
 

Institute for Economic Studies, Keio University 
 

Keio-IES Discussion Paper Series 
 

 

 

 

Marshall meets Bartik: Revisiting the mysteries of the trade 

 

村田安寧、中嶋亮 
 

2025 年 4 月 14 日 

DP2025-005 
https://ies.keio.ac.jp/publications/25234/ 

 
 
 
 

 
 
 
 

Institute for Economic Studies, Keio University 
2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan 

ies-office@adst.keio.ac.jp 
14 April, 2025 

 

 



村田安寧、中嶋亮 

IES Keio DP2025-005 
2025 年 4 月 14 日 

JEL Classification: R12, O31, J61, C26 
キーワード: patent productivity, inventor migration, knowledge spillovers, knowledge 
sharing, Bartik instruments, mysteries of the trade, idea-generating process 

 
 

【要旨】 
We identify a causal effect of top inventor inflows on the patent productivity of local 
inventors by combining the idea-generating process described by Marshall (1890) with 
the Bartik (1991) instruments involving the state taxes and commuting zone 
characteristics of the United States. We find that local productivity gains go beyond 
organizational boundaries and co-inventor relationships, which implies the partially 
nonexcludable good nature of knowledge in a spatial economy and pertains to the 
mysteries of the trade in the air. Our counterfactual experiment suggests that the 
spatial distribution of inventive activity is substantially distorted by the presence of 
heterogeneity in state taxes. 
 

 

村田安寧 

日本大学経済学部 

東京都千代田区神田三崎町１−３−２ 

murata.yasusada@nihon-u.ac.jp 
 

中嶋亮 

慶應義塾大学経済学部 

東京都港区三田２−１５−４５ 

nakajima@econ.keio.ac.jp 
 



Marshall meets Bartik:

Revisiting the mysteries of the trade∗

Yasusada Murata† Ryo Nakajima‡

April 14, 2025

Abstract

We identify a causal effect of top inventor inflows on the patent productivity of local

inventors by combining the idea-generating process described by Marshall (1890) with

the Bartik (1991) instruments involving the state taxes and commuting zone characteris-

tics of the United States. We find that local productivity gains go beyond organizational

boundaries and co-inventor relationships, which implies the partially nonexcludable good

nature of knowledge in a spatial economy and pertains to the mysteries of the trade in

the air. Our counterfactual experiment suggests that the spatial distribution of inventive

activity is substantially distorted by the presence of heterogeneity in state taxes.
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1 Introduction

Knowledge creation has been central to various fields of economics such as trade, growth, and

geography. However, little is known about the idea-generating process between individuals,

despite Marshall’s (1890) simple explanation as follows:

if one man starts a new idea, it is taken up by others and combined with suggestions

of their own; and thus it becomes the source of further new ideas.

While intuitive, verifying this statement has been challenging. The main difficulty lies in the

possible endogeneity—those who generate new ideas tend to cluster together.

We address this problem by identifying a causal effect of a top inventor inflow on the

patent productivity of local inventors at the commuting-zone level in the United States. In

doing so, we use inventor-level data from the PatentsView database, which is an open data

platform supported by the United States Patent and Trademark Office (USPTO). Since top

inventor inflows are likely endogenous, we predict those flows by constructing Bartik (1991)

instruments: the predicted probability that a top inventor migrates from origin to destination

constitutes a share, and the number of top inventors in the origin corresponds to a shift.

To understand the driving forces behind knowledge creation among individuals, we first

classify local inventors into internal and external inventors. Local inventors are considered

internal if they share the same organization as the migrating top inventors and/or if they are

co-inventors of the migrating top inventors. All other local inventors are external because

they are not directly linked to the migrating top inventors.

We then examine two types of effects—the productivity gains of all local inventors and

those of external inventors. Our baseline results suggest that the former and latter gains from

an additional top inventor inflow are 6% and 4%, respectively. The former are interpreted as

local aggregate gains from both knowledge sharing among internal inventors and knowledge

spillovers to external inventors. The latter focus on the gains that go beyond organizational

boundaries and co-inventor relationships and pertain to the most frequently quoted passage

from Marshall (1890): “The mysteries of the trade become no mysteries; but are as it were in

the air.” We thus disentangle productivity gains due to external knowledge spillovers (“knowl-

edge in the air”) from those due to internal knowledge sharing (“knowledge in the lab”).
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Our identification strategy consists of main three steps. We first estimate the impact of

spatial and temporal variation in top earners’ income tax rates on the migration probability

of top inventors for any pair of origin and destination commuting zones while controlling

for origin-destination characteristics. We then aggregate, for each destination commuting

zone, the predicted bilateral probabilities across origin commuting zones to construct a Bartik

instrument for top inventor inflows. We finally employ an instrumental variable (IV) approach,

where we use the Bartik instrument in the first-stage regression and estimate a structural

equation, with the outcome being local patent productivity. The identifying assumption is

that local patent productivity in a destination commuting zone does not directly depend on

top earners’ income tax rates in other commuting zones located in different states.1

Our novelty lies in the construction of the Bartik instrument: The predicted migration

probability is derived from a location choice model of top inventors who face spatial and tem-

poral differences in individual income tax rates. Thus, our framework can be used to examine

to what extent those tax differences distort the spatial distribution of inventive activity. To

illustrate this, we run a counterfactual experiment by setting individual income taxes to their

average and find that the existence of tax differences affects local patent productivity up to

−64.8% to 72.3%, with considerable spatial heterogeneity. We further decompose those gains

and losses into two types—direct gains from tax changes and indirect gains via top inventor

migration induced by tax changes. We find that the former share is 0.275, while the latter

share is 0.725.

The contribution of our paper is threefold. First, we shed new light on the idea-generating

process described in Marshall (1890) using Bartik (1991) instruments. Our framework thus

differs from natural experimental approaches to knowledge production in historical contexts

(e.g., Borjas and Doran, 2012; Moser et al., 2014) or exploitation of the sudden death of inven-

tors (e.g., Azoulay et al., 2010; Azoulay et al., 2019). We leverage the variation in tax rates

across space and time to demonstrate that the tax-induced migration of top inventors leads to

1For example, this assumption implies that local patent productivity in destination commuting zone 37500
(Santa Clara–Monterey–Santa Cruz, CA) does not directly depend on top 5% or 1% earners’ income tax rates
in origin commuting zones 19600 (Bergen–Essex–Middlesex, NJ), 24300 (Cook–DuPage–Lake, IL), and so
forth. In line with this assumption, we show in Section 4.5 that the main source of identifying variation comes
from interstate top inventor migrations. We elaborate on this assumption in Section 4.3 and Appendix E.1.
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local productivity gains in their destination, thereby contributing to the agglomeration and

innovation literature (e.g., Carlino and Kerr, 2015; Kerr and Robert-Nicould, 2020).

Second, we disentangle the productivity gains due to external knowledge spillovers from

those due to internal knowledge sharing through organizations or co-inventor relationships,

which allows us to revisit the mysteries of the trade in the air. The theoretical foundation for

separating the nonexcludable part from the excludable part of the gains dates back at least

to Griliches (1979) and Romer (1990), whereas the empirical literature typically estimates

the productivity gains of migrants themselves or those from internal knowledge sharing (e.g.,

Moretti, 2021; Prato, 2025). Thus, the productivity gains attributed to external knowledge

spillovers among individuals have remained unexplored in a spatial framework using modern

causal inference methods. Since this partially nonexcludable good nature of knowledge leads

to market failures and constitutes a rationale for spatial agglomeration of inventive activity,

our analysis contributes to the innovation policy literature (e.g., Chatterji et al. 2014; Aghion

and Jaravel, 2015).

Finally, we derive the Bartik instruments from a location choice model involving policy

variables à la Moretti and Wilson (2017). By construction, our model-based Bartik instru-

ments can be used in any setting where origin-destination flows are affected by changes in

location-specific policies. This paper applies these instruments to tax-induced domestic mi-

gration and conducts a counterfactual experiment to illustrate a way of bridging the gap

between the tax and innovation literature (e.g., Stantcheva, 2021; Akcigit et al., 2022; Ak-

cigit and Stantcheva, 2022) and the tax and migration literature (e.g., Kleven et al., 2020).

This application provides new insights into these two strands of literature since it allows us

to assess the relative importance of direct productivity gains from tax changes and indirect

productivity gains through the tax-induced migration of top inventors.

The remainder of the paper is organized as follows. In Section 2, we explain the data and

show descriptive statistics. In Section 3, we analyze how tax differences affect the migration

of top inventors. Section 4 constructs the Bartik instruments and presents our main results on

local patent productivity gains by employing the instrumental variable approach. In Section 5,

we check the robustness of the main results. Section 6 discusses the underlying mechanisms
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through which local productivity gains materialize. We conduct the counterfactual experiment

in Section 7 and conclude the paper in Section 8.

2 Data and descriptive statistics

Our main dataset is the PatentsView database, which is an open data platform supported by

the USPTO and provides various administrative data on issued patents and patent applica-

tions. The data are based on the disambiguation process and contain, for each issued patent,

patent inventors, assignees, residential addresses of patent inventors, and patent citations.

Our sample period is from 1977 to 2009, during which there were 3, 015, 305 patent applica-

tions by 1,282,708 unique inventors (see Appendix A for a more detailed description of the

data sources and construction, as well as the disambiguation of inventors and assignees).2

Since our objective is to estimate the impact of top inventor migration on the productivity

of local inventors in the destination, we need to define the productivity of an inventor and

determine (i) who qualifies as a top inventor, (ii) under what condition we detect the migration

of a top inventor, and (iii) who in the destination potentially gains from top inventor inflows.

To this end, we first define the productivity of an inventor as the number of patents

applied for by that inventor.3 We then identify, for each year, the top 5% of inventors based

on productivity over the last ten years and refer to them as top inventors for short. It follows

that the status of a top inventor varies from year to year. During our sample period, there are

263, 259 top inventor × year observations, and the number of unique top inventors is 60, 294.

Thus, on average, the total duration of being a top inventor is 4.366 years.

We detect the migration of a top inventor if the commuting zone of residence of that top

inventor in the patent application data differs between two consecutive years.4 Since the status

2The sample period and data construction are dictated by data availability and consistent with those in
Moretti and Wilson (2017).

3If there are multiple inventors for a patent, we allocate an equal fraction of that patent to each of its
inventors; i.e., if there are three inventors for a patent, one-third of that patent is allocated to each inventor.

4We assume that the migration occurs at the end of the first year and use the definition of commuting
zones as of 1990. When an inventor applied for more than one patent in a year, the most frequently observed
commuting zone is regarded as that inventor’s place of residence in that year. In case of a tie, we use the
commuting zone observed for the first time in that year. We exclude commuting zones in Alaska and Hawaii.
This detection requires the observations of the same inventor for two consecutive years, which may lead to
the underestimation of top inventor migrations and measurement error. Thus, the same caveats as those in
Moretti and Wilson (2017, pp.1864–1865) apply to our data construction.
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of a top inventor varies from year to year, we consider the migration of inventors who qualify

as top inventors in the first year.5 In our sample, the total number of top inventor migrations

is 9, 178, and the number of unique top inventors who migrated at least once is 5, 725. Thus,

on average, each top inventor moved 1.603 times, conditional on moving at least once.

Since we analyze the impact of top inventor migration on the productivity of local inventors

in the destination, we aggregate migration flows at the destination level. Figure 1 depicts

the geographic distribution of all 9, 178 top inventor inflows by commuting zone, and Table 1

summarizes top 10 commuting zones by top inventor inflows.6

Figure 1: Geographic distribution of top inventor inflows.
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Notes: Inflows are defined as the number of top inventors who migrated into each commuting zone from 1977
to 2009.

Table 1: Top 10 commuting zones by top inventor inflows.

rank cz number counties state inflows
1 37500 Santa Clara–Monterey–Santa Cruz CA 724
2 37800 Alameda–Contra Costa–San Francisco CA 557
3 38300 Los Angeles–Orange–San Bernardino CA 408
4 19600 Bergen–Essex–Middlesex NJ 372
5 20500 Middlesex–Worcester–Essex MA 335
6 38000 San Diego CA 266
7 19400 Kings–Queens–New York NY 240
8 19700 Philadelphia–Montgomery–Delaware PA 220
9 24300 Cook-DuPage–Lake IL 219
10 20901 Hartford–Fairfield–New Haven CT 195

Notes: Inflows are defined as the number of top inventors who migrated into each commuting zone from 1977
to 2009.

5As a robustness check, we consider the migration of inventors who qualify as top inventors in both years
in Appendix C.1.

6We aggregate migration flows at the commuting zone level because it captures stronger commuting ties
and thus more inventor interactions within labor market areas and because knowledge spillovers tend to be
localized at short distances (see, e.g., Murata et al. 2014). We check the robustness of the result regarding
geographic space in Section 5.2.
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When assessing the impact of top inventor migration into a commuting zone, we focus

on the local inventors who lived in that commuting zone at that time while excluding the

top inventors who had already moved in that commuting zone. In our sample, the number

of those local inventors is 1, 274, 192, and they applied for 2, 027, 777 patents from 1977 to

2009. Figure 2 illustrates the geographic distribution of local patent productivity (in logs),

and Table 2 summarizes the top 10 commuting zones by local patent productivity.

Figure 2: Geographic distribution of local patent productivity (in logs).
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Notes: The productivity in each commuting zone is defined as the total number of patents applied for by
local inventors between 1977 and 2009. If there are multiple inventors for a patent, then we allocate an equal
fraction of that patent to each of its inventors.

Table 2: Top 10 commuting zones by local patent productivity.

rank cz number counties state productivity
1 37500 Santa Clara-Monterey-Santa Cruz CA 143,069.321
2 38300 Los Angeles-Orange-San Bernardino CA 116,303.629
3 37800 Alameda-Contra Costa-San Francisco CA 81,828.603
4 20500 Middlesex-Worcester-Essex MA 80,486.767
5 19600 Bergen-Essex-Middlesex NJ 77,093.518
6 24300 Cook-DuPage-Lake IL 75,095.386
7 11600 Wayne-Oakland-Macomb MI 63,437.324
8 19400 Kings-Queens-New York NY 54,570.527
9 21501 Hennepin-Ramsey-Dakota MN 50,587.528
10 39400 King-Pierce-Snohomish WA 49,760.915

Notes: The productivity in each commuting zone is defined as the total number of patents applied for by
local inventors between 1977 and 2009. If there are multiple inventors for a patent, then we allocate an equal
fraction of that patent to each of its inventors.

As seen from Figures 1 and 2, their spatial patterns are quite similar. The correlation

between the top inventor inflows and local patent productivity (the log of local patent pro-

ductivity) is 0.97 (0.52) and their rank correlation is 0.85. However, since correlation does

not necessarily imply causation, we take an instrumental variable approach to examine the
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causal effect of the top inventor inflows on the productivity of local inventors. To this end,

we use the variation in the individual income average tax rates for top earners (ATRs) by

state and year to construct predicted flows of top inventors by commuting zone and year.7

We also consider corporate income tax rates (CITRs), investment tax credits (ITCs), and

R&D tax credits (RTCs) that can affect top inventor migration.8 Table 3 presents summary

statistics for the top inventor inflows and the local patent productivity at the commuting zone

× year level. We show in Appendix A the summary statistics for other commuting zone-level

variables, as well as state taxes and tax credits, that we use in the subsequent analysis.

Table 3: Summary statistics (main variables).

total mean sd min max
Local patent productivity (overall) 2,027,776.570 85.821 386.089 0.000 10,205.625
Local patent productivity (internal) 1,061,199.866 44.913 252.589 0.000 8,232.745
Local patent productivity (external) 966,576.704 40.908 152.466 0.000 3,108.842
Top inventor inflows (overall) 9,178.000 0.388 2.139 0.000 81.000
Top inventor inflows (intrastate) 2,271.000 0.096 0.929 0.000 37.000
Top inventor inflows (interstate) 6,907.000 0.292 1.453 0.000 48.000
Number of observations 23,628
Number of commuting zones 716
Number of years 33

Notes: Summary statistics are based on the data described in Section 2 for the years 1977 to 2009. The local
patent productivity can be decomposed into two: One is by the internal inventors who share the same assignee
as the migrating top inventors and/or who are co-inventors of the migrating top inventors; and the other is by
the external inventors. The top inventor inflows can be decomposed into intrastate and interstate migration.
Of the 722 commuting zones, four have no patents and two have only one patent during the sample period.
We thus use 716 commuting zones in our regression analysis with fixed effects.

We further classify local inventors into internal and external inventors. Local inventors

are internal if they share the same assignee as the migrating top inventors and/or if they are

co-inventors of the migrating top inventors. All the other local inventors are external because

they are not directly linked to the migrating top inventors. In our sample, 42.20% of local

inventors are internal, whereas the remaining 57.80% are external.9

7We assume that top inventors are taxpayers at the ninety-fifth (ninety-ninth) percentile of the U.S. income
distribution as a baseline (as a robustness check). In Appendix C.1, we further check the robustness of our
results using statutory marginal tax rates (MTRs). As discussed in Moretti and Wilson (2017), ATRs and
MTRs are highly correlated, and indeed, we obtain similar results regardless of the choice of tax rates.

8Data on state taxes and tax credits for the years 1977 to 2009 are provided by Moretti and Wilson (2017).
9The number of internal inventors is 537, 717, and that of external inventors is 736, 475. Internal inventors

are classified into three groups: 89, 637 inventors share the same assignee as the migrating top inventors and
are co-inventors of the migrating top inventors, 419, 378 inventors share the same assignee as the migrating
top inventors but are not co-inventors of the migrating top inventors, and 28, 702 inventors do not share the
same assignee as the migrating top inventors but are co-inventors of the migrating top inventors.
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The knowledge of the migrating top inventors can be shared with internal inventors within

the same organization and/or through co-inventors relationships (“knowledge in the lab”) or

can spill over to external inventors within the same commuting zone (“knowledge in the air”).

We call the former internal knowledge sharing and the latter external knowledge spillovers.

3 Tax differences and the migration of top inventors

In this section, we estimate the impact of tax differences across states on the migration of top

inventors from origin commuting zone o to destination commuting zone d, which reproduces

the results in Moretti and Wilson (2017). In the next section, we use the predicted migration

of top inventors to develop a new method of constructing a Bartik instrument.

Let σ(o) and σ(d) denote the states to which origin and destination commuting zones

belong, respectively. In the beginning of period t, top inventors in o, whose number is denoted

by Iot, observe individual income tax rates in origin and all possible destination commuting

zones, τσ(o)t and {τσ(d)t}d̸=o. By the end of period t, they decide whether to migrate to d or

to stay in o. The number and share of top inventors who migrate from o to d in period t

is defined as Modt and Podt = Modt/Iot, respectively. Similarly, the number and share of top

inventors who stay in o in period t is defined as Moot and Poot =Moot/Iot.

3.1 Inventors

In each period, top inventors choose the location that gives them the highest utility. The

utility of top inventor i, who lived in commuting zone o in the previous period and moves to

commuting zone d in the current period t, is given by Uiodt = α ln(1− τσ(d)t)+α lnwdt+Zd−

Cod+εiodt, where τσ(d)t and wdt are the individual income tax rate and wage in d, respectively;

α is the coefficient on the log of after-tax income; Zd captures consumption amenities and

the cost of living in d; Cod is the cost of migration measured in utility; and εiodt represents

time-varying idiosyncratic preferences for locations. The utility of top inventor i who stays in

o is given by Uioot = α ln(1−τσ(o)t)+α lnwot+Zo−Coo+εioot, where we assume that Coo = 0.

Taking the difference between Uiodt and Uioot yields the utility change for top inventor i,

conditional on moving from o to d. Assume that εiodt is independent and identically Gumbel

distributed. Let Podt/Poot denote the share of top inventors who move from o to d relative to
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the share of top inventors who stay in o. The log odds ratio for top inventors is then given by

ln(Podt/Poot) = α[ln(1− τσ(d)t)− ln(1− τσ(o)t)] + α[lnwdt − lnwot] + [Zd − Zo]− Cod. (1)

3.2 Firms

In each period, firms choose a location and hire a top inventor to maximize profit. The profit of

firm j, which was located in commuting zone o in the previous period and moves to commuting

zone d in the current period t, is given by ln πjodt = β ln(1− τ ′σ(d)t)− lnwdt +Z ′
d −C ′

od + ε′jodt,

where τ ′σ(d)t stands for state policies such as the CITR, ITC, and RTC in σ(d); Z ′
d captures

production amenities in d; C ′
od is the cost of migration for a firm; and ε′jodt represents time-

varying idiosyncratic firm productivity shocks. As in the case with inventors, assume that

C ′
oo = 0, and that ε′jodt is independent and identically Gumbel distributed. Let P ′

odt/P
′
oot

denote the share of firms that move from o to d relative to the share of firms that stay in o.

The log odds ratio for firms is then given by

ln(P ′
odt/P

′
oot) = β[ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)]− [lnwdt − lnwot] + [Z ′

d − Z ′
o]− C ′

od. (2)

3.3 Equilibrium

In equilibrium, the demand for top inventors must equal the supply of top inventors in each

commuting zone in each year. To derive an equilibrium relationship between tax differences

and the migration of top inventors, we first solve (2) for lnwdt − lnwot. We then plug the

resulting expression into (1) and set ln(P ′
odt/P

′
oot) = ln(Podt/Poot) as in Moretti and Wilson

(2017), which yields the equation we estimate as follows (see Appendix B.1 for the derivation):

ln(Podt/Poot) = η[ln(1− τσ(d)t)− ln(1− τσ(o)t)] + η′[ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)]

+γd + γo + γod + uodt, (3)

where η = α
1+α

and η′ = αβ
1+α

are parameters governing inventor and firm mobility, respectively;

γd = 1
1+α

[Zd + αZ ′
d] and γo = − 1

1+α
[Zo + αZ ′

o] are destination and origin fixed effects that

account for consumption and production amenities; γod = − 1
1+α

[Cod + αC ′
od] denotes fixed

effects that are specific to each pair of commuting zones to capture the cost of migration for

inventors and firms; and uodt is an error term. We consider different combinations of fixed

effects in the next subsection.
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3.4 Estimation

When estimating (3), we proxy τσ(d)t by the ATR for a hypothetical taxpayer at the ninety-fifth

or ninety-ninth percentile of the U.S. income distribution because, as in Moretti and Wilson

(2017), we do not observe top inventors’ income.10 We regard τ ′σ(d)t as consisting of the CITR,

ITC, and RTC. We use different combinations of fixed effects in (3), as well as year fixed effects

or region pair × year fixed effects and report robust standard errors that allow for three-way

clustering by commuting zone pair, origin-state × year, and destination-state × year.

Table 4: The impact of tax differences on the migration of top inventors.

(1) (2) (3) (4)
∆ ln(1−ATR) 7.357 6.902 6.406 6.586

(1.611) (1.420) (1.292) (1.124)
∆ ln(1− CITR) -0.435 -0.195 -0.300 -0.140

(1.058) (0.999) (0.812) (0.717)
∆ ln(1 + ITC) 0.172 -0.083 0.118 -0.034

(0.737) (0.688) (0.993) (0.689)
∆ ln(1 + RTC) 0.323 0.311 0.377 0.178

(0.443) (0.395) (0.321) (0.281)

CZ pair FE Yes Yes No No
Origin CZ FE and No No Yes Yes

destination CZ FE
Year FE Yes No Yes No
Region pair × year FE No Yes No Yes

Observations 4,866 4,866 7,226 7,225

R
2
(total) 0.893 0.904 0.907 0.917

R
2
(within) 0.400 0.458 0.411 0.013

Notes: The dependent variable in each column is the log odds ratio in equation (3). ATR, CITR, ITC, and
RTC stand for the individual income average tax rate at the ninety-fifth percentile, corporate income tax
rate, investment tax credit, and R&D tax credit, respectively. ∆ ln(1−ATR) is defined as ln(1−ATRσ(d)t)−
ln(1−ATRσ(o)t). ∆ ln(1−CITR), ∆ ln(1+ ITC), and ∆ ln(1+RTC) are defined analogously. Cluster-robust
standard errors are in parentheses.

