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Abstract 
Random assignment of treatment and concurrent data collection on treatment and 
control groups is often impossible in the evaluation of social programs. A standard 
method for assessing treatment effects in such infeasible situations is to estimate the 
local average treatment effect under exclusion restriction and monotonicity 
assumptions. Recently, several studies have proposed methods to estimate the 
average treatment effect by additionally assuming treatment effects homogeneity 
across principal strata or conditional independence of assignment and principal strata. 
However, these assumptions are often difficult to satisfy. We propose a new strategy 
for nonparametric identification of causal effects that relaxes these assumptions by 
using auxiliary observations that are readily available in a wide range of settings. Our 
strategy identifies the average treatment effect for compliers and average treatment 
effect on treated under only exclusion restrictions and the assumptions on auxiliary 
observations. The average treatment effect is then identified under relaxed treatment 
effects homogeneity. We propose sample analog estimators when the assignment is 
random and multiply robust estimators when the assignment is non-random. We then 
present details of the GMM estimation and testing methods which utilize 
overidentified restrictions. The proposed methods are illustrated by empirical 
examples which revisit the studies by Thornton (2008), Gerber et al. (2009), and Beam 
(2016), as well as an experimental data related to marketing in a private sector. 
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Abstract. Random assignment of treatment and concurrent data collection on treatment and control 
groups is often impossible in the evaluation of social programs. A standard method for assessing treatment 
effects in  such infeasible situations is to estimate the local average treatment effect under exclusion 
restriction and monotonicity assumptions. Recently, several studies have proposed methods to estimate 
the average treatment effect by additionally assuming treatment effects homogeneity across principal strata 
or conditional independence of assignment and principal strata. However, these assumptions are often 
difficult to satisfy. We propose a new strategy for nonparametric identification of causal effects that relaxes 
these assumptions by using auxiliary observations that are readily available in a wide range of settings. Our 
strategy identifies the average treatment effect for compliers and average treatment effect on treated under 
only exclusion restrictions and the assumptions on auxiliary observations. The average treatment effect is  
then identified under relaxed treatment effects homogeneity. We propose sample analog estimators when 
the assignment is random and multiply robust estimators when the assignment is non-random. We then 
present details of the GMM estimation and testing methods which utilize overidentified restrictions. The 
proposed methods are illustrated by empirical examples which revisit the studies by Thornton (2008), 
Gerber et al. (2009), and Beam (2016), as well as an experimental data related to marketing in a private 
sector.

1. Introduction

Knowledge of causal effects is important for those engaged in policy-making at governmental or 
non-governmental organization levels, as well as for decision-makers within private sectors (Imbens, 
2024). Typically, a causal effect of interest is the average treatment effect (ATE), which represents the 
average effect over the entire population. One may also be interested in the average treatment effect on   
treated (ATT), which is the causal effect in  th e treated population. Identification and estimation of the 
treatment effects are typically conducted under the untestable assumption of unconfoundedness (or 
ignorability), that is, independence between treatment status and potential outcomes of interest (Imbens 
and Rubin, 2015). The gold standard for achieving unconfoundedness and inferring causal effects is 
randomized controlled experiments. However, in many cases, such an experiment remains difficult or 
impossible to implement due to financial, political, or ethical reasons (Athey and Imbens, 2 017). In 
social program evaluations, it is difficult to archive a  perfect randomized controlled experiment because 
noncompliance with an assigned treatment may occur. When noncompliance occurs, the random 
assignment of treatment and simultaneous data collection for the treatment and con-trol groups will not 
be accomplished, and the assumption of unconfoundedness will be violated (Imbens and Angrist, 1994).
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In such cases, the local average treatment effect (LATE) can be identified and estimated using
the treatment assignment as an instrumental variable under conditions weaker than unconfound-
edness (Imbens and Angrist, 1994; Angrist et al., 1996). LATE can consistently estimate causal
effects with internal validity in a nonparametric manner, without requiring restrictions on the
heterogeneity of causal effects. However, LATE is the average treatment effect only for a subset
of the population, the compliers, who react on the assignment as intended by researchers. As
compilers constitute a subset of the population, they may not be representative of the overall
population. Consequently, it has been argued that LATE may not be a valid parameter for
policy policy-making (Robins and Greenland, 1996; Freedman, 2006; Pearl, 2009; Deaton, 2009;
Heckman and Urzua, 2010; Aronow and Carnegie, 2013; Swanson and Hernán, 2014; Imbens,
2024). Imbens (2014) argued “If the noncompliance is substantial, we are limited in the ques-
tions we can answer credibly and precisely.” In addition, identifying LATE requires an exclusion
restriction (i.e., assignments do not affect outcomes) and monotonicity (i.e., there is no defiers
who oppositely react on the assignment as intended by the researchers) in the population of
interest. Of these, with respect to monotonicity, it has been pointed out that this assumption
may not hold in many applications, such as when using the assignment of judges with different
sentencing rates as an instrumental variable and when conducting randomized controlled trials
relying on an encouragement design (Klein, 2010; De Chaisemartin, 2017; Small et al., 2017; Dahl
et al., 2023). If there are defiers, the LATE estimator converges to a weighted difference between
the effect of the treatment among compliers and defiers (Angrist et al., 1996; De Chaisemartin,
2017).

This paper presents a strategy to identify ATE and ATT by using auxiliary observations
when compliance with the assigned treatment is not perfect. Our identification strategies cover
the cases with and without monotonicity assumption. (1) In the setup with monotonicity, a
variable for pre-assignment outcome of interest is used as an auxiliary observation, in addition
to the basic observations including the variable of assignment, treatment, and outcome after
assignment. Our identification strategy requires some new assumptions: a parallel trend as-
sumption between always-taker and never-taker in a controlled group (to identify ATT), and
additionally homogeneity assumption of causal effects between always-taker and never-taker (to
identify ATE). (2) In the setup without monotonicity, a variable for pre-assignment treatment
status is used as an additional auxiliary observation. To identify ATE and ATT, we introduce
an additional assumption that the compliance status in the controlled group is unchanged be-
tween before and after assignment. However, we show that this assumption can be dropped by
employing an alternative identification strategy. The assumptions listed in (1) and (2), except
for the homogeneity assumption, are assumptions about the relationship between basic and aux-
iliary observations, and we do not impose restrictions on causal effects of interest. Also since
our identification strategy does not require covariate functions for the variables of treatment,
outcome of interest, and auxiliary observation, there is no need to bother about misspecification
of the functional forms. Furthermore, some assumptions are testable.

There are many examples where such auxiliary observations can be obtained. In the setup
with monotonicity, the only auxiliary observation required to apply our method is the variable
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of pre-assignment outcome of interest. This is often observed in the baseline survey of a ran-
domized experiment. For example, researchers want to know the effect of job training on wages
observe the wages at the baseline survey. In the setup without monotonicity, two auxiliary
variables are needed: pre-assignment outcome of interest and pre-assignment treatment status.
It may be possible in some applications to obtain them in the baseline survey, and this paper
presents several experiment designs to obtain such observations. In addition, if an automatic
data collection system (e.g., point-of-sale, marketing platform) is available, the auxiliary vari-
ables are easier to obtain. For example, suppose that a manufacturer’s decision-makers want to
know whether the sale of a new product contributes to the sales of the company’s entire product
line. One of the fears of them is that even if new product sales are sufficient, cannibalization does
not boost sales of their entire lineup. Since it is difficult to force consumers to purchase a new
product, suppose that an experiment is conducted in which coupons are assigned to promote
the purchase of the new product. In this case, the coupon is the assignment, the purchase of the
new product is the treatment, and the sales of the entire product line is the outcome of interest.
Each subject’s purchase history of new products before the experiment (the period when there
are no coupons) is available as the pre-assignment treatment status. And each subject’s pur-
chases amount of lineup before the new product is launched can be used as the pre-assignment
outcome of interest. These auxiliary variables are usually stored in a database in the system.

