
the impact of such discrimination against female applicants is expected to be minimal.
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Figure 1: Timeline of the 2011 University Entrance Examination

Studies), considering the subject requirements of the universities to which they will apply.

Additionally, each subject consists of multiple disciplines (for instance, Science includes

Physics, Chemistry, Biology, and Earth Science), and students can select their preferred

discipline from among them. As the results of the Center Test serve as a comparable metric,

this study also treats Center Test scores as individual attributes. Specifically, the three

subjects—English, Mathematics, and Japanese—are referred to as “core subjects” in this

study as they are required by many universities. For the medical schools examined in this

study, applicants must take all five subjects5.

The second stage examinations conducted by public universities are divided into two

types: early round and later round examinations. These two rounds provide applicants with

the opportunity to apply to different universities, with the later round serving as a fallback

for those who did not pass their preferred university in the early round. Early round ex-

aminations are the primary focus for most applicants, as they are conducted by almost all

public medical schools and offer most available slots. By contrast, later round examinations

typically have fewer available slots and involve alternative assessment formats, such as com-

prehensive questions, essays, and interviews, which may prioritize holistic evaluation over

purely academic performance6. Therefore, we focus solely on early round examinations. In

this case, applicants are restricted to applying to only one public university. As medical

5In each subject, the specific disciplines required may be determined by each medical school. In some
cases, applicants can choose from a set of disciplines. For example, for Science, some schools require Physics
and Chemistry, whereas others allow applicants to select two subjects from Physics, Chemistry, and Biology.

6Due to the impact of the Great East Japan Earthquake that occurred on March 11, 2011, some universi-
ties did not conduct their later round individual entrance exams. For these universities, admission decisions
were made based solely on the Center Test outcomes.
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school of University of Yamanashi does not conduct an early round examination and only

offers a later round exam, it is excluded from our analysis. Thus, the number of schools

considered is reduced by 1, from 50 to 49.

The second stage is administered independently by each medical school, with subject

requirements varying by institution7. For the early round, Mathematics is mandatory in all

medical schools, while English (47 out of 49) and Science (41 out of 49) are required in most

schools. However, Japanese is required in only a few schools (4 out of 49) and Social Studies

is not required in any of the schools. In addition to these written exams, some medical

schools conduct interviews and essay tests.

A distinctive feature of the Japanese public university entrance examination system is

the self-assessment process following the Center Test. Shortly after the test, official answers

are released, allowing applicants to estimate their scores. Most applicants then report their

self-assessed scores to major preparatory schools, which aggregate the data and provide

detailed reports before the secondary examination application period.8 These reports help

applicants gauge their relative standing among others applying to the same universities and

programs, enabling them to make well-informed decisions about their applications for the

secondary examination. This system is widely used by medical school applicants, as the

ability to assess one’s performance and strategically select a medical school is crucial in the

competitive admissions process, which we model in the next section.

3 Model

In this section, we model the admission process for public university medical schools in

Japan. We focus on the early round selection stage of the secondary examination in which

7Kochi and Saga University Medical Schools use a “comprehensive exam” as their written test in the
second stage. However, as the exam includes questions from English, Mathematics, and Science, it is treated
as a test covering these three subjects, with each subject contributing equally (one-third) to the total score.

8Preparatory schools are a ubiquitous feature of the Japanese education landscape, providing supplemen-
tary education and test-preparation services for university applicants. They play a significant role in helping
students prepare for entrance examinations, offering comprehensive courses, mock exams, and detailed study
materials.
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students apply to a single medical school. Before making this decision, they estimate their

Center Test scores through self-assessment and use this information to gauge their chances of

acceptance to different institutions. Based on these perceived probabilities, students select

the medical school that offers the highest expected utility. Noteworthy, students may also

consider applying to non-medical programs, although our analysis focuses on applications

and selection processes for public medical schools. To account for this, our model treats

applying to other programs as an outside option.

Admission probability: Assume that there are K types of subjects relevant to applica-

tions to Japanese medical schools. Let y1 = (y1 (1) , ..., y1 (K)) denote a student’sK×1 score

vector for these subjects in the first-stage Center Test, y2
j =

(
y2j (1) , ..., y

2
j (K)

)
denote their

K×1 score vector in the second-stage exam for the jth university, and γsj =
(
γsj (1) , ..γ

s
j (K)

)′
with

∑K
k=1 γ

s
j (k) = 1 denote the weights assigned to each subject in the sth exam for the jth

university. Assume that the minimum score required to get accepted in the jth university

is smj ∈ R. We later set a reasonable restriction on the range of smj to ensure the existence

of the market equilibrium.

We can observe the scores at the first-stage Center Test of each student, y1, but not those

at the second-stage exam, y2
j . Hence, we consider y2

j as a random vector. The admission

probability for the student with y1 at the Center Test to the jth university can be modeled

as follows.

qj
(
smj ;y

1
)

= Pr
(
ωjγ

1′
j y

1 + (1− ωj) γ
2′
j y

2
j ≥ smj |y1

)
= Pr

(
γ2′j y

2
j ≥

smj − ωjγ
1′
j y

1

1− ωj

|y1

)
(1)

where ωj is the weight assigned to the Center Test. We assume that the γ2′j y
2
j follows a

continuous distribution. Hence,
∂qj(smj ;y1)

∂smj
< 0. This means that an increase in the mini-

mum score always reduces the admission probability. Each student chooses their preferred
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university with knowledge of this probability.

Student’s Choice: As explained in the introduction, we assume that all admitted students

enroll in the university to which they are admitted. Hence, we only need to model students’

application decisions. A student maximizes her expected utility by choosing a preferred

university, given the vector of the minimum scores, {smj }, as follows:

max

 maxj∈{1,...,J}
{
qj
(
smj ;y

1
)
Uj (εj) +

[
1− qj

(
smj ;y

1
)]
Uf

}
,

U e
0 (ε0)


where {1, .., J} is the set of universities and 0 represents the outside option. The variables,

Uj (εj), Uf , and U e
0 (ε0) are the utility derived from admission to the medical school of

the jth university, failing to be admitted, and choosing the outside option, which is the

expected benefit of applying to other department or not applying, respectively, and the

random variables εj and ε0 are taste shocks when the applicant enters the jth university

and applies to another department, respectively9. The utility derived from failing to be

admitted, Uf , is interpreted as the maximum utility among the utility derived from taking

the ”later round examination” at a public university, enrolling in a private university, or

preparing and reapplying for a university next year.

We assume that Uj (εj) and U
e
0 (ε0) have the following functional forms:

Uj (εj) = Ũj exp
εj
λ

+ Uf , (2)

U e
0 (ε0) = Ũ e

0 exp
ε0
λ

+ Uf , (3)

where Ũj and Ũ
e
0 are the average value added from being admitted to the medical school of the

jth university and applying to other departments, respectively, λ > 0 is a scale parameter,

and εj follows the distribution exp [− exp− (εj + γ)], where γ is Euler’s constant (≈ 0.577).

9The utility function and budget constraint explicitly including composite goods are presented in the
Appendix.
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For the purpose of estimation, we also assume that the relative value added is as follows:

ln
Ũj

Ũ e
0

=
δj + bj (y

1,x)

λ
,

where δj is the part of utility obtained from university j that is common across all applicants,

and x is the vector of the applicant’s characteristics other than test scores y1. Then, as

shown in the Appendix, the choice probability is given by

pj
(
sm, δ;y1,x

)
=

exp
{
λqj
(
smj ;y

1
)
+ δj + bj (y

1,x)
}

1 +
∑

i ̸=0 exp {λqi (smi : y1) + δi + bi (y1,x)}
,∀j, (4)

where sm = (sm1 , .., s
m
J ) ∈ [s

¯
, s̄]J and δ = (δ1, .., δJ) ∈ RJ .

Market Equilibrium for Medical School Admission: The minimum score of the jth

university, smj ∈ R, is determined by the following equilibrium condition:

Mj

N
=

∫
qj
(
smj ;y

1
)
pj
(
sm, δ;y1,x

)
dG
(
y1,x

)
, ∀j (5)

where Mj represents the capacity of the jth university, N is the total number of students

taking the Center Test, and G (y1,x) is the distribution function of y1 and x. Equation (5)

implies that the minimum score is adjusted such that the number of successful applicants

equals the capacity of each university.

Definition 1 The market equilibrium for medical school admission comprises ({pi}i , sm)

that satisfies Equations (4) and (5), where {qi}i is expressed by Equation (1).

We assume that there exists M and M̄ such that 0 < M
N

= min
{

Mi

N

}
i
and max

{
Mi

N

}
i
=

M̄
N

< minj

∫
p∗j
(
δ;y1,x

)
dG (y1,x) where p∗j

(
δ;y1,x

)
=

exp{λ+δj+bj(y1,x)}
1+

∑
i ̸=0 exp{λ+δi+bi(y1,x)} . The Ap-

pendix shows that we can find
{
sj
}
and {s̄j} for any Mj ∈

[
M, M̄

]
such that if there exists

smj that satisfies the Equation (5), smj ∈
[
sj, s̄j

]
for all j. Hence, to guarantee the existence
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of the equilibrium, we can assume that sm ∈ Sm, where sm =
{
smj
}
j
and Sm= Πj

[
sj, s̄j

]
.

