
 

Institute for Economic Studies, Keio University 
 

Keio-IES Discussion Paper Series 
 

 

 

 
Axioms of depreciation methods 

 

荒田 映子、穂刈 享 

 
2025 年 1 月 31 日 

2025-002 
https://ies.keio.ac.jp/publications/24816/ 

 
 
 
 

 
 
 
 

Institute for Economic Studies, Keio University 
2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan 

ies-office@adst.keio.ac.jp 
31 January, 2025 



Axioms of depreciation methods 

荒田 映子、穂刈 享 

IES Keio 2025-002 

2025 年 1月 31日 

JEL Classification: C71, M41 

キーワード: Axiomatic approach, Cooperative games, Depreciation 

 

【要旨】 

This paper aims to provide a theoretical foundation of what is known as 

“ Generally Accepted Accounting Principles (GAAP),” focusing on 

depreciation. It is widely accepted that a depreciation method should be 

rational and systematic. There are many possible depreciation methods; 

however, only a few are used in practice, such as the straight-line method, 

the declining-balance method, the sum-of-the-years’ digits method, and the 

fair value measurement. We investigate through the axiomatic approach in what 

sense these depreciation methods can be considered rational and systematic. 

We provide a practical interpretation for each axiom examined in this paper 

and relate the axioms to accounting principles. Interestingly, it turns out 

that the straight-line method satisfies all axioms but consistency considered 

in the paper. Since the players are not humans in the model studied in the 

paper, it is not so clear whether the axiom of core selection is desirable or 

not in this context. In this paper, we provide a positive answer to this 

question. Namely, we show that three appealing axioms, population-

monotonicity, the final year reasonableness, and conservatism, jointly imply 

core selection. 

 

荒田 映子 

慶應義塾大学，商学部 

eikoara@fbc.keio.ac.jp 

 

穂刈 享 

慶應義塾大学 経済学部 

hokari@econ.keio.ac.jp 

 

謝辞：We would like to thank Takumi Kongo for his valuable comments and 

insightful suggestions when we presented this paper at the 2024 Annual 

Meeting of the Japan Law and Economics Association. All remaining errors are 

our own. 

This work was supported by Grant-in-Aid for JSPS KAKENHI [22K01790].

 



Axioms of depreciation methods
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January 31, 2025

Abstract

This paper aims to provide a theoretical foundation of what is
known as“Generally Accepted Accounting Principles (GAAP),” fo-
cusing on depreciation. It is widely accepted that a depreciation
method should be rational and systematic. There are many possi-
ble depreciation methods; however, only a few are used in practice,
such as the straight-line method, the declining-balance method, the
sum-of-the-years’ digits method, and the fair value measurement. We
investigate through the axiomatic approach in what sense these de-
preciation methods can be considered rational and systematic. We
provide a practical interpretation for each axiom examined in this pa-
per and relate the axioms to accounting principles. Interestingly, it
turns out that the straight-line method satisfies all axioms but con-
sistency considered in the paper. Since the players are not humans in
the model studied in the paper, it is not so clear whether the axiom
of core selection is desirable or not in this context. In this paper,
we provide a positive answer to this question. Namely, we show that
three appealing axioms, population-monotonicity, the final year rea-
sonableness, and conservatism, jointly imply core selection.
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1 Introduction

This paper aims to provide a theoretical foundation of what is known as
“Generally Accepted Accounting Principles.” When a firm purchases a costly
asset, say a machine, which will be used for a certain period of time, it is usu-
ally the case that the original cost of the asset is allocated over the expected
useful life of that asset. There are various methods to achieve this alloca-
tion. However, among those “depreciation methods”, only a few are used in
practice, such as the straight-line method, the declining-balance method, the
sum-of-the-years’ digits method, and the fair value measurement. It is often
said that a depreciation method should be rational and systematic (Hendrick-
sen and van Breda, 2001, page 523). In what sense can these depreciation
methods used in practice be considered rational and systematic? That is
what we investigate in this paper.

Formally, this depreciation problem can be considered as a cooperative
game, where the “players” are mere fiscal years without preferences of their
own. We believe that the specific depreciation methods are used in prac-
tice mainly because they satisfy certain nice properties (axioms), which can
be interpreted as representing some basic concepts of regarding accounting
standards. Thus, we adopt the axiomatic approach in our analysis.

A few studies apply cooperative game theory to depreciation. Ben-Shahar
and Sulganik (2009) and Ben-Shahar, Margalioth, and Sulganik (2009) have
suggested depreciation methods that reflect how firms consume the economic
benefits of their assets. Aparicio and Sánchez-Soriano (2008) have developed
an innovative “depreciation game” and demonstrated that payoff vectors pro-
vided by traditional methods do not always belong to the core. They pro-
posed a new depreciation method that gives a payoff vector belonging to the
core and reflects the asset’s market value. While they consider limited coali-
tions, Arata, Shimogawa, and Inohara (2024) have modified the model of
Aparicio and Sánchez-Soriano (2008) so that the domain of the cost function
is extended to all coalitions. They have shown that the straight-line method
satisfies core selection under their settings, and the conditions of the core
could be accepted by those accountants who engage in similar problems in
practice.