Studies on how to identify and estimate ATE when noncompliance occurs are limited. Several
studies have proposed methods to estimate ATE under standard LATE assumptions, assuming
that ATE is the same as LATE under covariate conditions (Angrist and Fernandez-Val, 2010;
Aronow and Carnegie, 2013; Fricke et al., 2020). Wang and Tchetgen Tchetgen (2018) showed
that, in addition to the standard LATE assumption excluding monotonicity, ATE and LATE are
equal conditional on covariates if either ATE or the difference in treatment proportions between
the treatment and control groups is conditionally mean independence from an unobserved factor.
Each of these methods essentially requires an assumption of homogeneity whereby the compliers
and all other noncompliers (i.e., always-takers, never-takers, and defiers in the case without
monotonicity) are equal in their dependence on observational covariates. In other approaches,
Heckman and Vytlacil (1999), Heckman and Vytlacil (2005), and Heckman and Vytlacil (2007)
found that marginal treatment effects (MTE) can be used to identify ATE under standard LATE
assumptions, including monotonicity. However, this method requires an instrumental variable
that continuously supports the treatment probability for each value of the covariate, making
full nonparametric identification difficult (Brinch et al., 2017). Brinch et al. (2017) showed how
to estimate MTE using discrete instrumental variables, but this is only a linear approximation.
These approaches can be problematic because they a priori impose restrictions on the effects of
interest. Several other approaches based on partial identification have been proposed (Balke and
Pearl, 1997; Kennedy et al., 2020), but we omit their details because their focus is different from
ours. With the help of auxiliary observations, we provide point identification of ATE under
relaxed, only between always-takers and never-takers homogeneity assumptions. Therefore,
our method allows the average treatment effect for compliers (LATE) to differ from that of
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noncompliers. That relaxed homogeneity may be relatively convincing because always-takers
and never-takers have in common that they do not react to assignments.

To the best of our knowledge, the only attempt to identify ATE without monotonicity is Wang
and Tchetgen Tchetgen (2018) mentioned above, but several attempts exist in identifying LATE
(Small et al., 2017; De Chaisemartin, 2017; van’t Hoff et al., 2023; Dahl et al., 2023). These
papers provide conditions for identifying LATE in local compliers and conditions for identifying
LATE under relaxed, non-global monotonicity. For example, De Chaisemartin (2017) showed
that it is possible to identify LATE of a subpopulation of compliers without monotonicity under
the assumption that a certain fraction of the total compliers have the same average treatment
effect and population as defiers. Unlike these methods, we do not introduce new assumptions
related to monotonicity, but allow for global non-monotonicity by introducing assumptions about
auxiliary observations.

Several methods for identification of causal effects by using auxiliary observations and ex-
tended experiments have been proposed in setups where researchers are interested in the causal
effects of assignments when intermediate variables occur between assignments and outcomes
(Mealli and Pacini, 2013; Yang and Small, 2016; Jiang et al., 2016; Gabriel and Follmann, 2016;
Jiang and Ding, 2021). These causal effects are called principal causal effects (PCEs). The
problem setting of noncompliance can also be viewed in this setup (Frangakis and Rubin, 2002).
Among them, Jiang and Ding (2021) identified conditions for auxiliary observations that would
point identify PCEs when noncompliance occurs and showed that partial identification is pos-
sible even in the absence of monotonicity. Mealli and Pacini (2013) also proposed a method
for partial identification of PCEs when exclusion restrictions are violated under monotonicity
by using secondary outcomes (such as side-effects) when noncompliance occurs. Furthermore,
an extended experimentation method using an encouragement design to identify direct and in-
direct effects in causal mediation analysis has been proposed (Mattei and Mealli, 2011; Imai
et al., 2013). The reason why there are several methods to achieve identification and estimation
empowered by auxiliary observations or extended experiments in causal inference when interme-
diate variables occur is probably due to the need to deal with two types of potential variables:
intermediate variables and outcome of interest. Nevertheless, there have been no studies at-
tempting to identify ATE under noncompliance with auxiliary observations. Identification of
ATE is complicated by the need to address the outcomes of always-takers and never-takers
who are nonreactive to assignments, as well as intermediate and outcome variables. In this pa-
per, two types of auxiliary observations, pre-assignment outcome of interest and pre-assignment
treatment status, are used to identify ATE.

This paper proceeds as follows. In Section 2, we present two benchmark results for the cases
where the researcher can observe an outcome or treatment variable before the assignment. We
also consider the case where the conditional ignorability is satisfied and present a multiply
robust estimator. Section 3 considers setups without monotonicity setups and presents three
experimental designs for auxiliary observations. Section 4 presents some empirical illustrations
of the proposed methods.
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2. Benchmark results

In this section, we present our benchmark results. Section 2.1 considers the case where the
researcher can observe an outcome Y pre before the assignment and there is no defier in the
population. Section 2.2 studies the case where the researcher can observe a treatment Dpre

before the assignment and defiers may exist in the population.
This section employs the following notation. Let Z ∈ {0, 1} be an assignment indicator,

D ∈ {0, 1} be a treatment status indicator, and Y ∈ Y ⊂ R be an outcome of interest. Then let
Dz ∈ {0, 1} be the potential treatment variable realized only when Z = z, and Yzd ∈ Y be the
potential outcome realized only when Z = z and D = d.

2.1. Observable outcome before assignment. To begin with, we consider the case where
the researcher can observe an outcome variable Y pre before the assignment. We impose the
following basic assumptions.

Assumption Y.

(i): It holds Yd = Yzd for each z ∈ {0, 1} and d ∈ {0, 1}, and

D = ZD1 + (1− Z)D0,

Y = ZDY11 + Z(1−D)Y10 + (1− Z)DY01 + (1− Z)(1−D)Y00.

(ii): Dz is weakly monotone in z, i.e., P(D1 ≥ D0) = 1.

Assumption Y (i) is standard in the literature of causal inference using randomized exper-
iments with non-compliance (e.g., Angrist et al., 1996). Note that the assumption Yd = Yzd

rules out direct effects of Z on the potential outcomes. To understand Assumption Y (ii), we
introduce a principal strata variable:

U =



a if D1 = 1, D0 = 1,

c if D1 = 1, D0 = 0,

d if D1 = 0, D0 = 1,

n if D1 = 0, D0 = 0.

(1)

The compliers (U = c) react on the assignment as intended by the researcher, and other three
strata do not. The always-takers (U = a) are always treated, the never-takers (U = n) are never
treated, and the defiers (U = d) react conversely to the assignment. Then Assumption Y (ii)
says that there is no defier in the population, i.e., P(U = d) = 0. The following sections present
identification results without this monotonicity assumption.

Our causal effects of interest are the average treatment effect (ATE = E[Y1 − Y0]), average
effect of treatment on the treated (ATT = E[Y1−Y0|D1 = 1]), and compliers’ average treatment
effect or local average treatment effect (ATE(c) = E[Y1−Y0|U = c]). To describe our identifica-
tion strategy, it is insightful to express these estimands by using the notation µu

d = E[Yd|U = u]
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U Y D Z Y pre

c or a Y1 1 1 Y pre

n Y0 0 1 Y pre

a Y1 1 0 Y pre

c or n Y0 0 0 Y pre

Table 1. Benchmark case: Observable Y pre

and pu = P(U = u) for u ∈ {a, c, n} as follows

ATE(c) = µc
1 − µc

0,

ATT =
pc(µc

1 − µc
0) + pa(µa

1 − µa
0)

pc + pa
, (2)

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ).

It is known that ATE(c) is identified under mild conditions (Angrist et al., 1996). However,
ATT and ATE cannot be generally identified in the present setup. This paper provides several
strategies to identity µu

d ’s and pu’s when the researcher can access to auxiliary observations in
addition to the main observable (Y,D,Z).

This subsection considers the following situation.

Assumption Y.

(iii): [Observable pre-treatment outcome] An outcome variable Y pre ∈ Y is observable at a
time before the treatment D is realized.

(iv): [Random assignment] Z is independent from (Y pre, D1, D0, Y11, Y10, Y01, Y00).

This setup should be considered as a benchmark and the following sections present other
identification strategies without the monotonicity assumption (Assumption Y (ii)). One of the
fundamental challenges of causal inference using randomized experiments with non-compliance
is that U is never observed for all subjects because only D can be observed. The observations
from randomized experiments can be divided into the four rows in Table 1 according to the
values of D and Z. Some rows are mixtures of two principal strata. Another fundamental
challenge, especially for identifying ATT and ATE, is that the outcomes for the cases where the
always-takers receive no treatment and the never-takers receive treatment are never observed. To
address this problem, our key assumption (Assumption Y (iii)) introduces the auxiliary outcome
Y pre, which is observed before realization of the treatment variable D.