The Appendix provides the proof of the following theorem.

Theorem 2 Suppose that sm ∈ Sm and that the scale parameter λ > 0 is sufficiently small.

Then, there exists a unique ({pi}i , sm) that satisfies the market equilibrium for medical

school admission.

Theorem 2 guarantees the existence of a unique market equilibrium. This ensures that

we are prepared to conduct the structural estimation of the market equilibrium for medical

school admissions and perform a quantitative analysis in the subsequent sections.

4 Estimation

We specify the parametric forms of the model based on the aforementioned theoretical model

for estimation purposes. The parameters in the model are estimated using the individual-

and the market-level data for medical school choice. First, we explain our data. Second, we

describe how we specify the model to appropriately utilize these data. Third, we introduce

the estimation procedure. Fourth, we show our estimation results. Finally, we assess the

predictions of the estimated structural model.

4.1 Data

The dataset used in this study primarily comprises market-level (school-level) and individual-

level (student-level) data. The market-level data is sourced from Keisetsu-Jidai, a monthly

magazine published by Obunsha Publishing that provides detailed college information with

a focus on entrance examinations. Specifically, we retrieve the data for 49 public medical

schools that held entrance examinations on February 25, 2011. The market-level data include

the number of applicants and admissions for each school. Figure 2 illustrates the number of

applicants for these 49 schools. The heights of the stacked bars represent the total number
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of applicants, divided into admitted and failed students. The figure also shows the admission

rate for each school with a line, varying across institutions, from 0.05 for Gifu University to

0.42 for Okayama University. The total number of applicants for these 49 schools is 18763.

Figure 2: Number of applications and admissions by university

Note: This figure presents the number of applicants for 49 public medical schools. The stacked
bars represent the total number of applicants, with the dark blue part indicating admitted students
and light blue indicating failed applicants. The left y-axis, measured in number of applicants,
corresponds to the bars. The black line represents the admission rate for each school, which is
shown on the right y-axis as a proportion.

The individual-level data used in this study were obtained from one of the major prepara-

tory schools, which remains anonymous. The data include personal attributes such as gen-

der, prefecture of the high school which a student attended or graduated from, student’s

self-assessed Center Test score, and names of the public universities and programs to which

they applied. Additionally, the preparatory school provided information on the admission

outcomes of each applicant, obtained through a follow-up survey conducted after the exam-

inations.

The individual-level data comprise Np = 321, 172 observations, representing approxi-

mately 61% of the total population of N = 558, 984 students who took the Center Test in
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the target year. The total population number (N) is obtained from the National Center

for University Entrance Examinations’ website.10 Within the individual-level observations,

Nm = 8, 543 individuals applied to medical schools.11

Given the coverage of the individual-level data, we consider the distribution of student

attributes constructed from this data as representative of the population distribution. This

approach contrasts that of Train and Whinston (2007), where individual-level data are lim-

ited to consumers who choose the inside option. Due to this data limitation, the distribution

of individual attributes in their study may not be representative, excluding the possibility of

consumers substituting between inside and outside options by assumption. The richness of

our individual-level data allows us to incorporate the outside option into the model and ana-

lyze how the number of medical school applicants (i.e., inside option) varies in counterfactual

scenarios through the substitution with the outside options.

4.2 Model specification

Suppose that y2
j = y1 + 1Kuj, where 1K is a K-dimensional vector of ones, and uj

follows a logistic distribution with a mean of 0 and a variance of
π2σ2

j

3
. We consider

that uj captures the results of interview, the luck of a student, and so on. This as-

sumption implies that an applicant’s academic skills, on average, for each subject do not

change between the first-and the second-stage exams. This allows us to define the mea-

sure of her academic skills that can be valuable when she applies to the jth university, as

zj (y
1) =

∑K
k=1

[
ωjγ

1
j (k) + (1− ωj) γ

2
j (k)

]
y1 (k). We refer to zj (y

1) as the z-score of the

applicant who applies to the jth university. The z-score, zj (y
1), is constructed as the

weighted average of the scores for each subject in the Center Test, y1 (k), where the weights

10See https://www.dnc.ac.jp/(in Japanese).
11Our sample of Nm = 8, 543 accounts for approximately 46% of all medical school applicants (i.e., 18763

applicants). The coverage rate of public medical school applicants within our sample is lower, given that the
individual data we obtained from the anonymous preparatory school cover 58% of all Center Test takers.
Several factors may explain this discrepancy. One key reason is the existence of specialized preparatory
schools that cater specifically to medical school applicants, leading to a more dispersed distribution of self-
assessment score submissions among different institutions.
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are determined by each university, ωjγ
1
j (k) + (1− ωj) γ

2
j (k). Using the z-score, we show

that the admission probability is a function of the z-score, zj (y
1
n):

qj
(
µj,y

1
n;αj

)
=

1

1 + exp [µj − αjzj (y1
n)]

(6)

where µj = αjs
m
j and αj =

1
(1−ωj)σj

12. µj represents the modified minimum score, which is

the focus of the estimation and simulation analyses conducted below. For the exposition, we

treat αj as a parameter in the admission probability function.

For estimation purposes, the vector of student attributes, x, is divided into the observ-

able attribute xo and the unobservable attribute ν. The n-th student attribute is denoted as

xn=(xo
n, νn). The observable attribute vector includes the scores of the Center Test, namely

y1
n ⊂ xo

n. Hence, we hereafter denote the admission probability as qj (µj,x
o
n;αj). νn repre-

sents the n-th applicant’s unobserved preference for medical schools (i.e., the inside option).

The empirical distribution of xo is defined as Go (xo), while ν is assumed to be independently

and identically distributed according to the standard normal distribution, Φ(ν).

Then, the empirical version of the application probability to university j for student n is

expressed as follows:

pj (µ, δ,x
o
n, νn;θ) =

exp {λ ln qj (µj,x
o
n;αj) + δj + bj (x

o
n, νn;β)}

1 +
∑

i ̸=0 exp {λ ln qi (µi,xo
n;αi) + δi + bi (xo

n, νn;β)}
, (7)

where µ = (µ1, · · · , µJ) is the vector of the modified minimum score, bj(·) represents the

student-specific preference for university j, which is parameterized by β13, and θ = (λ,α,β)

is a parameter vector to be estimated. The cost of distance, taste heterogeneity for university

characteristics based on student attributes (including gender), and other factors are measured

from bj(·). The specification of bj(·) is introduced following the construction of the variables

discussed in Section 4.3.1.

12To simplify our notation, we use the same q function defined in Section 3 for the admission probability,
although the independent variable changes from smj to µj .

13For the same reason explained in Footnote 12, we use the same functions, p for the application probability
and b for the student-specific preference, as in Section 3.
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By integrating the student-level application choice probability over the student attributes

(xo
n, νn), we can derive the application share function for university j as

Pj (µ, δ;θ) =

∫ ∫
pj (µ, δ,x

o
n, νn;θ) dG

o (xo
n) dΦ (νn) , ∀j, (8)

and the admission share function for university j as

Qj (µ, δ;θ) =

∫ ∫
qj (µj,x

o
n;αj) pj (µ, δ,x

o
n, νn;θ) dG

o (xo
n) dΦ (νn) , ∀j. (9)

Under the market equilibrium for medical school admission, the modified minimum score

µ is determined such that the admission share function for each university is consistent with

its (observed) admission capacity, Mj; specifically,

Mj

N
= Qj (µ, δ;θ) ,∀j. (10)

N denotes the market size, which is defined as the number of students taking the Center

Test (i.e., N = 527, 993). Given this specification, we introduce a procedure to estimate the

parameter θ below.

4.3 Estimation procedure

The estimation is implemented using both the individual- and market-level data. The

individual-level data comprise Nm observations of medical school applicants, whereas the

market-level data comprise the numbers of admissions and applications for each university,

as illustrated in Figure 2.

Note that we use the individual-level data for only students choosing the inside option

(i.e., j = 1, . . . , J), thereby excluding students choosing the outside option. However, we

can identify the substitution between the inside and the outside options by incorporating

the market-level data. The details of the estimation procedure are outlined below.
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Using the individual-level data, we first construct the likelihood function for student n

based on their application choice and the admission outcomes:

Ln(µ, δ;θ) =
J∏

j=1

[
p̄j (µ, δ,x

o
n;θ) qj(µj,x

o
n;αj)

Imnj(1− qj(µj,x
o
n;αj))

1−Imnj
]Inj

, (11)

where Inj (Imnj) takes 1 if student n applies (is admitted) to school j and 0 otherwise, and

the n-th student choice probability is,

p̄j (µ, δ,x
o
n;θ) =

∫
pj (µ, δ,x

o
n, νn;θ) dΦ(νn). (12)

Following previous studies (e.g., Goolsbee and Petrin, 2004; Train and Whinston, 2007),

we focus on maximizing the likelihood function over θ only, by incorporating the market-

level data into the estimation. Specifically, we introduce equality constraints such that the

model predictions are consistent with the market-level data. The first equality constraint

relates to the applications for each school:

Aj

N
= Pj (µ, δ;θ) ,∀j, (13)

where Aj is the number of applications for school j observed in the market-level data. This

ensures that the application shares predicted by Equation (8) align with the observed shares,

which is commonly incorporated into the estimation of demand for differentiated products

(e.g. Berry et al., 1995) to calculate the mean utility vector δ given the model parameters.

