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1 Introduction

In numerous real-world allocation scenarios, priorities serve as the cornerstone for distributing
sought-after goods and services. This is evident across various sectors: healthcare professionals
must arrange patient surgeries, government authorities must determine immigration priorities,
educational institutions must rank applicants, and during crises like pandemics, critical resources
such as vaccines and ventilators must be allocated according to predetermined criteria.

The vast literature on assignment problems often take priorities as a primitive given exogenously
at the outset and focus on the design of institutions for equitable and efficient allocations in light
of given priorities (see Sönmez and Ünver (2024a,b) for excellent surveys). Nevertheless, it is
inevitable that carefully designed institutions on the premise of equity can only be fair inasmuch
the underlying priorities are the result of a transparent, objective and consistent protocol.

In this paper, we are interested in the problem of endogenously designing priorities1 to align with
the primary objectives of a planner. Unlike situations where agents share a common attribute, such
as test scores for university admissions or arrival times for service queues, prioritization becomes
notably challenging when agents possess diverse attributes or belong to different identity groups.
For instance, a major dilemma faced by policymakers during the COVID-19 pandemic pertained
to determining the vaccination order among various groups of individuals in society including
healthcare personnel, essential workers, the elderly individuals etc. The absence of consensus led
to the emergence of varied rationing protocols in various countries and regions, highlighting the
complexity of prioritization in heterogeneous populations (Pathak et al., 2024).

Similar examples are abundant. When scheduling surgeries at a hospital, prioritizing patients
becomes imperative. Within each surgical category, scoring-based systems are often utilized to rank
patients based on the urgency and severity of their conditions, facilitating the allocation of limited
surgical resources effectively. In allocating research funds across disciplines, government bodies
determine which applications to award grants. Each application undergoes review and ranking
within its respective discipline, with a fixed total number of grants available. The challenge lies in
deciding which researchers and disciplines should receive funding, taking into account the unique
needs and priorities of each field. In allocating visas or green cards, applications from various
job categories or nationalities are considered. Within each job category, candidates are evaluated
based on merit, and a fixed number of visas or green cards are allocated. Allocating sabbatical
positions within a university faculty presents similar complexities, as applicants come from diverse
departments seeking leaves at the faculty level. Decisions regarding sabbatical awards are made
centrally, with applicants within each department ranked against their peers. Here, the task is to
prioritize individuals for sabbaticals, considering the academic contributions and needs of each de-
partment while maintaining fairness. Furthermore, affirmative action policies in school admissions

1Using the more technical terminology, we are pursuing the design of choice functions that meet the inherent
goals of the mechanism designer.

2



highlight the importance of prioritizing students from various backgrounds, such as ethnicity and
socioeconomic status. When faced with binary choices, schools aim to admit students from multi-
ple applicant types to promote diversity and equity. However, in scenarios involving more than two
groups, schools must also determine the composition of each class, balancing factors like academic
merit and inclusivity to create a diverse student body that reflects the institution’s values. These
scenarios illustrate the multifaceted nature of prioritization in allocation problems, ranging from
binary choices to complex, multi-group considerations. Throughout these allocation processes, the
challenge lies in devising prioritization mechanisms that account for the heterogeneity of agents
while ensuring fairness and efficiency.

In this paper, we aim to elucidate the principles behind endogenously designing priorities in
allocation problems, offering insights into assignment problems at the intersection of economics,
management policy, and social justice. Our formal model builds on a problem faced by universities
in Japan to assign students from various faculties to exchange programs. Keio University in Tokyo
specifically consulted the third author to develop a protocol to solve this problem. This application
constitutes the basis for our canonical model and the terminology we adopt in the rest of the paper.

Universities all over the world have exchange programs in which millions of students with var-
ious majors study abroad at partner universities.2 The common allocation method for assigning
students to exchange programs is a choice based on priority, also commonly referred as a serial
dictatorship mechanism in the assignment literature.3 Before applying this mechanism, a complete
priority order must be constructed. While GPA is a natural basis for determining priorities, the
process is further complicated by the fact that students actually come from different faculties with
different class sizes and different grading metrics. Universities often address this complication by
resorting to ad-hoc internal decision processes. For example, universities such as Keio usually hold
face-to-face interviews with each student to prioritize all exchange program applicants. Nonethe-
less, the sheer administrative cost of conducting such interviews led to the reform in which the
centralized prioritization process proposed in this paper was adopted.

We formulate a prioritization problem as the problem of assigning a set of agents to an ex-
ogenously given K priority groups of arbitrary sizes. Each agent prefers to be in a higher (lower-
indexed) group. Each agent inherently belongs to a category, e.g., the faculty a student is affili-
ated with.4 Existing priorities are only partial in that only agents from the same category can be
ranked, i.e., any two agents across different categories are incomparable. A systematic solution to
this problem is a prioritization protocol that returns a complete and transitive (not necessarily lin-
ear) priority over agents, or equivalently, an assignment of agents to K priority groups (see Figure
1 for an illustration). When agents are otherwise indistinguishable, to achieve fairness in an ex
ante sense we also allow for prioritization protocols that allow for lotteries. Our goal is to identify

2For example, see the webpage https://www.statista.com/chart/3624/
the-countries-with-the-most-students-studying-abroad/ for details (accessed October 23, 2024).

3See, for example, Svensson (1994; 1999) for a first axiomatic account on this method.
4We relax this assumption later in the paper and allow for multi-category membership.
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Figure 1: A prioritization problem
Note: Each “o” represents a student. At the outset (on the left), students are ordered only within the same category.
After applying a protocol (on the right), all students are weakly ordered. Whereas students within the same group
have the same priority, students in the 1st group have strictly higher priority than those in the 2nd group.

the types of prioritization protocols that emerge if one insists on minimal forms of efficiency and
fairness. Importantly, when prioritization becomes a central design issue, it expands the concept
of choice rule that have attracted much attention in recent matching theory and market design
(e.g., see Alva and Dogan (2023) for a survey).5

As a minimal form of efficiency, we consider non-wasteful assignments where no student is
assigned to a group while a higher-priority group has a vacancy. An assignment respects priorities
if no student is assigned to a higher priority group than a higher priority student from the same
category. Our first result is a complete characterization of the set of non-wasteful deterministic
assignments that respect priorities (Proposition 1).

We consider two plausible metrics for gauging the fairness of assignments depending on how one
evaluates two students from different categories. A natural starting point is an absolute priority
metric, which considers the rank of the student within her category, regardless of the category’s
size. In many applications, population size is a major determinant for the resource distribution.
For example, in public health funding, resources like vaccines, hospital beds, medical staff, and
funding are distributed proportionally to the size of different areas or groups. Government funding
for public schools is often allocated based on the number of students. Public services such as
police, fire departments, and public transportation allocate resources based on the population size
of different districts or neighborhoods. Seats in legislative bodies (e.g., House of Representatives in
the US) are often allocated based on population size.6 Motivated by the abundance of applications

5A choice rule is a systematic way of selecting subsets from a given set of agents. A choice rule essentially solves
a special case of a prioritization problem with K = 2. Whereas existing choice rules are deterministic, our analysis
also allows for stochastic choices. See the related literature section.

6Other examples include scholarships and quota assignment in educational institutions (based on the population
size of different regions or demographic groups), electoral systems (e.g., political party seats allocated based on the
proportion of votes they receive), which indirectly relates to the population size supporting each party, business
and marketing (e.g., companies allocate marketing budgets based on the size of different consumer groups), social
welfare programs (e.g., programs like food assistance, unemployment benefits, and social security is allocated based
on the number of eligible individuals in different areas or groups), housing assistance (e.g., housing vouchers and
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where population size matters, we define a relative priority metric. It refines the absolute priority
metric by considering the percentiles agents in which agents lie with respect to their categories,
i.e., rank is defined relative to the size of the category.

Our central fairness notion for prioritization protocols is equal treatment of students with equal
priority metrics : any pair of students who have the same priority metric must receive the same
probability of getting assigned to a given priority group.

Our main result shows that two types of prioritization protocols stand out when the planner
requires non-wastefulness, respecting priorities, consistency7 and equal treatment of equals while
using randomization only to break ties. These protocols assign probability distributions over
deterministic assignments. Each deterministic assignment in the support is obtained by allowing
students to successively compete to fill the positions in the priority groups starting with the
highest priority group moving down to the lowest. Each student is equipped with a “filling speed.”
Students fill positions based first on priority and then speed. When two students from two different
categories are tied to fill a position in all relevant characteristics, a tie-breaker determines who
gets the position.

When fairness is pursued in an absolute sense, the protocol has to be a uniform prioritization
protocol : each student’s speed is identical and a uniformly random tie-breaker is used (Theorem 1).
On the other hand, when fairness is pursued in a relative sense, e.g., students in similar percentiles
in their respective categories should be treated the same, the protocol has to be a proportional
prioritization protocol : each student’s speed is proportional to the size of her category and a
uniformly random tie-breaker is used (Theorem 2).

It is important to emphasize that the protocols we characterize “minimally” rely on randomiza-
tion. More specifically, the filling algorithms that constitute the backbone of the two protocols do
not treat the positions in the priority groups as a continuum mass of students. Instead, protocols
allow students to fill positions one by one to generate deterministic assignments and randomization
is applied only “locally” to students that are otherwise indistinguishable.

A major challenge in our approach is that the fairness notion requires making comparisons
across deterministic assignments, e.g., do similar agents appear in similar groups with same fre-
quency? This makes working with random assignments (i.e., assignment matrices showing the
probabilities with which category members end up in which group) rather intractable. To over-
come this challenge, one needs to directly construct lotteries over deterministic assignments rather
than resorting to standard machinery of random assignment decomposition, e.g., Birkhoff von Neu-
man type of methods (Birkhoff, 1946; von Neumann, 1953) are inapplicable.8 In this sense, despite

subsidies are distributed based on the population size within different regions), disaster relief (e.g., resources for
disaster response, such as emergency shelters, medical supplies, personnel, and relief funds are allocated based on
the affected population size), environmental conservation (e.g., funding for conservation projects can be allocated
based on the population size of endangered species or the extent of habitat areas) and pollution control (e.g.,
resources for pollution control measures may be distributed based on the population density of affected areas).

