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Abstract

In team production models, an optimal incentive scheme that guarantees workers’ effort
investment can be discriminatory (Winter, 2004). We demonstrate how this trade-off in
incentives and discrimination disappears in a complementary setting. In our model, as well
as payment scheme for workers, the firm chooses a production technology, mapping from
workers’ effort choice to the success probability of the project. Contrary to the known result,
our firm-optimal incentive scheme does not discriminate any symmetric workers.
JEL Classification: C72; D23; D62; D63; J71
Keywords: team production; discrimination; incentives; production technology

1 Introduction

Workplace discrimination is a serious issue in the society. In regions including Australia, the Euro-
pean Union, the United Kingdom, and the United States, anti-discrimination acts regally protect
historically underrepresented groups of workers in hiring or promotion.1 In the global capital
markets, firms are required to be ethical and responsive to prevent such discrimination. Several
reports show that both employees and the economy bear billions or even trillions of dollars of
costs due to workplace discrimination.2 While sociologists, psychologists, and behavioral scientists

∗I would like to thank the participants at the 2024 JEA Autumn Meeting for helpful comments. I acknowledge
the financial support from JST SPRING Grant Number JPMJSP2123 and the Keio Economic Society.

†Graduate School of Economics, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan. E-mail:
t.hatakeyama@keio.jp

1For the regulations in Australia, see webpage https://www.ag.gov.au/rights-and-protections/human-rights-and-
anti-discrimination/australias-anti-discrimination-law (accessed March 14, 2025). For the regulations in the Eu-
ropean Union, see the webpage https://www.europarl.europa.eu/legislative-train/theme-a-new-push-for-european-
democracy/file-anti-discrimination-directive (accessed March 14, 2025).

2For the cost employees bear, see the webpage https://www.shrm.org/topics-tools/news/hr-magazine/ceo-racial-
injustice-work-costs-us-billions (accessed March 14, 2025). For the cost the economy bears, see the webpage
https://www.imf.org/en/Publications/fandd/issues/2020/09/the-economic-cost-of-racism-losavio (accessed March
14, 2025).
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study the root of such discrimination, in economics, Winter (2004) provides a nontrivial source of
discrimination: a firm may discriminate its workers in payments to give them incentives to work.

Team production models capture a situation where a team of workers engages in a project.
Each worker chooses whether to exert costly effort, which increases the success probability of the
project. The mapping from the workers’ effort choice to the success probability is named the
production technology and fixed exogenously. Since workers may avoid exerting effort to save the
costs (Holmstrom, 1982), the literature has investigated how to control the situation (Segal 2003;
Winter 2004; Agastya and Birulin 2023). The firm chooses a success-dependent bonus amount for
each worker so that (i) each worker exerts effort in the unique Nash equilibrium (full implementa-
tion) and (ii) given (i), the total bonus amount is the smallest (optimality). As the workers being
symmetric, discrimination is purely defined as the gap in bonus amounts for different workers.
Winter’s (2004) findings are on the relationship between discrimination and production technol-
ogy: The firm chooses a (fully) discriminatory bonus profile if and only if the production technology
is increasing returns to scale (IRS).

Our question is the following: How will the firm’s (profit-maximizing or cost-minimizing) tech-
nology choice affect the level of discrimination? While the literature considers a prefix technology
as primitive, it is also natural to consider that the firm sets a technology as its optimal choice.The
next example shows a case in which multiple production technologies are possible.3

Example 1. Two consultants, Alice and Bob, have two complementary tasks, preparing analytical
results (A) and preparing a reporting document (R). When x percent of task A and y percent of
task R are completed, the probability that the project succeeds is the minimum of x and y. each
of Alice and Bob has two choices: to complete her/his task (“work”) and not to complete (“shirk”).
Case 1: Alice does analysis A and Bob does report R. The success probability is (i) 100% if both
work and (ii) 0% otherwise.
Case 2: Each of Alice and Bob does a half of analysis and a half of report. The success probability
is (i) 100% if both work, (ii) 50% if only one of them works, and (iii) 0% if both shirk. 3

Precisely, we search for the combination of production technology and bonus profile, under
which (i’) each worker exerts effort in the unique Nash and (ii’) given (i’), the total bonus amount
is the smallest. We assume a rich domain of production technologies (Assumption 1).4 Compared
to the prefix technology case, the firm can reduce the bonus amount in total but it is ambiguous
whether the variance is increased or decreased. For this functional optimization problem, a set of
simple logic provides a clear answer.