Accounting researchers have applied cooperative game theory to some
specific topics in their field other than depreciation problems from the late
1970s to the early 1980s. They have studied some particular allocation rules
of joint costs among departments within a firm. For example, Hamlen,
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Hamlen, and Tschirhar (1977) have examined the allocation of joint costs
using the core, and Callen (1978), Roth and Verrecchia (1979), Hamlen,
Hamlen, and Tschirhar (1980), and Balachandran and Ramakrishnan (1981)
have discussed allocation using the Shapley value.

Recently, in management science, some research has focused on the rela-
tionship between allocation rules and axioms in areas such as supply chains
(Zelewski, 2018) and joint orders (Saavedra-Nieves, 2018). Mueller (2018)
reviews the crucial properties of some solution concepts (the Shapley value,
Nucleolus, The τ -value, and Dutta-Ray solution) and provides the basis for
evaluating them concerning management accounting.

In law and economics, Dehez and Ferey (2013, 2016) examine sharing
damage caused jointly by several tortfeasors using cooperative game the-
ory. Their model rationalizes the weighted Shapley value as being the legal
counterpart of the process proposed by Restatement (Third) of Torts. Their
research shares a similar objective as ours in the sense that it examines the
correspondence between the axioms of particular allocation methods and the
underlying fundamental concepts of the associated legal rules.

We extend Arata, Shimogawa, and Inohara (2024) in two ways. First,
while they mainly focus on the straight-line method, we investigate other
depreciation methods as well. Second, while they consider only one axiom,
core selection, we study other axioms as well, such as monotonicity, addi-
tivity, population monotonicity, and consistency, and investigate the logical
relations between them.

In this paper, we refer to the fundamental concepts underlying accounting
rules from Accounting Principles Board Statement No. 4, ”Basic Concepts
and Accounting Principles Underlying Financial Statements of Business En-
terprises,” issued by the American Institute of Certified Public Accountants
(AICPA) in 1970. Some of the axioms studied in this paper correspond to the
principles described in the statement, which were inductively derived from
practices and remain significant to accounting professionals today.

This paper is organized as follows: Section 2 introduces the depreciation
problem and the depreciation game, and Section 3 presents the depreciation
methods. Section 4 examines the characteristics of these methods within
the context of the depreciation game. In Section 5, we discuss the practical
implications of our findings. Finally, we conclude in Section 6.
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2 Depreciation problems and depreciation games

In this section, we overview the definitions of depreciation problems and
depreciation games, originally introduced by Aparicio and Sánchez-Soriano
(2008) and generalized later by Arata, Shimogawa, and Inohara (2024). Let
N be a finite set of consecutive natural numbers and n := |N |. We consider
the depreciation procedure of an asset acquired at cost C for its useful life
n years. Let R denote the residual value of the asset after use.1 Each i ∈ N
represents a fiscal year of the asset’s utilization period. We assume that the
market value of the asset after k years, k = 1, 2, . . . , n, is given by a function
f from {1, 2, . . . , n} to R+ satisfying the following two conditions:

• C > f(1) > f(2) > · · · > f(n) = R.

• For all s, t ∈ {1, 2, . . . , n} with s+ t ≤ n,

C ≥ f(s) + f(t)− f(s+ t). (1)

We refer to such a list (N,C, f) as a depreciation problem for N . As we
shall see, condition (1) represents a situation in which it is less expensive for
a firm to lease the asset for multiple years continuously (or to purchase it),
rather than repeatedly renewing annual leases.2 Let DN denote the class of
all depreciation problems for N .

A coalition is a non-empty subset of N . A coalitional game with
transferable utility (a TU game, for short) is a pair (N, v) where v is
a function from 2N to R with v(∅) = 0. We associate a TU game (N, d)
with each depreciation problem (N,C, f) ∈ DN . Let SeqN ⊂ 2N be the
set of sequential coalitions, such as {1, 2} and {4, 5, 6}. For each coalition
S ∈ SeqN , let d∗(S) denote the cost the firm should pay if it uses the asset
for years in S. When the firm uses the asset only for one year, for example,
S = {2}, it invests in the asset through a one-year lease contract. In other
cases, for example, S = {2, 3, 4}, the firm invests in the asset through a
three-year lease contract. If S = N , the firm invests in the asset through
an n-year contract, which is equivalent to purchasing the asset. In this way,
the cost function d∗(S) : SeqN 7→ R+ can be defined by the amount of the
corresponding lease payments.

1In both Aparicio and Sánchez-Soriano (2008) and Arata, Shimogawa, and Inohara
(2024), R is assumed to be 0.

2See Arata, Shimogawa, and Inohara (2024) for a more detailed interpretation.
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Let us explain how these lease payments are determined. Imagine a leas-
ing company that leases out the asset to the firm. Assume that the leasing
company can correctly predict the market value f(k) of the asset used for k
years because it has access to the second-hand market while the firm does
not. Assume also that the leasing company sets the lease payments so as to
recover the decrease of its market value (= C − f(k)) during the lease term.
Then, the cost function on SeqN is defined as follows: for all S ∈ SeqN ,

d∗(S) := C − f(|S|) (2)

Next, we extend the domain of d∗. Note that each S ∈ 2N , which is
not necessarily sequential, can be decomposed into maximal sequential coali-
tions.3 Let (S)m denote the set of these maximal sequential coalitions in S.
Then, the cost for S is defined by

d(S) :=
∑

Sj∈(S)m
d∗(Sj). (3)

The cost function thus defined is subadditive.4 Moreover, it is concave.5

if the market value function is decreasing with respect to time and satisfies

f(0)− f(1) ≥ f(1)− f(2) ≥ · · · ≥ f(n− 1)− f(n). (4)

3 Depreciation methods

As mentioned above, an asset’s investment cost, measured by the acquisition
cost C minus the residual value R = f(n), is allocated over its expected useful
life through depreciation. A depreciation method is a function that assigns
to each depreciation problem (N,C, f) ∈ DN a vector φ(N,C, f) ∈ RN such
that

∑
i∈N φi(N,C, f) = C −R.