A key difference with a standard demand estimation is the need to calculate the minimum

score vector µ. Hence, we introduce the second equality constraint regarding the admissions

for each school to calculate the modified minimum score vector µ. Specifically, using the

condition for the medical school admission market equilibrium shown in Equation (10), we

impose the constraint such that the observed admission rates are consistent with the model
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prediction:

Mj

Aj

=
Qj (µ, δ;θ)

Pj (µ, δ;θ)
,∀j. (14)

These two equality constraints ensure that the applications and admissions for each school

are consistent with the actual numbers shown by stacked bars in Figure 2.

For any value of θ, δ and µ can be computed numerically from these constraints and are

thus expressed as a function of θ: δ(θ) and µ(θ). Substituting these functions into Equation

(11), the likelihood can be rewritten as a function of θ only: Ln (δ(θ),µ(θ);θ) ≡ Ln(θ).

Then, the maximum likelihood estimation is performed forNm observations of medical school

applicants:

max
θ

Nm∑
n=1

lnLn (θ) .

Appendix B discusses the details of the estimation algorithm, including the contraction

mapping method used to compute the δ and µ values, approximation of application and

admission shares in Equation (8), Equation (9), and approximation of a student’s choice

probability in Equation (12).

To perform the estimation, we need to specify the student-specific preference for each

school, bj (x
o
n, νn;β) in Equation (7). For this purpose, we first introduce the variables

included in bj(·) with their summary statistics in the following.

4.3.1 Variables and summary statistics

Our dataset is constructed from the individual-level and market-level data. In this section,

we introduce key variables used in the estimation and present their summary statistics.

Score variables: Using the score data, we construct two types of aggregate score variables.

The first is the core subject scores, which are English (250), Japanese (200), and Mathematics

(200), with the maximum score for each subject shown in parentheses. We define these

subjects as core because their scores were required for the examinations in majority of the

public medical schools, leading most students to choose them in the Center Test. We denote
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Sn as the total score, which is the sum of these three core subject scores.

Table 2 shows the summary statistics for total scores (i.e., Sn) and scores for each subject

by gender for all students, medical school applicants, and medical school admittees in the

individual-level dataset. The average score for all students is higher for males, which is

primarily due to their higher scores in mathematics. However, when limiting the sample to

medical school applicants, the total score is comparable between males and females, and the

difference in the math score reduces between genders.

Table 2: Core Subject Scores by Gender

(a)All students Total Score English Japanese Mathematics
Obs. Mean SD Mean SD Mean SD Mean SD

Female 139422 352.0 113.6 153.5 46.5 115.9 34.9 82.6 59.2
Male 181750 366.3 122.5 152.3 49.0 110.9 36.9 103.2 61.5
Total 321172 360.1 119.0 152.8 48.0 113.0 36.1 94.2 61.4

(b)Applicants only Total Score English Japanese Mathematics
Obs. Mean SD Mean SD Mean SD Mean SD

Female 2888 519.3 63.0 206.5 26.9 147.7 23.1 165.0 27.5
Male 5655 519.6 60.6 204.6 26.7 142.3 23.8 172.7 25.3
Total 8543 519.5 61.4 205.2 26.8 144.2 23.7 170.1 26.3

(c)Admittees only Total Score English Japanese Mathematics
Obs. Mean SD Mean SD Mean SD Mean SD

Female 756 566.2 31.7 223.2 13.5 159.9 17.0 183.2 16.4
Male 1668 561.8 33.2 220.1 16.0 154.0 19.3 187.7 15.2
Total 2424 563.2 32.8 221.1 15.3 155.8 18.8 186.3 15.7

Note: This table presents core subject scores by gender. We define ”core subject scores” by
English (250), Japanese (200) and Mathematics (200) with the maximum score for each subject
shown in parentheses. The ”total score” is the sum of these three core subject scores. ”All
students”, ”Applicants only” and ”Admittees only” refers to all students who take the Center
Test in our sample, all students who apply to medical schools, and all students who are admitted
in medical schools in our sample, respectively.

The second is the z-score, znj, defined in the admission probability model. As stated

in Section 4.2, z-score is calculated using the student’s first exam scores (y1)14 and the

14If a student did not take the subject specified by the medical school and, therefore, had no score, the
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subject weights assigned by each medical school. Specifically, the calculation incorporates

the weighted sum of subject scores, where the weights—denoted as γ1j , γ
2
j , and ωj for medical

school j—are set by each institution. Consequently, the z-score calculation varies across

medical schools.

Distance: The distance variable is defined as Dnj = d(ln, lj), where ln and lj are the

locations of student n’s high school and university j, respectively, and d(·) is a function that

calculates the distance between the two locations.15 Table 3 presents the summary statistics

for the distance, pooling data from all students and universities (i.e., Np × J observations),

and the statistics broken down by gender.

Table 3: Summary Statistics for Distance (km) for all Students

Mean SD Min Max

Female 510.6 367.1 12.5 2346.6
Male 516.4 368.6 12.5 2346.6

All students 513.1 367.8 12.5 2346.6

Note: This table presents the summary statistics for the distance, pooling data from all students
and universities (i.e., Np × J observations). The distance is determined by calculating the
distance from the address of each municipal office in the student’s high school’s prefecture to the
university’s address and then taking the median of these distances.

The results in table show that the average distance for all students is 513.1km with

a standard deviation of 367.8km, indicating that most of the distances between students

and universities fall within 1250km (i.e., within two standard deviations from the mean).

However, the distance can exceed 2000km when students from Hokkaido, the northernmost

prefecture, attend a university in Okinawa, the southernmost prefecture, or vice versa. The

summary statistics for the distance varies minimally between genders; for instance, the

subject was considered to have a score of zero. When multiple disciplines are available within a subject, the
highest scores among them are used.

15The university’s location (ln) is precisely known by its detailed address, whereas the student’s location
(ls) is only known at the prefectural level; specifically, the prefecture where the student’s high school is
located. Because of this difference in geographical granularity, the distance between ls and ln is calculated
as a representative value. The distance, d(ls, ln), is determined by calculating the distance from the address
of each municipal office in the student’s high school’s prefecture to the university’s address and then taking
the median of these distances.
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difference in average distance between genders is approximately 6km.

To capture the school-level variation in distance, we calculate the average distance of

each student to each school by gender, using the individual-level data (Np observations), as

follows:

1

Np
M

Np∑
n=1

Dnj × (1− Femalen) and
1

Np
F

Np∑
n=1

Dnj × Femalen, (15)

where Np
M and Np

F represent the number of male and female students, respectively, in the

sample of Np observations. These distances between students and medical schools are simply

calculated based on each student’s and each medical school’s location, irrespective of whether

the student actually applied to the school.

While the ex-ante distance to each school is comparable between genders, the distance

between each applicant and the school they ultimately applied to— the ex post distance in the

sense that it is measured after the application decision has been made—differs substantially

between genders, as shown in Table 1. To examine these gender differences at the school

level, we compute the following ex-post average distances by school:

1

Nm
M

Nm∑
n=1

Dnj × (1− Femalen)× Inj and
1

Nm
F

Nm∑
n=1

Dnj × Femalen × Inj, (16)

where Nm
M and Nm

F represent the number of male and female students, respectively, in the

sample of medical school applicants only (Nm observations). These values are plotted as

x-points in Figure 3. The figure shows that most data points lie below the 45-degree line,

indicating that the average distance for males is greater than that for females. Additionally,

these points are mostly distributed closer to the origin compared to the circle and rectangle

points, suggesting that the ex-post average distances are smaller than the ex-ante ones. This

implies that both males and females tend to choose schools closer to their residence.

Enrollment cost: We define the enrollment cost as the sum of the enrollment fee and

the first-year tuition. For the study period, these fees and tuition rates were determined

by national or local governments rather than by the universities themselves. While these
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Figure 3: Average distance by gender

Note: This figure plots the average distance (in km) for males and females to
each medical school. Circle points represent ex-ante distances, computed based
on Equation 15, which considers all students regardless of application decisions.
Rectangle points show ex-ante distances for medical school applicants only. Ex-
post distances, calculated using Equation 16 for applicants’ chosen schools, are
plotted as x-points.

were identical across national universities due to the national government’s uniform pricing

scheme, they varied between public universities where local governments set the fees and

the tuition rates. Additionally, prefectural and city universities often charged different rates

for in-prefecture (or in-city) and out-of-prefecture (or out-of-city) students, typically offering

favorable rates to local students. Therefore, the enrollment cost is as follows:

Costnj = I(ln, lj)c
in
j + (1− I(ln, lj))c

out
j ,

where I(ln, lj) is an indicator function that takes the value 1 if ln and lj belong to the same

prefecture, and cinj (coutj ) represents the enrollment cost of in-prefecture (out-of-prefecture)

students for school j.
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Table 4 presents the summary statistics for the enrollment costs of out-of-prefecture and

in-prefecture students. The average costs are higher for out-of-prefecture students. The

standard deviation for in-prefecture students is minimal, whereas that for out-of-prefecture

students is larger due to the significantly higher entrance fees charged by local governments

to out-of-prefecture students.