First of all, Table 1 suggests that the following objects are identified without using Y pre:

µa
1 = E[Y |Z = 0, D = 1], pa = P(D = 1|Z = 0),

µn
1 = E[Y |Z = 1, D = 0], pn = P(D = 0|Z = 1),

pc = P(D = 1|Z = 1)− pa,

µc
1 =

(pc + pa)E[Y |Z = 1, D = 1]− paµa
1

pc
,

µc
0 =

(pc + pn)E[Y |Z = 0, D = 0]− pnµn
0

pc
. (3)
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Therefore, under Assumptions Y (i)-(iv), we can identify ATE for compliers as ATE(c) = µc
1−µc

0

as far as pc > 0.
In order to identify ATT and ATE, it remains to identify µa

0 and µn
1 by using the additional

data Y pre. To this end, we add the following assumptions.

Assumption Y.

(v): [Parallel trend of nonreactive strata] E[Y0 − Y pre|U = a] = E[Y0 − Y pre|U = n].
(vi): [Homogeneity of nonreactive strata] E[Y1 − Y0|U = a] = E[Y1 − Y0|U = n].

Assumption Y (v) is an analog of the parallel trend assumption on the types a and n whose
participation decisions are not affected by Z. Assumption Y (vi) requires homogeneous treat-
ment effects on the types a and n. Note that in the conventional identification analysis for ATE,
we typically impose homogeneity over all types. On the other hand, we only require homogeneity
over the types a and n. To see how Assumption Y (v) is utilized to identify µa

0, observe that

µa
1 − µa

0 = E[Y1 − Y pre|U = a]− E[Y0 − Y pre|U = a]

= E[Y1 − Y pre|U = a]− E[Y0 − Y pre|U = n]

= µa
1 − µa

pre − µn
0 + µn

pre, (4)

where µa
pre = E[Y pre|U = a], µn

pre = E[Y pre|U = n], and the second equality uses Assumption Y
(v). Since µa

pre and µn
pre are identified by

µa
pre = E[Y pre|Z = 1, D = 1],

µn
pre = E[Y pre|Z = 1, D = 0], (5)

we can identify µa
0 by (4) and thus ATT is also identified by (2). Finally, Assumption Y (vi)

guarantees identification of µn
1 as µn

1 = µn
0+µa

1−µa
0 so that ATE is identified by the expression in

(2). This assumption is considered natural in this setup because both always-takers and never-
takers are units who determine their treatment status D without being influenced by the value
of the assignment indicator Z. In other words, unlike compliers and defiers, they are units who
are not influenced by the provision of information, incentives, or resistance to coercion due to
receiving an assignment, or units who are considered to be influenced to a small extent by these
factors. Furthermore, it is thought that units for whom the hidden cost of receiving treatment
is smaller than the size of the treatment effect will become always-takers, and units for whom
the hidden cost is larger will become never-takers.

Combining these results, identification of the causal objects in (2) is established as follows.

Theorem 1. Consider the setup of this subsection.

(i): Under Assumption Y (i)-(iv), ATE(c) is identified.
(ii): Under Assumption Y (i)-(v), ATT is identified.
(iii): Under Assumption Y (i)-(vi), ATE is identified.

Based on this theorem, we can estimate these causal objects by taking sample counterparts,
and conduct inference based on standard methods, such as the delta method and bootstrap.
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Remark 1. [Overidentification] The above argument for establishing Theorem 1 (iii) is based
on showing just identification of the 11 parameters, (µu

1 , µ
u
0 , p

u) for u ∈ {c, a, n} and µu
pre for

u ∈ {a, n}. Indeed by introducing the parameter µc
pre, we have three additional restrictions:

pc = P(D = 0|Z = 0)− pn,

µc
pre =

(pc + pa)E[Y pre|Z = 1, D = 1]− paµa
pre

pa
,

µn
pre =

(pc + pn)E[Y pre|Z = 0, D = 0]− pcµc
pre

pn
. (6)

These additional moment conditions can be incorporated by using the generalized method of
moments.

2.2. Observable treatment before assignment. This subsection considers the case where
we can observe a treatment Dpre before the assignment under the following basic assumption.

Assumption D. (i) It holds Yd = Yzd for each z ∈ {0, 1} and d ∈ {0, 1}, and

D = ZD1 + (1− Z)D0,

Y = ZDY11 + Z(1−D)Y10 + (1− Z)DY01 + (1− Z)(1−D)Y00.

We employ the principal strata variable U defined in (1). This assumption is identical to
Assumption Y (i), but we do not impose the monotonicity assumption on Dz, so the defier can
present in the population, i.e., P(U = d) > 0. In this case, the causal effects of interest can be
expressed as

ATE(c) = µc
1 − µc

0,

ATT =
pc(µc

1 − µc
0) + pa(µa

1 − µa
0)

pc + pa
, (7)

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0),

where µd
d = E[Yd|U = d] and pd = P(U = d). Clearly these objects cannot be identified under the

present setup. In this subsection, we assume that in addition to the main observable (Z,D, Y ),
the researcher observes

Dpre ∈ {0, 1} : treatment indicator to be observed at the time before the assignment, (8)

Intuitively Dpre is used for untangling the mixtures of principal strata in observations. One of the
fundamental challenges of causal inference using randomized experiments with non-compliance
is that U is never observed for all subjects because only D or Dpre can be observed. The
observations from randomized experiments can be divided into the four rows in Table 2 (left)
according to D and Z values. All rows are mixtures of two principal strata. If we assume absence
of defiers, the parameters µc

1, µ
c
0, µ

a
1, µ

n
0 , p

c, pa, pn and ATE(c) are identified by using the single
principal stratum moments from the second and third rows. But if not, we have to deal with
the mixtures in another way, and we employ Dpre to overcome this.

To conduct identification analysis for the objects of interest in (7), we impose the following
assumptions.
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U Y D Z
c or a Y1 1 1
n or d Y1 0 1
a or d Y0 1 0
c or n Y0 0 0

U Y D Z Dpre

c Y1 1 1 0
a Y1 1 1 1
n Y1 0 1 0
d Y1 0 1 1

a or d Y0 1 0 1
c or n Y0 0 0 0

Table 2. Benchmark case with (right) and without (left) Dpre

Assumption D.
(ii): [Random assignment] Z is independent from (Dpre, D1, D0, Y11, Y10, Y01, Y00).
(iii): [Pre-assignment treatment status as control] D0 = Dpre.

Assumption D (ii) is a standard assumption for random assignment of Z. Assumption D (iii)
says that the auxiliary observation Dpre plays the role of Dz with Z = 0. Since the treatment
Dpre occurs before the assignment of Z, this assumption is reasonable. The relationships of the
observables and principal strata variable can be summarized as in Table 2. Due to Assumptions
D, we do not have rows for the cases of D ̸= Dpre with Z = 0.

Indeed the first four rows of this table (right panel) suggest that the following objects are
identified:

µc
1 = E[Y |Z = 1, D = 1, Dpre = 0], pc = P(D = 1, Dpre = 0|Z = 1),

µa
1 = E[Y |Z = 1, D = 1, Dpre = 1], pa = P(D = 1, Dpre = 1|Z = 1),

µn
0 = E[Y |Z = 1, D = 0, Dpre = 0], pn = P(D = 0, Dpre = 0|Z = 1),

µd
0 = E[Y |Z = 1, D = 0, Dpre = 1], pd = P(D = 0, Dpre = 1|Z = 1). (9)

Furthermore, the last two rows of this table (right panel) can be utilized to identify

µd
1 =

(pa + pd)E[Y |Z = 0, D = 1, Dpre = 1]− paµa
1

pd
,

µc
0 =

(pc + pn)E[Y |Z = 0, D = 0, Dpre = 0]− pnµn
0

pc
. (10)

Therefore, under Assumption D, we can identify ATE for compliers and defiers as ATE(c) =

µc
1 − µc

0 and ATE(d) = µd
1 − µd

0, respectively.
Combining these results, our identification results for this case are presented as follows.

Theorem 2. Consider the setup of this subsection. Under Assumption D, ATE(c), ATE(d),
and pu for all u ∈ {a, c, d, n} are identified.

Based on this theorem, we can estimate these causal objects by taking sample counterparts,
and conduct inference based on standard methods, such as the delta method and bootstrap.
There are several ways to utilize this theorem for empirical analyses. First, we can estimate
the probability of compliers pd as a diagnostics for the monotonicity (or no defier) assumption.
Second, we can formally test the validity of the local average treatment analysis by testing the
null of ATE(c) = ATE(d). Our proof shows that this null is equivalent that the identification
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formulae for ATE(c) are same for the cases with or without Dpre. Finally, although we cannot
identify ATE or ATT, this theorem can be utilized to obtain tighter bounds for these objects
compared to the conventional ones.