Table 4 shows that the interstate migration results in Moretti and Wilson (2017) can be

replicated fairly well at the commuting zone level: The elasticity of the migration of top

inventors with respect to the difference in ATRs between origin and destination is positive

and significant in all cases. In what follows, we use the result in Column 2 of Table 4 since

the specification is most closely related to their baseline case.

10We report the results at the ninety-fifth percentile in the main body and the results at the ninety-ninth
percentile in Appendix C.1 as robustness checks. In Appendix C.1, we further check the robustness of our
results using statutory marginal tax rates (MTRs) and average property tax rates (APTRs).
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Figure 3 illustrates a binned scatter plot, where the vertical axis is the log odds ratio of top

inventor migrations, ln(Podt/Poot), and the horizontal axis is the difference in ATRs between

destination and origin commuting zones, ∆ ln(1−ATR) = ln(1−ATRσ(d)t)−ln(1−ATRσ(o)t).
11

The figure reveals a pronounced tendency for top inventors to migrate from commuting zones

with higher individual income tax rates to those with lower rates.

Figure 3: Binned scatter plot of the relationship between top inventor migrations and ATRs.
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Notes: This figure illustrates a binned scatter plot, where the vertical axis is the log odds ratio of top inventor
migrations, ln(Podt/Poot), and the horizontal axis is the difference in ATRs between destination and origin
commuting zones, ∆ ln(1−ATR) = ln(1−ATRσ(d)t)− ln(1−ATRσ(o)t). It is depicted using the Stata package
binsreg (see Cattaneo et al., 2024), where we incorporate commuting zone pair fixed effects and region pair
× year fixed effects, as well as CITRs, ITCs, and RTCs, as covariate adjustments.

4 The migration of top inventors and local patent productivity

To analyze the impact of top inventor inflows on local patent productivity, we first present a

new method to construct a Bartik instrument based on the estimated flows of top inventors

obtained in Section 3. We then show the main results using a static framework. To check the

robustness of our main results, we further consider a dynamic setting in the next section. In

both cases, we estimate two types of effects: (a) the productivity gains of all local inventors

and (b) those of external inventors. The former effect can be interpreted as local aggregate

productivity gains from both internal knowledge sharing and external knowledge spillovers.

The latter effect can be viewed as the gains from external knowledge spillovers that go beyond

organizational boundaries and co-inventor relationships. Our main focus is on the latter gains

since they pertain to what Marshall (1890) referred to as the mysteries of trade in the air.

11ATRσ(d)t denotes the ATR in state σ(d) in year t. We use similar notation for other state policy variables.
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4.1 Bartik instrument

To construct a Bartik instrument, we start with the identity regarding top inventor inflows,

Mdt =
∑

o̸=dModt; i.e., the total number of top inventors migrating to destination commuting

zone d in period t equals the sum of the number of top inventors migrating from origin

commuting zone o to destination commuting zone d across all o ̸= d in period t. Recalling

that Podt =Modt/Iot, we have

Mdt =
∑

o̸=d PodtIot, (4)

where the right-hand side consists of the share Podt of top inventors migrating from o to d in

period t and the shift Iot, i.e., the number of top inventors in o at the beginning of period t.

As shown by Goldsmith-Pinkham et al. (2020) and Borusyak et al. (2022), there are two

approaches to ensuring the exogeneity of a Bartik instrument. The former consider share

exogeneity, whereas the latter employ shift exogeneity. We rely on the former in this section

and check the robustness of the results using the latter in Section 5.5.

Our novelty lies in combining the share exogeneity approach in Goldsmith-Pinkham et

al. (2020) with the estimates obtained from the location choice model à la Moretti and Wilson

(2017). Let {η̂, η̂′, γ̂d, γ̂o, γ̂od} denote the estimates from (3). Using these estimates, we first

compute the predicted probability that a top inventor, who lived in o at the beginning of

period t, moves to d by the end of period t as follows (see Appendix B.2 for the derivation):

P̂odt =
exp{η̂ ln(1− τσ(d)t) + η̂′ ln(1− τ ′σ(d)t) + γ̂d + γ̂od}∑
c∈C exp{η̂ ln(1− τσ(c)t) + η̂′ ln(1− τ ′σ(c)t) + γ̂c + γ̂oc}

, (5)

where C is the set of all commuting zones including origin commuting zone o and destination

commuting zone d.12 We then construct a Bartik instrument by replacing the share Podt in

(4) with the predicted share P̂odt in (5) as follows:

Bdt =
∑

o̸=d P̂odtIot. (6)

We use the Bartik instrument (6) in the first-stage regression in Section 4.2 and discuss the

share exogeneity in Section 4.3 and the relevance and validity of the instrument in Section 4.5.

12When estimating (3), we do not simultaneously use the set of fixed effects {γ̂d, γ̂o, γ̂od}. Recall that in
Table 4, we consider γ̂od in Columns 1-2 and adopt {γ̂d, γ̂o} in Columns 3-4. In what follows, we thus modify
the way we incorporate fixed effects into (5) according to empirical specifications.
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4.2 Empirical specifications

We start with the fixed effect (FE) model:

lnYdt = ϕMdt + ξXdt + εdt, (7)

where Ydt is the patent productivity of local inventors in commuting zone d in period t (defined

as the number of patents by all local inventors or by external inventors), Mdt =
∑

o̸=dModt

is the number of top inventors who migrate to destination commuting zone d in period t,

ϕ stands for the impact of a top inventor inflow on local patent productivity, and εdt is an

i.i.d. shock. In the main analysis, Xdt includes commuting zone fixed effects, δd, year fixed

effects, δt, and the ATR at the ninety-fifth percentile of the U.S. income distribution, τσ(d)t.
13

As robustness checks, we incorporate time-varying factors in commuting zone d, as well as

other taxes and tax credits in state σ(d), into Xdt.
14 When estimating (7), we cluster standard

errors at the commuting zone level.15

However, the top inventor inflows Mdt may be endogenous due to reverse causality or the

existence of omitted variables that have direct impacts on both top inventor inflows and local

patent productivity. Reverse causality arises when greater local patent productivity attracts

top inventors, whereas omitted variables exist when there are unobserved consumption and

production amenities that have been studied since Roback (1982).

To address these endogeneity issues, we consider an instrumental variable (IV) regression,

which consists of the structural equation

lnYdt = ϕsMdt + ξsXdt + εsdt, (8)

and the first-stage regression

Mdt = ψfBdt + ξfXdt + εfdt, (9)

13As robustness checks, we consider the ATR at the ninety-ninth percentile, MTR, APTR, and an alternative
way of detecting top inventor migrations in Appendix C.1.

14Specifically, we consider manufacturing employment in commuting zone d and the CITR, ITC, RTC, and
ATR at the fiftieth percentile in state σ(d) in Appendix C.2. We also incorporate other employment variables
at the commuting zone level such as “finance and insurance,” “professional, scientific, and technical services,”
and “management of companies and enterprises” into Xdt in the specification curve analysis in Figure 4.

15When estimating (7), we replace lnYdt with ln(1+ Ydt) in the main analysis to accommodate commuting
zone × year observations with no patents. As a robustness check, we drop such observations and estimate (7)
while retaining lnYdt. As shown in Appendix C.3, the results are quite similar to those in the main analysis.
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where Bdt is the Bartik instrument given by (6). When estimating (8), we cluster standard

errors at the commuting zone level.16 We further consider two variants of the Bartik in-

strument to assess the sensitivity of our results. One is the prediction of between-state top

inventor flows, Bσ
dt =

∑
o/∈σ(d) P̂odtIot, to highlight state tax differences. The other is the pre-

dicted top inventor flows into commuting zone ν(d), which is the nearest neighborhood of d,

Bν
dt =

∑
o̸=d,ν(d) P̂oν(d)tIot, to take a spatial lag of Bdt.

4.3 Potential threats to identification

Recall that the Bartik instrument Bdt consists of the shares P̂odt and the shifts Iot.
17 It is based

on the migration identity and predicts the top inventor flows to destination d by the sum of

the products of these two elements. In the main analysis, we follow the shares perspective;

i.e., it is the shares P̂odt that provide the exogenous variation satisfying E(εsdtP̂odt|Xdt) = 0,

and the shifts Iot do not affect the identification of ϕs provided that the shares are exogenous

(Goldsmith-Pinkham et al., 2020; Borusyak et al., 2025).

We show in Appendix E.1 that the share exogeneity, E(εsdtP̂odt|Xdt) = 0, holds under the

following two assumptions: (i) εsdt is mean zero conditional onXdt, i.e., E(ε
s
dt|Xdt) = 0, and (ii)

εsdt and other state taxes {τσ(c)t}c/∈σ(d) are independent conditional on Xdt, i.e., ε
s
dt ⊥ τσ(c)t|Xdt

for c /∈ σ(d) and c, d ∈ C, where we let Xdt = {τσ(d)t, δd, δt} in the main analysis.18

One may worry that the first assumption, E(εsdt|Xdt) = 0, may not hold due to a possible

correlation between εsdt and τσ(d)t through unobserved state-specific time-varying factors. To

alleviate potential concerns that state taxes may respond to local economic conditions or be

correlated with local economic policies affecting innovation, we follow Akcigit et al. (2022)

and employ alternative specifications with state × year fixed effects δσ(d)t. Specifically, we

replace Xdt = {τσ(d)t, δd, δt} and εsdt in the structural equation (8) with X ′
dt = {δσ(d)t, δd, δt}

and ζsdt, respectively, so that δσ(d)t subsumes τσ(d)t. We can then recover the share exogeneity

E(ζsdtP̂odt|X ′
dt) = 0 by replacing the assumption E(εsdt|Xdt) = 0 with E(ζsdt|X ′

dt) = 0 (see

Section 4.4 and Appendix E.2).

16When estimating (8), we replace lnYdt with ln(1+ Ydt) in the main analysis to accommodate commuting
zone × year observations with no patents. As a robustness check, we drop such observations and estimate (8)
while retaining lnYdt. As shown in Appendix C.3, the results are quite similar to those in the main analysis.

17In what follows, we refer to the predicted shares P̂odt as the shares for simplicity when there is no confusion.
18A ⊥ B|C denotes the independence of A and B conditional on C.
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The second assumption is the exclusion restriction. The shares P̂odt in (5) depend not

only on the destination tax rate τσ(d)t but also on the distribution of tax rates in all states

{τσ(c)t}c∈C. Thus, in the destination specific IV regression model (8) and (9), the state taxes,

{τσ(c)t}c/∈σ(d), other than that in the destination, τσ(d)t, have an indirect effect on the local

patent productivity Ydt only via P̂odt in the Bartik instrument Bdt, given this assumption.

Thus, it works as an exclusion restriction for identifying the patent productivity effect ϕs.19,20

4.4 Main results

Table 5 presents the estimation results for the FE and IV regressions. Column 1 reports

the FE case. Columns 2-7 are the results for different IV regressions. Column 2 considers

the Bartik instrument Bdt =
∑

o̸=d P̂odtIot in (6). Column 3 adds to Column 2 its variant

Bσ
dt =

∑
o/∈σ(d) P̂odtIot, which captures top inventor flows only from other states. Column 4

further adds to Column 3 the other variant Bν
dt =

∑
o̸=d,ν(d) P̂oν(d)tIot. It involves top inventor

flows from origin commuting zones o ̸= d to commuting zone ν(d), which is the nearest

neighborhood of d. Columns 5-7 replace ln(1−ATR) in Columns 2-4 with state × year fixed

effects, δσ(d)t, to control for time-varying state-specific unobservables, which alleviates the

concern that there may be a correlation between εsdt and τσ(d)t. In both Panels (a) and (b),

we exclude the patents by top inventors who moved in from the dependent variable.

As seen from Table 5, the semi-elasticities of local patent productivity with respect to

top inventor inflows, as well as the elasticities of local patent productivity with respect to

1−ATR, are virtually identical for all IV regressions within each panel.21 Panel (a) in Table 5

shows that an inflow of a top inventor raises the patent productivity of all local inventors by

approximately 6%, which can be interpreted as local aggregate gains from both knowledge

sharing among internal inventors and knowledge spillovers to external inventors. Panel (b)

shows that a top inventor inflow raises local patent productivity by approximately 4% when

19To address the concern that other state taxes {τσ(c)t}c/∈σ(d) may influence the inflows of non-top inventors
in d, thereby enhancing Ydt, we estimate (8) and (9) by directly excluding such potential inflows in Section 5.3.

20To alleviate the concern that state tax competition may induce correlation between εsdt and {τσ(c)t}c/∈σ(d),
we examine the possibility of strategic interactions among state governments by estimating a reaction function,
where the income tax in one state responds to the income taxes in other states (see, e.g., Brueckner, 2003). In
line with the exclusion restriction, we do not find strong evidence for state tax competition (see Appendix D).

21The semi-elasticities of local patent productivity with respect to top inventor inflows are somewhat smaller
for the FE regression. One possible explanation for this is the presence of urban costs such as land rents and
commuting costs that are specific to commuting zones and can vary over time (see Duranton and Puga, 2020).
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Table 5: The impact of top inventor inflows on local patent productivity.

(1) (2) (3) (4) (5) (6) (7)
(a) All local inventors
Top inventor inflows 0.043 0.062 0.060 0.059 0.066 0.059 0.060

(0.006) (0.013) (0.012) (0.011) (0.014) (0.013) (0.012)
ln(1−ATR) 6.041 5.915 5.899 6.017

(1.038) (1.040) (1.038) (1.038)

Effective F statistic 37.755 33.377 33.040 51.824 35.130 34.997
τ = 5% 37.418 31.930 34.734 37.418 31.214 32.989
τ = 10% 23.109 19.892 21.389 23.109 19.473 20.364
τ = 20% 15.062 13.094 13.901 15.062 12.839 13.272
τ = 30% 12.039 10.531 11.093 12.039 10.336 10.610

(b) External inventors
Top inventor inflows 0.027 0.042 0.040 0.041 0.041 0.036 0.038

(0.004) (0.010) (0.009) (0.009) (0.011) (0.010) (0.010)
ln(1−ATR) 4.781 4.684 4.641 4.616

(0.848) (0.851) (0.848) (0.842)

Effective F statistic 37.755 33.377 33.040 51.824 35.130 34.997
τ = 5% 37.418 31.921 34.738 37.418 31.203 32.988
τ = 10% 23.109 19.887 21.392 23.109 19.467 20.364
τ = 20% 15.062 13.091 13.902 15.062 12.835 13.272
τ = 30% 12.039 10.529 11.094 12.039 10.333 10.610

CZ FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes No No No
State × year FE No No No No Yes Yes Yes

Observations 23,628 23,628 23,628 23,463 23,562 23,562 23,397

Notes: The coefficient on top inventor inflows is converted to semi-elasticity. ATR stands for the individual
income average tax rate at the ninety-fifth percentile. The coefficient on ln(1−ATR) is converted to elasticity.
Column 1 does not control for the endogeneity of top inventor inflows. Column 2 uses Bdt as an instrument.
Column 3 uses Bdt and Bσ

dt as instruments. Column 4 uses Bdt, B
σ
dt, and Bν

dt as instruments. Columns 5-7
replace ln(1−ATR) in Columns 2-4 with state × year FE. Cluster-robust standard errors are in parentheses.

we focus on external inventors who are not directly connected to the migrating top inventors.

The latter result can be interpreted as evidence for the existence of the mysteries of trade

in the air as the number reflects neither knowledge flows within the same assignee nor those

between co-inventors. We thus disentangle productivity gains due to external knowledge

spillovers (“knowledge in the air”) from those due to internal knowledge sharing (“knowledge

in the lab”).

Our positive causal results differ from Borjas and Doran (2012), who find a negative impact

of the inflows of Soviet mathematicians on the productivity of U.S. mathematicians, and from

Moser et al. (2014), who summarize that knowledge spillovers from German Jewish émigrés
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Figure 4: Specification curve analysis.
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Notes: Panels (a) and (b) illustrate the impacts of a top inventor inflow on the patent productivity of all
local inventors and that of external inventors, respectively. Each specification curve is depicted using 31, 969
alternative specifications, as explained in footnote 23. The vertical axis is the estimated value of ϕ̂s.

to incumbent U.S. inventors are unlikely to have been the main driver of the U.S. patent

productivity gains.22 Even at finer geographical scales, our results from the IV regressions

are in contrast to Zacchia (2018), who finds no city-wide spillover effect of inventor inflows.

Our main finding—the existence of gains from knowledge in the air (i.e., external inventors’

productivity gains due to external knowledge spillovers) at the commuting zone level—also

differs from De la Roca and Puga (2017), Moretti (2021), and Prato (2025) in that these

studies analyze the impacts on those who migrate themselves or consider internal knowledge

sharing through organizations or co-inventor relationships. Furthermore, our 4-6% patent

productivity gains for local inventors due to an additional inventor inflow could be compared

with the 12% increase in incumbent plants’ TFP due to a new plant opening in Greenstone et

al. (2010) or with the 62% increase in local patent productivity due to the establishment of a

new college in Andrews (2023). However, given the difference between top inventor arrival on

the one hand and firm entry and college establishment on the other hand, it is not surprising

that the former effect is smaller than the latter effect.

We relegate extensive robustness checks of these main results to Section 5. However, be-

fore concluding this subsection, let us briefly illustrate the specification curve analysis as in

Simonsohn et al. (2020). We employ different specifications of the IV regressions by consid-

22We elaborate on incumbents’ productivity gains in Section 5.3.
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ering various dimensions.23 Figure 4 plots the specification curve for ϕ̂s with 90% and 95%

confidence intervals. As seen from Panels (a) and (b), the productivity gains of approximately

6% and 4% are fairly robust for 31, 969 alternative specifications, thus verifying that our main

estimates do not come from data mining. In what follows, we use the specification in Column

3 of Table 5 as a baseline unless otherwise stated.

4.5 Relevance and validity of Bartik instruments

Our empirical strategy relies on the relevance and validity of the Bartik instruments, which

we discuss in what follows.

To assess the relevance of the Bartik instruments, we first plot in Figure 5 the relationship

between the actual top inventor flows Mdt =
∑

o̸=dModt and the Bartik instruments con-

structed from the predicted top inventor flows. For the latter, we consider Bdt =
∑

o̸=d P̂odtIot,

Bσ
dt =

∑
o/∈σ(d) P̂odtIot, and B

ν
dt =

∑
o̸=d,ν(d) P̂oν(d)tIot, in Panels (a), (b), and (c), respectively.

There is a positive relationship in each panel, and the correlation coefficients for Panels (a),

(b), and (c) are given by 0.78, 0.74, and 0.38, respectively.

We further apply a test for weak instruments developed by Montiel Olea and Pflueger

(2013) to these Bartik instruments. The test is robust to heteroskedasticity, autocorrelation,

and clustering (see also Andrews et al., 2019). The bottom of each panel in Table 5 reports

the effective F statistic, which is a scaled version of the nonrobust first-stage F statistic.

Following their baseline, we set the threshold at τ = 10% and the significance at 5%. In all

cases, the effective F statistic exceeds the critical value reported at τ = 10%, thus rejecting

the null hypothesis of weak instruments.

To address the validity of the Bartik instruments, we follow the shares perspective and

focus on the exogeneity of the shares P̂odt. We assess the plausibility of the exogeneity assump-

23We consider (i) whether to use the ATR at the ninety-fifth or ninety-ninth percentile; (ii) whether to use
ln(1+Ydt) or drop commuting zones with Ydt = 0; (iii) whether to use {Bdt}, {Bdt, B

σ
dt} or {Bdt, B

σ
dt, B

ν
dt} as

instruments; (iv) whether to include state × year fixed effects; (v) whether to use the baseline or alternative
detection of top inventor migrations; (vi) whether to use the baseline or alternative definition of local inventors
(see the analysis on incumbents’ productivity gains in Section 5.3); (vii) whether to use ATRs or MTRs; (viii)
whether to include APTRs; and (ix) whether to include each of the other controls (ATR50, CITR, ITC, RTC,
manufacturing employment, and other employment variables such as “finance and insurance,” “professional,
scientific, and technical services,” and “management of companies and enterprises” to capture other omitted
variables, e.g., access to venture capital). Since the usual caveat on weak instruments is applicable here, we
adopt only specifications for which the null hypothesis of weak instruments is rejected.
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Figure 5: Actual versus predicted top inventor flows.
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Notes: In each panel, the vertical and horizontal axes are the actual top inventor flows and the Bartik
instruments constructed from the predicted top inventor flows, respectively. The actual flows in Panels (a),
(b), and (c) are defined as Mdt. The Bartik instruments in Panels (a), (b), and (c) are Bdt, B

σ
dt, and Bν

dt,
respectively.

tion in two steps. We first use the decomposition result in Goldsmith-Pinkham et al. (2020)

to rewrite the overall estimate of the productivity effect as ϕ̂s =
∑

o∈C ω̂oϕ̂
s
o, which consists

of the origin-specific weight ω̂o and the origin-specific productivity effect ϕ̂s
o. The former is

referred to as the Rotemberg weight (Rotemberg, 1983) and measures to what extent the

bias originating from commuting zone o contributes to the overall bias. For each of the top

five origin commuting zones by Rotemberg weight, we then check the correlation between the

predicted probabilities of top inventor migrations to the destination commuting zones and

key pre-period destination characteristics. This approach allows us to assess the exogeneity

of the shares P̂odt.

We summarize the results in Appendix F. Table F1 presents the summary of the Rotem-

berg weights. The origin commuting zones with the top five highest weights are Bergen-Essex-

Middlesex, Cook-DuPage-Lake, Kings-Queens-NewYork, Philadelphia-Montgomery-Delaware,

and Allegheny-Westmoreland-Washington.24 Table F2 reports the destination commuting

zones to which top inventors moved from these five origin commuting zones. The result that

origin and destination states differ in almost all cases is in line with the assumption that the

main source of identifying variation comes from interstate top inventor migrations induced by

personal income tax differences between states. Table F3 reports, for each of the top five origin

24The name of each commuting zone shown here is a list of three counties with the largest numbers of
inventors (in descending order) in that commuting zone.
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commuting zones, the correlation between the predicted shares of top inventor migrations to

the destination commuting zones and the log of lagged employment in four sectors: manufac-

turing; finance and insurance; professional, scientific, and technical services; and management

of companies and enterprises. These sectors are chosen as they may correlate with unobserv-

able confounders. The correlations are consistently low, and the coefficients obtained from

regressing the predicted shares on the log of lagged sectoral employment are not significant

at the 5% level in all specifications, thus supporting the validity of our Bartik instruments.

5 Robustness

In this section, we examine the robustness of our main results in terms of time, space, ag-

gregation, an alternative high-income occupation, and an alternative exogeneity assumption.

We first extend our static framework to a dynamic setting, which allows us to assess the

impacts on local patent productivity before and after top inventor inflows. We then check

the robustness in terms of the geographic extent of productivity gains. We further analyze

two disaggregated cases: where local inventors are classified by their patent productivity; and

where local inventors differ in terms of how many years they have stayed when top inventors

arrive. The latter case assesses whether the productivity gains come from the entry of new lo-

cal inventors (“extensive margins”) or from incumbent local inventors (“intensive margins”)

by excluding potential inflows of non-top inventors. We also perform a falsification exer-

cise using an alternative high-income occupation. Finally, we consider the shifts perspective

(Borusyak et al., 2022) instead of the shares perspective (Goldsmith-Pinkham et al., 2020).