Table 4: Summary statistics of school-level variables

Variable Mean SD Min Max

Enrollment cost (¥1000): Costnj
In-prefecture students 813.4 18.0 714.0 817.8

Out-of-prefecture students 856.8 126.7 817.8 1381.8

Median Total score of admittees: S̄j 561.4 16.9 524.5 606.0

Number of articles: Articlej 491.3 370.8 170.0 2035.0

Note: This table presents the summary statistics of school level variables. We define the
enrollment cost as the sum of the enrollment fee and the first-year tuition. The total scores are
the sums of English (250), Japanese (200), and Mathematics (200), with the maximum score for
each subject shown in parentheses. “Number of articles” is the number of articles published in
peer reviewed journals by faculty members at each school.

Median score: As a measure of school quality, we use the median scores of admitted

students at each school, S̄j, derived from our dataset. The top five medical schools include

the University of Tokyo, Kyoto University, Nagoya University, Osaka University, and Chiba

University. As shown in Table 4, the average S̄j is 561.4, with the highest median score of

606.0 for the University of Tokyo.

Number of articles: Academic outcomes for each school may affect application decisions,

particularly among high-ability students. Therefore, we collect the number of articles pub-

lished in peer reviewed journals by faculty members at each school; Articlej as a measure

of medical school quality. As shown in Table 4, the average number of articles published by

faculty members is 491.3. The highest number of publications is 2,035 at the University of

Tokyo.
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4.3.2 Specification of bj(·)

Given the aforementioned variables, we specify the student-specific preference for each school,

bj(x
o
n, νn;β). The observed individual characteristics for student n include their location,

score, gender, and z-score: xo
n = (ln, Sn, Femalen, zn), where Femalen takes 1 if student n

is female and 0 otherwise. zn is the J × 1 vector of z-score for student n, where the j-th

element is zj(y
1). zn is relevant only to the admission probability and is not included in

bj(·).

Then, for each school j, bj(·) is specified as follows:

bj(x
o
n, νn;β) = Xnjβ̄ +

(
Femalen ×XF

nj

)
βF + β0

1Sn + β0
2Femalen + β0

3νn, (17)

where

Xnj =
(
Costnj, Dnj, D

2
nj,
(
Sn − S̄j

)2
+
,
(
Sn − S̄j

)2
− , Sn × Articlej, Sn × Article2j

)
. (18)

β̄ is the vector of parameters capturing the male’s preference, βF is the vector of parameters

capturing the heterogeneity in preference between genders. To allow for the possibility

that their effect may either be increasing or decreasing, distances (Dnj) and the academic

outcomes (Articlej) have quadratic terms, as shown in the variables included inXnj. Articlej

is interacted with the student’s ability (Sn) to consider the heterogeneity in preferences for

the academic outcomes across different ability levels. Following the previous studies (e.g., Fu

et al, 2022), we include the variables to measure the preference for under-match and over-

match:
(
Sn − S̄j

)
+

= max
{
Sn − S̄j, 0

}
and

(
Sn − S̄j

)
− = min

{
Sn − S̄j, 0

}
, respectively.

These variables capture the degree to which a student’s ability (Sn) deviates above (over-

match) or below (under-match) the median ability of admitted students at school j (S̄j).

The vector of variables interacted with the female dummy, XF
nj, is a subset of Xnj (i.e.,

XF
nj ⊆ Xnj). In our main specification, we focus on the case of XF

nj = Xnj.
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The preference for the outside option can differ by student ability (Sn) and gender

(Femalen). Additionally, the unobserved heterogeneity is considered by including νn that

follows a standard normal distribution. The preferences associated with Sn, Femalen, and

νn are measured by parameters β0
1 , β

0
2 , and β

0
3 , respectively.

4.4 Estimation results

Estimation results are reported in Table 5. We conduct the estimation based on the two spec-

ifications on bj(·): the subset of the variables Xnj interacted with female dummy variables

Femalen, thereby XF
nj ⊂ Xnj; and the full specification of XF

nj = Xnj. These estimation

results are shown in Tables 5 (i) and (ii), respectively.

The estimates of the scale parameter λ, namely the coefficient of admission probability

ln qnj, are similar for both specifications and statistically significant. The coefficient of

monetary costs, Cost is negative and statistically significant. Additionally, the positive

coefficients of Female×Cost indicate that females are price insensitive compared to males;

however, it is not statistically significant for the full specification of (ii).

The estimates for the cost of distance are similar across specifications, suggesting that the

results are robust to the choice of variables. Specifically, as the coefficient of the linear term is

negative and that of the quadratic term is positive, the utility cost of distance follows a convex

function with respect to the distance and varies by gender. Figure 4 shows the function for

males and females that are constructed using the estimates of full specification (i.e., Table

5(ii)), within the range of distance observed in our dataset and with a maximum of 2,350km,

as shown in Table 3. The results indicate that the cost decreases until approximately 1,350

km, after which it starts increasing. Within this range, females encounter higher costs than

males, and the gap continues to widen up to this point. As the average cost of distance is

513km with a standard deviation of 368km, as shown in Table 3, most observations fall within

the range up to 1,350km. Therefore, the cost mostly decreases within the observed range,

and the difference between genders widens as distance increases. Thus, the cost generally
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Table 5: Estimation results

(i) (ii)

Variables Est. S.E. Est. S.E.

(1) Scale parameter
ln qnj 0.639 0.020 0.630 0.013

(2) Enrollment cost
Costnj -4.073 0.218 -4.023 0.330

Femalen × Costnj 0.451 0.153 0.187 0.123

(3) Cost of distance
Dnj -7.633 0.102 -7.589 0.099
D2

nj 2.828 0.056 2.809 0.055

Femalen ×Dnj -1.041 0.070 -1.218 0.127
Femalen ×D2

nj 0.421 0.052 0.498 0.077

(4) Preference for under-/over-match
(Sn − S̄j)

2
+ -15.133 0.537 -17.804 0.610

(Sn − S̄j)
2
− 0.796 0.043 0.807 0.028

Femalen × (Sn − S̄j)
2
+ - - 5.804 0.366

Femalen × (Sn − S̄j)
2
− - - -0.024 0.022

(5) Preference for academic outcomes
Sn ×Articlej 2.940 0.261 3.165 0.130
Sn ×Article2j -1.250 0.135 -1.284 0.066

Femalen × (Sn ×Articlej) - - -0.089 0.038
Femalen × (Sn ×Article2j ) - - -0.007 0.021

(6) Preference for outside option
Femalen -0.004 0.137 0.433 0.090

Sn 10.671 0.995 10.195 0.557
νn 2.666 0.068 2.666 0.058

Log-likelihood -44265.757 -44211.281

Note: The variable Costnj is the sum of the enrollment fee and the first-year tuition, Dnj is
calculated as the distance from the address of each municipal office in the student’s high school’s
prefecture to the university’s address and then taking the median of these distances, Femalen is
the female dummy, Sn is the sum of English (250), Japanese (200), and Mathematics (200), with
the maximum score for each subject shown in parentheses,

(
Sn − S̄j

)
+
= max

{
Sn − S̄j , 0

}
and(

Sn − S̄j

)
− = min

{
Sn − S̄j , 0

}
where S̄j is the median of Sn in the jth school, Articlej is the

number of articles published in peer reviewed journals by faculty members at each school and νn
is unobserved heterogeneity. Enrollment cost (Costnj), distance (Dnj), total score Sn, and
number of articiles (Articlej) are measured in million yen, 1,000km, 100-point, and 1,000 article
units, respectively.
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declines within the observed range, with the gender gap expanding as distance increases.16

Figure 4: Utility cost of distance

Note: This figure shows the utility cost of distance (y-axis) as a function of
distance in kilometers (x-axis). The blue line represents male students, whereas
the red line represents female students. The cost estimates are based on Table
5, Column (ii).

For both specifications, the preference for under-match (i.e., the coefficient of (Sn− S̄j)
2
+)

is estimated to be negative and statistically significant, while the preference for over-match

(i.e., the coefficient of (Sn − S̄j)
2
−) is positive and significant. The estimates of under-match

and over-match are highly asymmetric; in particular, students strongly disfavor universi-

ties where the majority of students have a lower academic performance than themselves.

However, in the context of the medical schools, the median scores of admitted students

are relatively high, 561.4 on average, as shown in Table 4, compared to the average scores

of all students, 360.1, as shown in Table 2. Consequently, majority of students face over-

match across all medical schools, meaning that the asymmetric preference is identified from

a small fraction of elite students with high scores when selecting among top-tier institutions.