7A protocol is consistent if its assignment is robust to the departure of some of the students from the problem.
8This can be seen akin to uncovering the subtle relationships between ex post vs. ordinally efficient assignments
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Figure 2: Continuum version of the assignment problem
Note: A set of agents each belonging to one of two categories need to be divided into two groups. Agents (a1, a2)
are members of category A and agents (b1, ..., b6) are members of category B. Group 1 will admit three agents while
group 2 five. Group assignments are separated by the thick black boundary. The numbers in each cell represent
capacity shares assigned to each category based on category size.

the use of similar terminology,9 our protocols are markedly different than well-known stochastic
rules such as the probabilistic serial (Bogomolnaia and Moulin, 2001) or competitive equilibrium
(Hylland and Zeckhauser, 1979) that have attracted much attention in the assignment literature.
We next illustrate this difficulty via an example.

Lotteries in lieu of random assignments: An illustration

An alternative and simpler approach to solve a prioritization problem could be based on tackling
a continuum version of the problem in two-steps akin to the standard methodology in probabilis-
tic assignment problems: First, assign agents probability shares over priority groups, and then
decompose the resulting random assignment matrix into a lottery over deterministic assignments.
While this idea sounds simpler and natural, it is incompatible with equal treatment of equals. The
following example illustrates this point.

Consider the following simple prioritization problem (Figure 2) where category A consists of two
agents (a1, a2) and category B of six agents (b1, ..., b6), where only agents within each category are
ranked (with lower index representing higher priority). The collection of agents are to be assigned
into two priority groups where group 1 is of capacity of three, and group 2 is of capacity of five,
i.e, K = 2. Suppose we convert this problem to a continuum of agents and capacities, where
masses correspond to aggregate probability shares in group assignments. Consider an intuitive
aggregate random allocation where the capacity of each priority group is allocated to categories

or ex ante vs ex post stable assignments (Abdulkadiroğlu and Sönmez, 2003; Kesten and Ünver, 2015; Aziz et al.,
2022). However, the task at hand is more involved since in our context ex ante fairness does not necessarily imply
ex post fairness as demonstrated in the upcoming illustration.

9Bogomolnaia and Moulin (2001) use the term eating speed to represent continuum shares of goods consumed by
an agent. In their model, these eaten amounts are probability shares that need to be used to for a final decomposition
of the random assignment into a lottery over deterministic assignments.
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Figure 3: Discrete decompositions of the assignment
The continuum assignment in Fig 2 leads to one of the three assignments depicted in the figure. In both of figures,
the circles indicate agents in categories and agents are ordered from left to right in each category. The agents left
to the lines are assigned to group 1 in both of the figures. The left assignment is selected with probability p1, the
middle with probability p2, and the right with probability 1 − p1 − p2. To be a decomposition of the aggregate
random assignment in Figure 2, the expected mass of category A students assigned to group 1 should be 0.75, i.e.,
p1 + 2p2 = 0.75.

proportionally to the size of each category (see Figure 2). For example, giving the three slots for
group 1 is apportioned into a mass of 0.75 for category A with a population size of 2 and a mass
of 2.25 for category B with a population size of 6.10

Clearly, this is merely an aggregate random allocation that does not yet specify which agents
are assigned to which groups. Since the actual implementation of this random assignment requires
computation of outcome-equivalent deterministic assignment, one would then resort to a lottery
decomposition over assignments that respect priorities where a higher priority student falls into
a weakly higher group than a lower priority student from the same category. Figure 3 shows all
possible decompositions over such assignment: the left assignment chosen with probability p1, the
middle assignment with p2, and the right assignment with 1− p1 − p2, where p1 + 2p2 = 0.75 (eq.
1) by feasibility. Although the proportional allocation appears to be fair, the lottery it induces
cannot respect the equal treatment of students with equal relative priority positions.11 To see this,
consider agent a1 of category A (the red circle in Figure 3) and agent b3 of category B (the black
circle). Since they share the same relative priority positions in their respective categories, i.e., they
are both in the 50th percentile in their respective populations putting them both on the margin of
getting into group 1, both of them should be assigned with equal probability to each group. Since
a1 is assigned to group 1 in the left and the middle assignments whereas b3 in the right, we must
have p1 + p2 = 1 − p1 − p2. Together with (eq. 1), this implies that the unique candidate for a
fair decomposition is (p1, p2, 1 − p1 − p2) = (0.25, 0.25, 0.5). Now consider agents a2 and b6, who
also share the same relative priority positions (i.e., both in the 0th percentile in their respective
populations). Whereas agent a2 is selected for group 1 with positive probability, b6 never makes

10For example, if we simply assume each student in each category has equal chance of being selected to a group,
this mass distribution implies that a randomly selected member of each group is three times more likely to be a
member of category B whereas a randomly selected agent from a given category is 1.67 times more likely to fall
into the second group.

11In general one can construct a similar example showing the impossibility equal treatment of equals for any
given priority metric.
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the cut for group 1. This implies that there is no fair decomposition of the random assignment in
Figure 2. More generally, transforming a seemingly fair random assignment based on a continuum
interpretation may result in an unfair outcome in its lottery-equivalent.

We next illustrate what the uniform and proportional protocols would recommend for this
example. The uniform protocol which embodies the principle of absolute equal treatment of equals
would insist that agents a1 vs. b1 and a2 vs. b2 should be treated equally. This entails that the
left and middle assignments are selected with equal probability while the right assignment is never
selected, i.e., p1 = p2 = 0.5. The proportional protocol, on the other hand, embodies the principle
of relative equal treatment of equals and would insist that agents a1 vs. b3 and a2 vs. b6 should be
treated equally. This entails that the left and right assignments are selected with equal probability
while the middle assignment is never selected, i.e., p1 = 0.5 and p2 = 0.

Related Literature

Since the pioneering work of Shapley and Scarf (1974) who first studied indivisible goods allocation
problems without monetary transfers, many studies including assignment problems (possibly with
prior claims) (Abdulkadiroğlu and Sönmez, 1999) and school choice (Abdulkadiroğlu and Sönmez,
2003), kidney exchange (Roth et al., 2004), reserve design (Dur et al., 2018; Pathak et al., 2024,
2023) predominantly assume exogenously given strict priority orders as primitives of their model.12

A series of papers deal with complete but weak priorities in school choice (Erdil and Ergin,
2008; Erdil and Kumano, 2019) and exchange economies (Balbuzanov and Kotowski, 2019).13 In a
contemporaneous to ours, Anno and Takahashi (2023) apply core concepts to priority mechanisms
with incomplete priorities while characterizing a deterministic rule similar to our proportional
protocol with their fairness notions.14

When the number of priority groups is restricted to be only two (K = 2), a prioritization
problem can be viewed similarly to an apportionment problem (Young, 1995; Evren and Khanna,
2021), e.g., apportionment of representation among political constituencies or the problem of
designing choice rules. In the former type of problems, proportional apportionment is accepted
as the primary method while the goal is determining the suitable rounding of quotients. In the

12There are notable exceptions to this tradition. Álvarez and Medina (2024) consider a school choice problem with
students’ transferable characteristics, the source of higher priority, and introduce an algorithm which determines
both priority and student-school matching simultaneously. Recently, starting from a baseline priority order called
the order-of-merit list, Greenberg et al. (2024) axiomatically characterize the cumulative offer mechanism together
with a particular choice rule in the context of cadet-branch matching. In reassignment situation of teachers to
schools, Combe et al. (2022) design priorities (or choice rules) over experienced and non-experienced teachers, as
well as the allocation mechanism, to achieve certain distributional objectives.

13In particular, Balbuzanov and Kotowski (2019) study exchange economies in which priority may be partial, but
their focus is much different from ours; they define new concepts of cores based on property rights and characterize
them by a generalized top trading cycles algorithm.

14The third author of this paper was consulted to design the problem faced by the Keio University. He sub-
sequently shared it with Hidekazu Anno. Since then each group worked separately while occasionally exchanging
ideas. Anno and Takahashi (2023)’s model focuses on unit capacities of priority groups.
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latter type of problem, a choice rule specifies which subset of agents should be chosen from a given
set of agents. A number of papers have dealt with axiomatic characterization of appealing choice
rules for various applications (Echenique and Yenmez, 2015; Imamura, 2020; Sönmez and Yenmez,
2022; Pathak et al., 2024). 15 In addition to dealing only with the case of K = 2, as far as we are
aware, all choice rules in this literature are deterministic whereas we also allow for randomization.
In recent work, Imamura and Tomoeda (2023) show that for deterministic choice rules equal
treatment of equals is effectively incompatible with commonly-used axioms in that literature such
as substitutability and size monotonicity.16 This result provides further justification to our use
of randomization only when absolutely necessary. More generally, the methodological tools we
develop here can be useful for future exploration of stochastic choice rules.

The structure of this paper is as follows. Section 2 introduces the model and three equity
axioms. Section 3 characterizes the prioritization protocol. Section 4 endogenizes the number of
priority groups. Section 5 discusses the modeling and an application. Section 6 concludes the
paper. All the proofs can be found in the appendix.