3We consider our problem as the firm’s “long-run” problem, compared to the standard (short-run) problem with
a fixed technology. Long- and short-run problems are known to lead to different conclusions (Kreps and Scheinkman
1983; Davidson and Deneckere 1986).

4Another plausible scenario is that the firm can choose a technology from a narrowly restricted domain or it is
costly to choose specific technologies. This scenario is in between Winter’s and our cases.
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The answer is quite positive. The firm chooses a symmetric bonus profile under which all
workers are offered the same amount (Theorem 1). This result is in sharp contrast to Winter’s
results, which characterize discriminatory optimal bonus scheme by the shape of prefix technology.
The proof sketch is as follows. We first show that, to make workers exert effort, technologies where
optimal schemes are known to be discriminatory cost relatively higher total bonus amount. Under
other complex technologies, it is tough to find optimal bonus profiles (thus we cannot directly
compare the amounts). Instead, we show that for any such technology, as long as it is symmetric,
we can construct another technology under which the total bonus amount is smaller (thus, such
complex technologies cannot be optimal).

Our finding makes clear that the objective of a profit-maximizing firm described in (i’) and (ii’)
above is aligned with fair treatment among workers. Hence, the finding provides a relatively opti-
mistic view that, as long as the technology is freely chosen, a firm will not choose a discriminatory
incentive scheme. In other words, if a firm has a discriminatory taste and sets a discriminatory
bonus profile, it loses potential benefit from reduced total bonus payment.

2 Model

We consider a team production model with n ≥ 2 agents who are engaged in a project. The set of
agents is N = {1, 2, . . . , n}. Each agent chooses whether to exert effort (“work”) or not (“shirk”).
The cost c > 0 of working is the same for all agents. The project succeeds with a probability that
depends on subset J ⊆ N of agents who exert effort: A (production) technology P : 2N → [0, 1]

is a function mapping J to success probability P (J). The firm, principal, cannot observe each
agent’s choice on exerting effort. The firm sets reward (“bonus”) only depending on whether the
project succeeds. Each agent i ∈ N receives amount Bi if the project succeeds and amount zero if
the project fails. A bonus profile is B = (Bi)i∈N .

While the literature focuses on fixed technology P , our model allows the firm to choose P . We
call pair (P,B) an incentive scheme. Let P be the collection of possible technologies.

Assumption 1. P is the collection of any functions satisfying 1, 2, and 3.
1. If all agents work, the project succeeds for sure: P (N) = 1.
2. Strictly increasing: for any J, J ′ ⊆ N with J ⊊ J ′, P (J) < P (J ′).
3. Either symmetric, supermodular, or submodular:
symmetric: for any J, J ′ ⊆ N with |J | = |J ′|, P (J) = P (J ′).
supermodular: for any J, J ′ ⊆ N with J ⊈ J ′ and J ′ ⊈ J , P (J ∪ J ′) + P (J ∩ J ′) ≥ P (J) + P (J ′).
submodular: for any J, J ′ ⊆ N with J ⊈ J ′ and J ′ ⊈ J , P (J ∪ J ′) + P (J ∩ J ′) ≤ P (J) + P (J ′).

The domain P is rich enough to contain technologies studied in the literature. Winter (2004)
considers symmetric technologies while recent studies such as Halac et al. (2021) and Boyarchenko
et al. (2025) require supermodularity instead. Each incentive scheme (P,B) induces a normal form
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game among agents: Each agent i ∈ N has two strategies, to work (si = 1) or to shirk (si = 0)
where agents choose strategies simultaneously. Slightly abusing the notation, for each strategy
profile s = (si)i∈N , the success probability is P (s) := P ({j ∈ N : sj = 1}). Agent i’s payoff is
P (s)Bi − c if she works (si = 1) and P (s)Bi if she shirks (si = 0).