2.3. Identification under ignorability condition. In observational studies, it is often the
case that the random assignment of Z (Assumption Y (iv)) is violated. In this subsection we show
that our identification argument can be extended to the case where the following ignorability
condition is satisfied. Let X ∈ X ⊂ Rq be a vector of q-dimensional covariates.

Assumption Y. (iv)’ [Ignorability] Conditionally on X, Z is independent from
(D,Y pre, D1, D0, Y11, Y10, Y01, Y00).

This is a standard ignorability or unconfoundedness condition commonly imposed in the
literature of causal inference with observational studies. Based on the discussion of the previous
subsection, it is sufficient for identification of the causal estimands in (2) to identify

δ(z,d) = E[Yd|Dz = d], δpre
(z,d) = E[Y pre

d |Dz = d],

π(z,d) = P(Dz = d), (11)

for each z ∈ {0, 1} and d ∈ {0, 1}. To establish multiply robust representations of δ(z,d) and
π(z,d) under Assumption Y (iv)’, we introduce parametric models

ez(X;α) for P(Z = z|X),

p(z,d)(X;β) for P(D = d|Z = z,X),

m(X; γ) for E[Y |X],

mpre(X; γpre) for E[Y pre|X],

pd(X; η) for P(D = d|X),

where α, β, γ, and η are finite dimensional parameters. By using these parametric models,
multiply robust representations of the population objects δ(z,d) and π(z,d) are obtained as follows.

Theorem 3. Consider the setup of this subsection. Under Assumption Y (i)-(iii), (iv)’, (v)-(vi),
it holds

δ(z,d) = E
[
I{Z = z}
ez(X;α)

I{D = d}
p(z,d)(X;β)

Y

]
−E

[I{Z = z}I{D = d} − ez(X;α)p(z,d)(X;β)

ez(X;α)p(z,d)(X;β)
m(X; γ)

]
,

δpre
(z,d) = E

[
I{Z = z}
ez(X;α)

I{D = d}
p(z,d)(X;β)

Y pre
]

−E
[I{Z = z}I{D = d} − ez(X;α)p(z,d)(X;β)

ez(X;α)p(z,d)(X;β)
mpre(X; γpre)

]
,

π(z,d) = E
[
I{Z = z}
ez(X;α)

I{D = d}
]
− E

[
I{Z = z} − ez(X;α)

ez(X;α)
pd(X; η)

]
.

10



By taking the sample counterparts of these representations, we can construct multiply robust
estimators for δ(z,d), δpre

(z,d), and π(z,d). Then the 11 parameters µu
1 , µ

u
0 , p

u for u ∈ {c, a, n} and
µu

pre for u ∈ {a, n} are over-identified by the moment restrictions:

µa
1 = δ(0,1), µn

1 = δ(1,0), pa = π(0,1), pn = π(1,0), pc = π(1,1) − pa,

µc
1 =

(pc + pa)δ(1,1) − paµa
1

pc
, µc

0 =
(pc + pn)δ(0,0) − pnµn

0

pc
,

µa
0 = = µa

pre + µn
0 − µn

pre, µn
1 = µn

0 + µa
1 − µa

0, µa
pre = δpre

(0,1), , µn
pre = δpre

(1,0),

pc = π(0,0) − pn, µc
pre =

(pc + pa)δ(1,1) − paµa
pre

pc
, µn

pre =
(pc + pn)δpre

(0,0) − pcµc
pre

pn
,(12)

where the first two lines are obtained from the rows in Table 1, the third line is obtained from
Assumption Y (v)-(vi) and the second and third rows in Table 1, and the last line follows from
the first and last rows in Table 1. Just identification of µu

1 , µ
u
0 , p

u for u ∈ {c, a, n} and µu
pre

for u ∈ {a, n} is guaranteed by the first three lines, and the last line provides overidentifying
restrictions.

We close this subsection by summarizing the doubly robust properties of the estimators based
on Theorem 3 and (12).

Proposition 1. Consider the setup of this subsection. Suppose Assumption Y (i)-(iii), (iv)’,
(v)-(vi) hold true. Then

(i): δ(z,d) can be consistently estimated if either {ez(X;α), p(z,d)(X;β)} or m(X; γ) is cor-
rectly specified, and δpre

(z,d) can be consistently estimated if either {ez(X;α), p(z,d)(X;β)}
or mpre(X; γpre) is correctly specified,

(ii): π(z,d) can be consistently estimated if either ez(X;α) or pd(X; η) is correctly specified,
(iii): ATE(c) can be consistently estimated if either {ez(X;α), p(z,d)(X;β)}, {m(X; γ), pd(X; η)},

or {ez(X;α),m(X; γ)} is correctly specified,
(iv): ATT and ATE can be consistently estimated if either {ez(X;α), p(z,d)(X;β)},

{m(X; γ),mpre(X; γpre), pd(X; η)}, or {ez(X;α),m(X; γ),mpre(X; γpre)} is correctly spec-
ified.

Furthermore, the multiply robust estimator for ATE(c) is asymptotically locally efficient if
{ez(X;α), p(z,d)(X;β),m(X; γ), pd(X; η)} are correctly specified, and also the multiply robust
estimators for ATT and ATE are asymptotically locally efficient if
{ez(X;α), p(z,d)(X;β),m(X; γ),mpre(X; γpre)} are correctly specified.

2.4. Estimation and testing. In this subsection, we briefly discuss estimation and testing
methods for ATE identified by Theorems 1 and 3 above. The methods for ATE(c) and ATT
can be obtained in the same manner.

First, we consider estimation of ATE based on Theorem 1 (iii). Let δ̂(z,d) , δ̂pre
(z,d), and π̂(z,d)

be the empirical (conditional) moments of δ(z,d) = E[Yd|Dz = d], δpre
(z,d) = E[Y pre|Dz = d], and

π(z,d) = P(Dz = d), respectively, and ζ̂ and ζ be their vectorizations. Also let θ be a 11-
dimensional vector given by (µu

1 , µ
u
0 , p

u) for u ∈ {c, a, n} and µu
pre for u ∈ {a, n}, which provides

11



a formula for ATE as

ATE(θ) = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ).

Then the minimum distance estimator for ATE is obtained as ω̂ for

(θ̂, ω̂) = arg min
θ,ω

g(ζ̂, θ, ω)′Ψg(ζ̂, θ, ω), (13)

where the vector of moment conditions g(ζ, θ, ω) = 0 is obtained by stacking the equations (3)-(5)
and ω = ATE(θ) (and also (6)). The weight matrix Ψ may be chosen to achieve the asymptotic
efficiency. Statistical inference on ω can be conducted by the Wald statistic, likelihood ratio-type
statistic, or bootstrap method.

Next, if the parameters ζ are identified by the ignorability condition as in Theorem 3, their
estimating equations are given by

g1(W, ζ, α, β, γ, γpre)

=



{
δ(z,d) −

I{Z=z}
ez(X;α)

I{D=d}
p(z,d)(X;β)Y +

I{Z=z}I{D=d}−ez(X;α)p(z,d)(X;β)

ez(X;α)p(z,d)(X;β) m(X; γ)
}
(z,d){

δpre
(z,d) −

I{Z=z}
ez(X;α)

I{D=d}
p(z,d)(X;β)Y

pre +
I{Z=z}I{D=d}−ez(X;α)p(z,d)(X;β)

ez(X;α)p(z,d)(X;β) mpre(X; γpre)
}
(z,d){

π(z,d) −
I{Z=z}
ez(X;α)I{D = d}+ I{Z=z}−ez(X;α)

ez(X;α) pd(X; η)
}
(z,d)

ξ1(W,α)

ξ2(W,β)

ξ3(W,γ)

ξpre
3 (W,γpre)


,

where W mean the whole observables, ξ1, ξ2, ξ3, and ξpre
3 are estimating equations for the param-

eters α, β, γ, and γpre, respectively. Combining this with the moment conditions g(ζ, θ, ϑ) = 0,
the GMM estimator of ATE is obtained as ω̃ for

(ζ̃, θ̃, α̃, β̃, γ̃, γ̃pre, ω̃)

= arg min
ζ,θ,α,β,γ,γpre,ω

[
g(ζ, θ, ω)′,

1

n

n∑
i=1

g1(Wi, ζ, α, β, γ, γ
pre)′

]
Ψ1

[
g(ζ, θ, ω)

1
n

∑n
i=1 g1(Wi, ζ, α, β, γ, γ

pre)

]
,

where Ψ1 is a weighting matrix. The conventional GMM theory applies to obtain the asymptotic
properties of the estimator and statistical inference on ω.