2 Formal Analysis

2.1 Model

We consider the problem of dividing a set of students into ordered groups. The groups are inter-
preted as priority tiers or objects (e.g., time slots for vaccination) over which all agents have the
same preferences. Each agent initially belongs to one category (race, occupation, or department)
and will be assigned to exactly one group. The set of (priority) groups is K = {1, . . . , k̄}.
Group k has capacity qk > 0, which is the maximum number of agents assigned to group k. Let
q = (qk)k∈K ∈ NK be the list of capacities. To allow arbitrary numbers of categories and agents,
we first define the sets of categories and agents that will potentially be involved. Let C be a set
of categories, c or d being generic elements of C.17 Let Sc be the set of agents, or students,
belonging to category c ∈ C. For simplicity, let C and Sc be countable. Each student belongs to
only one category, that is, for each pair c, c′ ∈ C with c ̸= c′, Sc ∩ Sc′ = ∅. Within each category
c ∈ C, there is a linear order ⪰c on Sc, which means that s ⪰c s

′ and s′ ⪰c s imply s = s′. We call
⪰c a priority. Across distinct categories students are not ordered.

Let C ⊊ C and Sc ⊊ Sc be finite sets of categories and students of category c. A (prioritization)
problem is a list P = (C, {Sc}c∈C , K, q). For each problem, |C| ≥ 2, |K| = k̄ ≥ 2, and

∑
k∈K qk ≥

15Similar to some of these papers, we also consider the axiom of consistency for protocols, which is similar to
consistency for choice rules, when K = 2 (Aygün and Sönmez, 2013; Chambers and Yenmez, 2017; Imamura and
Tomoeda, 2023). Also see by Moulin (1985) and Alva and Dogan (2023) for two excellent surveys on choice rules.

16More precisely, Imamura and Tomoeda (2023) show that any individual for whom equal treatment applies must
either be always selected or never selected, which would violate either feasibility or non-wastefulness in our context.

17In the case of universities, a category is a faculty to which a student belongs.
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∑
c∈C |Sc|. The last inequality is assumed without loss of generality.18 Students have a common

and strict preferences over groups: group 1 is the most preferred, group 2 the second most preferred,
and so on. Being in a given group is interpreted as having a more favorable treatment than any
member in a higher-indexed group, e.g., receiving a service or privilege before members of later
groups.

An (priority) assignment for problem P is a function µ :
⋃

c∈C Sc → K such that for each
k ∈ K, |µ−1(k)| ≤ qk. Here a student s ∈

⋃
c∈C Sc is assigned a group µ(s) ∈ K; and µ−1(k)

is the set of students assigned to group k. For simplicity, we denote Sk = µ−1(k). Note that
for a collection {Sk}k∈K of subsets of students, we have

⋃
k∈K Sk =

⋃
c∈C Sc and for each pair

k, k′ ∈ K with k ̸= k′, Sk ∩ Sk′ = ∅. That is, an assignment partitions the student set
⋃

c∈C Sc

whose components are indexed by k ∈ K. We simplify the notation {Sk}k∈K to {Sk}. Note that
µ(s) = k if and only if s ∈ Sk. Note that when each group has a unit capacity, an assignment
induces a strict priority over all students.

Following the literature on market design, we focus on assignments satisfying two standard
requirements. The first requirement is a weak notion of efficiency. An assignment µ is non-
wasteful at a problem P if each group’s capacity is unfilled only if no student is assigned to a
worse group. That is, for each k ∈ K, |µ−1(k)| < qk implies that for each k′ > k, µ−1(k′) = ∅. The
second requirement is a weak notion of fairness within each category. An assignment µ respects
priorities at a problem P if for each category c ∈ C, when a student s ∈ Sc has higher priority
than a student s′ ∈ Sc, then the group to which s is assigned is not worse than the group to which
s′ is assigned. That is, for each c ∈ C and each pair s, s′ ∈ Sc with s ⪰c s

′, we have µ(s) ≤ µ(s′).

2.2 Random assignments

We consider a lottery λ = (λµ) that is a probability distribution over (deterministic) assignments.
We denote by σµ the probability that the lottery places on the assignment µ. The resulting
probability distribution for a student s over groups, σs = (σs,k), is called a random allocation.
σs,k ∈ [0, 1], is the probability that student s is assigned group k. A random assignment is a
matrix σ = (σs,k)s∈⋃c∈C Sc,k∈K , a collection of random allocations for all students, such that for
each s ∈

⋃
c∈C Sc,

∑
k∈K σs,k = 1; and for each k ∈ K,

∑
s∈

⋃
c∈C Sc

σs,k ≤ qk. An assignment can
be expressed as a random assignment with each cell being 0 or 1. Clearly, each lottery induces a
random assignment. That is, given a lottery λ = (λµ), its induced random assignment is calculated
as σ =

∑
µ λµσ(µ) where σ(µ) is a random assignment representing an assignment µ. Conversely, a

random assignment is induced by some lottery (Birkhoff, 1946; von Neumann, 1953; Budish et al.,
2013).

18Because any problem (C, {Sc}c∈C ,K, q) with
∑

k∈K qk <
∑

c∈C |Sc| is equivalent to another problem
(C, {Sc}c∈C , K̄, q̄) with

∑
k∈K̄ q̄k ≥

∑
c∈C |Sc| where K̄ = K + 1 and if k ≤ K, q̄k = qk; if k = K + 1,

q̄k >
∑

c∈C |Sc| −
∑

k∈K qk.
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Finally, we formulate protocols for prioritization. A protocol is a function φ that associates
a lottery φ(P ) to each problem P . When a student is assigned a group k with probability 1, we
say that her assigned group is deterministic. In this case, we simply write φs(P ) = k. We say
that a protocol satisfies non-wastefulness or respect of priorities when it can be represented as a
probability distribution over assignments that are non-wasteful or respect priorities.

In practice, random assignments may not be desirable.19 Motivated by this observation, we in-
troduce a simple measure over protocols: A protocol φ is less randomized than another protocol
φ′ if, for each problem P , the number of students whose assigned groups are non-deterministic is
smaller in φ(P ) than in φ′(P ), except when φ′(P ) = φ(P ). Similarly, among a class of protocols,
a protocol is the least randomized if it is less randomized than any other protocols within the
class.

2.3 Non-wasteful and fair deterministic assignments

We introduce a family of intuitive algorithms to find assignments that are non-wasteful and respect
priorities: Let P = (C, {Sc}c∈C , K, q) be given. The algorithm is parameterized by two variables
(i) a filling speed ω = (ωs)s∈⋃c∈C Sc where for each student s ∈

⋃
c∈C Sc, we have ωs ∈ R++,

and (ii) a tie-breaker ▷, a partial binary relation defined on
⋃

c∈C Sc: We imagine the process
taking over time. In step 1, at time 0 the highest-priority student sc in each category c ∈ C starts
to fill a position with speed ωsc . Among them, the fastest student who finishes filling positions,
i.e., the smallest number in {1/ωsc}c∈C , is assigned the most preferred group. Then, we move to
step 2 by reducing the capacities of assigned groups by the number of assigned students, and by
removing the assigned students and groups with the capacity becoming zero. Then, in step 2,
the highest-priority student sc, among those who remain in each category c ∈ C, starts to fill a
position with speed ωsc . Among them, the fastest student who finishes filling positions with the
total amount of one is assigned the most preferred group.

In this family of algorithms, there might be multiple students who finish filling positions at
the same time. For this reason, the assignment of groups to these students uses a tie-breaker ▷.
For each pair s, s′ ∈

⋃
c∈C Sc with the same total time spent up to s ∈ Sc and s′ ∈ Sc′ in order of

priority, they are ordered without ties. That is, when
∑

s′′:s′′⪰cs
1/ωs′′ =

∑
s′′:s′′⪰c′s

′ 1/ωs′′ , either
s ▷ s′ or s′ ▷ s.

Algorithm A(ω, ▷). Given P = (C, {Sc}c∈C , K, q), each student is progressively assigned to a
group in continuous time starting at time 0.
Step 1. The highest-priority student in each category c, say sc, fills 1 unit of position at his own
speed ωsc . The set of these students is S(1). We set the filled amount of student sc at the beginning
of the step to be esc(1) = 0. The first students in S(1) who finish filling exactly 1 units, say {s′},

19For instance at Keio University in the story of subsection 4.2, we first recommended the well-known random
priority protocol but professors from other fields refused our recommendation.
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are those with the fastest speeds {ωs′}. Denote the set of such students by S ′(1).20 Following the
order over these students ▷, a student is successively assigned the most preferred group one by
one.21 This occurs at time t′(1) = min

s′∈S(1)
1
ωs′

. We remove the students in S ′(1) from the problem,

and reduce the capacity of group k to qk(2) by the number of filled positions.22 If group k’s capacity
is qk(2) = 0, remove such a group. The filled amount of positions for student s ∈ S(1)\S ′(1) is
updated to es(2) = ωs/ωs′ .
Steps j ≥ 2. The highest-priority student among those remaining in each category c, say sc, fills
(1−esc(j)) unit of positions at his own speed ωsc . The set of these students is S(j).23 Each student
sc in S(j) would finish filling positions at time

(
t′(j − 1) + 1−es(j)

ωs

)
with the total filled amount

being es(j) + (1− es(j)) = 1. Take students at the fastest time in finishing filling positions among
those in S(j). Denote the set of such students by S ′(j). Following the order over these students ▷,
a student is successively assigned the most preferred group among those remaining one by one.24

This occurs at time t′(j) = min
s′∈S(j)

(
t′(j − 1) +

1−es′ (j)
ωs′

)
. We remove the students in S ′(j) from the

problem, and reduce the capacity of groups k to qk(j + 1) by the number of filled positions.25 If
a group k’s capacity is qk(j + 1) = 0, remove such a group. The filled amount of positions for
student s ∈ S(j)\S ′(j) is updated to es(j + 1) = es(j) +

1−es′ (j)
ωs′

ωs.