16Although the difference in the cost between genders get closer over 2,000km distance, such long distances
are relevant only when students from the northern island, Hokkaido prefecture, choose a university in the
southern island, Okinawa prefecture, or vice versa.
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Nonetheless, this result is consistent with those of previous studies that examine the college

application choice (e.g., Fu et al. (2022)).

Additionally, the result of the full specification indicates that Femalen × (Sn − S̄j)
2
+ is

significantly positive, suggesting that females are more tolerant of under-match. This implies

that conditional to their abilities, females tend to choose less competitive schools, which is

consistent with findings in the literature on the gender differences in competitiveness (e.g.,

Buser et al. (2014)).

For both specifications, the estimates regarding the academic performance variables in-

teracted with the student’s score, Sn × Articlej and Sn × Article2j , are both statistically

significant. Using the estimates from Table 5(ii), the marginal effect for the school j can be

calculated as Sn × (3.165− 2× 1.284Articlej), which is positive for most schools except for

the top-three institutions, the University of Tokyo, Osaka University, and Kyoto University

with 2,035, 1,451, and 1,397 articles, respectively. Thus, the utility function is increasing

over most of the observed data range, indicating that high-scoring students tend to prefer

schools with high academic performance. However, high-scoring females exhibit a weaker

preference for academic performance, as evidenced by the negative and significant coefficient

of Femalen × (Sn × Articlej). This indicates that, compared to males, females are less

likely to choose top-tier schools, which aligns with findings in the literature on the gender

difference in competitiveness.

Finally, we report the estimates representing the preference between inside and outside

options. The coefficients of Femalen differ between specifications, which is attributable to

the flexibility of preference structure by gender between them. In our main specification

shown in Table 5(ii), the estimate is positive and significant, implying that females have

stronger preference for medical schools. High-scoring students have stronger preference for

the inside options, as indicated by the positive and significant coefficient of Sn. The coefficient

of the unobserved taste νn is significantly estimated to be 2.666. This indicates that the

unobserved preferences for medical schools across students, βo
3νn, has a standard deviation
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of 2.666.

4.5 Model Fit

To examine the validity of the model, Figures 5, 6, and 7 compare the model’s predictions

with the actual data. In each figure, the vertical line represents the actual data, horizontal

line represents the model’s predictions, blue points represent the average values by each

medical school, and red line indicates the 45-degree line. Thus, if the blue points in the

figures are located close to the red line, the model’s predictions closely align with the actual

data.

Figure 5: Model fit: Average score of application

Note: The x-axis represents predicted scores, while the y-axis represents actual
scores. Each blue point corresponds to a medical school’s average score. The
red 45-degree line indicates perfect prediction, allowing for a visual assessment
of model fit.

Figure 5 compares the average total predicted scores of applicants with the actual data,

based on estimates from Table 5, Column (ii). It shows that most of the blue points are

near the red line, indicating that the model successfully predicts the average total scores of
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applicants to the medical schools observed in the data. Similarly, Figure 6 shows that the

average scores of admitted students predicted by the model closely matches the data. These

results suggest that the model can successfully predict the academic abilities of students in

all medical schools.

Figure 6: Model fit: Average score of admitted students

Note: This figure compares the model’s predicted and actual average scores of
admitted students by medical school, based on estimates from Table 5, Column
(ii). The x-axis represents predicted scores, while the y-axis represents actual
scores. Each blue point corresponds to the medical school’s average score. The
red 45-degree line indicates perfect prediction, allowing for a visual assessment
of model fit.

Figure 7 compares the average predicted distance of students with the actual data, based

on estimates from Table 5, Column (ii). Compared to Figures 5 and 6, the model’s predictions

are less accurate in this case. However, except for one outlier—Ryukyu University, located

in Okinawa Prefecture—we consider the predicted distances for students to be reasonably

accurate. Overall, our model can successfully predict the average distance for students in

most medical schools.

In summary, we find that the estimated values of our results are reasonable, and the
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Figure 7: Model fit: Average distance of students applied to medical schools

Note: This figure compares the model’s predicted and actual average distance
of students to medical schools, based on estimates from Table 5, column (ii).
The x-axis represents the predicted distance, while the y-axis represents the
actual distance, both measured in kilometers. Each blue point corresponds to
a medical school’s average distance. The red 45-degree line represents perfect
prediction, providing a visual assessment of the model’s fit.

model’s predictions align well with the actual data. With these results, we are now confident

in proceeding with counterfactual policy experiments in the next section.

5 Counterfactual Simulations

In this section, we conduct counterfactual simulations. We consider policy objectives that

address two different disadvantages related to distance. First, the cost associated with the

distance to a medical school is disadvantageous for applicants if they do not have a desirable

medical school nearby, regardless of their gender. Second, assuming that the higher cost of

distance for female applicants reflects social constraints on women, we interpret this as an

additional disadvantage for female applicants. We examine how different policies designed to
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compensate for these disadvantages influence the admission of male and female applicants.

First, we examine how a subsidy that offsets distance-related costs affects the number

of applicants and admissions. Given that female applicants grapple with higher distance-

related costs, this policy not only supports students who do not have access to a desirable

medical school nearby but also help to reduce the gender gap in admissions.

Specifically, we consider the impacts of the following financial aid for all admitted stu-

dents:

Aidnj =
1

βc + βF
c Femalen

[
βdDnj + βd2D

2
nj

+ Femalen ×
(
βF
d Dnj + βF

d2D
2
nj

)] (19)

where Aidnj represents the subsidy for the nth admitted student to the jth university, Dnj

denotes the distance between the high school of the nth admitted student and the jth univer-

sity, and Femalen is a female dummy variable. The parameters βc and β
F
c are the estimated

coefficients for enrollment cost and its interaction with the female dummy, respectively, as

shown in Row (2) and Column (ii) of Table 5. The parameters βd, βd2, β
F
d , and β

F
d2 are the

estimated coefficients for distance, its square, and their interactions with the female dummy,

respectively, as shown in Row (3) and Column (ii) of Table 5. This equation indicates that

Aidnj represents the monetary cost of distance that the nth student must bear if admitted

to the jth university.

Table 6 presents the results of this policy. It shows that the total number of applicants

to medical schools more than doubles. As expected, the policy also increases the number

of female applicants more than that of male applicants: the number of female applicants

increases by 130%, compared to that of male applicants by 98%. From this table, we calculate

how the share of female applicants changes: the female share of applicants increases from

0.33 ≈ 6219/18763 to 0.37 ≈ 14308/39084. Therefore, this policy increases the share of

female applicants. This increase in the total number of applicants indicates that the subsidy

is a motivator for applying to medical school, especially for females, as it provides applicants
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Table 6: The Impacts of the Subsidy that offsets Distance-related Costs

#Applicants #Admissions
Male Female Total Male Female Total

(I) Actual 12544 6219 18763 2789 813 3602
(II) Counterfactual 24776 14308 39084 2839 763 3602
Difference: (II) - (I) 12232 8089 20321 50 -50 0
Rate of Change (%) 97.51 130.08 108.30 1.78 -6.09 0.00

Note: ”(I) Actual” and ”(II) Counterfactual” represent the prediction of the model without
the policy and with the policy, respectively. ”Difference” and ”Rate of Change” refer to
(II) - (I) and ((II)-(I))/(I), respectively.

with more options for applying to distant medical schools.

However, the number of admissions presents a different picture. While the policy increases

the number of admitted males by 50, it reduces the number of admitted females by the

same amount. It reduces the share of admitted females from 0.23 ≈ 813/3602 to 0.21 ≈

763/3602. Because the total capacity of medical schools remains unchanged, the overall

number of admissions do not increase. Instead, the increase in the total number of applicants

intensifies competition for admission. This increased competition appears to crowd out

female applicants. In other words, this policy fails to reduce the gender gap in admissions.

Figure 8 illustrates the cost of implementing this subsidy policy that offsets distance-

related disadvantages in medical school admissions. The average financial aid per admitted

students at each university ranges approximately between 400,000 yen and 1,250,000 yen,

depending on the average distance from students’ home prefectures to the university. This

figure highlights that implementing this policy entails a significant financial burden.