The firm’s goal is to achieve the least-cost incentive scheme that induces a unique Nash
equilibrium in which all agents work. That is, the firm wishes to choose (P ∗, B∗) where (i’)
s∗ = (1, 1, . . . , 1) is the unique Nash and (ii’) among incentive schemes satisfying (i’), (P ∗, B∗) mini-
mizes the total bonus payment

∑
i∈N Bi. We say that an incentive scheme (P,B) uniquely imple-

ments work if for each ε > 0, (P, (Bi+ε)i∈N) induces a unique Nash equilibrium s∗ = (1, 1, . . . , 1).5

An incentive scheme (P,B) is P -optimal if B minimizes the total bonus payment
∑

i∈N Bi among
all incentive schemes that uniquely implement work and whose technologies are P . We say that
an incentive scheme is globally optimal if it minimizes the total bonus payment

∑
i∈N Bi among

all incentive schemes that uniquely implement work.
Since agents are symmetric, it is fair to set a symmetric bonus profile. An incentive scheme is

symmetric if B1 = B2 = · · · = Bn. An incentive scheme is discriminatory if it is not symmetric,
or equivalently, there are i, j ∈ N with Bi ̸= Bj.

3 Results

3.1 Supermodular or submodular technology

Our first two propositions extend Winter’s (2004) results to asymmetric technology cases. To
simplify the notation, we introduce an order π : N → {1, 2, . . . , n} on agents, which is a one-to-
one mapping. For each π, we define the associated set order Π : N → 2N such that for each
i ∈ N , Π(i) := {j ∈ N : π(j) ≤ π(i)}. When N = {1, 2, 3} and (π(1), π(2), π(3)) = (2, 3, 1),
(Π(1),Π(2),Π(3)) = ({1, 3}, {3}, N) and Π(π−1(3)) ⊊ Π(π−1(2)) ⊊ Π(π−1(1)).

Proposition 1. If the technology P is submodular, a P -optimal incentive scheme B satisfies

for each i ∈ N, Bi =
c

P (N)− P (N\{i})
. (1)

Proof. Let P be submodular and (P,B) be P -optimal. Since (P,B) uniquely implements work,
(i) s∗ = (1, 1, . . . , 1) is a Nash and (ii) any other strategy profile s ̸= s∗ is not a Nash. By (i), for
each i, Bi satisfies P (N)Bi − c ≥ P (N\i)Bi, i.e., Bi ≥ c/[P (N)− P (N\i)]...(*1). Fix any profile
s ̸= s∗ and let J = {j ∈ N : sj = 1}. By (ii), there is i ∈ J such that P (J)Bi − c ≥ P (J\i)Bi, i.e.,
Bi ≥ c/[P (J)−P (J\i)]...(*2). Since P is submodular, P (J) +P (N\i) ≥ P ([J ]∪ [N\i]) +P ([J ]∩
[N\i]) = P (N) + P (J\i), i.e., P (J) − P (J\i) ≥ P (N) − P (N\i) and thus (*1) implies (*2). To
be an optimum, (*1) should hold with equality. We obtain the relation (1).

5This definition follows the one in Halac et al. (2021).
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Proposition 2. If the technology P is supermodular, a P -optimal incentive scheme B satisfies6

for some π and each i ∈ N, Bi =
c

P (Π(i))− P (Π(i)\{i})
. (2)

Proof. Let P be supermodular. Fix π and rename agents so that for each i ∈ N , π(i) = i. Let
Bπ = (c/[P (Π(i)) − P (Π(i)\i)])i∈N . We see by induction of i = 1, 2, . . . , n that (P,Bπ) uniquely
implements work. For i = 1, since P is supermodular, for any J ⊆ N , P (J)Bπ

1 − c− P (J\1)Bπ
1 =

[[P (J) + P (∅) − P (J\1) − P (1)]] × c/[P (1) − P (∅)] ≥ 0. That is, for any s−1, i = 1 chooses
s1 = 1. For i > 1, assume that each j ∈ J = {1, . . . , i − 1} chooses sj = 1. For any J ′ ⊇ J ,
P (J ′)Bπ

i − c−P (J ′\i)Bπ
i = [[P (J ′)+P (J\i)−P (J ′\i)−P (J)]]× c/[P (J)−P (J\i)] ≥ 0. That is,

for any s−J , i chooses si = 1. We have s∗ = (1, . . . , 1) is a unique Nash. Fix B so that for any π,∑
i∈N Bπ

i ≤
∑

i∈N Bi and B ̸= Bπ. We show this B does not uniquely implements work. Because
there are no π with B = Bπ, for some J ⊊ N , (i) for each j ∈ J , P (J)Bj − c ≥ P (J\j)Bj and (ii)
for each i ∈ N\J , P (J ∪ i)Bi − c < P (J)Bi. Clearly, profile s where sj = 1 for each j ∈ J and
si = 0 for each i ∈ N\J is also a Nash. The P -optimum is a selection from {Bπ} and the relation
(2) holds.