Example 1 (Execution of the algorithm). There are two categories A and B so that C = {A,B}.
The set of students of category A is SA = {a1, a2, a3, a4}, and that of category B is SB = {b1, b2}.
Category A’s priority is ⪰A: a

1, a2, a3, a4, while category B’s priority is ⪰B: b
1, b2. There are two

priority groups, 1 and 2, whose capacities are (q1, q2) = (3, 3).
Consider an algorithm A(ω, ▷) where the filling speed is ω = (ωa1 , ωa2 , ωa3 , ωa4 , ωb1 , ωb2) =

(2, 2, 1, 1, 1, 2) and a tie-breaker is a2 ▷ b1.
Step 1. Students S(1) = {a1, b1} fill 1 units of positions. Since a1 is faster (ωa1 = 2 > 1 = ωb1), we
assign a1 to group 1 and reduce the capacity of group 1 by 1 (q1(2) = 2). Set eb1(2) = ωb1/ωa1 = 0.5.
Step 2. Students S(2) = {a2, b1} fill positions. Since they finish at the same time (1−eb1 (2)

ωb1
= 0.5 =

1−ea2 (2)

ωa2
), they are assigned to groups as follows: Since a2 ▷ b1, we first assign a2 to group 1 and

then assign b1 to group 1. We remove group 1.
Steps 3, 4, and 5. Remaining students are assigned to group 2.

20S′(1) = {s ∈ S(1) : 1
ωs

= min
s′∈S(1)

1
ωs′

}
21Assign a student s′ in S′(1) the priority group k(s′) = k where k solves the following: s′ ∈ {top

∑
k′≤k q

k′
(1) in ▷

|S′(1)} and s′ /∈ {top
∑

k′<k q
k′
(1) in ▷ |S′(1)}.

22q(2) = (qk(2))k∈K = (qk(1)− |{s ∈ S′(1) : k(s) = k}|)k∈K
23S(j) = (S(j − 1)\S′(j − 1)) ∪ {s ∈ S\

⋃
j′<j S(j

′) : ∃s′ ∈ S′(j) with c(s′) = c(s) and ∄s′′ ∈
S\
⋃

j′<j S(j
′) with s′′ ⪰c(s) s}

24Assign a student s′ in S′(j) the priority group k(s′) = k where k solves the following: s ∈ {top
∑

k′≤k q
k′
(j) in ▷

|S′(j)} and s /∈ {top
∑

k′<k q
k′
(j) in ▷ |S′(j)}.

25q(j + 1) = (qk(j + 1))k∈K = (qk(j)− |{s ∈ S′(j) : k(s) = k}|)k∈K
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Figure 4: Execution of the algorithm in Example 3

The resulting assignment µ is

µ =

(
1 2

{a1, a2, b1} {a3, a4, b2}

)

We see that this assignment µ is non-wasteful and respects priorities. ♢

The family of proposed algorithms fully characterize the assignments that are non-wasteful and
respect priorities as follows.

Proposition 1. For each problem P and each assignment µ that is non-wasteful and respects
priorities at P , there is a pair (ω, ▷) such that algorithm A(ω, ▷) finds µ. Conversely, for each
problem P and each pair (ω, ▷), the assignment that algorithm A(ω, ▷) finds is non-wasteful and
respects priorities at P .

In other words, the collection of assignments obtained by a family of our algorithms coincide
with that of assignments that are non-wasteful and respect priorities. Since the algorithm selects
an assignment at any problem, Proposition 1 also guarantees the existence of such assignments.

We focus on random assignments placing positive probabilities over assignments that are non-
wasteful and respect priorities. By Proposition 1, these random assignments can be obtained by
a lottery over assignments achieved by the algorithm under some parameters (ω, ▷). Hence, we
sometimes represent a lottery as a distribution over parameters, that is, σ(P ) = (σ(ωℓ,▷ℓ)(P ))Lℓ=1.

2.4 Axioms: Consistency and fairness

To obtain a systematic way of assigning priorities to students, we require the protocol to be consis-
tent. We need to allow probabilistic protocols in the requirement. Let a problem (C, {Sc}c∈C , K, q),
a group k ∈ K, an assignment µ, and a subset of categories D ⊂ C be given. We call qkD,µ =

qk − |
⋃

c∈C\D µ−1(k)∩ Sc| a reduced capacity, and (D, {Sc}c∈D, K, (qkD,µ)) a reduced problem
of (C, {Sc}c∈C , K, q) with respect to µ. We require a consistent protocol to satisfy the following:

13



for each reduced problem, each student is assigned to the same group as the one to which she
was assigned in the original problem, as long as her assigned group is deterministic. The formal
definition is as follows.26

Consistency: For each problem (C, {Sc}c∈C , K, q), each assignment µ on which φ places a positive
probability, each subset of categories D ⊂ C with |D| ≥ 2, we have, for each student s ∈

⋃
c∈D Sc

whose assigned group is deterministic, φs(D, {Sc}c∈D, K, (qkD,µ)) = φs(C, {Sc}c∈C , K, q).

The above consistency requires that, when students of some categories leave with their assigned
groups, it does not affect the remaining students’ assigned groups. We only consider reduced
problems where all students of a category simultaneously leave because, when an arbitrary subset
of students leaves, requiring no effect on the remaining students seems too restrictive. For instance,
imagine that a category’s students except its bottom one (“he”) leave. It is not obvious that we
should keep him in the worst group, i.e., allowing him to be reassigned a better group may be
reasonable.

In this section, we first formalize fairness ideas across student categories. We introduce the
concepts by applying the notion of equal treatment of equals to our problem. We consider two
students satisfying specific criteria to be equals and require such students to be assigned to the same
group. We can see this is not possible in deterministic assignments by considering the following
case: When there are two “equal” students but each group’s capacity is one, assigning them to the
same group is not possible. Therefore, we consider random assignments (or in ex-ante sense). We
use the following two intuitive measurements to determine which students are “equals.” Given a
problem, we define the absolute position of student s ∈ Sc as a(s|Sc) = |{s′ ∈ Sc | s′ ⪰c s}|.
This represents the rank of student s within Sc starting from the top. We may omit “Sc” and
denote the absolute position of s by a(s). For example, when Sc = {s, s′, s′′} and s ⪰c s

′ ⪰c s
′′, we

have (a(s), a(s′), a(s′′)) = (1, 2, 3). Thus (a(s))s∈Sc = (1, 2, ..., |Sc|). On the other hand, we define
the relative position of student s ∈ Sc as r(s|Sc) = a(s|Sc)/|Sc|. We may omit “Sc” and denote
the relative position of s by r(s). By definition, (r(s))s∈Sc = (1/|Sc|, 2/|Sc|, ..., 1). In the following
definitions, we require random assignments to assign the same probability share over groups for
students in the same absolute/relative position.

Definition 1. 1. A lottery λ satisfies the equal treatment of equal absolute positions if
for each pair s, s′ ∈

⋃
c∈C Sc of students with the same absolute positions a(s) = a(s′), their

random allocations induced by lottery λ are the same, i.e., σs(λ) = σs′(λ).

2. A lottery λ satisfies the equal treatment of equal relative positions if for each pair
s, s′ ∈

⋃
c∈C Sc of students with the same relative positions r(s) = r(s′), their random

allocations induced by lottery λ are the same, i.e., σs(λ) = σs′(λ).
26Similar requirements are studied well for choice rules, for example, the weak axiom of revealed preference

(WARP), the independence of irrelevant alternatives (IIA), and the irrelevance of rejected contracts (IRC). When
K = 2 and an assignment is chosen for sure, our consistency is quite similar to these ones.
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The next protocols are central in this paper. While our protocol picks a probability distribution
over assignments achieved through our algorithms, restricting the distributions over parameters
enables us to define these protocols. In the definitions, we say that (▷ℓ)Lℓ=1 are perfectly random
if (i) each ▷ℓ is selected with equal probability of 1

L
and (ii) for each pair s, s′ ∈

⋃
c∈C Sc to whom

▷ is applied, |{▷ℓ : s ▷ℓ s′}| = |{▷ℓ : s′ ▷ℓ s}| = L
2
.

Definition 2. 1. For each problem P , the uniform protocol U associates a lottery U(P ) =(
σ(ωℓ,▷ℓ)(P )

)L
ℓ=1

where (▷ℓ)Lℓ=1 are perfectly random and all students’ speeds are the same,
that is, for each ℓ ∈ {1, . . . , L} and each pair s, s′ ∈

⋃
c∈C Sc, ωℓ

s = ωℓ
s′ .

2. For each problem P , the proportional protocol P associates a lottery P(P ) =
(
σ(ωℓ,▷ℓ)

)L
ℓ=1

where (▷ℓ)Lℓ=1 are perfectly random and the speed ωℓ
s of student s is proportional to the

population |Sc| of her category c, that is, for each ℓ ∈ {1, . . . , L} and each pair s, s′ ∈
⋃

c∈C Sc

with s ∈ Sc and s′ ∈ Sc′ ,
ωℓ
s

|Sc|
=

ωℓ
s′

|Sc′ |
.

We emphasize that the above two protocols are “almost” deterministic in the sense that we
only use a randomly selected tie-breaker when multiple agents with the same favorite group are
present in the algorithm.

Example 2. Consider the same problem as in Example 1.

1. Uniform protocol. A tie-breaker is applied to pairs {a1, b1} and {a2, b2}. (▷ℓ)4ℓ=1 comprises
the following:

• ▷1 : a1 ▷1 b1 and a2 ▷1 b2,

• ▷2 : a1 ▷2 b1 and b2 ▷2 a2,

• ▷3 : b1 ▷3 a1 and a2 ▷3 b2,

• ▷4 : b1 ▷4 a1 and b2 ▷4 a2.

The algorithms A(ω, ▷1) and A(ω, ▷3) select assignment µ, while A(ω, ▷2) and A(ω, ▷4) select
assignment µ′ where

µ =

(
1 2

{a1, a2, b1} {a3, a4, b2}

)
and µ′ =

(
1 2

{a1, b1, b2} {a2, a3, a4}

)
.

The uniform protocol selects µ and µ′ with equal probabilities.

2. Proportional protocol. A tie-breaker is applied to pairs {a2, b1} and {a4, b2}. (▷ℓ)8ℓ=5 com-
prises the following:
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• ▷5 : a2 ▷5 b1 and a4 ▷5 b2,

• ▷6 : a2 ▷6 b1 and b2 ▷6 a4,

• ▷7 : b1 ▷7 a2 and a4 ▷7 b2,

• ▷8 : b1 ▷8 a2 and b2 ▷8 a4.