This failure to reduce the gender gap in admissions leads us to examine the economic

impact of a second policy: an affirmative action program for female students. Specifically,

we analyze the following subsidy for all admitted female students:

AidF
nj =

1

βc + βF
c

(
βF
d Dnj + βF

d2D
2
nj

)
, (20)
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Figure 8: The Financial Costs of the Subsidy that Offsets Distance-related Costs

Note: This figure illustrates the financial costs associated with implementing
the subsidy that offsets distance-related disadvantages in medical school ad-
missions. The vertical axis represents the financial aid per admitted student
(in thousand JPY), while the horizontal axis denotes the average distance to a
medical school (in kilometers). The cost is calculated using Equation 19, with
parameters derived from the estimated coefficients as reported in Row (3), Col-
umn (ii) of Table 5. These costs reflect the impact of financial aid provided to
all admitted students, mitigating the disadvantage faced by applicants who do
not have a desirable medical school nearby, regardless of gender.

where AidF
nj represents the subsidy for the nth admitted female student to the jth university,

and Dnj denotes the distance between the high school of the nth admitted female student

and the jth university. The parameters βc and βF
c are the estimated coefficients for the

enrollment cost and its interaction with the female dummy, respectively, as shown in Row

(2) and Column (ii) of Table 5. The parameters βF
d and βF

d2 are the estimated coefficients

for the interaction of the female dummy with distance and its square, respectively, as shown

in Row (3) and Column (ii) of Table 5. This equation indicates that AidF
nj represents the

additional monetary cost of distance, relative to male students, that the nth female student

must bear if admitted to the jth university.
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Table 7: The Impacts of an Affirmative Action Program for Female Students

#Applicants #Admissions
Male Female Total Male Female Total

(I) Actual 12544 6219 18763 2789 813 3602
(II) Counterfactual 12442 6870 19312 2738 864 3602
Difference: (II) - (I) -102 651 549 -52 52 0
Rate of Change (%) -0.82 10.47 2.92 -1.86 6.38 0.00

Note: ”(I) Actual” and ”(II) Counterfactual” represent the prediction of the model without
the policy and with the policy, respectively. ”Difference” and ”Rate of Change” refer to
(II) - (I) and ((II)-(I))/(I), respectively.

We implicitly assume that gender differences in preferences regarding the distance from

home reflect social constraints on female students. If this assumption holds, the affirmative

action policy can be considered a measure that offsets the disadvantage faced by female

students who do not have access to a desirable public medical school nearby.

It should be noted that, unlike the proposal to introduce a gender quota as an affirma-

tive action policy for female students, our proposed affirmative action policy allows female

students to compete under the same conditions as male students.

Table 7 presents the results of this affirmative action policy in which the government

provides financial aid exclusively to females to offset gender differences in the cost of distance.

According to the table, the policy increases the number of female applicants by 10% while

decreasing the number of male applicants by 0.8%. It also increases the number of female

admissions by 6% and decreases the number of male admissions by 2%. Consequently, it

increases the share of admitted female students from 0.23 ≈ 813/3602 to 0.28 ≈ 1026/3602.

Therefore, the affirmative action program for female students helps to reduce the gender gap

in admissions.

This policy will not be feasible if it is not cost effective. Hence, understanding the financial

costs of implementing the affirmative action program is crucial. Figure 9 illustrates the cost

of implementing the affirmative action policy that offsets distance-related disadvantages in

medical school admissions. The average financial aid per admitted female students in each
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Figure 9: The Financial Costs of the Affirmative Action Program for Female Students

Note: This figure illustrates the financial costs associated with implement-
ing the affirmative action policy that offsets distance-related disadvantages in
medical school admissions. The vertical axis represents the financial aid per
admitted student (in thousand JPY), while the horizontal axis denotes the
average distance to a medical school (in kilometers). The cost is calculated
using Equation 20, with parameters derived from the estimated coefficients as
reported in Row (3), Column (ii) of Table 5.

university ranges between 10,000 yen and 150,000 yen, depending on the average distance

from students’ home prefectures to the university. This amount is significantly lower than

the subsidy required to offset distance-related costs. In other words, the figure suggests that

implementing this affirmative action program could be a financially feasible policy option.

6 Conclusion

This study examines the geography of public medical school opportunities by constructing

an equilibrium model of the medical school market. Using this model, we estimate gender

differences in preferences related to distance from home and analyze how these differences
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affect gender disparities in medical school admissions in Japan.

Our results suggest that distance-associated costs for females are higher than those for

males. Based on the estimated model, we conduct two counterfactual simulations. The find-

ings show that while financial aid to offset distance-related costs can increase the proportion

of female applicants to medical schools, it does not lead to a corresponding increase in female

admissions due to the effects of competition.

Assuming that gender differences in preferences regarding the distance from home reflect

social constraints on female students, we propose an alternative affirmative action policy in

which the government provides financial aid exclusively to female students to offset gender

differences in distance-related costs. We find that this policy not only reduces the gender

gap in admissions but is also financially feasible. The evaluation of a policy depends on the

underlying goals; however, it is considered a potential candidate if reducing the gender gap

in admissions is a primary objective. We believe that this study contributes to a constructive

policy discussion on this issue.

A Appendix

The Utility Function and Budget Constraint Explicitly Including Composite

Goods: If we explicitly indicate the utility from composite goods and the budget constraint,

Uj (εj), Uf , and U
e
0 (ε0) can be expressed as follows.

Uj (εj) = Ũj (mj −mf ) exp
εj
λ

+ Uf (mf ) ,

Uf = Uf (mf ) ,

U e
0 (ε0) = Ũ e

0 (m0 −mf ) exp
ε0
λ

+ Uf (mf ) ,

subject to

W +∆Wj = cj +mj,W +∆W e
f = cf +mf , W +∆W e

0 = ce0 +m0,
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where mj, mf , and m0 are the utility derived from composite goods when the applicant en-

ters the jth university, fails, or applies to another department, respectively. The variableW

is the current total wealth of the applicant; ∆Wj, ∆W
e
f , and ∆W e

0 are the expected wealth

increases when entering the jth university, failing, or applying to another department, re-

spectively. cj, cf , and c
e
0 are the applicant’s payments to the jth university, cost of preparing

for the examination next year, and expected tuition fee for applying to another department,

respectively.

Derivation of equation (4): Substituting Equations (2) and (3), we can show that

argmax

 maxj∈{1,...,J}
{
qj
(
smj ;y

1
)
Uj (εj) +

[
1− qj

(
smj ;y

1
)]
Uf

}
,

U e
0 (ε0)


= argmax

j

{
EUj exp

εj
λ

}
,

where EUj = qj
(
smj ;y

1
) Ũj

Ũe
0

I (j ̸= 0) + [1− I (j ̸= 0)]. Hence, as λ > 0, the probability of

applying to the jth university can be expressed as

Pr

(
EUj exp

ε̃j
λ

≥ EUj′ exp
ε̃j′

λ

)
, ∀j′,

= Pr (λ lnEUj + ε̃j ≥ λ lnEUj′ + ε̃j′) , ∀j′.

As εj follows the distribution exp− [exp− (εj + γ)], and ln
Ũj

Ũe
0

=
δj+bj(y1,x)

λ
, the desired result

follows directly from the standard random utility model.

Proof of the existence of
{
sj
}
and {s̄j}: We show that we can find

{
sj
}
and {s̄j} for

any Mj ∈
[
M, M̄

]
such that if there exists smj that satisfies the equation (5), smj ∈

[
sj, s̄j

]
for all j.
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We define p
j

(
s, δ;y1,x

)
as follows:

p
j

(
s, δ;y1,x

)
=

exp {λqj (s;y1) + δj + bj (y
1,x)}

1 +
∑

i ̸=0,j exp {λ+ δi + bi (y1,x)}+ exp {λqj (s;y1) + δj + bj (y1,x)}
.

Note that the admission probability in p
j

(
s, δ;y1,x

)
for schools other than the jth school

is 1. Hence, this represents the lowest application probability to the jth school when the

minimum score of the jth school is s.

Note that lims→−∞
∫
qj (s;y

1) p
j

(
s, δ;y1,x

)
dG (y1,x) =

∫
p∗j
(
δ;y1,x

)
dG (y1,x). Addi-

tionally, minj

∫
p∗j
(
δ;y1,x

)
dG (y1,x) > M̄

N
= max

{
Mi

N

}
i
and 0 < M

N
= min

{
Mi

N

}
i
. Because

lims→∞ qj (s;y
1) = 0, lims→−∞ qj (s;y

1) = 1 and
∂qj(s;y1)

∂s
< 0, it is evident that there exists

unique
{
sj
}
and {s̄j} for any Mj ∈

[
M, M̄

]
such that, for all j

Mj

N
=

∫
qj
(
s̄j;y

1
)
dG
(
y1,x

)
> 0,

Mj

N
=

∫
qj
(
sj;y

1
)
p
j

(
sj, δ;y

1,x
)
dG
(
y1,x

)
<

∫
p∗j
(
δ;y1,x

)
dG
(
y1,x

)
.

Note that

∫
qj
(
s̄j;y

1
)
dG
(
y1,x

)
=

∫
qj
(
smj ;y

1
)
pj
(
sm, δ;y1,x

)
dG
(
y1,x

)
<

∫
qj
(
smj ;y

1
)
dG
(
y1,x

)
, ∀j

and

∫
qj
(
sj;y

1
)
p
j

(
sj, δ;y

1,x
)
dG
(
y1,x

)
,

=

∫
qj
(
smj ;y

1
)
pj
(
sm, δ;y1,x

)
dG
(
y1,x

)
>

∫
qj
(
smj ;y

1
)
p
j

(
sj, δ;y

1,x
)
dG
(
y1,x

)
,∀j
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Hence, if there exists smj that satisfies the equation (5), smj ∈
[
sj, s̄j

]
for all j.