We now introduce four depreciation methods commonly used in practice.
For simplicity, we assume N = {1, 2, . . . , n} in the following definitions.

• The straight-line method: For all (N,C, f) ∈ DN and all i ∈ N ,

SLi(N,C, f) :=
C −R

n
.

3A sequential coalition is maximal if any superset of it is not sequential.
4A function g on 2N is subadditive if, for all S, T ∈ 2N with S ∩ T = ∅, g(S ∪ T ) ≤

g(S) + g(T ).
5A function g on 2N is concave if, for all S, T ∈ 2N , g(S∪T )+g(S∩T ) ≤ g(S)+g(T ).
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The straight-line method is the most commonly used method all over the
world, and “[t]he great virtue of this method is that it is simple to apply and
easy to understand” (Hendricksen and van Breda, 2001, page 528).

• The declining-balance method: For all (N,C, f) ∈ DN with R 6= 0,

DB1(N,C, f) :=

{
1−

(
R

C

) 1
n

}
C,

DB2(N,C, f) :=

{
1−

(
R

C

) 1
n

}(
R

C

) 1
n

C,

DB3(N,C, f) :=

{
1−

(
R

C

) 1
n

}(
R

C

) 2
n

C,

...

DBn(N,C, f) :=

{
1−

(
R

C

) 1
n

}(
R

C

)n−1
n

C.

For all (N,C, f) ∈ DN with R = 0,

DB1(N,C, f) :=

{
1−

(
1

C

) 1
n

}
C,

DB2(N,C, f) :=

{
1−

(
1

C

) 1
n

}(
1

C

) 1
n

C,

DB3(N,C, f) :=

{
1−

(
1

C

) 1
n

}(
1

C

) 2
n

C,

...

DBn(N,C, f) :=

{
1−

(
1

C

) 1
n

}(
R

C

)n−1
n

C + 1.

The declining-balance method is used to calculate depreciation expense by
applying a constant depreciation rate to the asset’s undepreciated balance.
Note that there are two representations of this method depending on the
value of R. The first one, which applies to the case R 6= 0, is a general one.
However, it cannot be applied to the case when R = 0. In that case, we regard
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R as one, calculate the depreciation rate, and add one to the depreciation
expense in the final year. Firms enjoy tax benefits because this method ends
up with higher depreciation expenses in the earlier years of the asset’s useful
life and lower expenses in the later years. Therefore, tax authorities allow this
method in order to promote investments in new technology or equipment.

In fact, there are many versions of this method. The one defined above
is called the fixed-percentage declining-balance method; however, in many
countries, the depreciation rate for the declining-balance method is calcu-
lated using either twice or 2.5 times the depreciation rate of the straight-line
method.6 These methods are called the double declining balance method or
the 250 percent declining balance method. This paper, however, will examine
based on the fixed-percentage declining-balance method because it is diffi-
cult to handle fractional processing in our model with the double declining
balance method or the 250 percent declining balance method.

• The sum-of-the-years’ digits method: For all (N,C, f) ∈ DN ,

SY D1(N,C, f) :=
2n

n(n+ 1)
(C −R) =

2

n+ 1
(C −R),

SY D2(N,C, f) :=
2(n− 1)

n(n+ 1)
(C −R),

SY D3(N,C, f) :=
2(n− 2)

n(n+ 1)
(C −R),

...

SY Dn(N,C, f) :=
2

n(n+ 1)
(C −R).

The sum-of-the-years’ digits method also ends up with higher depreciation
expenses in the earlier years of the asset’s useful life and lower expenses in
the later years. Tax authorities also allow this method for the same reason
as the declining-balance method.

• The fair value measurement: For all (N,C, f) ∈ DN ,

FV1(N,C, f) := C − f(1),

FV2(N,C, f) := f(1)− f(2),
...

FVn(N,C, f) := f(n− 1)−R.

6The straight-line depreciation rate is represented as 1
n−k+1 (k ∈ N).
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Note that the “market value” referred to here is an “ex-ante” value. In
other words, this refers to the predicted value of an asset used for i years in
the secondary market, as estimated when a firm decides on its investment
(or when a leasing company determines the lease payments). In practice7,
assets are valued at their fair value as of the fiscal year-end date, namely an
“ex-post” value.8

Let VN be a class of TU games for N . Then, a solution on VN is a
function σ that assigns each TU game (N, v) ∈ VN a vector σ(N, v) ∈ RN

such that
∑

i∈N σi(N, v) = v(N). In the axiomatic analysis of TU games,
desirable properties of solutions are formulated as axioms, and logical relation
among them are studies.9 In the next section, we formulate some desirable
properties of depreciation methods as axioms, and investigate whether the
four depreciation methods introduced above satisfies each axiom.