3.2 Symmetric technology

For a symmetric technology P , we derive a lower bound of the total payment in P -optimal incentive
scheme. Given that technology P is symmetric, we abuse the notation as P (J) =: p(j) where
j = |J |. Let π̃ be such that π̃−1(1) = arg min

ℓ∈{1,2,...,n}
{p(ℓ) − p(ℓ − 1)} and for each j = 2, 3, ..., n,

π̃−1(j) = arg min
ℓ∈{1,2,...,n}

{p(ℓ)− p(ℓ− 1) : ℓ /∈ {π̃−1(1), ..., π̃−1(ℓ− 1)}}. Let P̃ be such that for each

j = 1, 2, ..., n, p̃(j) = p(π̃(j)). By the construction, P̃ is IRS.

Proposition 3. If the technology P is symmetric, a P -optimal incentive scheme B satisfies

∑
i∈N

Bi ≥
n∑

j=1

c

p(j)− p(j − 1)
=

n∑
j=1

c

p̃(j)− p̃(j − 1)
. (3)

Proof. When P is IRS, relation (3) holds with equality by Proposition 2. Suppose that P is not
IRS (thus P ̸= P̃ ). Let B be a P -optimal scheme such that B1 ≥ B2 ≥ ... ≥ Bn. Choose any
j ∈ {1, 2, ..., n}. To exclude s[j] where s

[j]
i = 1 if and only if i ≤ j from Nash, B must satisfy either

of the following.
Case 1: p(j)Bj − c < p(j − 1)Bj. Since s[0] = (0, 0, ..., 0) should not be a Nash, there must be
j′ ≤ j such that p(j′)Bj′ − c < p(j′ − 1)Bj′ and p(j′ − 1)Bj′ < p(j′)Bj′ − c. These relations are
required to exclude s[j′] (s[j

′]
i = 1 if and only if i ≤ j′) and s[j

′−1] (s[j
′−1]

i = 1 if and only if i ≤ j′−1)
from Nash. Since these conditions contradict each other, this case should not hold.

6Similar results are known in recent papers (e.g., Halac et al. (2021)).
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Case 2: p(j+1)Bj+1−c ≥ p(j)Bj+1. From above, this should hold for any j = 1, 2, ..., n. We have,
for each i ∈ N , Bi ≥ max

ℓ≤i
{c/[p(ℓ)− p(ℓ− 1)]} ≥ c/[p(i)− p(i− 1)]. By summing up for all i, we

obtain the inequality in relation (3). The equality in relation (3) also holds as π̃ is one-to-one.

3.3 Global optimum

Propositions 1 and 2 show that, given arbitrarily fixed technology P , a P -optimal scheme can
be discriminatory in line with Winter (2004). Proposition 3 shows that IRS technologies, under
which P -optimal schemes are discriminatory, are candidates for the global optimum. In contrast,
the following result, our main theorem, shows that the global optimum never be discriminatory.

Theorem 1. An incentive scheme (P,B) is globally optimal if and only if

P : P is supermodular where for some π and each i ∈ N, P (Π(i))− P (Π(i)\{i}) = 1/n. (4.1)

B : for each i ∈ N, Bi = nc. (4.2)

Proof. Denote the scheme satisfying (4.1) and (4.2) by (P ∗, B∗). It is immediate from Proposition
2 that (P ∗, B∗) uniquely implements work. We show below that (P ∗, B∗) is the unique global
optimum. Choose (P,B) ̸= (P ∗, B∗) that uniquely implements work arbitrarily. Without loss of
generality, we assume that (P,B) is P -optimal. We show

∑
i∈N Bi >

∑
i∈N B∗

i .
Case 1: P is submodular (and not supermodular). Fix π so that for each i, π(i) = i. Submodularity
of P implies P (Π(i))+P (N\i) ≥ P (N)+P (Π(i)\i). By summing up for all i, we have