Rigorous statement of Theorem 2: Suppose that sm ∈ Sm and that the scale parameter

λ > 0 is sufficiently small such that the following condition holds for all j:

(λ+ 1)

∫ ∂qj(smj ;y1)
∂smj

qj
(
smj ;y

1
) ω̂j

(
y1,x

)
dG
(
y1,x

)
(21)

< λ

∫  K∑
k=1

∂qk(smk ;y1)
∂smk

qk (smk ;y
1)
ω̌k

(
y1,x

) ω̂j

(
y1,x

)
dG
(
y1,x

)

where ω̌k (y
1,x) = pk

(
sm, δ;y1,x

)
, and ω̂j (y

1,x) = qj
(
smj ;y

1
)
pj
(
sm, δ;y1,x

)
. Then, there

exists a unique ({pi}i , sm) that satisfies the market equilibrium for medical school admission.

proof Define Γ (sm) : Sm → Sm such that Γ (sm) = (Γ1 (s
m) , . . . ,ΓJ (s

m)), where for ψ > 0,

Γj (s
m) ≡ smj − ψ

[
Mj

N
−
∫
qj
(
smj ;y

1
)
pj
(
sm, δ;y1,x

)
dG
(
y1,x

)]
, ∀j

with Equations (4) and (1).

If we find a unique sm ∈ Sm that satisfies Γ (sm) = sm, then

Mj

N
=

∫
qj
(
smj ;y

1
)
pj
(
sm, δ;y1,x

)
dG
(
y1,x

)
, ∀j.

Hence, this sm solves Equation (5) along with Equations (4) and (1). Therefore, this sm

satisfies the market equilibrium for higher education.

Because Sm= Πj

[
sj, s̄j

]
is compact, it is a complete metric space. Hence, all Cauchy

sequences {sm,τ} in Sm converge within Sm. Thus, if Γ (sm) is a contraction mapping for

some ψ > 0, there exists a unique sm in Sm that satisfies Γ (sm) = sm. To prove Γ (sm) is a

contraction mapping, we use the following lemma.

Lemma 3 Suppose that D ∈ RJ is a compact set where δ ∈ D with a metric
∥∥∥δ̂ − δ̃

∥∥∥ =
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maxi

∣∣∣δ̂i − δ̃i

∣∣∣ for any δ̂ and δ̃ ∈ D. Consider a continuously differentiable function Γ :

D → D. Suppose that

max
j

{
J∑

k=1

∣∣∣∣∂Γj (δ)

∂δk

∣∣∣∣
}
< 1, ∀δ ∈ D.

Then, for any δ̂, δ̃ ∈ D, there exists β ∈ (0, 1) such that

∥∥∥Γ(δ̂)− Γ
(
δ̃
)∥∥∥ ≤ β

∥∥∥δ̂ − δ̃
∥∥∥ .

Proof. Take δ̂, δ̃ ∈ D. By the mean value theorem, there exists h ∈ (0, 1) such that

Γ
(
δ̂
)
− Γ

(
δ̃
)
=

∆Γ (δ)

∆δ
|δ=h(δ̂−δ̃)+δ̃

(
δ̂ − δ̃

)
.

Now,

∥∥∥Γ(δ̂)− Γ
(
δ̃
)∥∥∥ = max

j

∣∣∣∣∣
J∑

k=1

∂Γj (δ)

∂δk
|δ=h(δ̂k−δ̃k)+δ̃k

(
δ̂k − δ̃k

)∣∣∣∣∣
= max

j

{
J∑

k=1

∣∣∣∣∂Γj (δ)

∂δk
|δ=h(δ̂k−δ̃k)+δ̃k

∣∣∣∣
}
max

k

∣∣∣δ̂k − δ̃k

∣∣∣
= max

j

{
J∑

k=1

∣∣∣∣∂Γj (δ)

∂δk
|δ=h(δ̂k−δ̃k)+δ̃k

∣∣∣∣
}∥∥∥δ̂ − δ̃

∥∥∥ .
If maxj

{∑J
k=1

∣∣∣∂Γj(δ)

∂δk

∣∣∣} < 1, ∀δ ∈ D, we can set β ∈ (0, 1) such that

β = max
j

{
J∑

k=1

∣∣∣∣∂Γj (δ)

∂δk

∣∣∣∣
}
< 1.

The desired result follows immediately.

Following the lemma 3, it suffices to show that

max
j

{
J∑

k=0

∣∣∣∣∂Γj (δ)

∂δk

∣∣∣∣
}
< 1.
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Note that Equation (4) implies

∂pj
(
sm, δ;y1,x

)
∂smj

= λ

∂qj(smj ;y1)
∂smj

qj
(
smj ;y

1
)pj (sm, δ;y1,x

) [
1− pj

(
sm, δ;y1,x

)]
,

∂pj
(
sm, δ;y1,x

)
∂sm

|k ̸=j = −λ
∂qk(smk ;y1)

∂smk

qk (smk ;y
1)
pj
(
sm, δ;y1,x

)
pk
(
sm, δ;y1,x

)
.

Hence,

∣∣∣∣dΓj (s
m)

dsmj

∣∣∣∣ =

∣∣∣∣∣∣∣1 + ψ

∫  ∂qj(smj ;y1)
∂smj

pj
(
sm, δ;y1,x

)
+qj

(
smj ;y

1
) ∂pj(sm,δ;y1,x)

∂smj

 dG (y1,x
)∣∣∣∣∣∣∣

=

∣∣∣∣∣1 + ψ

∫
∂qj
(
smj ;y

1
)

∂smj
pj
(
sm, δ;y1,x

) [
1 + λ

(
1− pj

(
sm, δ;y1,x

))]
dG
(
y1,x

)∣∣∣∣∣
= 1 + ψ

∫
∂qj
(
smj ;y

1
)

∂smj
pj
(
sm, δ;y1,x

) [
1 + λ

(
1− pj

(
sm, δ;y1,x

))
dG
(
y1,x

)]
for small ψ > 0 and for k ̸= j

∣∣∣∣dΓj (s
m)

dsmk

∣∣∣∣ =

∣∣∣∣∣ψ
∫
qj
(
smj ;y

1
) ∂pj (sm, δ;y1,x

)
∂smk

dG
(
y1,x

)∣∣∣∣∣
=

∣∣∣∣∣∣∣−ψ
∫
qj
(
smj ;y

1
)
λ

∂qk(smk ;y1)
∂smk

qk (smk ;y
1)
pj
(
sm, δ;y1,x

)
pk
(
sm, δ;y1,x

)
dG
(
y1,x

)∣∣∣∣∣∣∣
= −ψ

∫
qj
(
smj ;y

1
)
λ

∂qk(smk ;y1)
∂smk

qk (smk ;y
1)
pj
(
sm, δ;y1,x

)
pk
(
sm, δ;y1,x

)
dG
(
y1,x

)
for all ψ > 0. Assume that our Γ function is endowed with this small ψ > 0 that satisfies
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the equations above. Then,

K∑
k

∣∣∣∣∂Γj (s
m)

∂smk

∣∣∣∣
=

∣∣∣∣∂Γj (s
m)

∂smj

∣∣∣∣+ K∑
k ̸=j

∣∣∣∣∂Γj (s
m)

∂smk

∣∣∣∣
= 1 + ψ

∫
∂qj
(
smj ;y

1
)

∂smj
pj
(
sm, δ;y1,x

) [
1 + λ

(
1− pj

(
sm, δ;y1,x

))]
dG
(
y1,x

)
−ψ

K∑
k ̸=j

∫
qj
(
smj ;y

1
)
λ

∂qk(smk ;y1)
∂smk

qk (smk ;y
1)
pj
(
sm, δ;y1,x

)
pk
(
sm, δ;y1,x

)
dG
(
y1,x

)

= 1 + ψ

∫
qj
(
smj ;y

1
)
pj
(
sm, δ;y1,x

)



(λ+ 1)

∂qj(smj ;y1)
∂sm

j

qj(smj ;y1)

−λ
∑K

k

∂qk(smk ;y1)
∂sm

k

qk(smk ;y1)
pk
(
sm, δ;y1,x

)

 dG

(
y1,x

)

This means that if

(λ+ 1)

∫ ∂qj(smj ;y1)
∂smj

qj
(
smj ;y

1
)qj (smj ;y1

)
pj
(
sm, δ;y1,x

)
dG
(
y1,x

)
< λ

∫  K∑
k

∂qk(smk ;y1)
∂smk

qk (smk ;y
1)
pk
(
sm, δ;y1,x

) qj (smj ;y1
)
pj
(
sm, δ;y1,x

)
dG
(
y1,x

)
,

then
∑K

k

∣∣∣∂Γj(s
m)

∂smk

∣∣∣ < 1 for all j. Q.E.D.

B Estimation algorithm

Our estimation algorithm follows previous studies (e.g., Berry et al., 2004; Goolsbee and

Petrin, 2004; Train and Whinston, 2007) in which both individual-level (micro) and market-

level (macro) data are utilized in the estimation of a consumer choice model. Specifically,

we incorporate the individual-level data on medical school choice alongside the market-level

data on applications and admissions by medical school. A key distinction from the previous
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studies is that the market-level data comprise two elements. Specifically, we utilize not only

quantity chosen by consumers (i.e., number of applications) but also their admissions.