In Appendix C, we conduct additional robustness checks. Specifically, we consider the al-

ternative individual income average tax rate at the ninety-ninth percentile of the U.S. income

distribution (ATR99), statutory marginal tax rates (MTRs), average property tax rates (AP-

TRs), and an alternative way of detecting top inventor migrations in Appendix C.1. We also

include other controls (ATR50, CITR, ITC, RTC, and manufacturing employment) in Ap-

pendix C.2, and drop commuting zone × year observations with no patents in Appendix C.3.

In Appendix C.4, we further use the alternative measure of patent productivity based on

patent quality in Kogan et al. (2017). As seen from Tables C2, C4, C6, C8, C9, C10, and

C12, all results are consistent with our main findings.
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5.1 Dynamic analysis

As a first robustness check, we conduct event study analysis to examine whether our main

results are sensitive to the inclusion of lead and lag effects of top inventor inflows. To this

end, we rewrite (8) as lnYdt =
∑j

j=j+1 ϕ
ℓ
jMdt−j + ξℓXdt+ εℓdt, which is a distributed lag model

in levels with a binning window [j + 1, j]. Thus, when j = −1 and j = 0, this extended

model degenerates into the static model (8). Schmidheiny and Siegloch (2023) show that the

foregoing equation is equivalent to the event study model given by25

lnYdt =
∑j

j=j µ
es
j ∆M

(j)
dt + ξesXdt + εesdt, where (10)

∆M
(j)
dt =


∑j

k=−∞ (Mdt−k −Mdt−k−1) if j = j < 0

Mdt−j −Mdt−j−1 if j < j < j∑∞
k=j (Mdt−k −Mdt−k−1) if j = j > 0

. (11)

Our aim is to estimate {µes
j , µ

es
j+1, ..., µ

es
j−1
, µes

j
} with normalization µes

−1 = 0. The event study

coefficients capture the cumulative effect of the event of top inventor inflows, i.e., µes
j = µes

j−1+

ϕℓ
j =

∑j
h=0 ϕ

ℓ
h for j = 0, 1, ..., j and µes

j = µes
j+1 − ϕℓ

j+1 = −
∑−1

h=j+1 ϕ
ℓ
h for j = −2,−3, ..., j.

Thus, the coefficients for j ≥ 0 denote cumulative productivity effects from event year 0

(when there are top inventor inflows) to year j. Since the static model abstracts from the

lead and lag effects, the baseline model may produce biased estimates of productivity gains.

As in the static analysis, we incorporate the Bartik instruments into the event study model.

Let ∆Bdt = [∆B
(j)

dt · · ·∆B(j)
dt ]

′ denote a (j+ j+1)×1 vector of the first time difference of the

IVs, where ∆B
(j)
dt is defined in a similar way as in (11). The IV event study model consists

of the structural equation (10) and the first-stage regression analogous to (9) as follows26

∆M
(j)
dt = ψef (j)∆Bdt + ξef

(j)
Xdt + εefdt

(j)
, (12)

25Unlike in standard event study models with a single treatment of identical intensity, we consider a more
general case with multiple treatments of varying intensities. See Schmidheiny and Siegloch (2023) for the
detailed classification of event study models.

26This robustness check abstracts from the possibility that treatment effects can be heterogeneous. Although
several recent papers have explored under what conditions event study models provide valid average treatment
effects in the presence of heterogeneous treatment effects (e.g., de Chaisemartin and D’Haultfœuille, 2023),
they are not readily applicable to our IV event study model with multiple treatments of varying intensities.
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Figure 6: IV event study regressions.
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Notes: Panels (a) and (b) illustrate the dynamic impacts of a top inventor inflow on the patent productivity
of all local inventors and that of external inventors, respectively. In each panel, IV ES1 uses Bdt and Bσ

dt as
instruments and IV ES2 uses Bdt, B

σ
dt, and Bν

dt as instruments. In Appendix G, we assess the robustness to
possible violations of the parallel trends assumption in both Panels (a) and (b) using the method developed
by Rambachan and Roth (2023) and confirm that such violations are unlikely.

where ψef (j) = [ψef (j,j) · · ·ψef (j,j)] is a vector of coefficients.27

Figure 6 shows the results for the IV event study regressions.28 Panel (a) illustrates the

dynamic impacts of a top inventor inflow on the patent productivity of all local inventors,

which include not only the gains from internal knowledge sharing within the same assignee

and between co-inventors but also the gains from external knowledge spillovers. Panel (b)

corresponds to the dynamic productivity gains of external inventors, which go beyond orga-

nizational boundaries and co-inventor relationships. In both cases, we observe a substantial

increase in local patent productivity in event year 0 when there are top inventor inflows.

The post-event semi-elasticities go up to approximately 0.05, which ensures our main results

in Section 4.4. In contrast, the pre-event semi-elasticities are close to zero in any pre-event

year, thus suggesting no productivity gains prior to the event of top inventor migration. In

Appendix G, we further assess the robustness to possible violations of the parallel trends

assumption in both Panels (a) and (b) using the method developed by Rambachan and Roth

(2023) and confirm that such violations are unlikely.

27When estimating the event study models with multiple instruments, we set ∆Bσ
dt = [∆B

σ(j)

dt · · ·∆B
σ(j)
dt ]′

and ∆Bν
dt = [∆B

ν(j)

dt · · ·∆B
ν(j)
dt ]′ and use [∆Bdt

′ ∆Bσ
dt

′]′ or [∆Bdt
′ ∆Bσ

dt
′ ∆Bν

dt
′]′ as instruments in (12).

28We report the numbers used in Figure 6 and the associated first-stage statistics in Tables C13 and C14
in Appendix C.5, respectively.
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Figure 7: Distance-ring regression.
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Notes: Panels (a) and (b) illustrate the impacts of a top inventor flow to each distance ring r(d) on the
patent productivity of all local inventors in d and that of external inventors in d, respectively, where d is
the destination commuting zone. In each panel, IV1 uses Bdt as an instrument, IV2 uses Bdt and Bσ

dt as
instruments, and IV3 uses Bdt, B

σ
dt, and Bν

dt as instruments.

5.2 Geographic space

To check the robustness of our main results in terms of the geographic extent of productivity

gains, we replace the structural equation (8) with

lnYdt =
∑6

r(d)=1 ϕ
sr
r(d)Mr(d)t + ξsrXdt + εsrdt , (13)

where r(d) is the distance ring defined for each destination commuting zone d and Mr(d)t is

the flows of top inventors in the r(d)-th ring. The first ring r(d) = 1 stands for destination d

itself, whereas r(d) = 2, ..., 6 correspond to commuting zones that are 0-50, 50-100, 100-150,

150-200, and 200-250 miles away from commuting zone d.29

Figure 7 illustrates the estimated coefficients {ϕ̂sr
r(d)}6r(d)=1. Panels (a) and (b) illustrate

the impacts of a top inventor flow to each distance ring r(d) on the patent productivity of all

local inventors in d and that of external inventors in d, respectively. In each panel, the impacts

are significant only in the first ring for all three different IVs, which implies that top inventor

inflows affect patent productivity only in the commuting zone where they enter. Such localized

productivity gains are reminiscent of localized knowledge spillovers in Jaffe et al. (1993) and

Murata et al. (2014). We will discuss the mechanism of localized productivity gains in terms

of localized knowledge spillovers as evidenced by patent citations in Section 6.1.

29The distance between any pair of two commuting zones is calculated using the great circle formula.
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Figure 8: Placebo.
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Notes: Panels (a) and (b) illustrate the impacts of a top inventor flow to d on the patent productivity of
all local inventors in R(d) and that of external inventors in R(d), respectively, where d is the destination
commuting zone and R(d) ̸= d is a commuting zone that is randomly drawn from state σ(d) to which
commuting zone d belongs. In each panel, IV1 uses Bdt as an instrument, IV2 uses Bdt and Bσ

dt as
instruments, and IV3 uses Bdt, B

σ
dt, and Bν

dt as instruments.

We also conduct a permutation-based placebo test to assess the plausibility of our findings

that productivity gains are localized within each commuting zone. This is done by examining

the impact of top inventor migration into commuting zone d on productivity gains in a

randomly drawn commuting zone R(d) ̸= d in state σ(d). We thus replace the structural

equation (8) with

lnYR(d)t = ϕsRMdt + ξsRXdt + εsRdt (14)

and estimate (14) for each IV specification 1000 times with replacement to obtain the distri-

bution of {ϕsR
i }1000i=1 . We then check if the null hypothesis of no productivity gains, ϕsR = 0,

is rejected. Figure 8 depicts the 95% confidence interval and the mean of the distribution for

each IV specification. The results in both Panels (a) and (b) show that top inventor flows

into commuting zone d do not significantly change patent productivity in commuting zone

R(d) ̸= d randomly drawn from state σ(d), thus implying that the extent of productivity

gains is geographically limited within each commuting zone.
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Figure 9: Productivity gains by local inventors’ productivity.
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Notes: Both panels illustrate the impacts of a top inventor inflow on local patent productivity, where the
impacts differ by local inventors’ patent productivity. Panels (a) and (b) are the results for all local inventors
and for external inventors, respectively. In each panel, IV1 uses Bdt as an instrument, IV2 uses Bdt and Bσ

dt

as instruments, and IV3 uses Bdt, B
σ
dt, and Bν

dt as instruments.

5.3 Productivity gains by local inventor types

We have thus far shown that top inventor inflows enhance patent productivity only for local

inventors. We further explore the foregoing result by addressing who gain more from top

inventor inflows by allowing for heterogeneity among local inventors.

First, local inventors differ in terms of their patent productivity. We thus consider the top

5%, 10%, 25%, 50%, and 75% of local inventors according to their patent productivity and

estimate the causal effect for each productivity group. Panel (a) of Figure 9 illustrates the case

with all local inventors. We observe that there are productivity gains for each productivity

group and that more-productive local inventors tend to gain more from top inventor inflows.

We find a similar pattern in Panel (b). Hence, even when focusing on external inventors

who are not directly connected to the migrating top inventors, our result suggests that more-

productive local inventors have a tendency to benefit more from their inflows.

Second, local inventors differ in terms of how many years they have stayed when top

inventors arrive. To highlight this difference, we focus on local inventors who consistently

apply for patents in a single commuting zone during the sample period and refer to them
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Figure 10: Productivity gains by local stayers’ duration.
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Notes: Both panels illustrate the impacts of a top inventor inflow on the patent productivity of local stayers,
where the impacts differ by their duration. Panels (a) and (b) are the results for all local stayers and
for external stayers, respectively. In each panel, IV1 uses Bdt as an instrument, IV2 uses Bdt and Bσ

dt as
instruments, and IV3 uses Bdt, B

σ
dt, and Bν

dt as instruments.

as local stayers, who can be classified into internal stayers and external stayers.30 We then

disaggregate those local stayers by the length of their stay and estimate the causal effect

for each duration. In each panel of Figure 10, the leftmost bars show the impacts of a top

inventor inflow on local stayers with a duration of less than one year, which may be viewed as

the entry of new local inventors (“extensive margins”). The next bars stand for up to three

years of residency, up to five years of residency, and so on, thus capturing not only extensive

margins but also the incumbent local inventors (“intensive margins”). The rightmost bars

show the overall effect on local stayers, regardless of their duration. These results suggest

that the incumbent local inventors tend to contribute more to the overall productivity gains

from top inventor inflows when compared with the new local inventors. Recall the concern in

Section 4.3, namely that other state taxes may also influence the inflows of non-top inventors,

thereby contributing to local patent productivity. This concern is mitigated since the results

in Figure 10, which excludes the role of such potential non-top inventor inflows in local patent

productivity by definition of local stayers, are quite similar to our main results in Table 5.

30The number of local stayers is 1,195,335, which accounts for 93.81% of all 1,274,192 local inventors. Thus,
in this robustness check, we exclude 78,857 local inventors (6.19% of all local inventors) who apply for patents
in multiple commuting zones. The internal stayers are local stayers who share the same organization as the
migrating top inventors and/or if they are co-inventors of the migrating top inventors. All the other local
stayers are referred to as external stayers.

27



5.4 Falsification: The case of top baseball players

To provide further validation of our analysis, we conduct a falsification exercise using an alter-

native occupation. Following Kleven et al. (2013), we focus on high-income professional sports

players who should also respond to tax differentials but should not affect patent productivity.

In what follows, we examine to what extent the impact of top inventor inflows on local patent

productivity is modified by the inflows of top Major League Baseball (MLB) players or “top

players” for short (see Appendix H for the institutional settings and data sources).31

Let I = {1, . . . , I}, J = {1, . . . , J}, and K = {1, . . . , K} denote the set of top players,

that of origin teams, and that of destination teams, respectively. The utility of top player

i ∈ I, who played on team j ∈ J in period t− 1 and chooses team k ∈ K in period t, is given

by Uijkt = Vijkt+εijkt, where Vijkt = α ln[(1− τσ(k)t)wikt]+γ
hHomeijkt−1+γ

x
kXit−γcCjk+Zk,

εijkt is independent and identically Gumbel distributed, and k = 1 denotes retirement. Top

player i’s after-tax salary is given by (1 − τσ(k)t)wikt, where we proxy τσ(k)t by the ATR at

the ninety-fifth percentile in state σ(k) in year t as before.32 Homeijkt−1, which takes a value

of 1 if j = k and 0 otherwise, is the indicator that captures top player i’s preferences for the

team in the previous period. Xit is a vector of top player i’s characteristics and performance.

Cjk is the cost of migration measured by the geographical distance between teams j and k,

and Zk denotes team fixed effects. The predicted probability that top player i, who played

on team j in period t− 1, chooses team k in period t is then given by

P̂ ply
ijkt =

exp{α̂ ln[(1− τσ(k)t)wikt] + γ̂hHomeijkt−1 + γ̂xkXit − γ̂cCjk + Ẑk}∑K
k′=1 exp{α̂ ln[(1− τσ(k′)t)wik′t] + γ̂hHomeijk′t−1 + γ̂xk′Xit − γ̂cCjk′ + Ẑk′}

. (15)

Like top inventors, we find that top players respond to tax differences within a country (see

Table H2 in Appendix H), thus showing that the tax-induced international mobility of top

players in Kleven et al. (2013) can be applied to a domestic context. These individual-level

31We define “top players” as those players whose salaries exceeded the ninety-fifth percentile of the U.S.
income distribution in the year they declared free agency after six years of MLB service.

32Two remarks are in order. First, since salary data are available only for a subset of all player-year
observations, we use a random forest algorithm to estimate salaries based on various player characteristics
and performance. The resulting R-squared values are 0.975 for the training set and 0.813 for the test set.
Second, since we observe actual salaries only for chosen teams, we need to construct unobserved potential
salaries for other teams. Following Kleven et al. (2013), we consider several formulations for counterfactual
salaries in the context of professional sports labor markets (see Appendix H).
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predicted probabilities are then aggregated to form the predicted top player flows from origin

commuting zone o to destination commuting zone d as P̂ ply
odt =

∑
k∈Kd

∑
j∈J o

∑
i∈Ij P̂

ply
ijkt,

where Ij represents the set of top players on team j in period t− 1; and J o and Kd denote

the set of teams located in origin o and destination d, respectively. Letting Mply
odt and Iplyot

denote the number of top players who migrate from o to d in period t and the number of top

players located in origin o in the year prior to t, respectively, we define the Bartik instrument

for Mply
dt =

∑
o̸=dM

ply
odt as B

ply
dt =

∑
o̸=d P̂

ply
odt I

ply
ot to estimate the structural equation as follows:

lnYdt = ϕsFMdt + ϕ̌sFMply
dt + ξsFXdt + εsFdt . (16)

Table 6: The impact of top inventor and top player inflows on local patent productivity.

(1) (2) (3) (4) (5) (6)
(a) All local inventors
Top inventor inflows 0.070 0.065 0.064 0.076 0.062 0.063

(0.018) (0.015) (0.015) (0.021) (0.016) (0.016)
Top player inflows -0.040 -0.029 -0.029 -0.048 -0.017 -0.017

(0.032) (0.027) (0.027) (0.036) (0.027) (0.027)
ln(1−ATR) 5.946 5.919 6.026

(1.041) (1.038) (1.039)

(b) External inventors
Top inventor inflows 0.049 0.045 0.047 0.050 0.039 0.041

(0.014) (0.012) (0.012) (0.017) (0.013) (0.013)
Top player inflows -0.037 -0.028 -0.031 -0.040 -0.018 -0.018

(0.026) (0.022) (0.022) (0.029) (0.021) (0.022)
ln(1−ATR) 4.713 4.662 4.627

(0.850) (0.847) (0.842)

CZ FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes No No No
State × year FE No No No Yes Yes Yes

Observations 23,628 23,628 23,463 23,562 23,562 23,397

Notes: The coefficients on top inventor inflows and top player inflows are converted to semi-elasticities. ATR
stands for the individual income average tax rate at the ninety-fifth percentile. The coefficient on ln(1−ATR)
is converted to elasticity. Columns 1 and 4 use Bdt as an instrument for top inventor inflows Mdt. Columns
2 and 5 use Bdt and Bσ

dt as instruments for Mdt. Columns 3 and 6 use Bdt, B
σ
dt, and Bν

dt as instruments for

Mdt. In all cases, Bply
dt is used as an instrument for top player inflows Mply

dt . Columns 4-6 replace ln(1−ATR)
in Columns 1-3 with state × year FE. Cluster-robust standard errors are in parentheses.

Table 6 presents the results for different specifications.33 Columns 1-6 show that even in the

presence of top player inflows, the impact of top inventor inflows on both all local inventors and

external inventors remain consistent with our baseline estimates in Table 5, thus suggesting

33We report the associated first-stage statistics in Table H3.
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the robustness of our main results. Indeed, the top player inflows have a negligible effect on

local patent productivity, indicating that while high-income top players may respond to tax

differences, their presence does not significantly alter the geographic distribution of inventive

activity across commuting zones. Hence, we may conclude that although both top inventors

and top players take into account the variation in tax rates when making their location

decisions, the impacts of their inflows on local patent productivity differ substantially.

5.5 Shift exogeneity

We have so far considered the share exogeneity of the Bartik instruments as in Goldsmith-

Pinkham et al. (2020). We now conduct robustness checks from the shifts perspective by

reformulating the destination specific structural equation (8) in terms of origin commuting

zones (see Appendix I). Borusyak et al. (2022) show that the estimator for ϕs obtained

from this reformulation converges in probability to the productivity effect ϕs in the shares

perspective equation (8). Moreover, the standard errors computed in this framework are valid

in the presence of exposure-based clustering, as demonstrated by Adão et al. (2019).

Table 7: The impact of top inventor inflows on local patent productivity (shift exogeneity).

(1) (2)
(a) All local inventors
Top inventor inflows 0.041) 0.039)

(0.008) (0.008)

First-stage F statistic 84.781 75.042

(b) External inventors
Top inventor inflows 0.032) 0.028)

(0.005) (0.006)

First-stage F statistic 84.781 75.042

Destination controls
ln(1−ATR) Yes No
CZ FE and year FE Yes Yes
State × year FE No Yes

Observations 2,760 2,760
Number of origin CZs 292 292

Notes: This table reports the estimates ϕ̂s of the impact of a top inventor inflow on local patent productivity
in destination commuting zone d, where we obtain these estimates from equivalent IV regressions regarding
origin commuting zone o, instrumented by Iot. The coefficient on top inventor inflows is converted to semi-
elasticity. Panel (a) presents the patent productivity gains for all local inventors, whereas Panel (b) focuses
on those for external inventors. Column 1 controls for ln(1 − ATR), commuting zone fixed effects, and year
fixed effects. Column 2 replaces ln(1 − ATR) in Column 1 with state × year FE. Exposure-robust standard
errors, clustered at the commuting zone level, are reported in parentheses. All the first-stage F -statistics,
which are derived from the equivalent IV regressions instrumented by Iot, exceed 10, thus addressing concerns
regarding weak instruments.
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Figure 11: Specification curve analysis (shift exogeneity).
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Notes: Panels (a) and (b) illustrate the impacts of a top inventor inflow on the patent productivity of all
local inventors and that of external inventors, respectively. Each specification curve is depicted using 12, 288
alternative specifications, as explained in footnote 34. The vertical axis is the value of ϕ̂s.

Table 7 presents the estimates ϕ̂s of the impact of a top inventor inflow on local patent

productivity in destination commuting zone d, where we obtain these estimates from equiva-

lent IV regressions regarding origin commuting zone o, instrumented by Iot. Panel (a) reports

the patent productivity gains for all local inventors, whereas Panel (b) focuses on those for

external inventors. Column 1 controls for ln(1−ATR), commuting zone fixed effects, and year

fixed effects, and Column 2 replaces ln(1−ATR) in Column 1 with state × year fixed effects.

Reassuringly, the estimates under this alternative identification strategy are not substan-

tially different from our main estimates in Table 5. To assess the robustness of our findings

obtained from the shift exogeneity assumption, we conduct a specification curve analysis as

in Section 4.4. We employ different specifications of the IV regressions by considering various

dimensions.34 Figure 11 plots the specification curve for ϕ̂s with 90% and 95% confidence in-

tervals. As seen from Panels (a) and (b), the productivity gains reported in Table 7 are fairly

34We consider (i) whether to use the ATR at the ninety-fifth or ninety-ninth percentile; (ii) whether to use
ln(1 + Ydt) or drop commuting zones with Ydt = 0; (iii) whether to use the baseline or alternative detection
of top inventor migrations; (iv) whether to use the baseline or alternative definition of local inventors (see
the analysis of local stayers in Section 5.3); (v) whether to use ATRs or MTRs; (vi) whether to include
APTRs; and (vii) whether to include each of the other controls (ATR50, CITR, ITC, RTC, manufacturing
employment, and other employment variables such as “finance and insurance,” “professional, scientific, and
technical services,” and “management of companies and enterprises” to capture other omitted variables, e.g.,
access to venture capital). Since the usual caveat on weak instruments is applicable here, we adopt only
specifications for which the null hypothesis of weak instruments is rejected.
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robust for 12, 288 alternative specifications, thus mitigating concerns about the sensitivity of

our main results to different exogeneity assumptions and various choices of control variables.

6 Mechanisms

The productivity gains estimated in the previous sections suggest that local inventors acquire

knowledge from migrating top inventors, regardless of whether local inventors are internal

or external. We now discuss the underlying mechanisms through which those productivity

gains materialize. We first focus on patent citations that have been widely used as proxy for

knowledge flows since Jaffe et al. (1993). Specifically, we count how many times local inventors

cite incoming top inventors and estimate the percentage change in the number of citations

caused by top inventor inflows. Furthermore, Jaffe et al. (1993) recognize the existence of

other knowledge flows that cannot be captured by patent citations. We thus complement the

foregoing analysis by using state-year variation in legal protection of trade secrets documented

by Png (2017a, 2017b) as a quasi-natural experiment. We expect that knowledge flows from

migrating top inventors to local external inventors would be greater in states where legal

protection of trade secrets is weaker, so that there would be additional local productivity

gains in those states. Our results presented below are consistent with Marshall’s insight on

knowledge spillovers since external inventors can not only learn patentable knowledge but

also obtain other forms of knowledge from migrating top inventors as if those were in the air.

6.1 Patent citations

To see the impact of top inventor inflows on local patent citations, we count how many times

the patents of the top inventors who migrated into commuting zone d in year t were cited by

the local inventors in commuting zone d in year t and denote it by Cdt. When constructing

Cdt, we focus on the patents that had been applied over the last ten years. Replacing patent

productivity Ydt in (8) with the number of citations Cdt, we consider the structural equation

for citations as follows:

lnCdt = ϕscMdt + ξscXdt + εscdt,

while retaining the same first-stage equation (9). The coefficient ϕsc gauges the magnitude of

knowledge flows from migrating top inventors to local inventors.