3. Generalizations

In this section, we present three experimental designs to identify and estimate causal objects
by auxiliary data: (I) the case where previous treatment and outcome are observable at different
time points (Section 3.1), (II) the case where previous treatment and outcome are observable at
the same time point (Section 3.2), and (III) the case with a two-regime randomization (Section
3.3).

3.1. Case I: Observe previous treatment and outcome. Hereafter we use the following
notation. Let Z(1) ∈ {0, 1} be an assignment indicator, D(1) ∈ {0, 1} be a treatment status
indicator, and Y (1) ∈ Y ⊂ R be an outcome of interest, where the superscript “(1)” indicates

12



the variables associated with the main dataset. Then let D(1)
z ∈ {0, 1} be the potential treatment

variable realized only when Z(1) = z, and Y
(1)
zd ∈ Y be the potential outcome realized only when

Z(1) = z and D(1) = d. We impose the following basic assumptions.

Assumption 1. It holds Y
(1)
d = Y

(1)
zd for each z ∈ {0, 1} and d ∈ {0, 1}, and

D(1) = Z(1)D
(1)
1 + (1− Z(1))D

(1)
0 ,

Y (1) = Z(1)D(1)Y
(1)
11 + Z(1)(1−D(1))Y

(1)
10 + (1− Z(1))D(1)Y

(1)
01 + (1− Z(1))(1−D(1))Y

(1)
00 .

In this case, the principal stratum variable is defined as

U =



a if D(1)
1 = 1, D

(1)
0 = 1,

c if D(1)
1 = 1, D

(1)
0 = 0,

d if D(1)
1 = 0, D

(1)
0 = 1,

n if D(1)
1 = 0, D

(1)
0 = 0.

Note that we do not impose the monotonicity assumption on D
(1)
z , so the defier can present

in the population, i.e., P(U = d) > 0. As in the last section, we are interested in the average
treatment effect (ATE = E[Y (1)

1 − Y
(1)
0 ]), average effect of treatment on the treated (ATT =

E[Y (1)
1 − Y

(1)
0 |D(1)

1 = 1]), and compliers’ average treatment effect or local average treatment
effect (ATE(c) = E[Y (1)

1 − Y
(1)
0 |U = c]). Letting µu

d = E[Y (1)
d |U = u] and pu = P(U = u) for

u ∈ {a, c, d, n}, these objects can be written as

ATE(c) = µc
1 − µc

0,

ATT =
pc(µc

1 − µc
0) + pa(µa

1 − µa
0)

pc + pa
, (14)

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0).

Clearly these objects cannot be identified under the present setup. In this subsection, we assume
that in addition to the main observations (Z(1), D(1), Y (1)), the researcher observes:

D(0) ∈ {0, 1} : treatment indicator to be observed at the time before the assignment,

Y (∗) ∈ Y : outcome variable to be observed at a time before D(0). (15)

Intuitively D(0) is used for untangling the mixtures of principal strata in observations. One of the
fundamental challenges of causal inference using randomized experiments with non-compliance
is that U is never observed for all subjects because only D

(1)
1 or D

(1)
0 can be observed. The

observations from randomized experiments can be divided into the four rows in Table 3 (left)
according to D(1) and Z(1) values. All of the row are mixtures of two principal stratum, not single
principal strata. If one assume absence of defier, parameters µc

1, µ
c
0, µ

a
1, µ

n
0 , p

c, pa, pn andATE(c)
are identified by using the single principal strata moments from 2nd and 3rd rows. But if not,
one have to deal with the mixtures in the another way. D(0) is used to overcome this. Even if the
mixture problem can be addressed, ATT and ATE cannot be identified. Another fundamental
challenge, especially for identifying ATT and ATE, is that the outcome when always-taker receive
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U Y (1) D(1) Z(1)

c or a Y
(1)
1 1 1

n or d Y
(1)
1 0 1

a or d Y
(1)
0 1 0

c or n Y
(1)
0 0 0

U Y (1) D(1) Z(1) Y (∗) D(0)

c Y
(1)
1 1 1 Y (∗) 0

a Y
(1)
1 1 1 Y (∗) 1

n Y
(1)
1 0 1 Y (∗) 0

d Y
(1)
1 0 1 Y (∗) 1

a or d Y
(1)
0 1 0 Y (∗) 1

c or n Y
(1)
0 0 0 Y (∗) 0

Table 3. Benchmark case with (right) and without (left) auxiliary data

no treatment and the outcome when never-taker receive treatment is never observed. Y (∗) is
used to address this problem.

To conduct identification analysis for the objects of interest in (14), we impose the following
assumptions.

Assumption 2.
(i): [Random assignment] Z(1) is independent from (D(0), Y (∗), D

(1)
1 , D

(1)
0 , Y

(1)
11 , Y

(1)
10 , Y

(1)
01 , Y

(1)
00 ).

(ii): [Pre-assignment treatment status as control] D(1)
0 = D(0).

Assumption 2 (i) is a standard assumption for random assignment of Z(1). Assumption 2 (ii)
says that the auxiliary observation D(0) plays the role of D(1)

z with Z(1) = 0. Since the treatment
D(0) occurs before the assignment of Z(1), this assumption is reasonable. the relationships of
the observables and principal strata variable U can be summarized as in Table 3. Due to
Assumptions 2, we do not have rows for the cases of D(1) ̸= D(0) with Z(1) = 0.

Indeed the first four rows of this table (right panel) suggests that the following objects are
identified:

µc
1 = E[Y (1)|Z(1) = 1, D(1) = 1, D(0) = 0], pc = P(D(1) = 1, D(0) = 0|Z(1) = 1),

µa
1 = E[Y (1)|Z(1) = 1, D(1) = 1, D(0) = 1], pa = P(D(1) = 1, D(0) = 1|Z(1) = 1),

µn
0 = E[Y (1)|Z(1) = 1, D(1) = 0, D(0) = 0], pn = P(D(1) = 0, D(0) = 0|Z(1) = 1),

µd
0 = E[Y (1)|Z(1) = 1, D(1) = 0, D(0) = 1], pd = P(D(1) = 0, D(0) = 1|Z(1) = 1).

(16)

Furthermore, the last two rows of this table (right panel) can be utilized to identify

µd
1 =

(pa + pd)E[Y (1)|Z(1) = 0, D(1) = 1, D(0) = 1]− paµa
1

pd
,

µc
0 =

(pc + pn)E[Y (1)|Z(1) = 0, D(1) = 0, D(0) = 0]− pnµn
0

pc
. (17)

Therefore, under Assumptions 1-2, we can identify ATE for compliers and defiers as ATE(c) =
µc
1 − µc

0 and ATE(d) = µd
1 − µd

0, respectively.
In order to identify ATT and ATE, it remains to identify µa

0 and µn
1 by using the additional

data Y (∗). To this end, we add the following assumptions.

Assumption 3.
(i): [Parallel trend of nonreactive strata] E[Y (1)

0 − Y (∗)|U = a] = E[Y (1)
0 − Y (∗)|U = n].
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(ii): [Homogeneity of nonreactive strata] E[Y (1)
1 − Y

(1)
0 |U = a] = E[Y (1)

1 − Y
(1)
0 |U = n].

Assumption 3 (i) is an analog of the parallel trend assumption on the types a and n whose par-
ticipation decisions are not affected by Z(1). Assumption 3 (ii) requires homogeneous treatment
effects on the types a and n. Note that in the conventional identification analysis for ATE, we
typically impose homogeneity over all types. On the other hand, we only require homogeneity
over the types a and n. To see how Assumption 3 (i) is utilized to identify µa

0, observe that

µa
1 − µa

0 = E[Y (1)
1 − Y (∗)|U = a]− E[Y (1)

0 − Y (∗)|U = a]

= E[Y (1)
1 − Y (∗)|U = a]− E[Y (1)

0 − Y (∗)|U = n]

= µa
1 − µa

∗ − µn
0 + µn

∗ , (18)

where µa
∗ = E[Y (∗)|U = a], µn

∗ = E[Y (∗)|U = n], and the second equality uses Assumption 3 (i).
Since µa

∗ and µn
∗ are identified by

µa
∗ = E[Y (∗)|Z(1) = 1, D(1) = 1, D(0) = 1],

µn
∗ = E[Y (∗)|Z(1) = 1, D(1) = 0, D(0) = 0], (19)

we can identify µa
0 by (18) and thus ATT is also identified by (14). Finally, Assumption 3 (ii)

guarantees identification of µn
1 as µn

1 = µn
0 +µa

1 −µa
0 so that ATE is identified by the expression

in (14).
Combining these results, identification of the causal objects in (14) is established as follows.