4 Axiomatic analysis

In this section, we examine the properties of each depreciation method. For
each of them there is a corresponding axiom of solutions for TU games, but
some of them are modified so as to fit the context of depreciation problems.
We considermonotonicity, additivity, population monotonicity, core selection,
and consistency. For simplicity, we define each axiom for N = {1, 2, . . . , n}.

Monotonicity: For all (N,C, f), (N,C ′, f) ∈ DN , if C < C ′, then for all
i ∈ N ,

φi(N,C ′, f) ≥ φi(N,C, f).

7Under the current accounting system, tangible fixed assets are not revalued at fair
value at the end of each fiscal year in any country. On the other hand, the International
Accounting Standards No. 16 (IAS 16) allows the revaluation model for tangible fixed
assets. IAS 16 permits the revaluation of an asset at fair value when its carrying amount,
which is being depreciated using other methods discussed in this paper, deviates from
its fair value. For simplicity, we will consider a case where costs are allocated through
revaluation at fair value each fiscal year, rather than a combination of regular revaluation
and depreciation by other methods as prescribed by IAS 16.

8Arata, Shimogawa, and Inohara (2024) have verified that the fair value measurement
based on ex-post values satisfies core selection.

9See Hokari and Thomson (2015) for a survey of axiomatic analysis of cooperative
games.
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Monotonicity states that when the acquisition cost increases, there are
no fiscal years in which the burden decreases.

Claim 1 The straight-line method satisfies monotonicity.

Proof. For all i ∈ N ,

SLi(N,C ′, f) =
C ′ −R

n
>

C −R

n
= SLi(N,C, f). □

Claim 2 The declining method satisfies monotonicity.

Proof. For all i ∈ N ,

DBi(N,C ′, f) =
{
1−

(
R
C′

) 1
n

}(
R
C′

) i−1
n C ′ =

{
1−

(
R
C′

) 1
n

}
R

i−1
n (C ′)1−

i−1
n ,

DBi(N,C, f) =
{
1−

(
R
C

) 1
n

}(
R
C

) i−1
n C =

{
1−

(
R
C

) 1
n

}
R

i−1
n C1− i−1

n .

Since 1−
(

R
C′

) 1
n > 1−

(
R
C

) 1
n and 1− i−1

n
> 0,

DBi(N,C ′, f) =
{
1−

(
R
C′

) 1
n

}
R

i−1
n (C ′)1−

i−1
n >

{
1−

(
R
C

) 1
n

}
R

i−1
n C1− i−1

n . □

Claim 3 The sum-of-the-years’ digits method satisfies monotonicity.

Proof. For all i ∈ N ,

SY Di(N,C ′, f) = 2(n−i+1)
n(n+1)

(C ′ −R) > 2(n−i+1)
n(n+1)

(C −R) = SY Di(N,C, f). □

Claim 4 The fair value measurement satisfies monotonicity.

Proof. If i = 1,

FV1(N,C ′, f) = C ′ − f(1) > C − f(1) = FV1(N,C, f).

If i ∈ {2, 3, . . . n},

FVi(N,C ′, f) = f(i− 1)− f(i) = FVi(N,C, f). □

The above claims are summarized as follows:

Proposition 1 All of the four methods satisfy monotonicity.
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Note that using the first three depreciation methods, if the investment
amount increases, the burden amount increases accordingly in all fiscal years.

Additivity: For all (N,C, f), (N,C ′, f ′) ∈ DN and all i ∈ N ,

φi(N,C, f) + φi(N,C ′, f ′) = φi(N,C + C ′, f + f ′).

In practice, the term “group depreciation” refers to grouping multiple
assets with assumed identical useful lives together and depreciating them
collectively. If a depreciation method satisfies additivity, the result of group
depreciation is the same as that of individual depreciation.

Claim 5 The straight-line method satisfies additivity.

Proof. For all i ∈ N ,

SLi(N,C, f) + SLi(N,C ′, f ′) =
C −R

n
+

C ′ −R′

n

=
C + C ′ −R−R′

n
= SLi(N,C + C ′, f + f ′). □

Claim 6 The declining-balance method does not satisfy additivity.

Proof. Note that, if R = 10, R′ = 20, C = C ′ = 100, then

DB1(N,C, f) +DB1(N,C ′, f ′) =

{
1−

(
R

C

) 1
n

}
C +

{
1−

(
R′

C ′

) 1
n

}
C ′

=

{
1−

(
10

100

) 1
n

}
100 +

{
1−

(
20

100

) 1
n

}
100

= 200−

{(
1

10

) 1
n

+

(
1

5

) 1
n

}
100,

DB1(N,C + C ′, f + f ′) =

{
1−

(
R +R′

C + C ′

) 1
n

}
(C + C ′)

=

{
1−

(
30

200

) 1
n

}
200

= 200−
(

30

200

) 1
n

200.
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Thus, DB1(N,C, f) +DB1(N,C ′, f ′) 6= DB1(N,C + C ′, f + f ′). □
Claim 7 The sum-of-the-years’ digits satisfies additivity.