32



Figure 12: Citations.
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Notes: Panels (a) and (b) illustrate the impact of a top inventor inflow on the number of all local inventors’
citations to the incoming top inventor and that of external inventors’ citations to the incoming top inventor
(percentage change in decimal form), respectively. In each panel, we use Bdt and Bσ

dt as instruments.

Panels (a) and (b) of Figure 12 illustrate the estimated coefficients for the case of all local

inventors and that of external inventors, respectively. In both panels, we consider the top

5%, 10%, 25%, 50%, and 75% of local inventors according to their patent productivity and

estimate the causal effect for each productivity group. In Panel (a), an additional top inventor

inflow raises the number of local inventors’ citations to the incoming top inventor by 10-20%

regardless of the productivity of local inventors. By contrast, in Panel (b), the external

inventors, especially those with higher productivity, tend to exhibit a greater percentage

change in the number of citations to the top inventors who moved in the same commuting

zone. These results imply the existence of knowledge flows from the migrating top inventors

to the local inventors, even when we focus on the external inventors who are not directly

connected to the migrating top inventors.35 This existence of external knowledge spillovers

as evidenced by the citation flow from each incoming top inventor to each external inventor

is related to but differs from Atkin et al. (2022), who find that face-to-face meetings between

workers in different establishments enhance between-establishment citations, as the latter aim

to capture worker interactions by smartphone data while abstracting from who cites whom.

35It is perhaps puzzling that the impact is smaller in Panel (a). This result may stem from the possibility
that internal inventors, who account for approximately 40% of all local inventors, had already collaborated
with or worked in the same organization as the incoming top inventors and thus had already cited them prior
to their migration. In that case, we would expect a smaller percentage change in the number of internal
inventors’ citations after the arrival of the top inventors.
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6.2 Trade secrets

Trade secrets were formerly defined and protected from misappropriation by common law in

the United States. However, these definitions and protections have been codified into law with

the enactment of federal legislation known as the Uniform Trade Secrets Act (UTSA). While

most states had already adopted the UTSA, there had been substantial heterogeneity in the

states’ approaches to trade secrets due to the differences in the timing of the adoption of the

UTSA and the strength of trade secrets protection during the common law era. We exploit

the state-year variation in trade secrets protection to uncover productivity gains through

knowledge flows that cannot be captured by patent citations.

Given the heterogeneity in legal protection of trade secrets, top inventors who migrate to a

state with weaker protection would exchange knowledge more frequently with other inventors

beyond organizational boundaries and co-inventor relationships, thereby bringing about addi-

tional productivity gains to local external inventors. In contrast, the change in legal protection

of trade secrets would not influence knowledge sharing through organizations or co-inventor

relationships, thus leaving the productivity gains of local internal inventors unaffected.

We examine those differential impacts of top inventor inflows on local patent productivity

by using the state-level index of trade secrets in Png (2017a, 2017b).36 This index captures

both legal protection under common law and the enactment of the UTSA and ranges between

0 and 1, where a higher score implies stronger legal protection. Let Sσ(d)t denote an indicator

variable for whether the trade secrets index in state σ(d) in year t is below the median of

the trade secrets index distribution. If Sσ(d)t = 1, the degree of trade secrets protection is

low in commuting zone d in year t, so that we expect higher patent productivity of external

inventors due to a greater amount of knowledge brought about by top inventor inflows.

Let ϕs = [ϕs
0 ϕ

s
1 ϕ

s
2] and Edt = [Mdt Sσ(d)t MdtSσ(d)t]

′ denote a vector of coefficients and a

vector of endogenous variables. The structural equation is then given by

lnYdt = ϕ
sEdt + ξsXdt + εsdt. (17)

Our interest is in the coefficient ϕs
2 on MdtSσ(d)t when Ydt is measured by the patent pro-

36Png (2017a) provides the index for the years 1979 to 1998, and Png (2017b) extends it to the years 1970
to 2010.
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ductivity of external inventors. If ϕs
2 > 0, the top inventor inflows lead to higher patent

productivity of external inventors in commuting zones with weaker trade secrets protection,

which suggests that the knowledge brought about by the top inventor inflows is more likely

to spill over to external inventors in commuting zones with weaker trade secrets protection.

As before, we use the Bartik instruments for the top inventor inflows Mdt to mitigate

the endogeneity concern. To address the potential endogeneity of the trade secrets indicator

Sσ(d)t, we follow Png (2017b) who argues that the enactment of the UTSA is related to the

enactment of other state-level uniform laws such as the Uniform Determination of Death Act

(UDDA), Uniform Federal Lien Registration Act (UFLRA), and Uniform Fraudulent Transfer

Act (UFTA) because these laws were introduced to harmonize state laws. Since the three

laws are unlikely to be associated with local patent productivity shocks, we use them as

instruments for the trade secrets indicator. The first-stage equation that accompanies (17) is

thus given by

Edt = ψ
fZdt + ξfXdt + εfdt, (18)

where ψf is a vector of coefficients and Zdt = [(Bdt, B
σ
dt)##(UDDA

σ(d)t , U
FLRA
σ(d)t , U

FTA
σ(d)t)]

′ is a vector

of IVs, with U ℓ
σ(d)t indicating whether uniform law ℓ = {DDA,FLRA,FTA} was in effect in

state σ(d) in year t, and ## denotes an interaction-term operator.37

Panels (a) and (b) in Figure 13 illustrate the results for all local inventors and those for

external inventors, respectively. In both panels, we consider the top 5%, 10%, 25%, 50%,

and 75% of local inventors according to their patent productivity and estimate the causal

effect for each productivity group. Since the strength of trade secrets protection is unlikely to

affect internal knowledge sharing within the same assignee and between co-inventors, it is not

surprising that the overall impact in Panel (a) is insignificant, regardless of the productivity

of local inventors. In contrast, in Panel (b) the impacts for the top 5%, 10%, and 25% of

inventors (top 50% and 75% of inventors) are significant at the 5% (10 %) level. Hence,

top inventor migration tends to enhance the patent productivity of external inventors in

commuting zones with weaker trade secrets protection.

37The interaction-term operator ## generates all possible combinations of elements for a given pair of sets.
For example, let S1 = {A,B} and S2 = {C,D}, where each set Si has two elements. Then, [S1##S2]

′ =
[{A,B}##{C,D}]′ = [A B C D AC AD BC BD]′.
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Figure 13: Trade secrets.

(a) all local inventors
−

.0
5

0
.0

5
.1

.1
5

.2

top5% top10% top25% top50% top75% all

(b) external inventors

−
.0

5
0

.0
5

.1
.1

5
.2

top5% top10% top25% top50% top75% all

Notes: Panels (a) and (b) illustrate the coefficients ϕs
2 on the interaction term MdtSσ(d)t in (17) for all local

inventors and for external inventors, respectively. In each panel, we use Bdt and Bσ
dt as instruments.

7 A counterfactual experiment

We now conduct a counterfactual experiment. Using the baseline specification in Section 4,

we consider what happens to the geographic distribution of patent productivity if all state

individual income taxes are set to their average. This experiment is useful for assessing to

what extent state tax differences contribute to patent productivity differences across space.

Recalling that the changes in state taxes affect the choice probabilities P̂odt in (5) and the

Bartik instruments Bdt in (6), as well as Bσ
dt, the procedure of the counterfactual analysis can

be summarized as follows. We first derive the counterfactual probabilities P̃odt to construct the

counterfactual Bartik instruments {B̃dt, B̃
σ
dt}, which allow us to estimate the counterfactual

top inventor flows M̃dt via the first-stage regression (9). We then define the counterfactual

changes in the top inventor flows as ∆̃Mdt =
(

M̃dt−M̂dt

M̂dt

)
Mdt, whereMdt, M̂dt, and M̃dt are the

actual, fitted, and counterfactual flows, respectively.38 We finally apply ∆̃Mdt to the structural

equation (8) to construct the counterfactual changes in the log patent productivity ∆̃ lnYdt =

ϕ̂s∆̃Mdt+ ξ̂
s∆̃ ln(1−ATRσ(d)t), where ∆̃ ln(1−ATRσ(d)t) = ln(1−ÃTRσ(d)t)− ln(1−ATRσ(d)t)

38If the actual and fitted flows coincide, the definition reduces to ∆̃Mdt = M̃dt −Mdt. However, since the

actual and fitted flows generally differ, we compute the percentage change in the top inventor flows
(

M̃dt−M̂dt

M̂dt

)
based on the fitted and counterfactual flows in the tax-induced migration model and then multiply it by the
actual flows Mdt.
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Figure 14: Counterfactual experiment (setting state taxes to their average).
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Notes: This figure illustrates the counterfactual percentage change in the number of patents at the commuting
zone level when all state individual income taxes in 2009 are set to their average. We use Bdt and Bσ

dt as
instruments.

captures the counterfactual tax changes.39 Thus, the overall impact of tax changes on ∆̃ lnYdt

can be decomposed into two: the direct effect from the tax changes, ξ̂s∆̃ ln(1−ATRσ(d)t), and

the indirect effect via the changes in top inventor flows induced by the tax changes, ϕ̂s∆̃Mdt.

The indirect effect can be further decomposed into two: productivity gains due to internal

knowledge sharing and those due to external knowledge spillovers.

Figure 14 illustrates the percentage change in local patent productivity when state taxes

are set to their average. The overall impact tends to be large in commuting zones in California,

Oregon, North Carolina, and New York, where state taxes and initial patent productivity are

high.40 Table 8 summarizes the top 10 commuting zones by patent productivity gains. For

instance, if state taxes were equal, the number of patents in Santa Clara–Monterey–Santa

Cruz (which is the commuting zone with the highest patent productivity in Table 2) would

be larger by 72.3%. In contrast, the overall impact tends to be small in commuting zones

in Texas, Washington, Florida, and New Hampshire, where state taxes are low and initial

patent productivity is high. Table 9 summarizes the bottom 10 commuting zones by patent

productivity gains. For instance, if state taxes were equal, the number of patents in King–

Pierce–Snohomish (which is ranked as the tenth most productive commuting zone in Table 2)

39When computing the counterfactual change, we replace ∆̃ lnYdt with ∆̃ ln(1 + Ydt) as before to accom-
modate commuting zone × year observations with no patents.

40Notably, the counterfactual changes are heterogeneous even within states, although we equalize taxes
between states. The reason is that the counterfactual choice probabilities P̃odt, which are obtained by setting
state taxes equal in (5), include fixed effects at the commuting zone level.
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Table 8: Top 10 commuting zones by patent productivity gains (%).

rank cz number counties state gains (%)
1 37500 Santa Clara–Monterey–Santa Cruz CA 72.291
2 37800 Alameda–Contra Costa–San Francisco CA 53.377
3 38300 Los Angeles–Orange–San Bernardino CA 47.115
4 38801 Multnomah–Washington–Clackamas OR 46.022
5 38000 San Diego CA 38.042
6 1701 Wake–Durham–Orange NC 35.253
7 19400 Kings–Queens–New York NY 35.080
8 38901 Lane–Marion–Linn OR 31.310
9 35801 Ada–Canyon–Elmore ID 29.754

10 39203 Deschutes–Crook–Jefferson OR 29.206

Notes: Patent productivity gains are defined as the percentage change in the number of patents when all state
individual income taxes in 2009 are set to their average. We use Bdt and Bσ

dt as instruments.

Table 9: Bottom 10 commuting zones by patent productivity gains (%).

rank cz number counties state gains (%)
1 39400 King–Pierce–Snohomish WA -64.777
2 31201 Travis–Williamson–Hays TX -50.710
3 32000 Harris–Fort Bend–Galveston TX -49.002
4 33100 Dallas–Denton–Collin TX -46.491
5 20600 Hillsborough–Rockingham–York NH -41.326
6 7100 Palm Beach–St. Lucie–Martin FL -38.194
7 7400 Orange–Seminole–Lake FL -35.219
8 5202 Shelby–DeSoto–Tipton TN -35.020
9 6900 Sarasota–Manatee–Charlotte FL -34.585
10 7000 Dade–Broward–Monroe FL -34.561

Notes: Patent productivity gains are defined as the percentage change in the number of patents when all state
individual income taxes in 2009 are set to their average. We use Bdt and Bσ

dt as instruments.

would be smaller by 64.8%. These results suggest that the presence of state tax differences

significantly distorts the spatial distribution of inventive activity.

To see which states are most affected by the presence of tax differences, we first define,

for each commuting zone d, the counterfactual change in the number of patents ∆̃Ydt =(
Ỹdt−Ŷdt

Ŷdt

)
Ydt in the same way as ∆̃Mdt, where Ydt, Ŷdt, and Ỹdt are the actual, fitted, and

counterfactual numbers of patents in d, respectively. We then aggregate ∆̃Ydt within each

state σ to obtain the counterfactual changes in the number of patents ∆̃Yσt =
∑

d∈σ ∆̃Ydt.

Denoting by Yσt =
∑

d∈σ Ydt the actual number of patents at the state level, we finally compute

the percentage change in the number of patents at the state level ∆̃Yσt

Yσt
.41

41Observe that ∆̃Yσt

Yσt
=

∑
d∈σ ∆̃Ydt∑
d∈σ Ydt

=
∑

d∈σ

(
Ỹdt−Ŷdt

Ŷdt

)
Ydt∑

d∈σ Ydt
. The latter is the weighted average of the

percentage change
(

Ỹdt−Ŷdt

Ŷdt

)
with weight being the share of actual number of patents Ydt∑

d∈σ Ydt
. If the actual

and fitted numbers of patents coincide, the percentage change in the number of patents at the state level

reduces to ∆̃Yσt

Yσt
=

∑
d∈σ Ỹdt−

∑
d∈σ Ydt∑

d∈σ Ydt
.

38



Figure 15: Counterfactual experiment (setting state taxes to their average).
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Notes: This figure illustrates the counterfactual percentage change in the number of patents for the states
of California, New York, Massachusetts, Michigan, Texas, and Washington when all state individual income
taxes in 2009 are set to their average. The overall change for each state is decomposed into the direct effect
via the change in state taxes and the indirect effect via the tax-induced top inventor migration. The latter
consists of the internal knowledge sharing effect and the external knowledge spillover effect. We use Bdt and
Bσ

dt as instruments.

Figure 15 illustrates the percentage change in the number of patents for selected states

when state taxes are set to their average. For instance, if state taxes were equal, the number

of patents in California (where state taxes and patent productivity are high) would be greater

by 55.1%, which can be decomposed into the direct effect via the reduction in California state

taxes (15.6%) and the indirect effect via the tax-induced top inventor migration (39.5%).

The indirect effect can be further decomposed into the internal sharing effect (31.4%) and

the external spillover effect (8.1%). In contrast, the number of patents in Texas (where state

taxes are low and patent productivity is high) would be smaller by 45.3%, which can be

decomposed into the direct effect via the rise in Texas state taxes (28.5%) and the indirect

effect via the tax-induced migration (16.8%). The indirect effect can be further decomposed

into the internal sharing effect (12.7%) and the external spillover effect (4.1%).

These results suggest that the indirect effect via the tax-induced migration of top inventors

can be substantial. To see the relative importance of the direct and indirect effects on patent

productivity at the national level, we aggregate those changes in the number of patents across

all commuting zones in all states that we consider in the paper. We find that the share of the

indirect effect is 0.725, while that of the direct effect is 0.275. Our results thus complement

Akcigit et al. (2022) who assess the direct impact of state taxes on innovation.
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8 Concluding remarks

In this paper, we have uncovered the idea-generating process described by Marshall (1890)

using Bartik (1991) instruments. We have identified a significant causal effect of a top inventor

inflow on the patent productivity of all local inventors. Even when we focus on local external

inventors who are not directly connected to incoming top inventors through organizations

or co-inventor relationships, the effect remains significant and is approximately 4%, thus

implying that the mysteries of the trade are in the air.

We have disentangled productivity gains due to external knowledge spillovers from those

due to internal knowledge sharing. Thus, our findings are consistent with the partially nonex-

cludable good nature of knowledge, whose implications have been explored theoretically in

the technology and growth literature. Since the existence of the productivity gains from

external knowledge spillovers leads to market failures and constitutes a rationale for spatial

agglomeration of inventive activity, our analysis would be useful for innovation policies that

consider both the benefits and costs of entrepreneurial clusters.

Our counterfactual experiment suggests that the presence of tax differences across states

distort the spatial distribution of inventive activity up to −64.8% to 72.3%, with considerable

spatial heterogeneity. The decomposition of those gains and losses reveals that not only the

direct gains from tax changes but also the indirect gains via the top inventor migration driven

by tax changes are important.

While this paper has considered the tax-induced domestic migration of top inventors, our

model-based Bartik instruments can be used in any setting where origin-destination flows are

affected by changes in location-specific policies. Thus, our framework would be applicable to

various settings where the movement of goods, people, and ideas across space is influenced

by policy differences between locations.
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Appendix A Data appendix

A.1 Data sources and construction

Patent data. The main data come from USPTO PatentsView (https://patentsview.

org/). It includes data on patents, inventors, inventors’ addresses, assignees, and patent

citations and provides data files regarding the disambiguation of inventor and assignee names

(https://patentsview.org/disambiguation/). Additional procedures are used to allocate

inventors’ addresses to commuting zones. We first use the latitude and longitude of each

inventor’s address (which are taken from USPTO PatentsView) to identify his/her county of

residence. We then relate it to the commuting zone in which the inventor resides based on

the correspondence table between counties and commuting zones in 1990 on the IPUMS USA

website (https://usa.ipums.org/usa/volii/1990lma.shtml).

The disambiguation algorithm adopted in PatentsView is known to be highly accurate,

as it copes with the two problems involving false positives and nagatives pointed out by

Trajtenberg et al. (2006) and Monath et al. (2021). One is multiple names for the same entity

(assignee, inventor, or location), e.g., the spelling of an assignee’s name may differ from one

patent to another. The other is multiple different entities with the same name, e.g., different

inventors might share the exact same name (also known as the “John Smith” problem).

However, the disambiguation process is not error-free (see Toole et al., 2021). To address

the former problem, we check the most typical assignee names: International Business Ma-

chines Corporation and IBM Corporation. In our dataset, the number of applications for

International Business Machines Corporation is 207, 139, whereas that for IBM Corporation

is 1, 074, which implies that 207,139
207,139+1,074

× 100 ≈ 99.484% of the IBM-related applications

are classified into the same assignee. The latter problem implies that different inventors with

the same name might be mistakenly recognized as the same inventor, which could generate

seemingly frequent moves. To cope with possible overdetection of moves, we focus on the top

inventors who moved fewer than eight times. This still leaves us with 59, 770 out of 60, 294

unique top inventors—more than 59,770
60,294

× 100 ≈ 99.131% of the inventors who applied for

patents between two consecutive years and who qualified as top inventors at least once.
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State taxes and tax credits. Data on U.S. state taxes and tax credits for 1976-2019

are obtained from openICPSR (https://www.openicpsr.org/openicpsr/project/113057/

version/V1/view). Summary statistics are presented in the Online Appendix for Moretti and

Wilson (2017).

Employment data. The employment data are taken from the County Business Patterns

(CBP) database (http://fpeckert.me/cbp/). Eckert et al. (2021) provide a detailed descrip-

tion of the data. Since the original employment data are at the county level, we aggregate

them at the commuting zone level. We use the 2012 NAICS codes 31-33 to obtain the number

of employees for manufacturing, code 52 for finance and insurance, code 54 for professional,

scientific, and technical services, and code 55 for management of companies and enterprises.

Trade secrets index and state-level uniform laws data. The trade secrets index is

compiled by Png (2017a, b). Each state has six binary scores regarding the strength of legal

protection of trade secrets under the common law and the Uniform Trade Secrets Act (UTSA).

The trade secrets index used in our analysis is the sum of the six scores divided by six, which

takes a value between zero and one. Data on state-level uniform laws such as the Uniform

Determination of Death Act (UDDA), Uniform Federal Lien Registration Act (UFLRA), and

Uniform Fraudulent Transfer Act (UFTA) are provided by Png (2017b).

Data for state tax competition analysis. Data on the socio-politico-economic character-

istics used in the state tax competition analysis are taken from multiple sources. The data on

population for various age and race groups are from the “U.S. Intercensal County Population

Data by Age, Sex, Race, and Hispanic Origin” web page (https://www.nber.org/research/

data/us-intercensal-county-population-data-age-sex-race-and-hispanic-origin)

operated by NBER. The key economic and state finance data are from the “State Economic

and Government Finance Data” web page (https://doi.org/10.7910/DVN/CJBTGD) pro-

vided by Klarner (2015). The political party affiliation of each state governor is from the

National Governors Association web page (https://www.nga.org/governors/).
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A.2 Other summary statistics

Table A1: Summary statistics at the commuting zone level (other variables).

mean sd min max
ATR 0.238 0.030 0.164 0.330
ATR99 0.315 0.032 0.244 0.410
ATR50 0.108 0.027 0.033 0.169
CITR 0.064 0.027 0.000 0.138
ITC 0.009 0.023 0.000 0.100
RTC 0.022 0.038 0.000 0.250
TSI 0.340 0.235 0.000 0.767
UDDA 0.490 0.500 0.000 1.000
UFLRA 0.596 0.491 0.000 1.000
UFTA 0.522 0.500 0.000 1.000
MFG 22,398.524 61,797.154 0.000 1,152,493.572
FIN 7,304.904 27,786.213 0.000 541,668.019
PRO 7,342.944 31,249.756 0.000 616,664.500
MNG 3,463.924 13,608.328 0.000 168,097.910
CITES ALL 21.966 347.065 0.000 17,344.000
CITES EXT 2.098 37.218 0.000 2,215.000
Number of observations 23,628
Number of commuting zones 716
Number of years 33

Notes: Summary statistics are based on the data described in Section 2 for the years 1977 to 2009. ATR
(ATR99, ATR50), CITR, ITC, RTC, TSI, UDDA, UFLRA, and UFTA stand for the individual income average
tax rate at the ninety-fifth (ninety-ninth, fiftieth) percentile of the U.S. income distribution, corporate income
tax rate, investment tax credits, R&D tax credits, trade secrets index, Uniform Determination of Death Act,
Uniform Federal Lien Registration Act, and Uniform Fraudulent Transfer Act, respectively. MFG, FIN, PRO,
and MNG denote the employment in “manufacturing,” “finance and insurance,” “professional, scientific, and
technical services,” and “management of companies and enterprises.” CITES ALL and CITES EXT are the
number of citations by all local inventors and the number of citations by external inventors.

Table A2: Summary statistics at the state level (other variables).

mean sd min max
ATR 0.240 0.030 0.164 0.330
ATR99 0.317 0.032 0.244 0.410
ATR50 0.108 0.026 0.033 0.169
CITR 0.067 0.028 0.000 0.138
ITC 0.009 0.022 0.000 0.100
RTC 0.024 0.044 0.000 0.250
TSI 0.339 0.227 0.000 0.767
UDDA 0.522 0.500 0.000 1.000
UFLRA 0.580 0.494 0.000 1.000
UFTA 0.522 0.500 0.000 1.000
Number of observations 1,584
Number of states 48
Number of years 33

Notes: Summary statistics are based on the data described in Section 2 for the years 1977 to 2009. ATR
(ATR99, ATR50), CITR, ITC, RTC, TSI, UDDA, UFLRA, and UFTA stand for the individual income average
tax rate at the ninety-fifth (ninety-ninth, fiftieth) percentile of the U.S. income distribution, corporate income
tax rate, investment tax credits, R&D tax credits, trade secrets index, Uniform Determination of Death Act,
Uniform Federal Lien Registration Act, and Uniform Fraudulent Transfer Act, respectively.
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Appendix B Derivation

B.1 Derivation of equation (3)

To derive (3), we first solve (2) for lnwdt − lnwot as follows

lnwdt − lnwot = β[ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)] + [Z ′
d − Z ′

o]− C ′
od − ln(P ′

odt/P
′
oot).