∑
i∈N [P (N)−

P (N\i)] ≤
∑

i∈N [P (Π(i))−P (Π(i)\i)] = P (N)−P (∅). Since for each i, P (N)−P (N\i) ∈ (0, 1),
taking inverse and multiplying c > 0 to each term,

∑
i∈N c/[P (N) − P (N\i)] > n × c/[(P (N) −

P (∅))/n] ≥ n× c/(1/n) = n2c. LHS and RHS are
∑

i∈N Bi and
∑

i∈N B∗
i . Strict inequality holds

because LHS is more diverse.
Case 2: P is supermodular (and not submodular). Fix π so that for each i, π(i) = i. We
have

∑
i∈N [P (Π(i)) − P (Π(i)\i)] = P (N) − P (∅) =

∑
i∈N [(P (N) − P (∅))/n]. Since for each i,

P (Π(i))−P (Π(i)\i) ∈ (0, 1), taking inverse and multiplying c > 0 to each term,
∑

i∈N c/[P (Π(i))−
P (Π(i)\i)] > n × c/[(P (N) − P (∅))/n] ≥ n × c/(1/n) = n2c. LHS and RHS are

∑
i∈N Bi and∑

i∈N B∗
i . Strict inequality holds because LHS is more diverse.

Case 3: P is symmetric (and neither IRS nor DRS). Since P̃ is IRS (i.e., supermodular), Case 2
implies that RHS of relation (3) is greater than

∑
i∈N B∗

i . We obtain
∑

i∈N Bi >
∑

i∈N B∗
i .

Corollary 1. The global optimum is symmetric.

The next example illustrates our results.

Example 2. Agents are N = {1, 2, 3} with working cost c = 10. The production technologies are
on Table 1. For ε = 1, payoffs induced by each scheme (P,B + ε) are on Table 2.
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Table 1: Production technologies and their least cost bonuses
J ∅ {1}, {2}, {3} {1, 2}, {1, 3} {2, 3} N i 1 2 3

P I(J) 0.2 0.6 0.8 0.9 1 BI
i 100 50 50

P II(J) 0.4 0.5 0.75 0.7 1 BII
i 100 40 40

P III(J) 0 0.5 0.6 0.6 1 BIII
i 100 100 25

P ∗(J) 0 1/3 2/3 2/3 1 B∗
i 30 30 30

Table 2: Payoffs induced by each scheme
work shirk work shirk

work 91, 41, 41 70.8, 40.8, 30.8 work 70.8, 30.8, 40.8 50.6, 30.6, 30.6
shirk 90.9, 35.9, 35.9 60.6, 30.6, 20.6 shirk 60.6, 20.6, 30.6 20.2, 10.2, 10.2

(P I , BI + 1)

work shirk work shirk
work 91, 31, 31 65.8, 30.8, 20.8 work 65.8, 20.8, 30.8 40.5, 20.5, 20.5
shirk 70.7, 18.7, 18.7 50.5, 20.5, 10.5 shirk 50.5, 10.5, 20.5 40.4, 16.4, 16.4

(P II , BII + 1)

work shirk work shirk
work 91, 91, 16 50.6, 60.6, 5.6 work 50.6, 50.6, 15.6 40.5, 50.5, 13
shirk 60.6, 50.6, 5.6 50.5, 50.5, 3 shirk 50.5, 40.5, 13 0, 0, 0

(P III , BIII + 1)

work shirk work shirk
work 21, 21, 21 10.7, 20.7, 10.7 work 10.7, 10.7, 20.7 0.3, 10.3, 10.3
shirk 20.7, 10.7, 10.7 10.3, 10.3, 0.3 shirk 10.3, 0.3, 10.3 0, 0, 0

(P ∗, B∗ + 1)

Note: Agents 1 and 2 are row and column players. Agent 3 chooses to work in the left
tables and to shirk in the right ones. Underline indicates best response. Bold is Nash.

P I is submodular, P II is supermodular, and P III is symmetric. (P ∗, B∗) is a global optimum
(
∑

i∈N B∗
i = 90 is smaller than

∑
i∈N BI

i = 200,
∑

i∈N BII
i = 180, or

∑
i∈N BIII

i = 225) and it is
symmetric (B∗

1 = B∗
2 = B∗

3). 3
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