Proof. For all i ∈ N ,

SY Di(N,C, f)) + SY Di(N,C ′, f ′)

=
2(n− i+ 1)

n(n+ 1)
(C −R) +

2(n− i+ 1)

n(n+ 1)
(C ′ −R)

=
2(n− i+ 1)

n(n+ 1)
{C + C ′ − (R +R′)}

= SY Di(N,C + C ′, f + f ′). □

Claim 8 The fair value measurement satisfies additivity.

Proof. For all i ∈ N ,

FVi(N,C, f) + FVi(N,C ′, f ′) = C − f(i) + C ′ − f ′(i)

= C + C ′ − (f(i) + f ′(i))

= FVi(N,C + C ′, f + f ′). □

Thus, the above claims are summarized as follows:

Proposition 2 The straight-line method, the sum-of-the-years’ digits method,
and the fair value measurement satisfy additivity.

The next axiom pertains to the case when the utilization periods are
shortened. It says that all remaining periods should be affected in the same
direction. Let N ′ := {1, 2, . . . , n − 1} and fn−1 be the restriction of f to
{1, 2, . . . n− 1}. Note that, for all (N,C, f) ∈ DN , (N ′, C, fn−1) ∈ DN ′

.

Population monotonicity10: For all (N,C, f) ∈ DN , either

(i) for all i ∈ N ′,

φi(N
′, C, fn−1) ≥ φi(N,C, f),

or

10This axiom was first introduced by Thomson (1983) in a model of fair allocation. See
Thomson (1995) for a survey of this axiom applied in various situations.
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(ii) for all i ∈ N ′,

φi(N
′, C, fn−1) ≤ φi(N,C, f).

Next, we consider a variant of this axiom, which says that the condition (i)
above should hold always:

Population monotonicity+: For all (N,C, f) ∈ DN and all i ∈ N ′,

φi(N
′, C, fn−1) ≥ φi(N,C, f).

To see the logical relation of these two variants, consider the following
axiom:

The final year reasonableness: For all (N,C, f) ∈ DN ,

φn(N,C, f) ≥ f(n− 1)− f(n).

Proposition 3 Population monotonicity and the final year reasonableness
jointly imply population monotonicity+.

Proof. Note that

n−1∑
i=1

φi(N
′, C, fn−1) ≥

n−1∑
i=1

φi(N,C, f)

↔ C − f(n− 1) ≥ C − f(n)− φn(N,C, f)

↔ φn(N,C, f) ≥ f(n− 1)− f(n). □

Claim 9 The straight-line method satisfies population monotonicity+.

Proof.

SLi(N
′, C, fn−1)− SLi(N,C, f) =

C − f(n− 1)

n− 1
− C − f(n)

n

=
C − f(n) + f(n)− f(n− 1)

n− 1
− C − f(n)

n

=
C − f(n)

n(n− 1)
− f(n− 1)− f(n)

n− 1

=
1

n− 1

(
C − f(n)

n
− (f(n− 1)− f(n))

)
.
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By (1),

C − f(1) ≥ f(n− 1)− f(n)

f(1)− f(2) ≥ f(n− 1)− f(n)
...

f(n− 1)− f(n) ≥ f(n− 1)− f(n)

Summing up these inequalities,

C − f(n) ≥ n(f(n− 1)− f(n)) (5)

Thus, SLi(N
′, C, fn−1)− SLi(N,C, f) ≥ 0. □

Claim 10 The declining-balance method does not satisfy population mono-
tonicity.

Proof. When |N | = 3, C = 160, f(1) = 70, (2) = 30, and R = 10,

DB1(N
′, C, f2)−DB1(N,C, f) =

{
1−

(
f(2)

C

) 1
2

}
C −

{
1−

(
f(3)

C

) 1
3

}
C

=

{(
10

160

) 1
3

−
(

30

160

) 1
2

}
160 < 0

and

DB2(N
′, C, f2)−DB2(N,C, f)

=

{
1−

(
f(2)

C

) 1
2

}(
f(2)

C

) 1
2

C −

{
1−

(
f(3)

C

) 1
3

}(
f(3)

C

) 1
3

C

=

[{
1−

(
30

160

) 1
2

}(
30

160

) 1
2

−

{
1−

(
10

160

) 1
3

}(
10

160

) 1
3

]
160 > 0. □

Claim 11 The sum-of-the-years’ digits method does not satisfy population
monotonicity.
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Proof. When |N | = 3, C = 160, f(1) = 70, (2) = 30, and R = 10,

SY D1(N
′, C, f2)− SY D1(N,C, f) =

2(C − f(2))

3
− C − f(3)

2
= (260/3)− (150/2) > 0

and

SY D2(N
′, C, f2)− SY D2(N,C, f) =

(C − f(2))

3
− C − f(3)

3
= (130/3)− (150/3) < 0. □

Claim 12 The fair value measurement satisfies both types of population
monotonicity.

Proof.

FVi(N
′, C, fn−1)− FVi(N,C, f) = 0 □

The fair value measurement can be considered as a “marginal contribution
solution” in TU games. In the context of TU games, population monotonicity
compares what each player gets in a given TU game and what she gets in its
subgames. It is well known that if a game is concave or convex, given any
ordering of players, the corresponding marginal contribution solution satisfies
population monotonicity. Here, our pupulation-monotonicity axiom considers
only on particular subgame, the one with respect to {1, 2, . . . , n − t}. Also,
the fair value measurement uses a particular ordering of years. These facts
partially explain why this method satisfies population monotonicity+ without
any extra assumptions on f , such as concavity.