The algorithms A(ω, ▷5), A(ω, ▷6), A(ω, ▷7), and A(ω, ▷8) select assignment µ. The propor-
tional protocol select µ with probability 1. ♢

The next two theorems are the main results of the paper. The first is the characterization of
the uniform protocol.

Theorem 1. The uniform protocol satisfies (i) non-wastefulness, (ii) respect of priorities, (iii)
equal treatment of equal absolute positions, and (iv) consistency. Among the protocols satisfying
(i)-(iii), the uniform protocol is the least randomized.

The next is the characterization of the proportional protocol.

Theorem 2. The proportional protocol satisfies (i) non-wastefulness, (ii) respect of priorities, (iii)
equal treatment of equal relative positions, and (iv) consistency. Among the protocols satisfying
(i)-(iv), the proportional protocol is the least randomized.

Note that one central protocol is characterized in each result by four axioms plus least ran-
domization, where three standard axioms are used in both results. Therefore, the difference in
protocols purely comes from difference in the notion of fairness across student categories.

The logical independence of axioms is shown in the following example.

Example 3. Let P be C = {c, c′}, (Sc, Sc′) = ({s1, s2}, {s′1, s′2}) where s1 ⪰c s2 and s′1 ⪰c′ s
′
2,

K = 2, and q = (2, 4). U(P ) = P(P ) = µ∗ (see below). Since P has no reduced problems, the
following protocols are consistent. For a protocol violating consistency, see the proof of Lemma
2 in the Appendix. Protocols φ1, φ2, and φ3, choosing deterministic assignments for P , are the
least-randomized.

µ∗ =

(
1 2

{s1, s′1} {s2, s′2}

)
µ1 =

(
1 2

∅ {s1, s2, s′1, s′2}

)
µ2 =

(
1 2

{s2, s′2} {s1, s′1}

)

µ3 =

(
1 2

{s1, s2} {s′1, s′2}

)
µ4 =

(
1 2

{s′1, s′2} {s1, s2}

)

1. φ1 selects µ1 for P . This assignment is wasteful but it respects priorities and satisfies equal
treatment of equal absolute/relative positions.
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2. φ2 selects µ2 for P . This assignment does not respect priorities but it is non-wasteful and
satisfies equal treatment of equal absolute/relative positions.

3. φ3 selects µ3 for P . This assignment violates equal treatment of equal absolute/relative
positions but it is non-wasteful and respects priorities.

4. φ4 selects µ3 and µ4 with equal probabilities for P . Both U and P are less randomized than
this protocol. However, this assignment is non-wasteful, respects priorities, and satisfies
equal treatment of equal absolute/relative positions. ♢

3 Several Extensions

3.1 Giving more advantages to specific categories

In reality, to achieve fairness, we sometimes apply differentiated treatment for categories, e.g.,
medical rationing and affirmative action. To allow this, we introduce (favoring) weight for each
category, denoted by pc, for category c. The higher the weight, the more favorable its category in
the prioritization process. Denote this vector by p = (pc)c∈C .

We extend the definition of a problem to P = (C, p, {Sc}c∈C , K, q) where p = (pc)c∈C . Reduced
problems are defined accordingly. We modify our fairness notions as follows.

Definition 3. 1. A lottery λ satisfies the p-equal treatment of equal absolute positions if
for each pair s ∈ Sc, s′ ∈ Sc′ of students with c ̸= c′ and a(s)

pc
= a(s′)

pc′
, their random allocations

induced by lottery λ are the same, i.e., σs(λ) = σs′(λ).

2. A lottery λ satisfies the p-equal treatment of equal relative positions if for each pair
s ∈ Sc, s′ ∈ Sc′ of students with c ̸= c′ and r(s)

pc
= r(s′)

pc′
, their random allocations induced by

lottery λ are the same, i.e., σs(λ) = σs′(λ).

For the p-equal treatment of equal absolute positions, category c with a larger pc is treated as
a higher absolute position, and we apply the equal treatment of equals with this adjusted absolute
position. Similarly, for p-equal treatment of equal relative positions, category c with a larger pc is
treated as a higher relative position, and we apply the equal treatment of equals with this adjusted
relative position.

We embed the favoring weights to our central protocols of the uniform and the proportional
protocol by adjusting the speeds in the algorithm.

Definition 4. 1. For each problem P , the p-uniform protocol Up associates a lottery Up(P ) =(
σ(ωℓ,▷ℓ)(P )

)L
ℓ=1

where (▷ℓ)Lℓ=1 are perfectly random and satisfies the following: for each pair
s, s′ ∈

⋃
c∈C Sc with s ∈ Sc and s′ ∈ Sc′ ,
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ωs′

ωs

=
pc′

pc

2. For each problem P , the p-proportional protocol Pp associates a lottery Pp(P ) =
(
σ(ωℓ,▷ℓ)(P )

)L
ℓ=1

where (▷ℓ)Lℓ=1 are perfectly random and satisfies the following: for each pair s, s′ ∈
⋃

c∈C Sc

with s ∈ Sc and s′ ∈ Sc′ ,
ωs′

ωs

=
pc′

pc
× |Sc′ |

|Sc|

The difference from our protocols is the speeds: For the p-uniform protocol, the ratio of speed
ωs to ωs′ is equal to the ratio of favoring weight pc to pc′ . Therefore, the larger the weight of the
student, the faster the student’s speed. On the other hand, for the p-proportional protocol, the
ratio of speed ωs to ωs′ is equal to the proportional ratio of the weight pc to pc′ regarding the
population.

Notably, when the weights are equal across categories (i.e., pc = pc′), the p-uniform protocol
coincides with the uniform protocol and p-proportional protocol coincides with the proportional
protocol.

Example 4. Consider the same problem as in Examples 1 and 2. Let the weights be p = (pA, pB) =

(1, 2) and p′ = (p′A, p
′
B) = (1, 4). Assignments µ and µ′ are shown in Example 2 where µ′ favors

category B more than µ.

• U chooses µ and µ′ with equal probabilities where P choose µ for sure.

• Up chooses µ′ for sure where Pp choose µ for sure.

• Up′ and Pp′ choose µ′ for sure.

From above, Up weakly favors category B more than U , and Up′ weakly favors more than Up. Pp

weakly favors category B more than P , and Pp′ weakly favors more than Pp. ♢

We obtain the following characterization results in parallel to Theorems 1 and 2 for the no-
weight case. The proof uses the same logic, and so is omitted.

Proposition 2. 1. The p-uniform protocol satisfies (i) non-wastefulness, (ii) respect of prior-
ities, (iii) p-equal treatment of equal absolute positions, and (iv) consistency. Among the
protocols satisfying all of (i)-(iv), the p-uniform protocol is the least randomized.

2. The p-proportional protocol satisfies (i) non-wastefulness, (ii) respect of priorities, (iii) p-
equal treatment of equal relative positions, and (iv) consistency. Among the protocols satis-
fying all of (i)-(iv), the p-proportional protocol is the least randomized.

By adjusting favoring weights, we obtain the following results.
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Corollary 1. 1. The proportional protocol is the p-uniform protocol with p = (|Sc|)c∈C .

2. The uniform protocol is the p′-proportional protocol with p′ = (1/|Sc|)c∈C .

3. The p-uniform protocol is the p′-proportional protocol where for each c ∈ C, p′c = pc/|Sc|.

3.2 Managing overlapping categories

A critical assumption made so far is that each student belongs to a single category. For some
applications, categories overlap so that a student belongs to multiple categories. For example, in
vaccine allocation, job and region-based categories coexist and overlap. We relax this assumption
as follows: (i) students may initially belong to more than one categories (i.e., c ̸= c′ does not neces-
sarily imply Sc ∩Sc′ = ∅), and (ii) a student has an absolute/relative position in every category to
which she belongs. We re-denote the absolute position (relative position) of student s in category
c as a(s, c) (r(s, c)) instead of a(s) (r(s)). To accommodate this overlapping case, we adjust our
algorithm by letting all students start to fill positions from time 0.

Algorithm Ã(ω, ▷). Step 1. Each student s fills 1 unit of position at his own speed ωs. Following
▷, the first students who finish filling 1 units are assigned to the most preferred groups. Set (qk(2))
and (es(2)) in the same manner as Section 2.
Steps j ≥ 2. Each student s who has not finished fills 1− es(j) unit of position at his own speed
ωs. Take the fastest students and assign them to the most preferred groups. Set (qk(j + 1)) and
(es(j + 1)) in the same manner as Section 2.

As in Proposition 1, which characterizes the original algorithm by two axioms, we characterize
this adjusted algorithm only by non-wastefulness.

Proposition 3. For each problem P and each non-wasteful assignment µ at P , there is a pair
(ω, ▷) such that algorithm Ã(ω, ▷) finds µ. For each problem P and each pair (ω, ▷), the assignment
that algorithm Ã(ω, ▷) finds is non-wasteful at P .

Since each student s is endowed with multiple absolute positions {a(s, c)}c∈C , we introduce
a statistic for absolute positions, denoted by ã(s), that aggregates into one representative
absolute position. Similarly, we introduce a statistic for relative positions, denoted by r̃(s),
that aggregates her various positions {r(s, c)}c∈C . We focus on the following statistics.

• Simple average: ãAVE(s) :=
∑

c∈C;s∈Sc
a(s,c)

|{c∈C;s∈Sc}| and r̃AVE(s) :=
∑

c∈C;s∈Sc
r(s,c)

|{c∈C;s∈Sc}| .