Plugging this expression into (1) and setting ln(P ′
odt/P

′
oot) = ln(Podt/Poot), we obtain

ln(Podt/Poot) = α[ln(1− τσ(d)t)− ln(1− τσ(o)t)]

+α{β[ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)] + [Z ′
d − Z ′

o]− C ′
od − ln(Podt/Poot)}

+[Zd − Zo]− Cod,

which yields

(1 + α) ln(Podt/Poot) = α[ln(1− τσ(d)t)− ln(1− τσ(o)t)]

+α{β[ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)] + [Z ′
d − Z ′

o]− C ′
od}

+[Zd − Zo]− Cod.

We thus have

ln(Podt/Poot) = α
1+α

[ln(1− τσ(d)t)− ln(1− τσ(o)t)] +
αβ
1+α

[ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)]

+ 1
1+α

[Zd − Zo] +
α

1+α
[Z ′

d − Z ′
o]− 1

1+α
[Cod + αC ′

od]

= α
1+α

[ln(1− τσ(d)t)− ln(1− τσ(o)t)] +
αβ
1+α

[ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)]

+ 1
1+α

[Zd + αZ ′
d]− 1

1+α
[Zo + αZ ′

o]− 1
1+α

[Cod + αC ′
od].

Setting η = α
1+α

, η′ = αβ
1+α

, γd =
1

1+α
[Zd + αZ ′

d], γo = − 1
1+α

[Zo + αZ ′
o], and γod = − 1

1+α
[Cod +

αC ′
od], the foregoing equation can be rewritten as

ln(Podt/Poot) = η[ln(1− τσ(d)t)− ln(1− τσ(o)t)] + η′[ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)]

+γd + γo + γod. (19)

Adding an error term uodt to the right-hand side of (19), we obtain the expression in (3).
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B.2 Derivation of equation (5)

We derive the predicted probability P̂odt in (5) that top inventors migrate from o to d in year

t by the following three steps. First, equation (19) implies that for any pair of commuting

zones c and d, Poct and Podt must satisfy

Poct

Podt

=
exp{η ln(1− τσ(c)t) + η′ ln(1− τ ′σ(c)t) + γc + γoc}
exp{η ln(1− τσ(d)t) + η′ ln(1− τ ′σ(d)t) + γd + γod}

.

Second, let C denote the set of all commuting zones including origin commuting zone o and

destination commuting zone d. Since
∑

c∈C Poct = Poot +Podt +
∑

c∈C,c̸={o,d} Poct = 1 holds, we

have ∑
c∈C Poct

Podt

=
1

Podt

=

∑
c∈C exp{η ln(1− τσ(c)t) + η′ ln(1− τ ′σ(c)t) + γc + γoc}
exp{η ln(1− τσ(d)t) + η′ ln(1− τ ′σ(d)t) + γd + γod}

,

so that

Podt =
exp{η ln(1− τσ(d)t) + η′ ln(1− τ ′σ(d)t) + γd + γod}∑
c∈C exp{η ln(1− τσ(c)t) + η′ ln(1− τ ′σ(c)t) + γc + γoc}

.

Finally, replacing the parameters with the estimates, η̂, η̂′, and {γ̂c, γ̂oc}c∈C, from (3) yields (5).

Appendix C Additional robustness checks

C.1 Alternative tax rates and alternative detection of top inventor migrations

In this subsection, we conduct four sets of robustness checks. We first consider an alternative

case, where we use the ATR for a hypothetical taxpayer at the ninety-ninth percentile of the

U.S. income distribution. We then use the statutory marginal tax rates (MTRs) and turn to

the case of the average property tax rates (APTRs). We finally consider alternative detection

of top inventor migrations.

Alternative average tax rates (ATRs). In the log odds regressions in Section 3, τσ(d)t

is proxied by the ATR for a hypothetical taxpayer at the ninety-fifth percentile of the U.S.

income distribution. Table C1 reports an alternative case where we use the ninety-ninth

percentile. Using the specification in Column 2 of Table C1, we construct the three types of

Bartik instruments as in Section 4 and check the robustness of our main results in Table 5.

As seen from Table C2, the semi-elasticities are virtually identical to those in Table 5: Panel
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(a) shows that an inflow of a top inventor raises the patent productivity of all local inventors

by approximately 6%, and Panel (b) shows that a top inventor inflow enhances local patent

productivity by approximately 4% when we focus on external inventors.

Table C1: The impact of tax differences on the migration of top inventors (ATR99).

(1) (2) (3) (4)
∆ ln(1−ATR99) 2.340 2.504 2.382 2.455

(1.315) (1.198) (1.150) (0.966)
∆ ln(1− CITR) -0.440 -0.251 -0.147 -0.018

(1.115) (1.063) (0.841) (0.750)
∆ ln(1 + ITC) -0.700 -0.913 -0.549 -0.711

(0.719) (0.672) (0.948) (0.666)
∆ ln(1 + RTC) 0.223 0.234 0.319 0.124

(0.445) (0.392) (0.324) (0.285)

CZ pair FE Yes Yes No No
Origin CZ FE and No No Yes Yes

destination CZ FE
Year FE Yes No Yes No
Region pair × year FE No Yes No Yes

Observations 4,866 4,866 7,226 7,225

R
2
(total) 0.892 0.902 0.906 0.916

R
2
(within) 0.392 0.451 0.405 0.003

Notes: The dependent variable in each column is the log odds ratio in equation (3). ATR99, CITR, ITC,
and RTC stand for the individual income average tax rate at the ninety-ninth percentile, corporate income
tax rate, investment tax credits, and R&D tax credits, respectively. ∆ ln(1 − ATR99) is defined as ln(1 −
ATR99σ(d)t)− ln(1−ATR99σ(o)t). ∆ ln(1−CITR), ∆ ln(1+ITC), and ∆ ln(1+RTC) are defined analogously.
Cluster-robust standard errors are in parentheses.

Using this alternative ATR, we also conduct the dynamic analysis in Figure C1. Panel (a)

illustrates the dynamic impact of a top inventor inflow on the patent productivity of all local

inventors, which includes not only the gains from internal knowledge sharing within assignees

and between co-inventors but also the gains from external knowledge spillovers. Panel (b)

focuses on the latter gains. In both cases, the results are quite similar to those in Figure 6:

the pre-event semi-elasticities are close to zero and the post-event semi-elasticities increase

to approximately 0.05, which ensures the main results from our static model. We report the

numbers that we use in Figure C1 and the associated first-stage statistics in Tables C13 and

C14, respectively.

Statutory marginal tax rates (MTRs). In Section 3, we examine the effect of ATRs

on the migration of top inventors as in Moretti and Wilson (2017). In Section 4, we further
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Table C2: The impact of top inventor inflows on local patent productivity (ATR99).

(1) (2) (3) (4) (5) (6) (7)
(a) All local inventors
Top inventor inflows 0.044 0.064 0.062 0.062 0.065 0.059 0.060

(0.007) (0.013) (0.012) (0.012) (0.014) (0.013) (0.012)
ln(1−ATR99) 2.580 2.625 2.604 2.658

(0.693) (0.699) (0.697) (0.699)

Effective F statistic 36.605 33.598 33.179 52.203 35.170 35.141
τ = 5% 37.418 31.742 34.735 37.418 30.971 33.112
τ = 10% 23.109 19.781 21.385 23.109 19.330 20.431
τ = 20% 15.062 13.025 13.894 15.062 12.751 13.309
τ = 30% 12.039 10.478 11.086 12.039 10.269 10.637

(b) External inventors
Top inventor inflows 0.027 0.044 0.043 0.044 0.041 0.035 0.038

(0.004) (0.010) (0.009) (0.009) (0.011) (0.010) (0.010)
ln(1−ATR99) 2.142 2.178 2.136 2.160

(0.617) (0.621) (0.618) (0.619)

Effective F statistic 36.605 33.598 33.179 52.203 35.170 35.141
τ = 5% 37.418 31.713 34.738 37.418 30.948 33.112
τ = 10% 23.109 19.764 21.386 23.109 19.318 20.431
τ = 20% 15.062 13.016 13.895 15.062 12.744 13.309
τ = 30% 12.039 10.471 11.086 12.039 10.263 10.636

CZ FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes No No No
State × year FE No No No No Yes Yes Yes

Observations 23,628 23,628 23,628 23,463 23,562 23,562 23,397

Notes: The coefficient on top inventor inflows is converted to semi-elasticity. ATR99 stands for the individual
income average tax rate at the ninety-ninth percentile. The coefficient on ln(1 − ATR99) is converted to
elasticity. Column 1 does not control for the endogeneity of top inventor inflows. Column 2 uses Bdt as an
instrument. Column 3 uses Bdt and Bσ

dt as instruments. Column 4 uses Bdt, B
σ
dt, and Bν

dt as instruments.
Columns 5-7 replace ln(1−ATR99) in Columns 2-4 with state × year FE. Cluster-robust standard errors are
in parentheses.

derive the Bartik instruments from the migration identity to investigate the impact of top

inventor inflows on local patent productivity.

To assess the robustness of our findings, we replace the ATRs with the statutory marginal

tax rates (MTRs) at the ninety-fifth percentile of the U.S. income distribution and reproduce

the migration analysis in Table 4 and the productivity analysis in Table 5. As seen from

Table C3, the effect of tax differences on the migration of top inventors is consistent with

the results in Tables 4. Table C4 further shows that the impact of a top inventor inflow on

local patent productivity remains stable, thus suggesting that our main results in Table 5 are

robust regardless of whether we use the average or marginal tax rates.
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Figure C1: IV event study regressions (ATR99).

(a) all local inventors
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Notes: Panels (a) and (b) illustrate the dynamic impacts of a top inventor inflow on the patent productivity
of all local inventors and that of external inventors, respectively. In each panel, IV ES1 uses Bdt and Bσ

dt as
instruments and IV ES2 uses Bdt, B

σ
dt, and Bν

dt as instruments.

Table C3: The impact of tax differences on the migration of top inventors (MTR).

(1) (2) (3) (4)
∆ ln(1−MTR) 6.842 6.623 5.937 5.979

(1.557) (1.245) (1.158) (1.000)
∆ ln(1− CITR) -0.990 -0.674 -0.576 -0.394

(1.044) (0.981) (0.801) (0.705)
∆ ln(1 + ITC) -0.329 -0.518 -0.273 -0.422

(0.691) (0.642) (0.950) (0.653)
∆ ln(1 + RTC) 0.162 0.204 0.326 0.156

(0.441) (0.384) (0.320) (0.277)

CZ pair FE Yes Yes No No
Origin CZ FE and No No Yes Yes

destination CZ FE
Year FE Yes No Yes No
Region pair × year FE No Yes No Yes

Observations 4,866 4,866 7,226 7,225

R
2
(total) 0.894 0.904 0.908 0.917

R
2
(within) 0.404 0.461 0.413 0.016

Notes: The dependent variable in each column is the log odds ratio in equation (3). MTR, CITR, ITC, and
RTC stand for statutory marginal tax rate at the ninety-fifth percentile, corporate income tax rate, investment
tax credit, and R&D tax credit, respectively. ∆ ln(1−MTR) is defined as ln(1−MTRσ(d)t)−ln(1−MTRσ(o)t).
∆ ln(1 − CITR), ∆ ln(1 + ITC), and ∆ ln(1 + RTC) are defined analogously. Cluster-robust standard errors
are in parentheses.
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Table C4: The impact of top inventor inflows on local patent productivity (MTR).

(1) (2) (3) (4) (5) (6) (7)
(a) All local inventors
Top inventor inflows 0.042 0.061 0.060 0.059 0.063 0.058 0.059

(0.007) (0.013) (0.012) (0.011) (0.014) (0.012) (0.012)
ln(1−MTR) 3.368 3.134 3.229 3.268

(0.783) (0.790) (0.781) (0.781)

Effective F statistic 39.387 35.309 35.008 50.760 37.522 37.501
τ = 5% 37.418 31.707 34.385 37.418 30.993 32.442
τ = 10% 23.109 19.761 21.177 23.109 19.344 20.035
τ = 20% 15.062 13.014 13.766 15.062 12.760 13.065
τ = 30% 12.039 10.470 10.987 12.039 10.276 10.448

(b) External inventors
Top inventor inflows 0.027 0.041 0.040 0.041 0.036 0.038 0.037

(0.005) (0.010) (0.009) (0.009) (0.010) (0.010) (0.009)
ln(1−MTR) 2.925 2.743 2.779 2.756

(0.678) (0.684) (0.681) (0.680)

Effective F statistic 39.387 35.309 35.008 50.760 37.514 37.489
τ = 5% 37.418 31.707 34.385 37.418 30.996 32.440
τ = 10% 23.109 19.761 21.177 23.109 19.345 20.034
τ = 20% 15.062 13.014 13.766 15.062 12.761 13.064
τ = 30% 12.039 10.470 10.987 12.039 10.276 10.448

CZ FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes No No
State × year FE No No No No Yes Yes Yes

Observations 23,628 23,628 23,628 23,463 23,562 23,562 23,397

Notes: The coefficient on top inventor inflows is converted to semi-elasticity. MTR stands for the statutory
marginal tax rate at the ninety-fifth percentile. The coefficient on ln(1 − MTR) is converted to elasticity.
Column 1 does not control for the endogeneity of top inventor inflows. Column 2 uses Bdt as an instrument.
Column 3 uses Bdt and Bσ

dt as instruments. Column 4 uses Bdt, B
σ
dt, and Bν

dt as instruments. Columns 5-7
replace ln(1−MTR) in Columns 2-4 with state × year FE. Cluster-robust standard errors are in parentheses.

Average property tax rates (APTRs). Since top inventors may consider not only in-

dividual income taxes but also property taxes, we check the robustness of our results by

incorporating both taxes into our location choice model. However, as pointed out by Moretti

and Wilson (2017), there are no comprehensive panel data on effective property taxes. We

thus follow their approach and measure the property taxes for top inventors by the average

property tax rates (APTRs). The APTR in a county represents the proportion of income

that an average individual residing in that county pays for property taxes. We compute this

by dividing the total property tax revenue of a county by the total personal income of its

residents. The county-level property tax revenue data are obtained from the Government
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Finance Database (see Pierson et al. 2015).42 The personal income data are sourced from

the U.S. Bureau of Economic Analysis (BEA). We calculate the APTR for each commuting

zone by weighting the county-level APTRs by their respective population shares within each

commuting zone.

To estimate the impact of the property tax rates on top inventor migrations, we replace the

income tax difference η[ln(1−τσ(d)t)− ln(1−τσ(o)t)] in equation (3) with η[ln(1−τσ(d)t−τ pdt)−

ln(1− τσ(o)t − τ pot)], where τ
p
dt and τ

p
ot denote the property tax rates in destination and origin

commuting zones in period t, respectively. We assume that τσ(d)t and τσ(o)t are approximated

by the ATRs paid by individuals at the ninety-fifth percentile of the U.S. income distribution,

and that τ pdt and τ
p
ot are proxied by the APTRs, as in Moretti and Wilson (2017).

Table C5: The impact of tax differences on the migration of top inventors (APTR).

(1) (2) (3) (4)
∆ ln(1−ATR−APTR) 6.503 6.219 5.553 5.729

(1.477) (1.322) (1.244) (1.063)
∆ ln(1− CITR) -0.720 -0.479 -0.510 -0.355

(1.072) (1.017) (0.805) (0.714)
∆ ln(1 + ITC) -0.127 -0.354 -0.126 -0.282

(0.726) (0.678) (0.980) (0.680)
∆ ln(1 + RTC) 0.243 0.251 0.309 0.107

(0.443) (0.393) (0.323) (0.281)

CZ pair FE Yes Yes No No
Origin CZ FE and No No Yes Yes

destination CZ FE
Year FE Yes No Yes No
Region pair × year FE No Yes No Yes

Observations 4,852 4,852 7,204 7,203

R
2
(total) 0.893 0.903 0.907 0.917

R
2
(within) 0.398 0.456 0.409 0.010

Notes: The dependent variable in each column is the log odds ratio in equation (3). ATR, CITR, ITC, RTC,
and APTR stand for the individual income average tax rate at the ninety-fifth percentile, corporate income
tax rate, investment tax credit, R&D tax credit, and average property tax rate, respectively. ∆ ln(1−ATR−
APTR) is defined as ln(1−ATRσ(d)t−APTRdt)− ln(1−ATRσ(o)t−APTRot). ∆ ln(1−CITR), ∆ ln(1+ITC),
and ∆ ln(1 + RTC) are defined analogously. Cluster-robust standard errors are in parentheses.

Table C5 presents the estimation results. The result for each specification shows that top

inventors respond to the tax difference, ∆ ln(1−ATR−APTR). The coefficient on this term

is similar to the coefficient on ∆ ln(1− ATR) in Table 4, which ensures our previous results.

42The database is available at https://willamette.edu/mba/research-impact/public-datasets/.
When the property tax revenue data for a specific county and year is missing, we use an interpolated value
based on data from other years for that county.
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Table C6: The impact of top inventor inflows on local patent productivity (APTR).

(1) (2) (3) (4) (5) (6) (7)
(a) All local inventors
Top inventor inflows 0.043 0.064 0.062 0.062 0.065 0.059 0.060

(0.007) (0.013) (0.012) (0.012) (0.014) (0.012) (0.012)
ln(1−ATR−APTR) 1.638 1.564 1.574 1.625

(0.936) (0.920) (0.923) (0.936)

Effective F statistic 36.829 31.766 31.443 50.188 34.187 34.145
τ = 5% 37.418 30.970 34.518 37.418 31.322 32.916
τ = 10% 23.109 19.328 21.241 23.109 19.535 20.324
τ = 20% 15.062 12.749 13.794 15.062 12.876 13.249
τ = 30% 12.039 10.266 11.003 12.039 10.364 10.593

(b) External inventors
Top inventor inflows 0.027 0.043 0.042 0.044 0.041 0.036 0.038

(0.005) (0.010) (0.009) (0.009) (0.011) (0.010) (0.010)
ln(1−ATR−APTR) 0.947 0.889 0.887 0.888

(0.750) (0.738) (0.740) (0.749)

Effective F statistic 36.829 31.766 31.443 50.188 34.187 34.145
τ = 5% 37.418 30.971 34.522 37.418 31.284 32.915
τ = 10% 23.109 19.328 21.243 23.109 19.514 20.323
τ = 20% 15.062 12.749 13.795 15.062 12.864 13.249
τ = 30% 12.039 10.266 11.004 12.039 10.355 10.593

CZ FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes No No No
State × year FE No No No No Yes Yes Yes

Observations 23,584 23,584 23,584 23,419 23,562 23,562 23,397

Notes: The coefficient on top inventor inflows is converted to semi-elasticity. ATR and APTR stand for the
individual income average tax rate at the ninety-fifth percentile and average property tax rate, respectively.
The coefficient on ln(1−ATR−APTR) is converted to elasticity. Column 1 does not control for the endogeneity
of top inventor inflows. Column 2 uses Bdt as an instrument. Column 3 uses Bdt and Bσ

dt as instruments.
Column 4 uses Bdt, B

σ
dt, and Bν

dt as instruments. Columns 5-7 replace ln(1−ATR−APTR) in Columns 2-4
with state× year FE. Cluster-robust standard errors are in parentheses.

Table C6 presents the estimated effects of top inventor inflows on local patent productivity,

assuming that the property taxes paid by these top inventors can be proxied by the APTRs.

The results are nearly identical to the ones in Table 5 obtained from the specifications without

APTRs, thus showing the robustness of our main findings.
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Alternative detection of top inventor migrations. As explained in Section 2, we detect

the migration of a top inventor if the commuting zone of residence of that top inventor recorded

in the patent application data differs between two consecutive years. Since the status of a top

inventor varies from year to year, we consider the migration of inventors who qualify as top

inventors in the first year as a baseline case. However, this does not imply that the migrating

inventors retain the status of a top inventor in the year following their move. Consequently,

our baseline detection of top inventor migrations includes the cases where inventors experience

a decline in patent productivity after migration. Although such instances make up less than

5% of all top inventor migrations, inventors whose productivity declines may have a different

impact on local inventors compared to other inventors whose productivity remains high.

Table C7: The impact of tax differences on the migration of top inventors (alternative detec-
tion of top inventor migrations).

(1) (2) (3) (4)
∆ ln(1−ATR) 7.384 6.933 6.127 6.373

(1.655) (1.445) (1.317) (1.126)
∆ ln(1− CITR) 0.046 0.471 -0.089 0.202

(1.147) (1.084) (0.875) (0.754)
∆ ln(1 + ITC) 0.253 -0.017 0.197 0.016

(0.757) (0.706) (1.018) (0.696)
∆ ln(1 + RTC) 0.338 0.352 0.341 0.156

(0.452) (0.404) (0.329) (0.286)

CZ pair FE Yes Yes No No
Origin CZ FE and No No Yes Yes

destination CZ FE
Year FE Yes No Yes No
Region pair × year FE No Yes No Yes

Observations 4,702 4,702 6,969 6,968

R
2
(total) 0.893 0.904 0.906 0.916

R
2
(within) 0.398 0.461 0.406 0.012

Notes: The dependent variable in each column is the log odds ratio in equation (3). ATR, CITR, ITC, and
RTC stand for the individual income average tax rate at the ninety-fifth percentile, corporate income tax
rate, investment tax credit, and R&D tax credit, respectively. ∆ ln(1−ATR) is defined as ln(1−ATRσ(d)t)−
ln(1−ATRσ(o)t). ∆ ln(1−CITR), ∆ ln(1+ ITC), and ∆ ln(1+RTC) are defined analogously. Cluster-robust
standard errors are in parentheses.

To address this issue, we redefine the migration of top inventors by focusing only on

those who retain the status of a top inventor for two consecutive years before and after their

migrations. We then re-estimate our models using this more stringent criterion to examine

how top inventor inflows affect local patent productivity. Table C7 presents the results of
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the tax-induced top inventor migrations, which replicate those in Table 4 reasonably well.

Table C8 reports the impacts of top inventor inflows on local patent productivity, which are

quite similar to those in Table 5. Thus, we may conclude that our main results are robust to

this alternative detection of top inventor migrations.

Table C8: The impact of top inventor inflows on local patent productivity (alternative detec-
tion of top inventor migrations).

(1) (2) (3) (4) (5) (6) (7)
(a) All local inventors
Top inventor inflows 0.044 0.065 0.063 0.062 0.070 0.063 0.064

(0.007) (0.013) (0.012) (0.012) (0.015) (0.013) (0.013)
ln(1−ATR) 6.030 5.898 5.876 5.992

(1.040) (1.042) (1.040) (1.040)

Effective F statistic 39.878 31.699 31.269 55.801 33.862 33.393
τ = 5% 37.418 32.620 34.839 37.418 32.003 33.012
τ = 10% 23.109 20.297 21.470 23.109 19.935 20.397
τ = 20% 15.062 13.342 13.965 15.062 13.121 13.307
τ = 30% 12.039 10.721 11.149 12.039 10.552 10.644

(b) External inventors
Top inventor inflows 0.029 0.045 0.043 0.044 0.046 0.040 0.042

(0.004) (0.010) (0.009) (0.009) (0.012) (0.011) (0.010)
ln(1−ATR) 4.772 4.667 4.612 4.587

(0.864) (0.867) (0.863) (0.856)

Effective F statistic 39.878 31.699 31.269 55.801 33.862 33.393
τ = 5% 37.418 32.614 34.840 37.418 31.987 33.012
τ = 10% 23.109 20.293 21.471 23.109 19.927 20.397
τ = 20% 15.062 13.340 13.966 15.062 13.116 13.307
τ = 30% 12.039 10.719 11.150 12.039 10.548 10.644

CZ FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes No No No
State × year FE No No No No Yes Yes Yes

Observations 23,628 23,628 23,628 23,463 23,562 23,562 23,397

Notes: The coefficient on top inventor inflows is converted to semi-elasticity. ATR stands for the individual
income average tax rate at the ninety-fifth percentile. The coefficient on ln(1−ATR) is converted to elasticity.
Column 1 does not control for the endogeneity of top inventor inflows. Column 2 uses Bdt as an instrument.
Column 3 uses Bdt and Bσ

dt as instruments. Column 4 uses Bdt, B
σ
dt, and Bν

dt as instruments. Columns 5-7
replace ln(1−ATR) in Columns 2-4 with state× year FE. Cluster-robust standard errors are in parentheses.
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C.2 Including other controls in our baseline specification

We further check the robustness of our main results in Table 5 by including additional con-

trols such as the ATR at the fiftieth percentile (ATR50), CITR, ITC, and RTC, as well as

manufacturing employment (MFG) at the commuting zone level. Table C9 shows that the

results for the cases with these additional controls are virtually identical to those in Table 5

for all specifications including both the FE and IV cases. In particular, the IV regressions

reported in Panel (a) show that an inflow of a top inventor raises the patent productivity of

all local inventors by approximately 6%. The IV regressions reported in Panel (b) show that

a top inventor inflow enhances local patent productivity by approximately 4% when we focus

on external inventors. These results suggest that our main results in Table 5 are robust to

the inclusion of these additional controls.