Then, the above claims are summarized as follows:

Proposition 4 The straight-line method and the fair value measurement
satisfy population monotonicity.

Now, let us consider the following axioms:

Core selection: For all (N,C, f) ∈ DN ,∑
i∈S

φi(N,C, f) ≤ d(S) for all S ⊂ N. (6)
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The first-year individual rationality: For all (N,C, f) ∈ DN ,

φ1(N,C, f) ≤ C − f(1) = d({1}). (7)

The first-year individual rationality is weaker than core selection.

Claim 13 The straight-line method satisfies core selection.

The proof of this statement can be found in Arata, Shimogawa, and
Inohara (2024).

Claim 14 The declining-balance method does not satisfy core selection.

Proof. If R > 0, C(R
C
)

1
n < f(1), and S = {1},

∑
1∈S

φi(N,C, f) = DB1(N,C, f) =

{
1−

(
R

C

) 1
n

}
C > C − f(1) = d({1}).

Thus, it does not satisfy the first-year rationality, therefore it does not
satisfy core selection. □
Claim 15 The sum-of-the-years’ digits method does not satisfy core selec-
tion.

Proof. If C − 2
n+1

(C −R) < f(1) and S = {1},∑
1∈S

φi(N,C, f) = SY D1(N,C, f) =
2

n+ 1
(C −R) > C − f(1) = d({1}). □

Thus, it does not satisfy the first-year rationality, therefore it does not
satisfy core selection.

Claim 16 The fair value measurement satisfies core selection.

The proof of this statement can also be found in Arata, Shimogawa, and
Inohara (2024).

The above claims are summarized as follows:

Proposition 5 The straight-line method and the fair value measurement
satisfy core selection.

Next, we show that core selection is implied by combining other axioms.
Here, we introduce a new axiom.

15



Conservatism: For all (N,C, f) ∈ DN and all i, j ∈ N with i < j,

φi(N,C, f) ≥ φj(N,C, f).

This axiom implies the early recognition of expenses in this context. The
convention known as “conservatism” exists in accounting practice. This ax-
iom can be regarded as an embodiment of the convention. We discuss this
in more detail in the next section.

Proposition 6 Population-monotonicity, the final year reasonableness, and
conservatism jointly imply core selection.

Proof. By Proposition 3, population monotonicity and final year reasonable-
ness jointly imply population monotonicity+. By population monotonicity+,

n−1∑
i=1

φi(N
′, C, fn−1) ≥

n−1∑
i=1

φi(N,C, f).

By the definition of depreciation method,

n−1∑
i=1

φi(N
′, C, fn−1) = C − fn−1(n− 1) = C − f(n− 1) = d∗({1, 2, . . . , n− 1})

where d∗ : SeqN → R is the restricted cost function associated with (N,C, f).
Thus,

d∗({1, 2, . . . , n− 1}) ≥
n−1∑
i=1

φi(N,C, f). (8)

By the definition of d∗,

d∗({2, 3, . . . , n}) = C − f(n− 1) = d∗({1, 2, . . . , n− 1}). (9)

By conservatism,

n−1∑
i=1

φi(N,C, f) ≥
n∑

i=2

φi(N,C, f) (10)

From (8), (9) and (10),

d∗({2, 3, . . . , n}) ≥
n∑

i=2

φi(N,C, f). (11)
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From (8) and (11), we can see that (6) holds for all S ∈ SeqN with |S| = n−1.
Similarly, by population monotonicity+, for N

′′ := {1, 2, . . . , n− 2},

n−2∑
i=1

φi(N
′′, C, fn−2) ≥

n−2∑
i=1

φi(N
′, C, fn−1) ≥

n−2∑
i=1

φi(N,C, fn)

where fn−2 is the restriction of fn−1 to {1, 2, . . . , n− 2}, which is equivalent
to the restriction of f to {1, 2, . . . , n − 2}. By the definition of depreciation
method,

n−2∑
i=1

φi(N
′′, C, fn−2) = C − fn−2(n− 2) = C − f(n− 2).

Thus,

d∗({1, 2, . . . , n− 2}) ≥
n−2∑
i=1

φi(N,C, f).

By conservatism,

n−2∑
i=1

φi(N,C, f) ≥
n−1∑
i=2

φi(N,C, f) ≥
n∑

i=3

φi(N,C, f).

Then, by the definition of d∗, we can induce for any S ∈ SeqN and |S| = n−2,

d∗(S) ≥
∑
i∈S

φi(N,C, f).

Repeating this procedure proves that Proposition 6 holds for all S ∈ SeqN .
By the definition of d, for all S ⊂ N , we have

d(S) =
∑

Sj∈(S)m
d∗(Sj) ≥

∑
Sj∈(S)m

∑
i∈Sj

φi(N,C, f) ≥
∑
i∈S

φi(N,C, f).

Proposition 6 provides a reason why the straight-line method satisfies
core selection.