• Weighted average: ãWA(s) :=
∑

c∈C;s∈Sc
wca(s,c)∑

c∈C;s∈Sc
wc

and r̃WA(s) :=
∑

c∈C;s∈Sc
wcr(s,c)∑

c∈C;s∈Sc
wc

with respect to

weights (wc)c∈C ∈ R|C|
++ on categories.
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• Maximum: ãMAX(s) := max
c∈C;s∈Sc

{a(s, c)} and r̃MAX(s) := max
c∈C;s∈Sc

{r(s, c)}.

• Minimum: ãMIN(s) := min
c∈C;s∈Sc

{a(s, c)} and r̃MIN(s) := min
c∈C;s∈Sc

{r(s, c)}.

• Median: ãMED(s) := med
c∈C;s∈Sc

{a(s, c)} and r̃MED(s) := med
c∈C;s∈Sc

{r(s, c)}.

According to these statistics, we re-define the notions of respecting priorities and equal treat-
ment of equal absolute/relative positions.

• An assignment µ respects priorities at a problem P if for each pair of students s, s′ who
belongs to the same subset of categories, when student s has higher priority than student s′

at each category, the group s is assigned is not worse than the group s′ is assigned. That
is, for each pair s, s′ with {c ∈ C : s ∈ Sc} = {c ∈ C : s′ ∈ Sc}, [for each c with s, s′ ∈ Sc,
s ⪰c s

′] implies [µ(s) ≤ µ(s′)].

• A lottery λ satisfies the ã(·)-equal treatment of equal absolute positions (r̃(·)-equal treatment
of equal relative positions) if for each pair s, s′ with the same value of statics ã(s) = ã(s′)

(resp. r̃(s) = r̃(s′)), their random allocations induced by λ are the same, i.e., σs(λ) = σs′(λ).

Using the adjusted algorithm and statistics, we re-define the uniform and proportional protocols
as follows:

1. For each x ∈ {AVE,WA,MAX,MIN,MED}, the x-uniform protocol Ũx associates a lottery
for a problem where tie-breakers (▷ℓ)Lℓ=1 are perfectly random and speeds ((ωℓ

s)s∈
⋃

c∈C Sc)
L
ℓ=1

are for each ℓ ∈ {1, . . . , L} and each s ∈
⋃

c∈C Sc, ωℓ
s = 1/ãx(s).

2. For each x ∈ {AVE,WA,MAX,MIN,MED}, the x-proportional protocol P̃x associates a lot-
tery for a problem where tie-breakers (▷ℓ)Lℓ=1 are perfectly random and speeds ((ωℓ

s)s∈
⋃

c∈C Sc)
L
ℓ=1

are for each ℓ ∈ {1, . . . , L} and each s ∈
⋃

c∈C Sc, ωℓ
s = 1/r̃x(s).

Proposition 4 shows that the restated versions of the uniform and proportional protocols satisfy
the desirable properties.

Proposition 4. Let the statistic be either simple average, weighted average, maximum, minimum,
or median, i.e., x ∈ {AVE,WA,MAX,MIN,MED}.

1. The x-uniform protocol Ũx is non-wasteful, respects priorities, and satisfies the ãx(·)-equal
treatment of equal absolute positions.

2. The x-proportional protocol P̃x is non-wasteful, respects priorities, and satisfies the r̃x(·)-
equal treatment of equal relative positions.

The following is an example of the uniform and proportional protocols for the simple average.
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Figure 5: Numbers of applicants and partner universities at Keio University

Example 5. Let P be C = {c, c′}, (Sc, Sc′) = ({s1, s2, s̃}, {s̃, s′2, s′3}) where ⪰c: s1, s2, s̃ and
⪰c′ : s̃, s

′
2, s

′
3, K = 2, and q = (2, 3). Only s̃ belongs to both categories. Fix x to simple average.

Since |Sc| = |Sc′|, two protocols Ũx and P̃x choose the same lottery for P . In Ũx, speeds are
(ωs1 , ωs2 , ωs̃, ωs′2

, ωs′3
) = (1, 1/2, 1/(3+1

2
), 1/2, 1/3) and it chooses the following assignments with

equal probabilities.

µ =

(
1 2

{s1, s2} {s̃, s′2, s′3}

)
, µ′ =

(
1 2

{s1, s′2} {s2, s̃, s′3}

)
, µ̃ =

(
1 2

{s1, s̃} {s2, s′2, s′3}

)
.

• The protocol is non-wasteful. Group 1 is filled up to its capacity at each assignment.

• The protocol respects priorities. All pairs belonging to the same subset of categories are
(s1, s2) ⊊ Sc and (s′2, s

′
3) ⊊ Sc′ . s1 (s′2) is never assigned a worse group than s2 (s′3).

• The protocol satisfies x-equal treatment of equal absolute (relative) positions. Students
(s2, s

′
2, s̃) are at the same absolute (relative) positions on average, and are assigned the same

random assignments. ♢

3.3 Case study: Prioritization for exchange programs at Keio University

Keio University, one of the largest private universities in Japan, offers exchange program to its
undergraduate students. The exchange program has steadily expanded year by year in terms of the
numbers of applicants and partner universities though there have been drops due to the pandemic
(See Figure 5).

Previously applicants were matched to their desired institutions through one-day interviews
and faculty meeting three times a year. On a specific day, approximately 20 faculty members
gathered to conduct interviews with applicants. The applicants were divided into approximately
10 groups, with each group interviewed by two faculty members and one staff member. These
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interviews were conducted simultaneously. After the interviews, all faculty and staff convened in
one room to decide on matching applicants to universities.

Following the increasing number of applicants, this type of evaluation and matching through
interviews had become unsustainable owing to high administrative and time costs. In 2020, the
International Center of Keio University decided to change to document-based evaluation with
a centralized matching mechanism. The third author of this paper was invited to design the
mechanism.

Regarding the new mechanism, the evaluation was based on a weighted average of the GPA
and the scores of the application documents.27 The mechanism we intended to use was a serial dic-
tatorship in which a complete priority order over students is exogenously given and then following
the priority order higher-priority students are assigned their favorite universities. The challenge
was that all students could be prioritized completely, but such a priority was determined not to be
used owing to its unfairness across the grading policies of different faculties. Therefore, we began
our project to develop axiom-based protocols for complete priority ranking based on the partial
ordering of each faculty.

The prioritization problem at Keio University is that the categories are ten faculties, appli-
cants in each faculty are priority-ordered, and priority groups are set so that each group should
contain at least one applicant from each faculty, considering the balance across faculties. There-
fore, the number of priority groups, K, is equal to the number of students of the faculty with
the fewest applicants. The average value of K is about 20 in the past few years. Moreover, the
capacity qk is set to be equal among priority groups. The university requested the protocol to
satisfy non-wastefulness, respect of priorities, and equal treatment of equal relative positions. In
addition, the request for minimal use of randomization prompted us to formalize the concept of
least randomization. Thus, based on Theorem 2, we recommended the use of the proportional
protocol.

After applying the proportional protocol, it is not sufficient to apply the serial dictatorship
mechanism because the priority order is not linear owing to the possibility of multiple students in
the same priority groups. Therefore, within each priority group, students are linearly ordered based
on the weighted average of their scores. The reason for this indirect method of obtaining linear
orderings is that the prioritization induces higher GPA students to be assigned higher priority
groups to reflect their learning efforts at Keio, and linearization within each priority group gives
applicants incentives to write application documents seriously.

The serial dictatorship mechanism with linear order had a problem in which some students
did not satisfy the criteria set by partner universities, and therefore, could not be assigned. To
avoid this, we adjusted the priority ordering of each partner university so that such students are
not assigned. This makes partner universities’ priority orders differ, making the serial dictatorship
inapplicable. This drove the adoption of the Gale and Shapley (1962)’s students-proposing deferred

27Keio University told authors not to reveal the weights.
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acceptance mechanism. The whole assignment procedure was implemented in 2022, and has been
in use at Keio University.

4 Conclusion

Our study delves into the intricate issue of designing endogenous priorities for heterogeneous
groups of agents, a fundamental challenge in many real-world allocation problems. From scheduling
surgeries and allocating visas to assigning students to university exchange programs, the need for
a fair and efficient prioritization protocol is evident. Our research emphasizes the importance of
creating a transparent, objective, and consistent prioritization system that aligns with the primary
objectives of a planner.

We introduced the concept of a prioritization problem, where agents are assigned to pri-
ority groups based on their attributes, with the aim of achieving fairness and efficiency. Our
analysis identified two types of prioritization protocols—uniform prioritization and proportional
prioritization—that stand out when adhering to principles of non-wastefulness, respect for prior-
ities, consistency, and equal treatment of equals. These protocols utilize randomization only as a
tie-breaking mechanism, ensuring minimal reliance on randomness while maintaining fairness.

The uniform prioritization protocol applies when fairness is absolute, treating all students
equally irrespective of category size. In contrast, the proportional prioritization protocol is suited
for scenarios where fairness is relative, considering the size of each category and assigning proba-
bilities proportionally. Our findings highlight the necessity of direct construction of lotteries over
deterministic assignments, a more nuanced approach compared to traditional random assignment
methods.

Ultimately, our research provides a robust framework for designing prioritization protocols
that can be applied across various domains, offering insights into achieving equitable and efficient
allocations in complex, multi-attribute environments.

5 Appendix

Proof of Footnote 10. Precisely, we have the following impossibility on the alternative approach
described in the Introduction.

Proposition 5. For each priority metric (pA, pB) satisfying pA
pB

∈ N, there is an instance where
the alternative approach violates (pA, pB)-equal treatment of equal relative positions.