Theorem 4. Consider the setup of this subsection.
(i): Under Assumptions 1-2, ATE(c) is identified.
(ii): Under Assumptions 1-3 (i), ATT is identified.
(iii): Under Assumptions 1-3, ATE is identified.

Based on this theorem, we can estimate these causal objects by taking sample counterparts,
and conduct inference based on standard methods, such as the delta method and bootstrap.

Remark 2. [Alternative assumptions] If defiers exist, then Assumption 3 could be replaced
with another reasonable assumption on the targeted outcome and situation. The group that
receives treatment on their own initiative without any external incentives (the group of D(1)

0 = 1

including always-takers and defiers) may share common characteristics in that they expect to
have worse outcomes if they do not receive treatment. In this case, Assumption 3 (i) may be
replaced with

Assumption 3 (i)’: E[Y0 − Y ∗|U = a] = E[Y0 − Y ∗|U = d].

In addition, the group that does not receive treatment even if they receive an external incentive
(the group of D(1)

1 = 0 including never-takers and defiers) may have common characteristics in
that they expect the outcomes do not change much even if they receive treatment. In this case,
Assumption 3 (ii) may be replaced with

Assumption 3 (ii)’: E[Y1 − Y ∗|U = n] = E[Y1 − Y ∗|U = d].
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Assumption 3 (i)’ can be used to identify µa
0, and Assumption 3 (ii)’ can be used to identify

µn
1 . ATT and ATE are identified in analogous ways. When using Assumption 3 (ii)’, it is not

necessary to assume the same average treatment effect as in Assumption 3 (ii).

Remark 3. [Overidentification] The above argument for establishing Theorem 4 (iii) is based
on showing just identification of the 14 parameters, (µu

1 , µ
u
0 , p

u) for u ∈ {c, a, n, d} and µu
∗

for u ∈ {a, n}. Indeed by introducing two more parameters (µc
∗, µ

d
∗), we have four additional

restrictions:

pa + pd = E[D(1) = 1, D(0) = 1|Z(1) = 0],

pc + pn = E[D(1) = 0, D(0) = 0|Z(1) = 0],

µa
∗ =

(pa + pd)E[Y (∗)|Z(1) = 0, D(1) = 1, D(0) = 1]− pdµd
∗

pa
,

µn
∗ =

(pc + pn)E[Y (∗)|Z(1) = 0, D(1) = 0, D(0) = 0]− pcµc
∗

pn
. (20)

Here µc
∗ = E[Y (∗)|U = c] and µd

∗ = E[Y (∗)|U = d] are identified by

µc
∗ = E[Y (∗)|Z(1) = 1, D(1) = 1, D(0) = 0],

µd
∗ = E[Y (∗)|Z(1) = 1, D(1) = 0, D(0) = 1]. (21)

These additional moment conditions can be incorporated by using the generalized method of
moments.

3.1.1. Identification under ignorability condition. In observational studies, it is often the case
that the random assignment of Z(1) (Assumption 2 (i)) is violated. In this subsection we show
that our identification argument can be extended to the case where the following ignorability
condition is satisfied. Let X ∈ X ⊂ Rq be a vector of q-dimensional covariates.

Assumption 2. (i)’ [Ignorability] Conditionally on X, Z(1) is independent from
(D(0), Y (∗), D

(1)
1 , D

(1)
0 , Y

(1)
11 , Y

(1)
10 , Y

(1)
01 , Y

(1)
00 ).

This is a standard ignorability or unconfoundedness condition commonly imposed in the
literature of causal inference with observational studies. Based on the discussion of the previous
subsection, it is sufficient for identification of the causal estimands in (14) to identify

δ
(t)
(z,d,d′) = E[Y (t)

d |D(1)
z = d,D(0) = d′],

π(z,d,d′) = P(D(1)
z = d,D(0) = d′), (22)

for each t ∈ {1, ∗}, z ∈ {0, 1}, and d, d′ ∈ {0, 1}. To establish multiply robust representations of
δ
(t)
(z,d,d′) and π(z,d,d′) under Assumption 2 (i)’, we introduce parametric models

ez(X;α) for P(Z(1) = z|X),

p(z,d,d′)(X;β) for P(D(1) = d,D(0) = d′|Z(1) = z,X),

m(t)(X; γ(t)) for E[Y (t)|X],

p(d,d′)(X; η) for P(D(1) = d,D(0) = d′|X),
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where α, β, γ(t), and η are finite dimensional parameters. By using these parametric models,
multiply robust representations of the population objects δ

(t)
(z,d,d′) and π(z,d,d′) are obtained as

follows.

Theorem 5. Consider the setup of this subsection. Under Assumptions 1 and 2 (i)’, (ii), and
(iii), it holds

δ
(t)
(z,d,d′) = E

[
I{Z(1) = z}
ez(X;α)

I{D(1) = d,D(0) = d′}
p(z,d,d′)(X;β)

Y (t)

]

−E

[
I{Z(1) = z}I{D(1) = d,D(0) = d′} − ez(X;α)p(z,d,d′)(X;β)

ez(X;α)p(z,d,d′)(X;β)
m(t)(X; γ(t))

]
,

π(z,d,d′) = E

[
I{Z(1) = z}
ez(X;α)

I{D(1) = d,D(0) = d′}

]
− E

[
I{Z(1) = z} − ez(X;α)

ez(X;α)
p(d,d′)(X; η)

]
.

By taking the sample counterparts of these representations, we can construct multiply robust
estimators for δ

(t)
(z,d,d′) and π(z,d,d′). Then the 16 parameters µu

1 , µ
u
0 , µ

u
∗ , p

u for u ∈ {c, a, n, d} are
over-identified by the moment restrictions:

µc
1 = δ

(1)
(1,1,0), µa

1 = δ
(1)
(1,1,1), µn

0 = δ
(1)
(1,0,0), µd

0 = δ
(1)
(1,0,1),

pc = π(1,1,0), pa = π(1,1,1), pn = π(1,0,0), pd = π(1,0,1),

µd
1 =

(pa + pd)δ
(1)
(0,1,1) − paµa

1

pd
, µc

0 =
(pc + pn)δ

(1)
(0,0,0) − pnµn

0

pc
,

µa
0 = µa

∗ + µn
0 − µn

∗ , µn
1 = µn

0 + µa
1 − µa

0, µa
∗ = δ

(∗)
(1,1,1), , µn

∗ = δ
(∗)
(1,0,0)

pa + pd = π(0,1,1), pc + pn = π(0,0,0), µc
∗ = δ

(∗)
(1,1,0), µd

∗ = δ
(∗)
(1,0,1),

µa
∗ =

(pa + pd)δ
(∗)
(0,1,1) − pdµd

∗

pa
, µn

∗ =
(pc + pn)δ

(∗)
(0,0,0) − pcµc

∗

pn
, (23)

where the first three lines are obtained from the rows in Table 3, the fourth line is obtained
from Assumption 3 and the second and third rows in Table 3, and the last two lines follow from
the first and last three rows in Table 3. Just identification of µu

1 , µ
u
0 , µ

u
∗ , p

u for u ∈ {c, a, n, d} is
guaranteed by the first four lines, and the last two lines provide overidentifying restrictions.

We close this subsection by summarizing the doubly robust properties of the estimators based
on Theorem 5 and (23).

Proposition 2. Consider the setup of this subsection. Suppose Assumptions 1, 2 (i)’, (ii), and
(iii), and 3 hold true. Then

(i): δ
(t)
(z,d,d′) can be consistently estimated if either {ez(X;α), p(z,d,d′)(X;β)} or m(t)(X; γ(t))

is correctly specified,
(ii): π(z,d,d′) can be consistently estimated if either ez(X;α) or p(d,d′)(X; η) is correctly

specified,
(iii): ATE(c) can be consistently estimated if either {ez(X;α), p(z,d,d′)(X;β)},

{m(1)(X; γ(1)), p(d,d′)(X; η)}, or {ez(X;α),m(1)(X; γ(1))} is correctly specified,
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(iv): ATT and ATE can be consistently estimated if either {ez(X;α), p(z,d,d′)(X;β)},
{m(1)(X; γ(1)),m(∗)(X; γ(∗)), p(d,d′)(X; η)}, or {ez(X;α),m(1)(X; γ(1)),m(∗)(X; γ(∗))} is
correctly specified.