C.3 Dropping commuting zone × year observations with no patents

We check the robustness of our main results in Table 5 by dropping commuting zone × year

observations with no patents while retaining lnYdt, instead of using ln(1 + Ydt) as in the

baseline case. Table C10 shows that the results are qualitatively similar to those in Table 5

for all specifications including both the FE and IV cases. In particular, the IV regressions

reported in Panel (a) show that an inflow of a top inventor raises the patent productivity of all

local inventors by approximately 5-6%. The IV regressions reported in Panel (b) show that a

top inventor inflow enhances the patent productivity of external inventors by approximately

3-4%. These results can be viewed as constituting the lower bounds of productivity gains as

we focus on intensive margins by abstracting from extensive margins (i.e., by excluding the

possibility that commuting zones with no patents could potentially gain from top inventor

inflows, if any).
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Table C9: The impact of top inventor inflows on local patent productivity (other controls).

(1) (2) (3) (4) (5) (6) (7) (8)
(a) All local inventors
Top inventor inflows 0.043 0.063 0.060 0.060 0.044 0.066 0.064 0.064

(0.006) (0.013) (0.012) (0.011) (0.007) (0.013) (0.012) (0.011)
ln(1−ATR) 6.159 6.175 6.137 6.217 6.245 6.267 6.201 6.256

(1.179) (1.182) (1.179) (1.183) (1.147) (1.146) (1.144) (1.148)
ln(1−ATR50) -0.181 -0.285 -0.325 -0.234 -0.385 -0.510 -0.544 -0.437

(1.388) (1.376) (1.377) (1.379) (1.372) (1.358) (1.360) (1.363)
ln(1− CITR) 0.021 -0.176 -0.090 -0.134 -0.129 -0.354 -0.245 -0.288

(0.645) (0.647) (0.640) (0.654) (0.637) (0.638) (0.632) (0.646)
ln(1 + ITC) 0.127 0.160 0.133 0.120 0.257 0.300 0.262 0.254

(0.409) (0.408) (0.407) (0.407) (0.404) (0.403) (0.402) (0.402)
ln(1 + RTC) -0.100 -0.212 -0.174 -0.172 -0.095 -0.219 -0.171 -0.165

(0.251) (0.252) (0.248) (0.253) (0.250) (0.251) (0.247) (0.251)
ln(1 +MFG) 0.118 0.124 0.121 0.122

(0.025) (0.025) (0.025) (0.025)
Effective F statistic 38.554 33.272 32.878 38.751 33.214 32.814
τ = 5% 37.418 31.894 34.721 37.418 31.953 34.724
τ = 10% 23.109 19.871 21.381 23.109 19.905 21.384
τ = 20% 15.062 13.081 13.895 15.062 13.102 13.898
τ = 30% 12.039 10.521 11.088 12.039 10.537 11.091

(b) External inventors
Top inventor inflows 0.027 0.042 0.040 0.041 0.028 0.044 0.042 0.044

(0.004) (0.010) (0.009) (0.009) (0.004) (0.010) (0.009) (0.009)
ln(1−ATR) 4.790 4.802 4.756 4.690 4.847 4.864 4.805 4.734

(0.978) (0.983) (0.980) (0.977) (0.958) (0.961) (0.958) (0.958)
ln(1−ATR50) -0.127 -0.207 -0.255 -0.102 -0.264 -0.359 -0.418 -0.269

(1.181) (1.176) (1.175) (1.176) (1.170) (1.164) (1.163) (1.165)
ln(1− CITR) 0.325 0.174 0.228 0.153 0.225 0.055 0.124 0.047

(0.543) (0.544) (0.541) (0.551) (0.542) (0.543) (0.540) (0.550)
ln(1 + ITC) 0.272 0.298 0.277 0.293 0.359 0.392 0.364 0.387

(0.395) (0.395) (0.394) (0.393) (0.393) (0.393) (0.392) (0.392)
ln(1 + RTC) -0.050 -0.137 -0.103 -0.102 -0.047 -0.141 -0.100 -0.098

(0.218) (0.221) (0.218) (0.221) (0.218) (0.221) (0.218) (0.222)
ln(1 +MFG) 0.079 0.084 0.082 0.083

(0.020) (0.020) (0.020) (0.020)
Effective F statistic 38.554 33.272 32.878 38.751 33.214 32.814
τ = 5% 37.418 31.884 34.726 37.418 31.941 34.729
τ = 10% 23.109 19.865 21.384 23.109 19.899 21.387
τ = 20% 15.062 13.078 13.897 15.062 13.098 13.900
τ = 30% 12.039 10.519 11.089 12.039 10.534 11.093

CZ FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
State × year FE No No No No No No No No
Observations 23,628 23,628 23,628 23,463 23,628 23,628 23,628 23,463

Notes: The coefficient on top inventor inflows is converted to semi-elasticity. The other coefficients are
converted to elasticities. ATR (ATR50), CITR, ITC, RTC, and MFG stand for the individual income average
tax rate at the ninety-fifth (fiftieth) percentile, corporate income tax rate, investment tax credit, R&D tax
credit, and manufacturing employment, respectively. Column 1 does not control for the endogeneity of top
inventor inflows. Column 2 uses Bdt as an instrument. Column 3 uses Bdt and Bσ

dt as instruments. Column 4
uses Bdt, B

σ
dt, and Bν

dt as instruments. Columns 5-8 repeat the same specifications as Columns 1-4 with
ln(1 +MFG) at the commuting zone level. Cluster-robust standard errors are in parentheses.
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Table C10: The impact of top inventor inflows on local patent productivity (dropping zeros).

(1) (2) (3) (4) (5) (6) (7)
(a) All local inventors
Top inventor inflows 0.039 0.054 0.051 0.050 0.059 0.051 0.052

(0.006) (0.012) (0.010) (0.010) (0.013) (0.012) (0.011)
ln(1−ATR) 6.934 6.838 6.841 7.017

(1.257) (1.260) (1.259) (1.255)

Effective F statistic 37.096 32.976 32.657 49.965 34.258 34.170
τ = 5% 37.418 31.930 34.704 37.418 31.378 33.007
τ = 10% 23.109 19.892 21.372 23.109 19.569 20.377
τ = 20% 15.062 13.094 13.890 15.062 12.897 13.282
τ = 30% 12.039 10.531 11.085 12.039 10.380 10.619

CZ FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes No No No
State × year FE No No No No Yes Yes Yes

Observations 20,038 20,038 20,038 19,941 19,972 19,972 19,875

(b) External inventors
Top inventor inflows 0.023 0.034 0.032 0.033 0.035 0.029 0.031

(0.004) (0.009) (0.008) (0.008) (0.011) (0.009) (0.009)
ln(1−ATR) 5.450 5.380 5.357 5.340

(1.054) (1.056) (1.054) (1.044)

Effective F statistic 37.072 32.971 32.651 52.203 34.229 34.137
τ = 5% 37.418 31.917 34.706 37.418 31.350 32.995
τ = 10% 23.109 19.885 21.373 23.109 19.553 20.370
τ = 20% 15.062 13.090 13.891 15.062 12.888 13.278
τ = 30% 12.039 10.528 11.085 12.039 10.263 10.615

CZ FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes No No No
State × year FE No No No No Yes Yes Yes

Observations 19,903 19,903 19,903 19,806 19,837 19,837 19,740

Notes: The coefficient on top inventor inflows is semi-elasticity. ATR stands for the individual income average
tax rate at the ninety-fifth percentile. The coefficient on ln(1−ATR) is elasticity. Column 1 does not control
for the endogeneity of top inventor inflows. Column 2 uses Bdt as an instrument. Column 3 uses Bdt and
Bσ

dt as instruments. Column 4 uses Bdt, B
σ
dt, and Bν

dt as instruments. Columns 5-7 replace ln(1 − ATR) in
Columns 2-4 with state× year FE. Cluster-robust standard errors are in parentheses.
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C.4 An alternative measure of patent productivity: Patent quality

To examine the robustness of our main results, we further consider an alternative measure of

patent productivity. We adopt patent quality measured by patent market values in Kogan

et al. (2017). This approach allows us to consider alternative definitions of top inventors and

local patent productivity.

We first identify the top 5% of inventors based on this measure over the last ten years

and refer to them as top inventors as before. We then examine the effect of ATRs on their

migrations as in Table 4 and obtain qualitatively similar results (see Table C11). Although the

effect is somewhat weaker, those estimates are sufficient for constructing Bartik instruments

that are strong enough to pass the first stage tests.

Using the Bartik instruments thus obtained, we estimate the impact of a top inventor

inflow on local patent productivity as in Table 5 and find that it remains positive and sta-

tistically significant both for all local inventors and for external inventors (see Table C12).

Hence, we confirm the robustness of our main findings to this alternative measure of patent

productivity.

Table C11: The impact of tax differences on the migration of top inventors (patent quality).

(1) (2) (3) (4)
∆ ln(1−ATR) 3.934 3.334 3.614 4.228

(2.145) (2.032) (1.512) (1.410)
∆ ln(1− CITR) -0.648 -0.719 -0.316 -0.232

(1.410) (1.298) (1.006) (0.906)
∆ ln(1 + ITC) -0.508 -1.251 -0.784 -1.149

(0.718) (0.660) (1.030) (0.811)
∆ ln(1 + RTC) 0.621 0.321 0.802 0.594

(0.578) (0.517) (0.393) (0.363)

CZ pair FE Yes Yes No No
Origin CZ FE and No No Yes Yes

destination CZ FE
Year FE Yes No Yes No
Region pair × year FE No Yes No Yes

Observations 3,582 3,582 5,146 5,138

R
2
(total) 0.868 0.882 0.883 0.896

R
2
(within) 0.331 0.402 0.349 0.007

Notes: The dependent variable in each column is the log odds ratio in equation (3). ATR, CITR, ITC, and
RTC stand for the individual income average tax rate at the ninety-fifth percentile, corporate income tax
rate, investment tax credit, and R&D tax credit, respectively. ∆ ln(1−ATR) is defined as ln(1−ATRσ(d)t)−
ln(1−ATRσ(o)t). ∆ ln(1−CITR), ∆ ln(1+ ITC), and ∆ ln(1+RTC) are defined analogously. Cluster-robust
standard errors are in parentheses.
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Table C12: The impact of top inventor inflows on local patent productivity (patent quality).

(1) (2) (3) (4) (5) (6) (7)
(a) All local inventors
Top inventor inflows 0.070 0.113 0.114 0.116 0.115 0.120 0.122

(0.010) (0.024) (0.022) (0.022) (0.027) (0.024) (0.023)
ln(1−ATR) 9.840 9.707 9.723 9.897

(2.116) (2.107) (2.107) (2.120)

Effective F statistic 39.877 32.635 32.148 41.100 32.290 31.865
τ = 5% 37.418 28.588 34.316 37.418 30.199 33.395
τ = 10% 23.109 17.931 21.047 23.109 18.871 20.549
τ = 20% 15.062 11.895 13.621 15.062 12.465 13.346
τ = 30% 12.039 9.614 10.843 12.039 10.047 10.648

CZ FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes No No No
State × year FE No No No No Yes Yes Yes

Observations 23,628 23,628 23,628 23,463 23,562 23,562 23,397

(b) External inventors
Top inventor inflows 0.062 0.120 0.133 0.137 0.115 0.126 0.133

(0.014) (0.030) (0.024) (0.024) (0.034) (0.029) (0.029)
ln(1−ATR) 9.581 9.404 9.401 9.515

(1.995) (1.983) (1.984) (1.996)

Effective F statistic 39.877 32.635 32.148 41.100 32.290 31.865
τ = 5% 37.418 28.626 34.317 37.418 30.048 33.371
τ = 10% 23.109 17.953 21.047 23.109 18.786 20.535
τ = 20% 15.062 11.908 13.621 15.062 12.417 13.339
τ = 30% 12.039 9.623 10.843 12.039 10.012 10.642

CZ FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes No No No
State × year FE No No No No Yes Yes Yes

Observations 23,628 23,628 23,628 23,463 23,562 23,562 23,397

Notes: The coefficient on top inventor inflows is converted to semi-elasticity. ATR stands for the individual
income average tax rate at the ninety-fifth percentile. The coefficient on ln(1−ATR) is converted to elasticity.
Column 1 does not control for the endogeneity of top inventor inflows. Column 2 uses Bdt as an instrument.
Column 3 uses Bdt and Bσ

dt as instruments. Column 4 uses Bdt, B
σ
dt, and Bν

dt as instruments. Columns 5-7
replace ln(1−ATR) in Columns 2-4 with state× year FE. Cluster-robust standard errors are in parentheses.

C.5 Dynamic analysis

Tables C13 and C14 report the estimates from the IV event study regressions specified in

(10) and (11), where the first-stage regression is given in (12). Table C13 presents the esti-

mated coefficients {µ̂es
j }−2

j=−5 and {µ̂es
j }+5

j=0, which correspond to those illustrated in Figure 6.

Table C14 reports the associated first-stage statistics.
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Table C13: The dynamic impact of top inventor inflows on local patent productivity.

(1) (2) (3) (4) (5) (6) (7) (8)
Top inventor inflows (j = −5) -0.023 -0.020 0.001 0.000 -0.020 -0.018 0.004 0.003

(0.010) (0.008) (0.007) (0.006) (0.009) (0.008) (0.007) (0.006)
Top inventor inflows (j = −4) -0.019 -0.013 -0.007 -0.007 -0.021 -0.016 -0.008 -0.008

(0.014) (0.008) (0.011) (0.007) (0.011) (0.008) (0.009) (0.007)
Top inventor inflows (j = −3) -0.002 -0.001 0.006 0.008 -0.004 -0.001 0.006 0.009

(0.010) (0.009) (0.008) (0.007) (0.010) (0.009) (0.009) (0.007)
Top inventor inflows (j = −2) -0.018 -0.014 -0.004 -0.005 -0.018 -0.014 -0.003 -0.004

(0.010) (0.007) (0.009) (0.006) (0.008) (0.006) (0.008) (0.006)
Top inventor inflows (j = 0) 0.027 0.035 0.033 0.038 0.030 0.037 0.038 0.042

(0.012) (0.009) (0.011) (0.010) (0.011) (0.009) (0.012) (0.010)
Top inventor inflows (j = +1) 0.046 0.047 0.043 0.050 0.047 0.049 0.047 0.054

(0.015) (0.014) (0.014) (0.013) (0.015) (0.013) (0.015) (0.013)
Top inventor inflows (j = +2) 0.046 0.045 0.037 0.037 0.045 0.045 0.040 0.042

(0.013) (0.013) (0.012) (0.012) (0.013) (0.012) (0.012) (0.011)
Top inventor inflows (j = +3) 0.051 0.048 0.044 0.040 0.049 0.048 0.043 0.040

(0.012) (0.011) (0.011) (0.009) (0.012) (0.011) (0.011) (0.009)
Top inventor inflows (j = +4) 0.027 0.026 0.030 0.030 0.033 0.032 0.036 0.035

(0.014) (0.011) (0.013) (0.011) (0.013) (0.011) (0.014) (0.012)
Top inventor inflows (j = +5) 0.043 0.045 0.045 0.049 0.054 0.055 0.057 0.060

(0.013) (0.013) (0.013) (0.012) (0.013) (0.013) (0.014) (0.013)

Observations 15,752 15,642 15,752 15,642 15,752 15,642 15,752 15,642

Notes: Odd number columns use Bdt and Bσ
dt as instruments. Even number columns use Bdt, B

σ
dt, and Bν

dt

as instruments. Columns 1-4 use ATR (the individual income average tax rate at the ninety-fifth percentile),
whereas Columns 5-8 use ATR99 (the individual income average tax rate at the ninety-ninth percentile) as
robustness checks. The dependent variable in Columns 1, 2, 5, and 6 is the patent productivity for all
local inventors, whereas that in Columns 3, 4, 7, and 8 is the patent productivity for external inventors.
Cluster-robust standard errors are in parentheses.
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Table C14: First-stage statistics for the dynamic analysis.

(1) (2) (3) (4)
(a) Sanderson-Windmeijer (under identification)
Top inventor inflows (j = −5) 340.216 575.561 391.350 671.175
Top inventor inflows (j = −4) 156.024 284.008 160.880 248.067
Top inventor inflows (j = −3) 177.020 308.252 217.101 325.561
Top inventor inflows (j = −2) 163.037 223.759 211.554 254.252
Top inventor inflows (j = 0) 257.894 446.932 204.805 397.033
Top inventor inflows (j = +1) 442.020 477.121 372.415 463.968
Top inventor inflows (j = +2) 208.149 421.991 194.555 381.307
Top inventor inflows (j = +3) 255.615 465.129 277.758 503.246
Top inventor inflows (j = +4) 126.082 266.307 130.618 229.608
Top inventor inflows (j = +5) 271.808 417.144 216.519 338.164

(b) Sanderson-Windmeijer (weak instruments)
Top inventor inflows (j = −5) 30.805 27.280 35.435 31.812
Top inventor inflows (j = −4) 14.127 13.461 14.567 11.758
Top inventor inflows (j = −3) 16.028 14.610 19.658 15.431
Top inventor inflows (j = −2) 14.762 10.606 19.155 12.051
Top inventor inflows (j = 0) 23.351 21.183 18.544 18.818
Top inventor inflows (j = +1) 40.023 22.614 33.721 21.991
Top inventor inflows (j = +2) 18.847 20.001 17.616 18.073
Top inventor inflows (j = +3) 23.145 22.046 25.150 23.852
Top inventor inflows (j = +4) 11.416 12.622 11.827 10.883
Top inventor inflows (j = +5) 24.611 19.771 19.605 16.028

Notes: The Sanderson-Windmeijer tests are used for assessing our instruments since the IV event study model
involves multiple endogenous variables (Sanderson and Windmeijer, 2016). Panel (a) presents the chi-squared
test statistics for under-identification, while Panel (b) presents the F -test statistics for weak instruments. Odd
number columns use Bdt and Bσ

dt as instruments. Even number columns use Bdt, B
σ
dt, and Bν

dt as instruments.
Columns 1 and 2 use ATR (the individual income average tax rate at the ninety-fifth percentile), whereas
Columns 3 and 4 use ATR99 (the individual income average tax rate at the ninety-ninth percentile) as
robustness checks. In all specifications, the test statistic for each endogenous variable exceeds 10, which is
the commonly used rule-of-thumb value (Staiger and Stock, 1997).
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Appendix D State tax competition

We examine the possibility of strategic interactions among state governments by estimating

a reaction function, where the income tax in one state responds to the income taxes in other

states as follows (see, e.g., Brueckner, 2003):

τσt = ρ
∑
σ′ ̸=σ

ωσσ′τσ′t + βXσt−1 + χσ + χt + εσt. (20)

The dependent variable τσt is the tax rate in state σ in year t, and the term
∑

σ′ ̸=σ ωσσ′τσ′t

on the right-hand side is the weighted sum of the tax rates in the neighboring states with the

weight being ωσσ′ . Xσt−1 denotes a vector of socio-politico-economic characteristics for state

σ in year t− 1 (see Table D1).43 χσ and χt stand for state and year fixed effects, respectively,

and εσt is the error term.

Table D1: Summary statistics (state tax competition).

mean sd min max obs
log patent productivity 6.285 1.422 2.881 10.201 1,617
log population 15.011 1.009 12.951 17.430 1,617
share of black or African American population 0.114 0.121 0.002 0.705 1,617
share of population younger than 20 0.292 0.028 0.205 0.414 1,617
share of population older than 64 0.124 0.018 0.075 0.184 1,617
unemployment rate 5.919 2.046 2.342 17.350 1,617
log total income 18.015 1.185 15.010 21.186 1,617
log gross state product 18.191 1.170 15.106 21.403 1,617
democrat governor (dummy variable) 0.511 0.500 0.000 1.000 1,617
log tax revenue 15.291 1.159 12.318 18.581 1,584
log government debt 15.302 1.253 10.872 18.819 1,584
log government revenue 16.110 1.134 13.301 19.511 1,584

Notes: Summary statistics are based on the data described in Appendix A.1 for the years 1977 to 2009.

Our null hypothesis is that ρ = 0. If ρ ̸= 0 were to hold, there would be strategic tax

competition between state governments, which would induce interstate correlation between

taxes and productivity. In that case, the exclusion restrictions would be violated.

However, measuring ρ is challenging because state tax decisions are simultaneous. To

address the potential endogeneity problem that the main regressor
∑

σ′ ̸=σ ωσσ′τσ′t is correlated

with the error term εσt, we follow Kelejian and Prucha (1998) and use the weighted sum of

neighboring states’ socio-politico-economic characteristics as an instrument. Let Xσt−1 =

43When the state governments choose a tax rate, they observe the information on the socio-politico-economic
conditions in the previous year. We thus use the lagged variables Xσt−1.
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[x1,σt−1, · · · , xK,σt−1]
′, where xk,σt−1 is the k-th characteristic. We first generate the weighted

sum
∑

σ′ ̸=σ ωσσ′xk,σ′t−1 for each characteristic {xk,σt−1}Kk=1. These K instruments are then

used to estimate the predicted value of the weighted sum of neighboring states’ tax rates,∑
σ′ ̸=σ ωσσ′τσ′t, in the first-stage regression.

Estimating ωσσ′ is difficult due to lack of degrees of freedom. We thus consider several

alternative weights and examine the sensitivity of the estimates. In the baseline cases, we use

the following two types of weights. One is the first-order contiguity weight: ωσσ′ = 1 if state

σ′ is contiguous with state σ and ωσσ′ = 0 otherwise. The other is constructed such that it is

proportional to top inventor flows from state σ′ to state σ.44

Table D2 reports the regression results for the sample period 1977-2009.45 Columns 1-2

(Columns 3-4) use the first-order contiguity (top-inventor-inflow) weights, where Columns 2

and 4 include the lagged own-state patent productivity. In all cases, the estimated values of

ρ are not significantly different from zero at the conventional 5% level. These results imply

that there is neither strategic tax competition between states nor a direct tax response to

previous patent productivity within each state. We further apply a test by Montiel Olea and

Pflueger (2013) to each specification in Table D2. The effective F -statistics indicate that in

all cases we can reject the null hypothesis of a weak instrument at the conventional level.