The next axiom pertains to the situation that arises after the first year.
It says that even after the first year if the remaining problem is regarded as a
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new game starting from the second year, the burden amount for other years
should remain the same as in the original game. Let N ′′ := {2, 3, . . . , n}
and g : {1, . . . , n − 1} → R+ be defined by setting g(k) := f(k + 1) for all
k ∈ {1, . . . , n− 1}.

Consistency11: For all (N,C, f) ∈ DN and all i ∈ N ′′,

(N ′′, C − φ1(N,C, f), g) ∈ DN ′′
(12)

and

φi(N
′′, C − φ1(N,C, f), g) = φi(N,C, f). (13)

We refer to (N ′′, C − φ1(N,C, f), g) as a reduced problem.

Let C ′′ = C −φ1(N,C, f). Then note that (N ′′, C ′′, g) ∈ DN ′′
if and only

if the acquisition cost C ′′ = C − φ1(N,C, f) and the revised market value
function g defined above satisfy

C ′′ = C − φ1(N,C, f) > g(1) > . . . > g(n− 1) = R, (14)

and for all s, t ∈ {1, 2, . . . , n− 1} with s+ t ≤ n− 1,

C ′′ − g(s) ≥ g(t)− g(t+ s). (15)

We check whether these conditions are satisfied for each method.

Claim 17 The straight-line method satisfies (14).
Proof. From (1),

C − f(1) ≥ f(1)− f(2)

C − f(1) ≥ f(2)− f(3)
...

C − f(1) ≥ f(n− 1)− f(n),

Summing up these inequalities,

(n− 1)(C − f(1)) ≥ f(1)− f(n).

11See Thomson (2011) for a survey of this axiom applied in various situations.
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Then,

n(C − f(1)) ≥ C − f(1) + f(1)− f(n)

↔ C − f(1) ≥ C −R

n
.

By this inequality and (1),

C − SL1(N,C, f) = C − C −R

n
≥ f(1) > f(2) = g(1). □

Claim 18 The straight-line method does not satisfy (15), consequently, it
does not satisfy consistency.
Proof. When |N | = 3, C = 160, f(1) = 100, f(2) = 65, and f(3) = R = 10,

C ′′ − g(1) = 110− 65 ≤ g(1)− g(2) = 65− 10.

Therefore, the straight-line method does not satisfy (15). □
Claim 19 The declining-balance method does not satisfy (15), consequently,
it does not satisfy consistency.
Proof. When |N | = 3, C = 160, f(1) = 100, f(2) = 65, and f(3) = R = 10,

C ′′ −DB1(N,C, f) = 160− 96.5039 . . . < f(1) = 100.

Then, the declining-balance method does not satisfy (14). □
Claim 20 The declining-balance method does not satisfy (15).
Proof. When |N | = 3, C = 160, f(1) = 100, f(2) = 65, and f(3) = R = 10,

C ′′ − g(1) < 0

Then, the declining-balance method does not satisfy (15). □
Claim 21 The sum-of-the-years’ digits method satisfies (14).
Proof. By the definition of the sum-of-the-years’ digits method,

SY D1(N,C, f) =
2

n+ 1
(C −R).
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From Claim 13,

C − f(2) ≥ 2

n
(C −R).

Then,

C − f(2) ≥ 2

n
(C −R) > SY D1(N,C, f)

Therefore,

C − SY D1(N,C, f) > C − (C − f(2)) = g(1). □

Claim 22 The sum-of-the-years’ digits method does not satisfy (15), con-
sequently, it does not satisfy consistency.
Proof. When |N | = 3, C = 160, f(1) = 100, f(2) = 65, and f(3) = R = 10,

C ′′ − g(1) = 75− 65 ≤ g(1)− g(2) = 55

Therefore, the straight-line method does not satisfy (15). □
Claim 23 The fair value measurement satisfies (14).
Proof.

C − FVi(N,C, f) = f(1) ≥ f(2) = g(1). □

Claim 24 The fair value measurement does not satisfy (15), consequently,
it does not satisfy consistency.
Proof. When |N | = 3, C = 160, f(1) = 100, f(2) = 65, and f(3) = R = 10,

C ′′ − g(1) = 100− 65 ≤ g(1)− g(2) = 55

Therefore, the fair value measurement does not satisfy (15). □
Then, the above claims are summarized as follows:

Proposition 7 None of the four methods satisfies consistency.

Now, let us consider a weaker version:

Conditional consistency: For all (N,C, f) ∈ DN , if
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(N ′′, C ′′, g) ∈ DN ′′
, (16)

then for all i ∈ N”,

φi(N
′′, C ′′, g) = φi(N,C, f) (17)

where N ′′, C ′′ and g are defined in the same manner as before.

As evident from the definition of each depreciation method in Section 3,
if the reduced problem is well-defined, then, (17) is automatically satisfied
by all depreciation methods. Then, we obtain the following proposition as
follows:

Proposition 8 All four methods satisfy conditional consistency.

5 Axioms in practice

This section will discuss the practical implications of the results presented in
the previous section.

5.1 Core selection

Arata, Shimogawa, and Inohara (2024) interpret this axiom as follows: “The
grand coalition minimizes the overall cost of the investment on the asset
and, moreover, that the burden for each fiscal year is also smaller than the
burden when using it through other coalitions.” Recall that “players” in a
depreciation game are fiscal years. So, what they are assuming is that there
are some agents, such as managers and employees, who are evaluated by
annual profits in the background of each fiscal year. In such a context, their
interpretation of core selection seems to be reasonable.