As outlined in Section 4, the estimation is performed by searching for the value of θ that

maximize the likelihood function in Equation (11). In the process of the maximization, the

equality constraints on the market-level application shares and admission rates, specified in

Equations (13) and (14), respectively, are used to compute the common parts of utility, δ,

and the modified minimum scores, µ, for any values of θ. Drawing from Berry et al. (1995),

we adopt a contraction mapping procedure to compute (δ,µ). Given that we have two

equality constraints for the two school-specific vectors, the contraction mapping procedure

also has two stages. The detailed procedure is as follows.

Contraction mapping to compute (δ,µ) from market-level data: First, we consider

the computation of δ given the value of (µ,θ). In this case, the contraction mapping

procedure proposed by Berry et al. (1995) can be directly applied. Specifically, for any given

values of (µ,θ), δ that satisfies the equality constraint of Equation (13) can be computed

numerically using the following series of iterations:

δh+1 = δh +

[
log

(
A

N

)
− log

(
P(δh;µ,θ)

)]
, (22)

where h denotes the number of iterations. A/N is the vector of application shares observed

in the market-level data, where the j-th element is Aj/N , the application share for university

j. P(·) denotes the vector of the application shares predicted from our model, where the j-th

element is Pj(·), the application share function in Equation (8). For notational convenience,

Pj(·) is denoted here as a function of δ with parameters (µ,θ). The iteration converges at

h = h∗ where ||δh∗+1 − δh∗|| become smaller than some tolerance level. We denote δh∗
as a

function of µ with a parameter θ, namely δh∗
= δ∗(µ;θ).

Next, following that δ can be denoted as a function of µ, we consider the computation

of µ given the value of θ. Specifically, based on the equality constraint in Equation (14),
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the modified minimum score vector µ is computed by the following series of iterations:

µk+1
j = µk

j −

[
log

(
M

A

)
− log

(
Q
(
µk, δ∗(µk;θ);θ

)
P (µk, δ∗(µk;θ);θ)

)]
, (23)

where k denotes the number of iterations. M/A denotes the vector of admission rates

observed in the market-level data, where the j-th element represents Mj/Aj, the admission

rate for university j. Q(·)/P(·) denotes the vector of admission rates predicted from the

model, where the j-th element represents Qj(·)/Pj(·). Qj(·) is the admission share function

in Equation (9). The iteration converges at k = k∗ where ||µk∗+1 − µk∗|| becomes smaller

than some tolerance level.

This iteration indicates that the minimum score for school j is adjusted downward (up-

ward) if its actual admission rate is higher (lower) than the predicted ones. While it is known

that the iteration for δj in Equation (22) is a contraction mapping, it is not clear whether

this iteration also possesses the contraction mapping property. However, we verify that this

iteration consistently converges for any values of θ used in our estimation process.

Given the validity of the contraction mapping procedures above, we can express δ and µ

as a function of θ, denoted as δ(θ) and µ(θ). Consequently, the individual likelihood function

in Equation (11) can be denoted as a function of θ alone, denoted as Ln(θ), allowing for the

maximum likelihood estimation over the space of θ.

To conduct the estimation including the contraction mapping procedure, we need to

approximate the integrals found in the individual choice probability in Equation (12) and

the market-level application and admission share functions in Equations (8) and (9). The

procedure for this approximation is outlined below.

Approximation of the model: First, to approximate the individual choice probability

in Equation (12), we simulate Ñ1 = 100 draws of νn, denoted as ν̃1
n = {ν̃1ni}

Ñ1

i=1, from the

standard normal distribution for Nm students in the individual data. Then, the individual
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choice probability function is rewritten as:

p̄j (µ, δ,x
o
n;θ) ≈

1

Ñ1

Ñ1∑
i=1

pj
(
µ, δ,xo

n, ν̃
1
ni;θ

)
,∀j. (24)

We replace the individual choice probability in the likelihood function for student n of

Equation (11) with this approximation and denote this likelihood as L̃n(µ, δ;θ).

Next, we discuss the approximation of the market-level applications and admission share

functions in Equations (8) and (9). These approximations are based on simulation draws from

the empirical distribution of the observed student characteristics, xo
n = (ln, Sn, Femalen, zn),

and the standard normal distribution of the unobserved heterogeneity, νn. We set the number

of simulation draws as Ñ2 = 5000 and denote the sets of draws for the observed characteristics

and the unobserved heterogeneity as x̃o
n = {x̃o

ni}
Ñ2
i=1 and ν̃2

n = {ν̃2ni}
Ñ2
i=1, respectively.

17

Given the sets of draws, we can approximate application and admission share functions

in Equations (8) and (9) as follows:

P̃j (µ, δ;θ) =
1

Ñ2

Ñ2∑
i=1

pj
(
µ, δ, x̃o

ni, ν̃
2
ni;θ

)
,∀j, (25)

and

Q̃j (µ, δ;θ) =
1

Ñ2

Ñ2∑
i=1

qj (µj, x̃
o
ni;αj) pj

(
µ, δ, x̃o

ni, ν̃
2
ni;θ

)
,∀j. (26)

Summary of the estimation procedure: Given the formulation described above, we sum-

marize the estimation procedure in Figure 10. The estimation begins by setting (θ0, δ0,µ0).

The j-th elements of P̃(·) and Q̃(·)/P̃(·) represent P̃j(·), the approximated application share

for university j, and Q̃j(·)/P̃j(·),the approximated admission rate for university j, respec-

tively.

The upper part of this figure shows the contraction mapping procedure based on the

17The simulation draws for the unobserved heterogeneity νn differ between the approximation of
individual-level data (i.e., ν̃1n) and that of market-level data (i.e.ν̃2n).
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Figure 10: Estimation algorithm

market-level (macro) data, whereas the lower part indicates the maximum likelihood estima-

tion based on the individual-level (micro) data of medical school choice. Given the starting

value θ0, the values of µ and δ under the value of θ0 are derived from the contraction map-

ping from the initial their values, namely (µ0, δ0). If the log-likelihood is not maximized,

θ0 is updated to θ1. θl indicates the values of θ after l steps from the starting value. Con-

sequently, the parameter estimate θ̂ is chosen at the value that maximizes the likelihood

function.

C Counterfactual simulation

This appendix provides details on the counterfactual simulations discussed in Section 5.

Throughout our counterfactual exercises, the common part of utility (δ) and admission

50



capacity (M) remain unchanged from the original ones across alternative scenarios. The

common part of utility used in the counterfactual simulations is evaluated at θ̂, which we

denote as δ̂ = δ(θ̂). A key parameter varying across counterfactual environments is the

modified minimum score µ, which is obtained by using the contraction mapping procedure

explained below.

To describe the counterfactual environments, a set of notations is introduced. First, we

denote student n’s specific preference for school j as bnj ≡ bj(x
o
n, νn;β) and represent its

J-dimensional vector as bn. In our counterfactual simulation, we derive the equilibrium

where bn is replaced by a counterfactual vector bc
n (e.g., the student n’s specific preference

in the presence of the financial aid to offset the negative utility associated with the distance).

Next, given δ̂ and θ̂, we denote the admission share function evaluated at bc
n as Qc

j(µ; δ̂, θ̂).

Qc
j is approximated as in Equation (26); specifically, given the parameter estimate θ̂, the

approximated admission probability at bc
n, Q̃

c
j, is denoted as follows.

Q̃c
j

(
µ, δ; θ̂

)
=

1

Ñ2

Ñ2∑
i=1

qj (µj, x̃
o
ni; α̂j) p

c
j

(
µ, δ, x̃o

ni, ν̃
2
ni; θ̂

)
,∀j, (27)

where pcj(·) is the application probability in Equation (7) evaluated at bcnj. Recall that

αj = 1
(1−ωj)σj

, where ωj is the weight of first exam and σj is a parameter in the variance

of uj. As these two parameters are the primitive of the model, the estimate of αj (i.e., α̂j)

remains unchanged under the counterfactual environments.

Given J-dimensional vector of Q̃c
j, denoted as Q̃c, the counterfactual modified minimum

score, µc, can be obtained using the following contraction mapping procedure.

µh+1
j = µh

j −
[
ln

(
M

N

)
− ln

(
Q̃c
(
µh; δ̂, θ̂

))]
, (28)

where h denotes the number of iterations. The iteration converges at h = h∗, when ||µh∗+1−

µh∗|| becomes smaller than a specified tolerance level, thereby yielding µc = µh∗
.

Notably, the contraction mapping procedure has only one-stage, contrary to the two-
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stage process in the estimation algorithm, because δ is fixed at δ̂. Additionally, we do not

use the admission rate (i.e., M/A) when updating the value of µ in the contraction mapping

procedure as in Equation (26). This is because the application numbers change under the

counterfactual scenario, while the admission capacities remain unchanged.

The counterfactual number of applications Ac
j, applications by gender, and admissions

by gender are derived under the counterfactual minimum score µc.
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