We check the robustness of the results using the specification curve analysis as in Simon-

sohn et al. (2020). We consider different specifications of equation (20) by focusing on three

dimensions. First, we include three other weights discussed in footnote 44 in the specification

curve analysis. Second, we estimate the model for every possible combination of the variables

listed in Table D1. Last, since the model is overidentified, we use different combinations of

neighboring states’ characteristics as instruments, which allows us to explore the sensitivity

of the estimates.46

44In the specification curve analysis below, we consider three other weights: (i) the second-order contiguity
weight, i.e., ωσσ′ = 1 if state σ′ is contiguous with state σ or is contiguous with the states that are contiguous
with state σ; (ii) the inverse-distance weight, i.e., ωσσ′ is inversely related to the geographical distance between
σ and σ′; and (iii) the inverse-distance weight with a cutoff distance, i.e., the interstate effect is assumed to
be zero beyond 1000 miles. When estimating (20), all weights are normalized such that

∑
σ′ ̸=σ ωσσ′ = 1 for

any σ.
45We proxy τσt by the ATR at the ninety-fifth percentile in state σ in year t. We drop Washington D.C.

from the sample because some state characteristics are unavailable.
46Since the usual caveat on weak instruments is applicable here, we adopt only specifications for which the

null hypothesis of weak instruments is rejected.
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Table D2: State tax competition.

(1) (2) (3) (4)∑
σ′ ̸=σ ωσσ′τσ′t -0.163 0.027 -1.364 -1.071

(0.314) (0.260) (0.822) (0.797)
log patent productivity 0.005 0.005

(0.003) (0.003)
log population 0.016 0.016 0.017 0.013

(0.038) (0.033) (0.029) (0.029)
share of black or African American population 0.193 0.236 0.111 0.165

(0.107) (0.117) (0.120) (0.124)
share of population younger than 20 -0.175 -0.160 -0.192 -0.167

(0.179) (0.168) (0.165) (0.160)
share of population older than 64 0.024 0.029 0.051 0.088

(0.287) (0.249) (0.222) (0.212)
unemployment rate -0.000 -0.000 -0.000 -0.000

(0.001) (0.001) (0.001) (0.000)
log total income 0.003 -0.005 -0.009 -0.013

(0.032) (0.031) (0.028) (0.029)
log gross state product 0.029 0.028 0.036 0.036

(0.015) (0.016) (0.014) (0.014)
democrat governor 0.001 0.002 0.001 0.002

(0.001) (0.001) (0.001) (0.001)
log tax revenue -0.024 -0.027 -0.023 -0.025

(0.012) (0.011) (0.011) (0.010)
log government debt 0.000 -0.000 -0.000 -0.000

(0.002) (0.002) (0.002) (0.002)
log government revenue -0.002 0.001 -0.002 -0.000

(0.004) (0.003) (0.004) (0.003)

Effective F statistic 15.924 18.517 50.742 50.307
τ = 5% 26.392 26.689 25.159 25.143
τ = 10% 15.173 15.368 14.444 14.355
τ = 20% 9.191 9.320 8.745 8.639
τ = 30% 7.055 7.156 6.715 6.612

Observations 1,584 1,584 1,584 1,584

Notes: Columns 1-2 (Columns 3-4) use the first-order contiguity (top-inventor-inflow) weights. Columns 2
and 4 include the lagged own-state patent productivity lnYσt−1.

Figure D1: Specification curve (state tax competition).
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Notes: The specification curve is depicted using 30, 843 alternative specifications, as explained in Appendix
D. The vertical axis is the value of ρ̂.
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Figure D1 plots the specification curve for ρ̂ using 30, 843 alternative specifications. The

figure shows that the great majority of the estimated coefficients are not significantly different

from zero at the 5% level. Hence, we do not find strong evidence of strategic tax competition

between states during the sample period.

Appendix E Share exogeneity

E.1 Two main assumptions to ensure share exogeneity

We elaborate on the two main assumptions to ensure the share exogeneity. Recall that we let

Xdt = {τσ(d)t, δd, δt} in the main analysis, where τσ(d)t is the tax rate in state σ(d) in year t,

δd is the destination commuting zone fixed effect, and δt is the year fixed effect. We can then

rewrite (8) and (9) as

lnYdt = ϕsMdt + ξsτσ(d)t + δd + δt + εsdt (21)

Mdt = ψfBdt + ξfτσ(d)t + δd + δt + εfdt, (22)

where εsdt and ε
f
dt are error terms.

We impose the following two assumptions to ensure the share exogeneity, E(εsdtP̂odt|Xdt) =

0, for the IV regression (21) and (22). First, εsdt is mean zero conditional on Xdt, i.e.,

E(εsdt|τσ(d)t, δd, δt) = 0. (23)

This relies on E(εsdt) = 0 and εsdt ⊥ {τσ(d)t, δd, δt}, both of which are assumed to hold.47

Second, εsdt and other state taxes {τσ(c)t}c/∈σ(d) are independent conditional on Xdt, i.e.,
48

εsdt ⊥ τσ(c)t|{τσ(d)t, δd, δt} for c /∈ σ(d) and c, d ∈ C, (24)

which is the exclusion restriction when using Bdt as a Bartik instrument for the endogenous

variable Mdt. This assumption implies that, once we account for the local tax rate, the local

commuting zone fixed effect, and the year fixed effect, the local patent productivity shock

should be unaffected by the tax policies of other states. This would be satisfied in a situation

where local patent productivity primarily responds to its own local factors and conditions.

47A ⊥ B denote the independence of A and B.
48A ⊥ B|C denote the independence of A and B conditional on C.
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Under these assumptions, we can show that the share exogeneity, E(εsdtP̂odt|τσ(d)t, δd, δt) =

0, holds as follows. By the property of conditional expectations, we have

E(εsdtP̂odt|τσ(d)t, δd, δt) = E[E(εsdtP̂odt|{τσ(c)t}∀c∈C, δd, δt)|τσ(d)t, δd, δt].

The right-hand side of the above equation becomes:

E[E(εsdtP̂odt|{τσ(c)t}∀c∈C, δd, δt)|τσ(d)t, δd, δt]

= E[P̂odtE(ε
s
dt|{τσ(c)t}∀c∈C, δd, δt)|τσ(d)t, δd, δt]

= E[P̂odtE(ε
s
dt|τσ(d)t, δd, δt, {τσ(c)t}c/∈σ(d))|τσ(d)t, δd, δt]

= E[P̂odtE(ε
s
dt|τσ(d)t, δd, δt)|τσ(d)t, δd, δt]

= E[P̂odt · 0|τσ(d)t, δd, δt] = 0.

The first equality holds because P̂odt is a function of {τσ(c)t}∀c∈C.49 The second equality holds

because {τσ(c)t}∀c∈C = {τσ(d)t, {τσ(c)t}c/∈σ(d)}. The third equality is due to the conditional

independence assumption (24). The last equality comes from the conditional mean assump-

tion (23).

E.2 Alternative assumptions to ensure share exogeneity

As discussed in Section 4.3, the assumption in (23) may not hold due to a possible cor-

relation between εsdt and τσ(d)t through unobserved state-specific time-varying factors. To

alleviate potential concerns that state taxes may respond to local economic conditions or be

correlated with local economic policies affecting innovation, we follow Akcigit et al. (2022)

and employ alternative specifications with state × year fixed effects. Specifically, we replace

Xdt = {τσ(d)t, δd, δt} with X ′
dt = {δσ(d)t, δd, δt} and consider

lnYdt = ϕsMdt + δσ(d)t + δd + δt + ζsdt (25)

Mdt = ψfBdt + δσ(d)t + δd + δt + ζfdt, (26)

where ζsdt and ζ
f
dt are error terms. We then impose the following two assumptions to obtain

the share exogeneity, E(ζsdtP̂odt|X ′
dt) = 0, for the IV regression (25) and (26). First, ζsdt is

49One may worry that P̂odt in (5) depends not only on {τσ(c)t}∀c∈C but also on the set of fixed effects
{γ̂c, γ̂oc}∀c∈C obtained from the log odds regression in (3). We show in Appendix E.3 that, even in that case,
a similar procedure can be used to establish the share exogeneity by imposing an additional assumption.
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mean zero conditional on X ′
dt, i.e.,

E(ζsdt|δσ(d)t, δd, δt) = 0.

Second, ζsdt and other state taxes {τσ(c)t}c/∈σ(d) are independent conditional on X ′
dt, i.e.,

ζsdt ⊥ τσ(c)t|{δσ(d)t, δd, δt} for c /∈ σ(d) and c, d ∈ C.

Under these assumptions, we can show that the share exogeneity, E(ζsdtP̂odt|δσ(d)t, δd, δt) = 0,

holds in the same way as above.

E.3 Additional assumptions to ensure share exogeneity

One may worry that P̂odt in (5) depends not only on {τσ(c)t}∀c∈C but also on the set of fixed

effects {γ̂c, γ̂oc}∀c∈C obtained from the log odds regression in (3). Recall that when estimating

(3) we do not simultaneously use {γ̂c, γ̂oc}∀c∈C (see footnote 12). Since we consider {γ̂oc}∀c∈C

in the baseline specification, we focus on {γ̂oc}∀c∈C below.50 We now show that, even if we

take into account these fixed effects, a similar procedure as in Appendix E.1 can be used to

establish the share exogeneity by imposing an additional assumption.

We assume that the shock εsdt is independent of fixed effects γoc that are specific to each

pair of commuting zones conditional on {{τσ(c)t}∀c∈C, δd, δt}:

εsdt ⊥ γoc |{{τσ(c)t}∀c∈C, δd, δt} for o, c, d ∈ C. (27)

This would be satisfied in a situation where patent productivity shocks are unrelated to

factors affecting inventors’ migration costs or firms’ relocation costs between origin and desti-

nation commuting zones, after controlling for time invariant factors specific to the destination

commuting zone and for contemporaneous factors common to all commuting zones.

Using this additional assumption, as well as the conditional mean assumption (23) and

the conditional independence assumption (24) in Appendix E.1, we can show that the share

exogeneity, E(εsdtP̂odt|τσ(d)t, δd, δt) = 0, holds as follows. By the property of conditional expec-

tations, we have

E(εsdtP̂odt|τσ(d)t, δd, δt) = E[E(εsdtP̂odt|{γoc}∀o,c∈C, {τσ(c)t}∀c∈C, δd, δt)|τσ(d)t, δd, δt].

50The following discussion can be readily modified to accommodate the case with {γ̂c}∀c∈C .
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The right-hand side of the above equation becomes:

E[E(εsdtP̂odt|{γoc}∀o,c∈C, {τσ(c)t}∀c∈C, δd, δt)|τσ(d)t, δd, δt]

= E[P̂odtE(ε
s
dt|{γoc}∀o,c∈C, {τσ(c)t}∀c∈C, δd, δt)|τσ(d)t, δd, δt]

= E[P̂odtE(ε
s
dt|{τσ(c)t}∀c∈C, δd, δt)|τσ(d)t, δd, δt]

= E[P̂odtE(ε
s
dt|τσ(d)t, {τσ(c)t}c∈C,c/∈σ(d), δd, δt, )|τσ(d)t, δd, δt]

= E[P̂odtE(ε
s
dt|τσ(d)t, δd, δt)|τσ(d)t, δd, δt]

= E[P̂odt · 0|τσ(d)t, δd, δt] = 0.

The sequence of equalities can be explained as follows: The first equality holds because P̂odt

is a function of {γoc}∀o,c∈C and {τσ(c)t}∀c∈C. The second equality is derived from assumption

(27). The last two equalities follow from assumptions (24) and (23).

Appendix F Decomposition of the Bartik estimator

To assess the validity of the Bartik estimator, we follow Goldsmith-Pinkham et al. (2020) and

decompose it into the weighted sum of just-identified instrumental variable estimators, ϕ̂s =∑
o∈C ω̂oϕ̂

s
o, where ω̂o and ϕ̂s

o are the Rotemberg weight and the origin-specific productivity

effect, respectively.

Table F1 presents the summary statistics.51 Panel A shows that the Rotemberg weights

are positive in almost all cases. Panel B shows that the weights are highly correlated with the

variances of the shares var(P̂o), where the variances are taken across destination commuting

zones d and years t. Panel C reports origin commuting zones with the top five highest

Rotemberg weights. These commuting zones account for 26.3% of the total share.

Panel D provides the heterogeneous effects interpretation of the Bartik instrument. The

Bartik estimator can be rewritten as ϕ̂s ≈
∑

d ϕ
s
d

∑
o ωovod, where ϕ

s
d is the destination-specific

productivity effect and vod ≥ 0 is defined in the same way as in Proposition 4 in Goldsmith-

Pinkham et al. (2020). Since negative Rotemberg weights for some origin commuting zones o

may make
∑

o ωovod negative, the Bartik estimator ϕ̂s may become a nonconvex combination.

However, since Panel D shows that the positive part
∑

o|ω̂o>0 ω̂oϕ̂
s
o is much larger than the

51Since the decomposition is applicable to a single estimator, we focus on Bdt =
∑

o̸=d P̂odtIot.
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negative part
∑

o|ω̂o<0 ω̂oϕ̂
s
o, the negative Rotemberg weights are unlikely to be a problem for

the LATE (local average treatment effect)-like interpretation of the productivity effect.

We further assess the validity of the identification assumption. For each of the top five

origin commuting zones in Panel C of Table F1, Table F2 lists the top five destination

commuting zones by the predicted top inventor migration probability. The result that origin

and destination states differ in almost all cases is line with the assumption that the main source

of identifying variation comes from interstate top inventor migrations induced by individual

income tax differences across states.

We finally examine the relationship between the shares P̂odt associated with top five origin

commuting zones on the one hand and the location-specific characteristics that may be corre-

lated with the outcome Ydt on the other hand as suggested by Goldsmith-Pinkham et al. (2020).

For the shares P̂odt to satisfy the share exogeneity assumption in Section 4.3, they should not

be correlated with destination commuting zone characteristics. In our analysis, we use the

log of lagged employment in four sectors—“manufacturing,” “finance and insurance,” “profes-

sional, scientific, and technical services,” and “management of companies and enterprises”—in

commuting zone d as such characteristics.

Table F3 presents the results of this analysis, where we take the time difference of the

variables to control for commuting zone fixed effects. The first panel reports the correlation

between the shares related to the highest-weight origins and the log of lagged sectoral em-

ployment, which shows that the correlations are low in all cases. The second panel reports

the coefficients from regressing the shares related to the highest-weight origins on the lagged

sectoral employment while controlling for year fixed effects. The coefficients are not statisti-

cally significant at the conventional 5% level.52 Hence, the results in Table F3 suggest that

there is no compelling evidence of a significant correlation between the shares related to the

highest-weight origins and the log of lagged employment across sectors and commuting zones.

52The absence of significance at the 5% level does not necessarily imply that the true coefficient is zero.
Indeed, in one commuting zone, the null hypothesis is marginally rejected at the 10% level for some sectors.
However, since our analysis involves multiple regressions—each estimating the effect of lagged sectoral employ-
ment on the shares related to the highest-weight origin, the rejection of the null hypothesis, if any, might be
an artifact of multiple hypothesis testing rather than a genuine effect. To address spurious rejections arising
from multiple hypothesis testing, we employ two approaches. First, we report p-values adjusted to control
the family-wise error rate (FWER) using the Romano-Wolf multiple hypothesis correction method. Second,
we compute the sharpened false discovery rate (FDR) q-values using the code provided by Anderson (2008).
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Table F1: Summary of the decomposition of the Bartik estimator.

Panel A: Negative and positive weights
sum mean share

Negative -0.0002 -0.0000 0.0002
Positive 1.0002 0.0099 0.9998

Panel B: Correlations

ω̂o Io ϕ̂s
o F̂o var(P̂o)

ω̂o 1.0000
Io 0.9204 1.0000

ϕ̂s
o -0.0478 -0.0365 1.0000

F̂o 0.0372 -0.0603 -0.0268 1.0000

var(P̂o) 0.7865 0.7801 -0.0417 -0.0845 1.0000

Panel C: Top five Rotemberg weight commuting zones

ω̂o Io ϕ̂s
o 95% CI

19600 Bergen-Essex-Middlesex (NJ) 0.0838 186 0.0507 (0.033, 0.097)
24300 Cook-DuPage-Lake (IL) 0.0535 113 0.0617 (0.037, 0.170)
19400 Kings-Queens-New York (NY) 0.0448 63 0.0402 (0.011, 0.065)
19700 Philadelphia-Montgomery-Delaware (PA) 0.0414 68 0.0512 (0.033, 0.170)
16300 Allegheny-Westmoreland-Washington (PA) 0.0396 48 0.0358 (0.018, 0.059)

Panel D: Estimates of ϕ̂s
o for positive and negative weights

ω̂-weightd sum share of overall ϕ̂s mean
Negative 0.0001 0.0023 -0.5575
Positive 0.0417 0.9977 0.0478

Notes: Panel A presents the sum, mean, and share of the positive and negative Rotemberg weights. Panel B
reports correlations between the Rotemberg weights (ω̂o), the number of top inventors (Io = (1/|S|)

∑
t∈S Iot),

the just-identified coefficient estimates (ϕ̂s
o), the first stage F -statistic of the share (F̂o), and the variance of the

shares across destinations and years (var(P̂o)). Panel C reports the origin commuting zones with the top five
highest Rotemberg weights. The state of the representative county of each commuting zone is in parentheses,
where the representative county is the one with the largest number of inventors. The 95% confidence interval
is the weak instrument robust confidence interval as in Chernozhukhov and Hansen (2008) over a range from 0

to 0.5. In Panel D “ω̂-weighted sum” reports
∑

o|ω̂o<0 ω̂oϕ̂
s
o for negative and

∑
o|ω̂o>0 ω̂oϕ̂

s
o for positive cases,

and “share of overall ϕ̂s” reports (1/ϕ̂s)
∑

o|ω̂o<0 ω̂oϕ̂
s
o for negative and (1/ϕ̂s)

∑
o|ω̂o>0 ω̂oϕ̂

s
o for positive cases.
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Table F2: Destinations to which top inventors migrated from the highest-weight origins.

predicted
migration
probability

state of the
representative

county
(A) 19600 Bergen-Essex-Middlesex (the highest weight) NJ
38000 San Diego 0.0078 CA
37500 Santa Clara-Monterey-Santa Cruz 0.0073 CA
39400 King-Pierce-Snohomish 0.0071 WA
35801 Ada-Canyon-Elmore 0.0070 ID
37800 Alameda-Contra Costa-San Francisco 0.0069 CA

(B) 24300 Cook-DuPage-Lake (the second highest weight) IL
7100 Palm Beach-St. Lucie-Martin 0.0113 FL
9100 Fulton-DeKalb-Cobb 0.0091 GA
11304 Fairfax-Montgomery-Prince George’s 0.0081 MD
37000 Stanislaus-Merced-Tuolumne 0.0079 CA
37500 Santa Clara-Monterey-Santa Cruz 0.0079 CA

(C) 19400 Kings-Queens-New York (the third highest weight) NY
37500 Santa Clara-Monterey-Santa Cruz 0.0118 CA
18600 Albany-Saratoga-Rensselaer 0.0114 NY
37800 Alameda-Contra Costa-San Francisco 0.0111 CA
38801 Multnomah-Washington-Clackamas 0.0100 OR
39400 King-Pierce-Snohomish 0.0097 WA

(D) 19700 Philadelphia-Montgomery-Delaware (the fourth highest weight) PA
39400 King-Pierce-Snohomish 0.0151 WA
28900 Denver-Jefferson-Arapahoe 0.0143 CO
38000 San Diego 0.0131 CA
38801 Multnomah-Washington-Clackamas 0.0116 OR
37800 Alameda-Contra Costa-San Francisco 0.0113 CA

(E) 16300 Allegheny-Westmoreland-Washington (the fifth highest weight) PA
37500 Santa Clara-Monterey-Santa Cruz 0.0217 CA
37800 Alameda-Contra Costa-San Francisco 0.0211 CA
38300 Los Angeles-Orange-San Bernardino 0.0195 CA
21501 Hennepin-Ramsey-Dakota 0.0180 MN
7000 Dade-Broward-Monroe 0.0175 FL

Notes: The top five destination commuting zones are defined by the predicted migration probability of the top
inventors from each origin commuting zone given in the first column. The second column reports the state of
the representative county of each commuting zone, where the representative county is the one with the largest
number of inventors.
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Table F3: Relationship between the shares and the lagged employment.

share: the predicted probability of top inventors from
19600 24300 19400 19700 16300
Bergen-
Essex-

Middlesex

Cook-
DuPage-
Lake

Kings-
Queens-
New York

Philadelphia-
Montgomery-
Delaware

Allegheny-
Westmoreland-
Washington

Correlation coefficients
Manufacturing -0.007549 0.003165 -0.005326 -0.002585 -0.006714
Finance and insurance -0.002242 -0.005738 -0.000737 0.000201 -0.008787
Professional, scientific, -0.002235 -0.002048 -0.001205 -0.001759 -0.000779
and technical services

Management of companies 0.002552 -0.001077 -0.000365 0.000917 -0.001256
and enterprises

Regression coefficients
Manufacturing -0.000007 0.000012 -0.000011 0.000005 -0.000017

(0.000011) (0.000014) (0.000012) (0.000010) (0.000010)
[0.542358] [0.401073] [0.368871] [0.648052] [0.094328]
{0.989000} {0.615400} {0.989000} {1.000000} {0.347700}
<1.000000> <1.000000> <1.000000> <1.000000> <1.000000>

Finance and insurance -0.000013 -0.000043 -0.000010 -0.000001 -0.000078
(0.000018) (0.000031) (0.000021) (0.000022) (0.000042)
[0.460584] [0.174263] [0.647973] [0.963237] [0.060422]
{0.965000} {0.615400} {0.989000} {1.000000} {0.200800}
<1.000000> <1.000000> <1.000000> <1.000000> <1.000000>

Professional, scientific, 0.000000 -0.000009 0.000001 -0.000001 0.000005
and technical services (0.000007) (0.000009) (0.000007) (0.000007) (0.000010)

[0.950435] [0.281902] [0.882331] [0.838880] [0.574786]
{1.000000} {0.615400} {1.000000} {1.000000} {0.200800}
<1.000000> <1.000000> <1.000000> <1.000000> <1.000000>

Management of companies 0.000002 -0.000002 -0.000000 0.000001 -0.000002
and enterprises (0.000002) (0.000003) (0.000001) (0.000002) (0.000002)

[0.178380] [0.544422] [0.872453] [0.386848] [0.344007]
{0.615400} {0.989000} {1.000000} {1.000000} {0.200800}
<1.000000> <1.000000> <1.000000> <1.000000> <1.000000>

Notes: The first panel reports the correlation coefficient between the shares related to the highest-weight origin and the log of lagged
sectoral employment. The second panel reports the coefficients obtained from regressing the shares related to the highest-weight
origin on the lagged sectoral employment. The parentheses contain the conventional standard errors, while the square brackets show
the p-values. The braces present the family-wise error rate (FWER) adjusted p-values, computed by using the Romano-Wolf multiple
hypothesis correction method, and the angle brackets present the sharpened false discovery rate (FDR) q-values, calculated by using
the code provided by Anderson (2008).

Appendix G Robustness to possible violations of the parallel trends

assumption

We examine the robustness to possible violations of the parallel trends assumption for the

event study analysis in Section 5. Following Rambachan and Roth (2023) we specify, for each

event study regression, a set ΥSD(M) = {υ : |(υt+1 − υt) − (υt − υt−1)| ≤ M} to bound the

degree to which the slope of differential trend υ can vary between consecutive periods. We use

the default setting in the R package HonestDiD provided by Rambachan and Roth (2023),

namely that the value of M ranges from 0, which corresponds to a linear trend, to half a

standard deviation of the parameter of interest.
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Figure G1: Robustness to possible violations of parallel trends assumption.
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Notes: Panels (a) and (b) illustrate the sensitivity analysis for the event study model in Section 5, where
we consider all local inventors and external inventors, respectively. In each panel, the leftmost bar is the
95% confidence interval of the estimate µ̂es

1 and the other bars are fixed length confidence intervals (FLCIs)
proposed by Rambachan and Roth (2023).