However, one might object to this interpretation because there are not
always such agents in the background of this model. As shown above, the
declining-balance method and the sum-of-the-years’ digits method don’t sat-
isfy core selection. As we have described in Section 3, these two methods end
up with higher expenses, and hence lower taxable income, in the earlier years
of the asset’s useful life. This is the main reason why tax authorities in many
countries allow these two methods to promote investments. This suggests
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that the depreciation problem is not merely a cost-sharing game but rather
a more complex one in which some positive benefits of being charged more,
such as tax-saving effects, should also be considered.

On the other hand, Proposition 6 says that core selection is implied by a
combination of a neutral axiom population monotonicity with two particular
axioms, final year reasonableness and conservatism. Thus, even if you feel
that core selection is not so desirable, you cannot avoid accepting it if you
accept these other axioms.

5.2 Conservatism

Proposition 6 states that core selection is implied when population monotonicity+

is combined with conservatism. As described in Section 4, conservatism can
also be seen as embodying one of the accounting conventions known as con-
servatism.

AICPA (1970) is the statement concerning basic concepts and accounting
principles underlying financial statements of business enterprises. It shows
pervasive principles which specify the general approach accountants should
take to recognition and measurement of events that affect the financial po-
sition and results of operations of enterprises. According to this statement,
the pervasive principles are divided into (1) pervasive measurement principles
and (2) modifying conventions. The pervasive measurement principles mainly
establish the basis for the recognition of earnings (revenue and expense). For
example, “systematic and rational allocation” is one of the pervasive mea-
surement principles described in the statement. The modifying conventions
are applied when rigid adherence to the pervasive measurement principles
produce unsatisfactory results. They describe conservatism as follows:

“Historically, managers, investors, and accountants have gener-
ally preferred that possible errors in measurement be in the direc-
tion of understatement rather than overstatement of net income
and net assets. This has led to the convention of conservatism,
which is expressed in rules adopted by the profession as a whole
such as the rules that inventory should be measured at the lower
of cost and market and that accrued net losses should be rec-
ognized on firm purchase commitments for goods for inventory.
These rules may result in stating net income and net assets at
amounts lower than would otherwise result from applying the
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pervasive measurement principles.”

However, no clear criteria were ever provided for when conservatism as a
modifying convention should be applied. As a result, the interpretation and
treatment of conservatism within accounting rules remained ambiguous and
controversial.

On the other hand, our result (Proposition 6) can be interpreted as sug-
gesting that conservatism modifies or restricts population monotonicity+,
which might be regarded as a type of pervasive principle. The discussion
here may offer new insights into the current, ambiguous positioning of con-
servatism.

5.3 Consistency

Finally, we discuss the practical implications of this axiom. AICPA (1970)
lists the qualitative objectives of financial statements, and one of them is
comparability. It considers “consistency” as one of the important factors
supporting comparability. AICPA (1970) describes that “[a]lthough financial
accounting practices and procedures are largely conventional, consistency in
their use permits comparisons over time” and “consistency of treatment over
time are important factors in determining the appropriate expense recogni-
tion principle.” As mentioned above, a depreciation method should be ratio-
nal and systematic. Therefore, we can consider that the axiom, consistency,
examined here, corresponds to this accounting concept.

6 Conclusion

In this paper, we have studied through the axiomatic approach in what sense
depreciation methods used in practice, such as the straight-line method, the
declining-balance method, the sum-of-the-years’ digits method, and the fair
value measurement, can be considered rational and systematic.

First, we have examined the axioms of the depreciation methods. Table 1
summarizes our results. As Table 1 shows, the straight-line method satisfies
all axioms but consistency discussed in this paper. It’s been commonly said,
as described in Section 3, that the great virtue of this method is that it is
simple to apply and easy to understand. However, our results indicate that
the advantages of the straight-line method are not only in its simplicity but

23



Table 1: Properties of depreciation methods
Axiom　 SL　 　DB　 SYD　 FV

Monotonicity Yes Yes Yes Yes
Additivity Yes No Yes Yes

Population monotonicity Yes No No Yes
The Final year reasonableness Yes No No Yes
Population monotonicity+ Yes No No Yes

Conservatism Yes Yes Yes No
Core selection Yes No No Yes
Consistency No No No No

Conditional consistency Yes Yes Yes Yes

also in the many other favorable characteristics it possesses, as examined
here.

Second, we have provided a practical interpretation for each axiom ex-
amined in this paper and associate the two axioms, consistency and conser-
vatism, with the accounting principles bearing the same names.

Since the players are not humans in the model studied in the paper, it
is not so clear whether the axiom of core selection is desirable or not in this
context. We have also provided a positive answer to this question. Namely,
we show that three appealing axioms, population monotonicity, the final year
reasonableness, and conservatism, jointly imply core selection. Meanwhile,
the two depreciation methods that do not satisfy core selection are allowed
by tax law. This suggests that the depreciation problem is not merely a cost-
sharing game but rather a more complex one in which some positive benefits
of being charged more, such as tax-saving effects, should also be considered.
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