Proof. Fix ℓ := pA
pB

∈ N. Consider an instance where agents are (a1, a2) for category A and
(b1, b2, ..., b6ℓ) for category B and priority groups are K = {1, 2} with capacity 3 for group 1. The
alternative approach proceeds as follows.
1. Capacity 3 for group 1 is allocated to categories proportionally to pA|SA| and pB|SB|, i.e.,
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Table 1: Assignemnts in Proof of Proposition 5.
a1 a2 b3 b6

µ0 group 2 group 2 group 1 group 2
µ1 group 1 group 2 group 2 group 2
µ2 group 1 group 1 group 2 group 2

3× 2ℓ
2ℓ+6ℓ

= 0.75 for category A and 3× 6ℓ
2ℓ+6ℓ

= 2.25 for category B.
2. Since 2 < 2.25 < 3, possible decompositions are (µ0, µ1, µ2) where for each µj, capacity of j is
assigned to agents of category A and capacity of 3 − j is assigned to agents of category B. Let
(p0, p1, p2) be probabilities for these decompositions. Clearly, p0 + p1 + p2 = 1. Feasibility implies
3p0 + 2p1 + p2 = 2.25 (eq.1*). Since RHS> 2, p1 < 1, or equivalently p0 + p2 > 0.
3. Since r(a1)

pA
= 1/2

ℓpB
= 3/6ℓ

pB
= r(b3)

pB
and r(a2)

pA
= 2/2

ℓpB
= 6/6ℓ

pB
= r(b6)

pB
, {a1, b3} and {a2, b6} are “eqauals.”

At each decomposition, each agent is assigned to a group respecting priorities as in Table 1. To
assign {a1, b3} the same random assignment, we must have p1+ p2 = p0, whereas to assign {a2, b6}
the same random assignment, we must have p2 = 0. They imply (p0, p1, p2) = (0.5, 0.5, 0), i.e.,
3p0 + 2p1 + p2 = 2.5, but it violates (eq.1*). This approach violates (pA, pB)-equal treatment of
equal relative positions.

We refer to non-wastefulness as NW, respect of priorities as RP, and equal treatment of equal
absolute positions (relative positions) as ETA (ETR).

Proof of Proposition 1.
(⇐) Fix (ω, ▷). NW is immediate because the best |

⋃
c∈C Sc| seats are assigned. RP is immediate

because, within each category, a better student is assigned earlier than a worse student.
(⇒) Fix an assignment µ that satisfies NW and RP. For each student s ∈ Sc, let ωs = |µ(s) ∩ Sc|
and for each pair s, s′, let s ▷ s′ ⇔ µ(s) ≤ µ(s′). Then, A(ω, ▷)(P ) = {{s ∈

⋃
c∈C Sc : (k − 1)/k̄ <∑

s′;a(s′)≤a(s)(1/ωs′) ≤ k/k̄}}k∈K = µ. □

We use the following lemmas.

Lemma 1. If a protocol satisfies (i) non-wastefulness, (ii) respect of priorities, and (iii-1) equal
treatment of equal absolute positions, then, it satisfies (iv) consistency.

Proof. To lead a contradiction, suppose that φ satisfies (i)-(iii-1) but is inconsistent. Let s ∈ Sc ⊊⋃
c′∈D Sc′ be a student at the smallest absolute position with φs(D, {Sc′}c′∈D, K, (qkD,µ)) = k′ ̸=

k = φs(C, {Sc′}c′∈C , K, q). Denote P = (C, {Sc′}c′∈C , K, q) and PD = (D, {Sc′}c′∈D, K, (qkD,µ)). By
ETA, for each s′ ∈

⋃
c′∈C Sc′ with a(s′) = a(s), φs′(P ) = φs(P ) = k and for each s′ ∈

⋃
c′∈D Sc′

with a(s′) = a(s), φs′(PD) = φs(PD) = k′. Thus, by RP, a(s) = 1 implies k = 1 and k′ = 1. Since
k ̸= k′, we have a(s) > 1.
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Case 1: k′ < k. Recall that µ on which φ puts a positive probability at P is NW. Thus, at µ, each
group k′′ < k is filled up to its capacity qk

′′ . Also recall that µ is RP and thus at µ, each group
k′′ < k is filled with students with absolute positions strictly smaller than a(s). Pick µ′ on which
φ puts a positive probability at PD. Since µ′ is NW, each group k′′ < k is filled up to its capacity
qk

′′
D,µ. Since k′ = φs′(PD) < k, and by ETA, at least |s′ ∈

⋃
c′∈D Sc′ : a(s

′) = a(s)| seats for group k

is occupied with students S with absolute positions strictly smaller than a(s). When S contains a
student whose category has at least a(s) students, RP is directly violated for her category. When
S contains no such students, by ETA, there is µ′′ on which φ puts a positive probability at PD

and a student whose category has at least a(s) students are assigned group k. Because students
at absolute position a(s) are assigned group k′ < k at µ′′, RP is violated.
Case 2: k′ > k. Since µ is NW, each group k′′ < k is filled up to its capacity qk

′′ at µ. If group k

has vacant seats at µ, by NW, no students are assigned group k′ > k at µ. φs(PD) = k′ contradicts
NW. Thus, group k is also filled up to its capacity qk at µ. Since µ is RP, each student assigned
group k′′ > k at µ is with absolute position strictly larger than a(s). Pick µ′ on which φ puts a
positive probability at PD. Since µ′ is NW, each group k′′ < k′ is filled up to its capacity qk

′′
D,µ.

Since k′ = φs′(PD) > k, and by ETA, at least |s′ ∈
⋃

c′∈D Sc′ : a(s
′) = a(s)| seats for group k

is occupied with students S with absolute positions strictly larger than a(s). Because for each
s′′ ∈ S, there is a student s′ with a(s′) = a(s) < a(s′′), φs′(PD) = k′ > k, and whose category is
the same as the one for s′. RP is violated.

Lemma 2. If a protocol satisfies (i) non-wastefulness, (ii) respect of priorities, and either (iii-2)
equal treatment of equal relative positions, (iii-3) p-equal treatment of equal absolute positions, or
(iii-4) p-equal treatment of equal relative positions, it may not satisfy (iv) consistency.

Proof. Consider problem P with C = {a, b, c}, (Sa, Sb, Sc) = ({a1, a2, a3}, {b1, b2}, {c1, c2}), K =

2, and (q1, q2) = (2, 5). Let the priorities be ⪰a: a1, a2, a3, ⪰b: b1, b2, and ⪰c: c1, c2. Let
φ(P ) = µ for sure, where a1 and a2 are assigned group 1. Consider a reduced problem P{a,b} =

({a, b}, (Sa, Sb), K, (2, 3)). Let φ(P{a,b}) = µ′ for sure, where a1 and b1 are assigned group 1. Both
µ and µ′ are NW, RP, and ETR. Also, for p = (pa, pb, pc) = (3, 2, 2) and p′ = (p′a, p

′
b, p

′
c) = (1, 1, 1),

both µ and µ′ satisfy p-ETA and p′-ETR. However, φ is not consistent because φb1(P ) = 2 ̸= 1 =

φb1(P{a,b}).

Proof of Theorem 1. NW and RP are immediate from Proposition 1.
ETA: Fix P and pick {s1, ..., sN} ⊊

⋃
c∈C Sc with a(s1) = ... = a(sN) =: a. For any tie-breaker,

the following are all true:
(a) The students are assigned at step a, that is, s1, ..., sN ∈ S(a), e(a) = (0, ..., 0), and they all
finish at the same time t′(a) = t(a) + 1

ωs1
= ... = t(a) + 1

ωsN
. Thus, s1, ..., sN ∈ S ′(a).

(b) The groups they are assigned are the same, that is, q(a) is independent from tie-breaker.
(c) Tie-breakers applied to s1, ..., sN are perfectly randomized.
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From above, we can see that for any s, s′ ∈ {s1, ..., sN}, distributions over assigned groups are the
same. □

Consistency: Fix P with |C| ≥ 3, assignment µ that φ chooses with positive probability, and
D ⊊ C with |D| ≥ 2. Consider PD = (D, {Sc}c∈D, K, {qkD,µ}). Pick s ∈

⋃
c∈D Sc with Us(P ) =

µ(s) =: k. We show Us(PD) = k, i.e., for each µ̂ which φ chooses for PD with positive probability,
s is assigned k. Because U satisfies ETA, for each s′ ∈

⋃
c′∈C Sc′ with a(s′) = a(s), Us′(P ) is

deterministic.
Case 1: For each s′ ∈

⋃
c′∈C\D Sc′ with a(s′) < a(s), Us′(P ) is deterministic. At each step of the

algorithm until step a(s), each s′ ∈
⋃

c′∈D Sc′ is assigned the same group in P and in PD. s is
assigned k at PD.
Case 2: There is s′ ∈

⋃
c′∈C\D Sc′ with a(s′) < a(s) and Us′(P ) is non-deterministic. Because U

satisfies ETA, for each s′′ ∈
⋃

c′∈C Sc′ with a(s′′) = a(s′), Us′′(P ) is non-deterministic. At each
step of the algorithm until step a(s′) − 1, each s′′ ∈

⋃
c′∈D Sc′ is assigned the same group in P

and in PD. At step a(s′), while each student may be assigned different groups in P and in PD,
total capacity assigned to them is the same, i.e., q(a(s′)) − q(a(s′) + 1) in PD is the same as
q(a(s′))− q(a(s′) + 1)− (µ(s′′))s′′∈⋃c′∈C\D Sc′

in P . s is assigned k at PD. □

Least-randomization/Uniqueness: Suppose, by way of contradiction, that there is φ ̸= U that
satisfies (i)-(iv) where U is not less randomized than φ. Fix P in which the number of students
assigned non-deterministic groups is at least as large in U(P ) as in φ(P ) and φ(P ) ̸= U(P ). Be-
cause both φ(P ) and U(P ) satisfy ETA, and

|{s ∈
⋃
c∈C

Sc : φs(P ) is non-deterministic}|

=
∑
a

|{s ∈
⋃
c∈C

Sc : a(s) = a}|1{{φs(P )}s;a(s)=a is non-deterministic}

≤
∑
a

|{s ∈
⋃
c∈C

Sc : a(s) = a}|1{{Us(P )}s;a(s)=a is non-deterministic}

= |{s ∈
⋃
c∈C

Sc : Us(P ) is non-deterministic}|

there is a such that {φs(P )}s;a(s)=a is deterministic and {Us(P )}s;a(s)=a is non-deterministic. Pick
the smallest such a. Either case 1 or 2 should hold.
Case 1: There is s ∈