Furthermore, the multiply robust estimator for ATE(c) is asymptotically locally efficient if
{ez(X;α), p(z,d,d′)(X;β),m(1)(X; γ(1)), p(d,d′)(X; η)} are correctly specified, and also the multiply
robust estimators for ATT and ATE are asymptotically locally efficient if
{ez(X;α), p(z,d,d′)(X;β),m(1)(X; γ(1)),m(∗)(X; γ(∗))} are correctly specified.

3.1.2. Estimation and testing. In this subsection, we briefly discuss estimation and testing meth-
ods for ATE identified by Theorems 4 and 5 above. The methods for ATE(c) and ATT can be
obtained in the same manner.

First, we consider estimation of ATE based on Theorem 4 (iii). Let δ̂(t)(z,d,d′) and π̂(z,d,d′) be the
empirical (conditional) moments of δ(t)(z,d,d′) = E[Y (t)

d |D(1)
z = d,D(0) = d′] and π(z,d,d′) = P(D(1)

z =

d,D(0) = d′), respectively, and ζ̂ and ζ be their vectorizations. Also let θ be a 14-dimensional
vector given by (µu

1 , µ
u
0 , p

u) for u ∈ {c, a, n, d} and µu
∗ for u ∈ {a, n}, which provides a formula

for ATE as

ATE(θ) = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0).

Then the minimum distance estimator for ATE is obtained as ω̂ for

(θ̂, ω̂) = arg min
θ,ω

g(ζ̂, θ, ω)′Ψg(ζ̂, θ, ω), (24)

where the vector of moment conditions g(ζ, θ, ω) = 0 is obtained by stacking the equations
(16)-(19) and ω = ATE(θ) (and also (20)-(21)). The weight matrix Ψ may be chosen to achieve
the asymptotic efficiency (see, e.g., Newey and McFadden, 1994). Statistical inference on ω can
be conducted by the Wald statistic, likelihood ratio-type statistic, or bootstrap method.

Next, if the parameters ζ are identified by the ignorability condition as in Theorem 5, their
estimating equations are given by

g1(W, ζ, α, β, {γ(t)}t)

=



 δ
(t)
(z,d,d′) −

I{Z(1)=z}
ez(X;α)

I{D(1)=d,D(0)=d′}
p(z,d,d′)(X;β) Y (t)

+
I{Z(1)=z}I{D(1)=d,D(0)=d′}−ez(X;α)p(z,d,d′)(X;β)

ez(X;α)p(z,d,d′)(X;β) m(t)(X; γ(t))


(t,z,d,d′){

π(z,d,d′) −
I{Z(1)=z}
ez(X;α) I{D(1) = d,D(0) = d′}+ I{Z(1)=z}−ez(X;α)

ez(X;α) p(d,d′)(X; η)
}
(z,d,d′)

ξ1(W,α)

ξ2(W,β)

{ξ(t)3 (W,γ(t))}t


,

where W mean the whole observables, ξ1, ξ2, and ξ
(t)
3 are estimating equations for the parameters

α, β, and γ(t), respectively. Combining this with the moment conditions g(ζ, θ, ϑ) = 0, the GMM
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U Y (1) D(1) Z(1) Y (0) D(0)

c Y
(1)
1 1 1 Y

(0)
0 0

a Y
(1)
1 1 1 Y

(0)
1 1

n Y
(1)
1 0 1 Y

(0)
0 0

d Y
(1)
1 0 1 Y

(0)
1 1

a or d Y
(1)
0 1 0 Y

(0)
1 1

c or n Y
(1)
0 0 0 Y

(0)
0 0

Table 4. Case of observable Y (0) instead of Y (∗)

estimator of ATE is obtained as ω̃ for

(ζ̃, θ̃, α̃, β̃, {γ̃(t)}t, ω̃)

= arg min
ζ,θ,α,β,{γ(t)}t,ω

[
g(ζ, θ, ω)′,

1

n

n∑
i=1

g1(Wi, ζ, α, β, {γ(t)}t)′
]
Ψ1

[
g(ζ, θ, ω)

1
n

∑n
i=1 g1(Wi, ζ, α, β, {γ(t)}t)

]
,

where Ψ1 is a weighting matrix. The conventional GMM theory applies to obtain the asymptotic
properties of the estimator and statistical inference on ω.

3.2. Case II: Identification with Y (0) instead of Y (∗). In the benchmark case considered
in the last section, a critical requirement is availability of the outcome Y (∗) that is observed at
a point in time before D(0) so that Y (∗) is not affected by D(0). This subsection considers the
situation where we observe the outcome Y (0) instead of Y (∗) and treatment D(0) at the same
time so that Y (0) is affected by D(0). In this case, the relationships of the observables and
principal strata variable are summarized as in Table 4.

In this case, we introduce alternative assumptions to identify µa
0.

Assumption 2a. The observable Y (0) satisfies

Y (0) = D(0)Y
(0)
1 + (1−D(0))Y

(0)
0 ,

where Y
(0)
d is the potential outcome realized only when D(0) = d, and Assumption 2 holds true

with replacement of “Y (∗)” with “Y (0)”.

Assumption 3a.
(i): [Parallel trend for always-takers and defiers] E[Y (1)

0 −Y
(0)
1 |U = a] = E[Y (1)

0 −Y
(0)
1 |U =

d].
(ii): [Parallel trend for compliers and never-takers] E[Y (1)

1 − Y
(0)
0 |U = c] = E[Y (1)

1 −
Y

(0)
0 |U = n].

Assumptions 2a is analogous to Assumption 2 for the benchmark case. Up to the argument
in (17) for identification of µd

1 and µc
0, we can proceed in the same way as the benchmark case.

Thus, to identify ATT and ATE, it remains to identify µa
0 and µn

1 . Now Assumptions 2a and 3a
(i) imply

µa
1 − µa

0 = E[Y (1)
1 − Y

(0)
1 |U = a]− E[Y (1)

0 − Y
(0)
1 |U = a]

= E[Y (1)
1 − Y

(0)
1 |U = a]− E[Y (1)

0 − Y
(0)
1 |U = d],
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R U Y (1) D(1) Z(1) D(0)

1 c Y
(1)
1 1 1 0

1 a Y
(1)
1 1 1 1

1 n Y
(1)
1 0 1 0

1 d Y
(1)
1 0 1 1

1 a or d Y
(1)
0 1 0 1

1 c or n Y
(1)
0 0 0 0

0 all Y
(1)
0 0 - -

Table 5. Two-regime case

which can be written as

µa
0 = E[Y (0)

1 |U = a] + µd
0 − E[Y (0)

1 |U = d]. (25)

By using (2) and (25), we can identify ATT. Similarly, Assumptions 2a and 3a (ii) imply

µn
1 = µc

1 − E[Y (0)
0 |U = c] + E[Y (0)

0 |U = n]. (26)

Based on (25) and/or (26), we can identify ATE under three scenarios. The identification results
for this case are summarized as follows.

Theorem 6. Consider the setup of this subsection.

(i): Under Assumptions 1 and 2a, ATE(c) is identified.
(ii): Under Assumptions 1, 2a, and 3a (i), ATT is identified.
(iii): Suppose Assumptions 1 and 2a hold true. If either (a) Assumptions 3a (i) and 3 (ii);

(b) Assumptions 3a (ii), and 3 (ii); or (c) Assumptions 3a (i) and 3a (ii) holds true,
then ATE is identified.

3.3. Case III: Two-regime design. In this subsection, we consider a two-regime setting,
where we do not need to observe neither Y (0) or Y (∗). First, subjects are randomly assigned to
one of two regimes R ∈ {1, 0}. In the group with R = 1, we observe (Y (1), D(1), Z(1), D(0)). In
the group with R = 0, D(1) = 0 is forced so that we observe Y (1) = Y

(1)
0 . In other words, we

block access to the treatment for a randomly selected subgroup. In this case, the relationships
of the observables and principal strata variable are summarized in Table 5.

In this setup, we impose the following assumptions.

Assumption 2b. Assumption 2 holds true with removal of Y (∗).

Assumption 3b.