Figure G1 illustrates the robustness test result, where we evaluate ΥSD(M) at t = 0 by

normalizing υ0 = 0 to conduct a sensitivity analysis for the first-period effect µ̂es
1 . In Panel (a)

(Panel (b)), the “break-down” value of M , at which the null hypothesis that the first-period

effect is zero can no longer be rejected, is 0.006 (0.006). Since the value is 40.00% (42.90%)

of the standard error of the estimated effect µ̂es
1 , the parallel trends assumption holds for a

reasonable deviation from a linear trend.53

We further perform a permutation-based placebo analysis to see how likely the “break-

down” value of M = 0.006 is to occur. Specifically, we first estimate each event study model

200 times by randomly reshuffling the commuting zones to which top inventors moved and

then apply the sensitivity analysis proposed by Rambachan and Roth (2023) mentioned above

to the estimates.

Table G1 shows the summary statistics of the simulated “break-down” values of M . In

both Panels (a) and (b), the values are zero in 95% of cases. These results indicate that the

deviation from the linear trend up to M = 0.006 occurs extremely rarely. Therefore, we may

conclude that the parallel trends assumption is unlikely to be violated.

53We examine the parallel trends assumption for the IV event study regression using Bdt and Bσ
dt as

instruments, which corresponds to the IV ES1 case presented in Figure 5. The standard error of the first-
period effect µ̂es

1 for all local inventors (for external inventors) is 0.015 (0.014).
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Table G1: Summary statistics of the “break-down” values for the placebo simulations.

95th percentile 99th percentile
(a) all local inventors 0.0000 0.0010
(b) external inventors 0.0000 0.0010

Notes: Panels (a) and (b) present the distribution of the “break-down” values of M obtained from the
permutation-based placebo analysis for the event study model, where we consider all local inventors and
external inventors, respectively. The “break-down” value is defined as the value of M at which the null
hypothesis that the first period effect is zero can no longer be rejected. The summary statistics are for 200
simulation results.

Appendix H Falsification: The case of top baseball players

In this section, we first estimate the effect of state income tax differences on top MLB player

migrations to quantify how location decisions of high-income individuals other than top inven-

tors are affected by tax incentives. We then verify that the tax-induced migration of top MLB

players does not affect local patent productivity. This falsification test allows us to isolate

the causal effect of top inventor inflows on local patent productivity from other high-income

migrants and mitigate potential threats to internal validity, thereby showing the robustness

of our main findings.

Institutional Background. MLB players have limited opportunities for team selection.

The most significant avenue to team selection for experienced players is free agency. After

accruing six years of MLB service time, players become eligible for free agency, which allows

them to maximize their market value and pursue optimal financial and career opportunities

by negotiating contracts with any team. Free agency serves as a key mechanism for the

migration of MLB players. We assume that MLB players are subject to the income tax rate

of their home team’s state. While this assumption does not fully capture the complexity of

players’ actual tax environment, it provides a reasonable approximation for examining tax

differentials across team locations and their potential influence on players’ migrations.54

Data. Our analysis uses data from multiple sources to compile information on MLB players

and team attributes. The primary source is the Sean Lahman Baseball Database, from which

54MLB players are in a complex tax environment, which is primarily determined by two key concepts:
duty days and the jock tax. The former represent the total number of work days in a season, including
games, practices, and travel. The latter allows states and municipalities to levy taxes on athletes for income
earned from performing services within their jurisdictions. Thus, the players potentially owe taxes to multiple
locations based on their play and travel schedule throughout the season. However, since the number of home
games equals that of away games, the fraction of games played at each away team’s location is relatively small.
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we extract data on players’ positions, ages, salaries, past awards, and team affiliations, as

well as on teams’ annual performance metrics, home locations, and stadium capacities.55 For

more granular player performance data, we employ wins above replacement (WAR), which is

a metric that captures each player’s total contribution to his team.56 To identify free agent

declarations, we use the Retrosheet’s transactions database, which provides detailed records

of trades, contracts, and status changes.57

While salary data are available from 1985 onwards, they are not exhaustive (since salary

data are available for 62.43% of player-year observations in MLB from 1985 to 2015). To

address this limitation, we employ a machine learning approach to predict player salaries

for this period. Specifically, we use a random forest algorithm to estimate salaries based on

various player characteristics and performance.58 The random forest model achieves strong

predictive performance, with R-squared values of 0.975 for the training set and 0.813 for the

test set. Figure H1 presents a scatter plot of actual versus predicted salaries, showing close

alignment along the diagonal.

Figure H1: Actual versus predicted salaries.
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Notes: The vertical and horizontal axes are predicted salaries and actual salaries in 10 million dollars, deflated
by CPI using 2000 as the base year.

55The Sean Lahman Baseball Database is a collection of baseball statistics covering MLB from 1871 to the
present, which is accessible at https://cran.r-project.org/web/packages/Lahman/index.html

56Neil Paine provides the WAR from 1901, which is accessible at https://github.com/Neil-Paine-1/

MLB-WAR-data-historical.
57Tom Ruane provides Retrosheet’s transactions database, which covers player, manager, coach, and umpire

IDs from 1873 to 2020, at https://retrosheet.org/transactions/index.html.
58Salaries used in the prediction model are adjusted to 2000 constant dollars to account for inflation. The

model includes demographic variables, performance metrics, career milestones, as well as their lagged variables
and interaction terms to capture potential non-linear relationships.
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Figure H2: Relationship between top inventor flows, top player flows, and local patent pro-
ductivity.

(a) Player vs. inventor flows
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Notes: The vertical and horizontal axes in Panel (a) are top inventor inflows and top player inflows. The
vertical and horizontal axes in Panel (b) are the log number of patents and top inventor inflows. The vertical
and horizontal axes in Panel (c) are the log number of patents and top player inflows.

Summary statistics. To maintain consistency with our analysis on top inventor migrations,

we restrict ourselves to the period from 1977 to 2009 and the teams in the U.S. by excluding

Canadian teams.59 The resulting dataset consists of 28 teams located in 24 commuting zones,

as well as 6,436 unique “top players” defined as players whose (predicted) salaries exceeded the

ninety-fifth percentile of the U.S. income distribution in the year they declared free agency

after six years of MLB service.60 We examine the team choices of these top players. Of

these top players, 42.6% declared free agency at least once during their careers. To facilitate

comparison with the top inventor analysis, we focus on the ATR at the ninety-fifth percentile

of the U.S. income distribution. In our sample, 62.54% of free agents meet the top player

criterion. Panel (a) of Figure H2 illustrates the relationship between top player flows and

top inventor flows to destination commuting zones. Panel (b) (resp., Panel (c)) depicts the

relationship between top inventor (resp., player) inflows and local patent productivity in

destination commuting zones. The correlation coefficients for Panels (a), (b), and (c) are

0.646, 0.847, and 0.495, respectively.

Table H1 summarizes top 10 commuting zones by top player inflows. Generally, commuting

zones attracting more top players also tend to have greater top inventor inflows and more local

innovations. However, this correlation does not imply causality between top player inflows and

59Specifically, we exclude the Montreal Expos and their successor, the Washington Nationals, as well as the
Toronto Blue Jays from our analysis.

60The data on the U.S. income distribution are obtained from the World Inequality Database: https:

//wid.world/data/.
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Table H1: Top 10 commuting zones by top player inflows.

rank cz number counties state team(s) inflows
1 19400 Kings–Queens–New York NY NYA, NYN 215
2 38300 Los Angeles–Orange–San Bernardino CA CAL, LAN 186
3 37800 Alameda–Contra Costa–San Francisco CA OAK, SFN 183
4 24300 Cook–DuPage–Lake IL CHA, CHN 157
5 33000 Tarrant–Johnson–Parker TX TEX 123
6 20500 Middlesex–Worcester–Essex MA BOS 122
7 29502 Jackson–Johnson–Wyandotte KS KCA 100
8 15200 Cuyahoga–Summit–Lake OH CLE 97
9 24701 St. Louis–St. Clair MO SLN 96
10 38000 San Diego CA SDN 96

Notes: Inflows are defined as the number of top players who migrated into each commuting zone from 1977
to 2009. We adopt the abbreviations for the teams in the Sean Lahman Baseball Database, which are: BOS
for Boston Red Sox, CAL for California Angels, CHA for Chicago White Sox, CHN for Chicago Cubs, CLE
for Cleveland Guardians, KCA for Kansas City Royals, LAN for Los Angeles Dodgers, NYA for New York
Yankees, NYN for New York Mets, OAK for Oakland Athletics, SDN for San Diego Padres, SFN for San
Francisco Giants, SLN for St. Louis Cardinals, and TEX for Texas Rangers.

local patent productivity gains. Rather, it may reflect the tendency of larger commuting zones

(such as Kings–Queens–New York and Los Angeles–Orange–San Bernardino) to attract high-

income, high-skill individuals in various sectors, including both top inventors and top players.

Counterfactual salaries. Following Kleven et al. (2013), we consider three formulations for

counterfactual salaries in the context of professional sports labor markets. We first adopt the

“perfect substitution technology” assumption, i.e., perfect competition among players implies

that pre-tax salary equals ability, i.e., wikt = Xa
it, where X

a
it is the ability vector. In this case,

the deterministic part of the utility can be rewritten as:

Vijkt = α ln[(1− τσ(k)t)X
a
it] + γhHomeijkt−1 + γxkXit − γcCjk + Zk. (28)

The second formulation is a variant of the former, given by wikt = Xa
it · wkt, where wkt

is the overall salary level at team k in year t approximated by the estimated average salary

from a random forest model. We further allow for the possibility that the coefficients on

ln(1− τσ(k)t), lnX
a
it, and lnwkt may differ. In this case, Vijkt can be rewritten as:

Vijkt = αt ln(1− τσ(k)t) + αw lnwkt + γhHomeijkt−1 + αa lnXa
it + γxkXit − γcCjk + Zk. (29)

The last specification replaces counterfactual salaries with the random forest estimates

ŵrf
ikt, resulting in the deterministic utility function as follows:

Vijkt = αt ln(1− τσ(k)t) + αw ln ŵrf
ikt + γhHomeijkt−1 + γxkXit − γcCjk + Zk. (30)
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Table H2: Multinomial logit regression results.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
ln(1−ATR) 9.975 9.959 5.485 5.489 5.489 5.489 7.903 7.894 7.894 7.894

(2.124) (2.122) (2.349) (2.347) (2.347) (2.347) (2.212) (2.210) (2.210) (2.210)
ln(Salary) 0.486 0.484 0.484 0.484 0.379 0.378 0.378 0.378

(0.100) (0.100) (0.100) (0.100) (0.117) (0.117) (0.117) (0.117)
Home (team) 1.899 1.748 1.907 1.805 1.805 1.805 1.899 1.751 1.751 1.751

(0.056) (0.188) (0.056) (0.188) (0.188) (0.188) (0.056) (0.187) (0.187) (0.187)
Home (league) 0.212 0.216 0.207 0.209 0.209 0.209 0.212 0.216 0.216 0.216

(0.043) (0.043) (0.043) (0.043) (0.043) (0.043) (0.043) (0.043) (0.043) (0.043)
Home (division) 0.117 0.080 0.119 0.093 0.093 0.093 0.118 0.082 0.082 0.082

(0.045) (0.052) (0.045) (0.053) (0.053) (0.053) (0.045) (0.052) (0.052) (0.052)

Player char. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Player perf. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Team location No Yes No Yes Yes Yes No Yes Yes Yes

Observations 95,028 95,028 94,503 94,503 94,503 94,503 95,028 95,028 95,028 95,028

Notes: Coefficients are from multinomial logit regressions of top player i’s migration from team j to team
k in year t. The baseline choice is retirement (Vijkt = 0 for k = 1). ATR denotes the individual income
average tax rate at the ninety-fifth percentile of the U.S. income distribution. Salary represents top players’
pre-tax annual earnings. Columns 1-2 assume the perfect substitution technology in salary determination as
in equation (28). Columns 3-6 use the estimated average pre-tax salaries for each team as in equation (29).
Columns 7-10 adopt the counterfactual salary for each player-team-year combination based on the random
forest model as in equation (30). Columns 5 and 9 (resp., Columns 6 and 10) allow αt (resp., αw) to vary
across players. Home (team), Home (league), and Home (division) are dummy variables indicating whether
players’ choices match those of the previous year’s team, league, or division. Additional controls include player
characteristics (age, experience, their squares, and position) and player performance (log of 3-year WAR),
as well as team location variables (same state, same census region, and log distance between team j′s and
k′s locations). Team-specific coefficients γx

k for player variables are estimated but not reported due to space
constraints. All specifications include team fixed effects Zk. Cluster-robust standard errors are in parentheses.

Estimation results. Table H2 presents the estimation results for α, αt, αw, and γh from the

team choice model for top players. Columns 1-2 assume the perfect substitution technology

in salary determination as in (28). Columns 3-6 use the estimated average pre-tax salaries

for each team as in (29). Columns 7-10 adopt the counterfactual salary for each player-team-

year combination based on the random forest model as in (30). To account for heterogeneity

in team selection among top players, we also implement random coefficient specifications.

Columns 5 and 9 (resp., Columns 6 and 10) allow αt (resp., αw) to vary across top players.

All models include team fixed effects Zk to capture unobservable characteristics of each team.

The estimation results consistently show a significantly positive αw, indicating that top players

tend to choose teams offering higher pre-tax salaries. The positive and significant α or αt

suggests that top players prefer teams in locations with lower income tax rates. Furthermore,

the positive and significant γh confirms the presence of top players’ home preferences in team
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selection as in Kleven et al. (2013). We use Column 8 of Table H2 to construct the Bartik

instrument for the top player inflows Mply
dt .

The main IV regression results are reported in Table 6. Given that the IV regressions

involve two endogenous variables, we employ the Sanderson-Windmeijer tests to assess the

relevance of our instruments (Sanderson andWindmeijer, 2016). The test results are presented

in Table H3. In all specifications, the test statistic for each endogenous variable exceeds 10,

which is the commonly used rule-of-thumb value (Staiger and Stock, 1997).

Table H3: First-stage statistics for the falsification analysis.

(1) (2) (3) (4) (5) (6)
(a) Sanderson-Windmeijer (under identification)
Top inventor inflows 23.272 59.351 62.768 27.105 53.047 56.442
Top player inflows 72.869 429.338 425.385 79.685 415.145 422.672

(b) Sanderson-Windmeijer (weak instruments)
Top inventor inflows 23.206 29.590 20.861 25.323 24.779 17.567
Top player inflows 72.663 214.052 141.378 74.447 193.918 131.552

Notes: The Sanderson-Windmeijer tests are used for assessing our instruments since the IV regression involves
two endogenous variables (Sanderson and Windmeijer, 2016). Panel (a) presents the chi-squared test statistics
for under-identification, while Panel (b) presents the F -test statistics for weak instruments. Columns 1 and 4
use Bdt as an instrument for top inventor inflows Mdt. Columns 2 and 5 use Bdt and Bσ

dt as instruments

for Mdt. Columns 3 and 6 use Bdt, B
σ
dt, and Bν

dt as instruments for Mdt. In all cases, we use Bply
dt as an

instrument for top player inflows Mply
dt . In all specifications, the test statistic for each endogenous variable

exceeds 10, which is the commonly used rule-of-thumb value (Staiger and Stock, 1997).

Appendix I Shift exogeneity

Following Borusyak et al. (2022), we exploit quasi-experimental variation in origin shocks by

rewriting the destination-level structural equation (8) in terms of an origin-level equation as

follows:

lnY
⊥
ot = ϕsM

⊥
ot + δsqot + ε⊥ot, (31)

where v⊥ot =
∑

d Podtv
⊥
d /

∑
d Podt denotes the share-weighted average of a variable v⊥dt across

all destinations d at time t, and v⊥dt represents the residual from a sample projection of vdt on

the control variable vector Xdt in the destination-level equation (8).61 The vector qot includes

appropriate origin-level control variables, which we detail below.

To establish shift-share instrumental variable consistency as in Borusyak et al. (2022), we

impose key assumptions as follows. First, we assume that, conditional on some controls, the

61We will modify the control variable vector Xdt to analyze the case with incomplete shares below.
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shifts are quasi-randomly assigned, i.e., E (Iot | ε̄, q, P ) = µqot, where ε̄ = {ε̄ot}ot , q = {qot}ot,

and P = {Podt}odt are vectors of origin-level shocks, observable commuting zone characteris-

tics, and observable migration shares, respectively. We include origin commuting zone fixed

effects and year fixed effects in qot to control for time-invariant commuting-zone-level con-

founders and common time trends. Our identification strategy is that, after accounting for

these factors, the residual variation in the number of top inventors in origin commuting zone o

is as-good-as-randomly assigned over time. We examine the validity of this assumption using

Table I3 below.

Second, we impose two conditions namely, E
(∑

cluster

(∑
o∈cluster

∑
d̸=o Podt

)2) → 0 for all

t, and Cov
(
Ĩot, Ĩo′t|ε, q, P

)
= 0 for all t and for all o and o′ such that cluster(o) ̸= cluster(o′),

where cluster stands for regions or states and Ĩot = Iot − µqot denotes the residual of the

number of top inventors after controlling for origin commuting zone fixed effects and year

fixed effects. The former condition implies that the effective sample size, determined by the

inverse of the Herfindahl-Hirschman index of the shares, increases asymptotically. The latter

ensures that the residuals are mutually uncorrelated between commuting zones such that

cluster(o) ̸= cluster(o′). We examine the validity of these assumptions using Tables I1 and I2

below.

Since we consider incomplete shares, i.e.,
∑

o̸=d Podt ̸= 1 for each destination d and year t,

we include two additional controls in our destination-level specification: the sum of the shares∑
o̸=d Podt; and the exposure-weighted sum of the origin controls

∑
o̸=d Podtqot (see Section

4.2 in Borusyak et al., 2022). Thus, to rewrite the shift-level equation as the origin-level

equation, we control for the destination-level characteristics {Xdt,
∑

o̸=d Podt,
∑

o̸=d Podtqot}.

This comprehensive set of controls allows us to address both the incomplete shares and the

shift exogeneity.

Table I1 presents summary statistics for the shift-related variables. The first panel shows

the distribution of the number of top inventors Iot and the distribution of the residual Ĩot

after controlling for origin commuting zone fixed effects and year fixed effects. Despite the

difference in dispersion—the distribution of Iot exhibiting a larger spread than that of Ĩot—

both demonstrate substantial variability.
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Table I1: Summary statistics of shift variables.

statistics Iot Ĩot
Shift distribution

Mean 47.509 00.000
Standard deviation 95.921 57.757
Interquartile range 43.000 37.256

Effective sample size (1/HHI of Pot weights)
Across CZs and years 1180.018
Across CZs 0298.514

Largest Pot weight
Across CZs and years 0.001
Across CZs 0.010

Observations
Number of CZ-year pairs 2,859
Number of CZs 0,391

Notes: The first panel summarizes the distribution of the number of top inventors Iot and the distribution
of the residual Ĩot after controlling for origin commuting zone fixed effects and year fixed effects. The second
and third panels report the effective sample size, calculated as the inverse of the Herfindahl-Hirschman index
of Pot =

∑
d̸=o Podt weights, and the largest Pot weight, respectively. The effective sample size and the largest

Pot weight are computed for the full panel (across commuting zones and years) and cross-section (across
commuting zones). The number of observations is provided for CZ-year pairs and CZs.

As in Borusyak et al. (2022), we further examine the importance weight, Pot =
∑

d̸=o Podt.

The second panel of Table I1 reports the effective sample size, given by the inverse of the

Herfindahl-Hirschman index (HHI) of Pot weights, which is sufficiently large across commuting

zones and years. The largest Pot weight is small, which is consistent with the assumption that

E
(∑

cluster

(∑
o∈cluster

∑
d̸=o Podt

)2) → 0. These results support the validity of the large-sample

approximation and suggest favorable finite sample performance of the Bartik estimator.

To assess the correlation patterns of shocks and determine appropriate clustering for robust

standard errors, we estimate intra-class correlation coefficients (ICCs) within U.S. census

regions, states, and commuting zones using the random effects model:

Iot = ιt + aregion(o)t + bσ(o)t + co + εot

Ĩot = ι̃t + ãregion(o)t + b̃σ(o)t + c̃o + ε̃ot,

where ιt is year fixed effects, aregion(o)t and bσ(o)t are time-varying regional and state random

effects (to which commuting zone o belongs), and co is time-invariant random effects that are

specific to commuting zone o.
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Table I2: Intra-class correlation coefficients (ICCs).

region state CZ observations
Iot 0.046 0.065 0.403 2,813

(0.191) (0.109) (0.073)
[0.027] [0.035] [0.105]

Ĩot 0.063 0.090 0.000 2,715
(0.341) (0.178) (·)†
[0.052] [0.074] [0.014]

Notes: The reported intra-class correlation coefficients (ICCs) are estimated from the hierarchal model im-
posing an identify covariance structure for region random effects and that for state random effects. Robust
standard errors are reported in parentheses, whereas bootstrapped standard errors are reported in square
brackets. †The estimated ICC for CZ lies at the lower bound of the possible range for ICC values, which is
zero. Thus, we do not report the robust standard error for this estimate.

Table I2 presents the estimated ICCs, which shows limited evidence for clustering at the

regional and state levels. It implies that the number of top inventors, which is the shift of

our Bartik instrument, is uncorrelated across broader geographic units such as census regions

and states. This aligns with our identifying assumptions based on Borusyak et al. (2022).

To examine the validity of the assumption that E(Iot|ε, q, P ) = µqot, we further conduct

a regression-based falsification test proposed by Borusyak et al. (2022). The test aim to

corroborate the plausibility of the quasi-random assignment of the number of top inventors

across years within each origin commuting zone. For this falsification exercise, we use the

lagged employment in four sectors as a potential confounder at the origin level, as we do in

examining the share exogeneity at the destination level in Appendix F.

Table I3 presents the results of an origin-level falsification test, which provides additional

support for the validity of our identification strategy. As in Borusyak et al. (2022), we

regress the number of top inventors on the log of lagged sectoral employment, controlling

for origin-commuting-zone fixed effects and year fixed effects and weighting by migration

shares Pot. The coefficients are not statistically significant at the conventional 5% level.62

This falsification test complements our previous analysis and reinforces the exogeneity of our

Bartik instruments.

62Similar to Table F3, the absence of significance at the 5% level does not necessarily imply that the true
coefficient is zero. Since our analysis involves multiple regressions, the rejection of the null hypothesis, if any,
might be an artifact of multiple hypothesis testing rather than a genuine effect. To address this concern,
we report p-values adjusted to control the family-wise error rate (FWER) using the Romano-Wolf multiple
hypothesis correction method. We also compute the sharpened false discovery rate (FDR) q-values using the
code provided by Anderson (2008).
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Table I3: Regression coefficients.

Manufacturing
Finance and
insurance

Professional,
scientific, and

technical services

Management of
companies and
enterprises

Regression coefficients −0.01017 −0.00692 0.00766 0.01184
(0.00555) (0.00586) (0.00576) (0.01135)
[0.06661] [0.23826] [0.18380] [0.29673]
{0.08890} {0.23480} {0.22880} {0.23480}
<0.36400> <0.36400> <0.36400> <0.36400>

Notes: This table presents the coefficients obtained from regressing the number of top inventors on the
lagged manufacturing employment, controlling for origin commuting zone fixed effects and year fixed effects
and weighting by migration shares Pot. The parentheses contain the conventional standard errors, while the
square brackets show the p-values. The braces present the family-wise error rate (FWER) adjusted p-values,
computed by using the Romano-Wolf multiple hypothesis correction method, and the angle brackets present
the sharpened false discovery rate (FDR) q-values, calculated by using the code provided by Anderson (2008).
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