⋃
c∈C Sc with a(s) = a and µ where U places positive probability on it (write

µ(s) = k), satisfying k < φs(P ). Since φ(P ) is NW, there is s′ ∈
⋃

c∈C Sc with a(s′) = a′ > a and
at some µ̂ where φ places positive probability on it (write µ̂(s′) = k′), k′ = k < φs(P ). That is,
a(s) < a(s′) and µ̂(s) > µ̂(s′). Since φ satisfies RP, there are c, c′ ∈ C with c ̸= c′, s ∈ Sc, and
s′ ∈ Sc′ .
Case 2: There is s ∈

⋃
c∈C Sc with a(s) = a and µ where U places positive probability on it (write
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µ(s) = k), satisfying k > φs(P ). Since U(P ) is NW, φs(P ) is occupied by other s′ ∈
⋃

c∈C Sc with
a(s′) < a. At any µ̂ where φ places positive probability on it (write µ̂(s′) = k′), k′ > φs(P ). That
is, a(s) > a(s′) and µ̂(s) < µ̂(s′). Since φ satisfies RP, there are c, c′ ∈ C with c ̸= c′, s ∈ Sc, and
s′ ∈ Sc′ .
We see below that Case 1 violates either of (i)-(iv). Case 2 also violates either of (i)-(iv) in the
same manner.
Let P̄ be C̄ = C ∪ {c̄}, |Sc̄| ≥ a′, and P is a reduced problem of P̄ . Since φ satisfies consistency,
and φs(P ) = k is deterministic, we have φs(P̄ ) = φs(P ) = k. By ETA of φ, for s̄, s̄′ ∈ Sc̄ with
(a(s̄), a(s̄′) = (a, a′), φs̄(P̄ ) = φs(P̄ ) = k (deterministic) and φs̄′(P̄ ) = φs′(P̄ ). . . (*). Since there
is positive probability for assignment µ1 with µ1(s′) < k, to satisfy (*), there should be positive
probability for µ2 with µ2(s̄′) < k, that is, µ2(s̄′) < µ2(s̄). Since a(s̄) < a(s̄′), RP is violated for
s̄, s̄′ ∈ Sc̄. □

Proof of Theorem 2. NW and RP are immediate from Proposition 1.
ETR: Fix P and pick {s1, ..., sN} ⊊ S with r(s1) = ... = r(sN) =: r. For any tie-breaker, the
following are all true:
(a) The students are assigned at the same step, call j, that is, they all finish at the same time
t′(j) = a(s1)× 1

ωs1
= ... = a(sN)× 1

ωsN
. Thus, s1, ..., sN ∈ S ′(j).

(b) The groups they are assigned are the same, that is, q(j) is independent from tie-breaker.
(c) Tie-breakers applied to s1, ..., sN are perfectly randomized.
From above, we can see that for any s, s′ ∈ {s1, ..., sN}, distributions over assigned groups are the
same. □

Consistency: Fix P with |C| ≥ 3, {Sk} that φ chooses with positive probability, and D ⊊ C with
|D| ≥ 2. Consider PD = (D, {Sc}c∈D, K, {qk

D,{Sk}}). Pick s ∈
⋃

c∈D Sc with Ps(P ) = k(s) =: k. We
show Ps(PD) = Ps(P ) = k, i.e., for each {Ŝk} which φ chooses for PD with positive probability,
s is assigned k. Because P satisfies ETR, for each s′ ∈

⋃
c′∈C Sc′ with r(s′) = r(s), Ps′(P ) is

deterministic.
Case 1: For each s′ ∈

⋃
c′∈C\D Sc′ with r(s′) < r(s), Ps′(P ) is deterministic. At each step of the

algorithm until the step s is assigned, each s′ ∈
⋃

c′∈D Sc′ is assigned the same group in P and in
PD. s is assigned k at PD.
Case 2: There is s′ ∈

⋃
c′∈C\D Sc′ with r(s′) < r(s) and Ps′(P ) is non-deterministic. Because P

satisfies ETR, for each s′′ ∈
⋃

c′∈C Sc′ with r(s′′) = r(s′), Ps′′(P ) is non-deterministic. At each step
of the algorithm until step a(s′) − 1, each s′′ ∈

⋃
c′∈D Sc′ is assigned the same group in P and in

PD. At step before s′ is assigned, while each student may be assigned different groups in P and in
PD, total capacity assigned to them is the same. s is assigned k at PD. □

Least-randomization/Uniqueness: Suppose, by way of contradiction, that there is φ ̸= P that
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satisfies (i)-(iv) where P is not less randomized than φ. Fix P in which the number of students
assigned non-deterministic groups is at least as large in P(P ) as in φ(P ) and φ(P ) ̸= P(P ). Be-
cause both φ(P ) and P(P ) satisfy ETR, and

|{s ∈
⋃
c∈C

Sc : φs(P ) is non-deterministic}|

=
∑
r

|{s ∈
⋃
c∈C

Sc : r(s) = r}|1{{φs(P )}s;r(s)=r is non-deterministic}

≤
∑
r

|{s ∈
⋃
c∈C

Sc : r(s) = r}|1{{Ps(P )}s;r(s)=r is non-deterministic}

= |{s ∈
⋃
c∈C

Sc : Ps(P ) is non-deterministic}|

there is r such that φs(P )}s;r(s)=r is deterministic and Us(P )}s;r(s)=r is non-deterministic. Pick the
smallest such r. Either case 1 or 2 should hold.
Case 1: There is s ∈

⋃
c∈C Sc with r(s) = r and µ where P places positive probability on it (write

µ(s) = k), satisfying k < φs(P ). Since φ(P ) is NW, there is s′ ∈
⋃

c∈C Sc with r(s′) = r′ > r and
at some µ̂ where φ places positive probability on it (write µ̂(s′) = k′), k′ = k < φs(P ). That is,
r(s) < r(s′) and µ̂(s) > µ̂(s′). Since φ satisfies RP, there are c, c′ ∈ C with c ̸= c′, s ∈ Sc, and
s′ ∈ Sc′ .
Case 2: There is s ∈

⋃
c∈C Sc with r(s) = r and µ where P places positive probability on it (write

µ(s) = k), satisfying k > φs(P ). Since P(P ) is NW, φs(P ) is occupied by other s′ ∈
⋃

c∈C Sc with
r(s′) < r. At any µ̂ where φ places positive probability on it (write µ̂(s′) = k′), k′ > φs(P ). That
is, r(s) > r(s′) and µ̂(s) < µ̂(s′). Since φ satisfies RP, there are c, c′ ∈ C with c ̸= c′, s ∈ Sc, and
s′ ∈ Sc′ .
We see below that Case 2 violates either of (i)-(iv). Case 1 also violates either of (i)-(iv) in the
same manner.
Let P̄ be C̄ = C ∪ {c̄}, |Sc̄| = |Sc(s)| × |Sc(s′)|, and P is a reduced problem of P̄ . Since φ satisfies
consistency, and φs(P ) = k is deterministic, we have φs(P̄ ) = φs(P ) = k. By ETR of φ, for s̄, s̄′ ∈
Sc̄ with (r(s̄), r(s̄′) = (r, r(s′)), φs̄(P̄ ) = φs(P̄ ) = k (deterministic) and φs̄′(P̄ ) = φs′(P̄ ). . . (**).
Since there is positive probability for assignment µ3 with k < µ3(s′), to satisfy (**), there should be
positive probability for assignment µ4 with µ4(s̄′) > k, that is, µ4(s̄′) > µ4(s̄). Since r(s̄) > r(s̄′),
RP is violated for s̄, s̄′ ∈ Sc̄. □

Proof of Proposition 3. The latter part is immediate because the best |
⋃

c∈C Sc| seats are
assigned to students. For the first part, fix non-wasteful µ and set (ω, ▷) as follows: (i) for
arbitrary m > k̄, ωs = m− 1 if µ(s) = 1, ωs = m− 2 if µ(s) = 2, ..., ωs = m− k̄ if µ(s) = k̄; (ii)
fix any ▷. Clearly Ã(ω, ▷)(P ) = µ. □

Proof of Proposition 4. We prove statement 1 below because the proof of statement 2 is parallel
to it. NW is immediate from Proposition 3. We demonstrate the case with x: simple average.
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Other cases are shown in the same logic.
RP: Take s, s′ with (i) {c ∈ C : s ∈ Sc} = {c ∈ C : s′ ∈ Sc} and (ii) for each c with s, s′ ∈ Sc,
s ⪰c s′. It suffices to show that, for each ℓ = 1, 2, . . . , L, s is assigned to a group at a strictly
earlier step than a step s′ is assigned. Since the step s (resp. s′) is assigned ends at time 1

ωℓ
s

(resp.
1
ωℓ
s′

), we must have 1
ωℓ
s
− 1

ωℓ
s′
< 0 where

1

ωℓ
s

− 1

ωℓ
s′
=

1

1/Ec[a(s, c)]
− 1

1/Ec[a(s′, c)]
= Ec[a(s, c)]− Ec[a(s

′, c)]

= Ec[a(s, c)− a(s′, c)] ∵ (i)

< 0 ∵ (ii)

ETA: Take s, s′ with Ec[a(s, c)] = Ec[a(s
′, c)]. Since tie-breakers (▷ℓ)Lℓ=1 are perfectly random, it

suffices to show that, for each ℓ, s and s′ are assigned a group at the same stage, i.e., 1
ωℓ
s
− 1

ωℓ
s′
= 0.

We have

1

ωℓ
s

− 1

ωℓ
s′
=

1

1/Ec[a(s, c)]
− 1

1/Ec[a(s′, c)]
= Ec[a(s, c)]− Ec[a(s

′, c)] = 0

This completes the proof. □
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