(i): [Random regime assignment] R is independent from (D(0), D
(1)
1 , D

(1)
0 , Y

(1)
11 , Y

(1)
10 , Y

(1)
01 , Y

(1)
00 ).

(ii): [Block to treatment for R = 0] E[Y (1)|R = 0] = E[Y (1)
0 |R = 0].

(iii): Assumption 3 (ii) holds true.

Up to the argument in (17) for identification of µd
1 and µc

0, we can proceed in the same way
as the benchmark case. So it remains to identify µa

0 and µn
1 for identification of ATT and ATE.
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Now for the data with R = 0 (i.e., the last row of Table 5), Assumption 3b (i) and (ii) imply

µa
0 =

E[Y (1)
0 ]− (pcµc

0 + pnµn
0 + pdµd

0)

pa

=
E[Y (1)

0 |R = 0]− (pcµc
0 + pnµn

0 + pdµd
1)

pa
.

Also as in the benchmark case, Assumption 3b (iii) guarantees identification of µn
1 as µn

1 =

µn
0 + µa

1 − µa
0. Combining these results, we obtain the following identification results.

Theorem 7. Consider the setup of this subsection.

(i): Under Assumptions 1 and 2b, ATE(c) is identified.
(ii): Under Assumptions 1, 2b and 3b (i)-(ii), ATT is identified.
(iii): Under Assumptions 1, 2b and 3b, ATE is identified.

When we additionally observe the treatment D(0) for the group with R = 0, our identification
analysis can be modified by splitting the last row of Table 5 into two rows depending on the
value of D(0).

4. Empirical illustrations

4.1. Case with monotonicity. This section illustrates the proposed identification and esti-
mation methods by revisiting three important empirical studies in the literature. Thornton
(2008), Gerber et al. (2009), and Beam (2016) attempted to understand the following causal
effects through randomized comparison experiments: the effect of knowing one’s HIV status
on promoting contraceptive behavior, the effect of subscribing to a particular newspaper on
political attitudes, and the effect of participating in a job fair on increasing one’s intention
to work abroad, respectively. In these studies, the treatments are difficult to enforce on the
subjects, so they adopted encouragement designs with incentives. We revisited their data using
the methods in this paper. In Thornton (2008) data, we adopted the indicator whether each of
subjects purchased condoms at the time of the follow-up survey and the indicator whether each
of subjects reported having sex between the time of the baseline and the time of the follow-up
survey as outcomes of interest. And the indicator whether each of subjects reported using a
condom during the last year at the baseline and the indicator whether each of subjects reported
having sex in the past year were used as auxiliary observation, respectively. In Gerber et al.
(2009) data, we adopt the indicator whether each of subjects voted in the 2005 election after
the experiment and the indicator whether each of subjects preferred the Democratic Party. The
indicator whether each of subjects voted in the 2024 election before the experiment and the
indicator whether each of subjects preferred the Democratic Party at the baseline were used
as the auxiliary outcomes, respectively. In Beam (2016) data, the indicator whether each of
subjects planned to work abroad at follow-up and the indicator whether each of subjects held
a passport. The same questions from the baseline survey were used as the auxiliary outcomes.
For all analyses, subjects who had completed follow-up surveys and for whom all variables used
in each of the analysis were available were included. And for analysis of Thornton (2008) data
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with purchasing condom as a outcome, we included subjects who reported on the baseline survey
that they had sex in the past 12 months. Standard errors and p-values were calculated based
on 200 bootstraps in all analyses. Estimated results from this study are shown in Table 6.

In Thornton (2008) data, higher negative effects were estimated for ATT and ATE than for
LATE, with ATE being significant. This result indicates that in the entire population, knowledge
of infection status may inhibit contraceptive behavior. The data include a much larger number of
HIV-negative subjects than among HIV-positive subjects. Since the data included more negative
subjects than HIV-positive subjects, the results may suggest that knowledge of infection status
may inhibit contraceptive behavior. In Gerber et al. (2009) data, higher positive effects were
estimated for ATT and ATE than for LATE, with ATE being significant. This result suggests
that newspaper subscriptions may be more effective for noncompliers than for compliers. In
Beam (2016) data, non-significant results were estimated for LATE, ATT, and ATE, suggesting
that there may be no effect either for compliers or for the entire population. Our method
also allows us to estimate the average treatment effect for each principal stratum. The results
are presented in Table 7. In the analysis of Purchase Condom in Thornton (2008), where
ATE is estimated that yields a different perspective from LATE, non-compliers have a larger
negative treatment effect than compliers. Similarly, in the analysis of Voted 2005 in Gerber et al.
(2009), non-compliers have higher treatment effects than compliers. It is not easy to look at the
background context in which these differences arise, but inferring the profile of each stratum
(Marbach and Hangartner, 2020) would provide more insight.

As described above, the analysis conducted in this study produced results that suggest dif-
ferent implications from the average treatment effects of compliers for some of the outcomes.
This result is due to differences between compliers and noncompliers, and it is important to
conduct an analysis that does not assume homogeneity between compliers and noncompliers,
as our method does. On the other hand, since the parallel trend and homogeneity assumptions
between always-takers and never-takers used in our analysis are not testable, it is important to
discuss further whether violations of these assumptions occur based on domain knowledge.

Thornton (2008) Gerber et al. (2009) Beam (2016)
Purchase Having sex Voted in 2005 Democratic Plan to abroad Passport

ITT -0.010 -0.003 0.004 -0.014 -0.020 -0.004
(0.022) (0.032) (0.028) (0.018) (0.022) (0.019)

LATE -0.024 -0.007 0.015 -0.057 -0.061 -0.012
(0.053) (0.073) (0.116) (0.077) (0.067) (0.056)

ATT -0.074 0.000 0.067 -0.019 -0.068 0.000
(0.038) (0.040) (0.058) (0.038) (0.048) (0.038)

ATE -0.084 0.001 0.096 0.003 -0.078 0.016
(0.041) (0.040) (0.047) (0.040) (0.051) (0.029)

n 1,006 1,301 1,079 1,081 865 865

Table 6. Estimates and bootstrap standard error
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Outcome Parameters Complier Always-taker Never-taker

Thornton (2008)

Purchase Condom

pu 0.425 0.390 0.185
µu
1 0.092 0.084 -0.039

µu
0 0.116 0.212 0.088

µu
1 − µu

0 -0.024 -0.127 -0.127

Having Sex

pu 0.436 0.380 0.185
µu
1 0.721 0.660 0.628

µu
0 0.728 0.653 0.621

µu
1 − µu

0 -0.007 0.007 0.007

Gerber et al. (2009)

Voted in 2005

pu 0.243 0.225 0.532
µu
1 0.788 0.775 0.806

µu
0 0.773 0.653 0.685

µu
1 − µu

0 0.016 0.122 0.122

Prefers Democratic

pu 0.243 0.225 0.533
µu
1 0.033 0.128 0.131

µu
0 0.090 0.105 0.108

µu
1 − µu

0 -0.057 0.023 0.023

Beam (2016)

Plan to abroad

pu 0.337 0.136 0.527
µu
1 0.084 0.275 -0.025

µu
0 0.144 0.363 0.062

µu
1 − µu

0 -0.061 -0.088 -0.088

Passport

pu 0.337 0.136 0.527
µu
1 0.038 0.175 0.086

µu
0 0.050 0.144 0.055

µu
1 − µu

0 -0.012 0.031 0.031

Table 7. Probabilities and effects

4.2. Case without monotonicity. Alcohol beverage manufacturers regularly introduce new
products to the market in response to changing consumer needs, and often one manufacturer
will handle multiple products within the same category (beer, RTD, etc.). Therefore, they
are interested in whether the new products they have introduced have succeeded in increasing
the total sales of their own category without causing cannibalization of their own products.
Because the structure of such markets tends to change, it is difficult to judge success or failure
by comparing a company’s total category sales before and after a product launch. Even if
we tried to randomly assign purchases of new products, it would be practically difficult to
assign purchases or non-purchases. Therefore, it is reasonable to conduct an experiment to
encourage purchases with coupons and to conduct an analysis that allows for non-compliance.
The response rate to coupons (the likelihood of purchasing the target product when given a
coupon) is generally not high, so the percentage of compliers is not large and it is difficult to
say that they are representative of the population. We will therefore attempt to estimate ATE
using the proposed method. This kind of randomized encouragement design (Imbens and Rubin,
2015) and the estimation proposed here allows for the existence of consumers who are averse to
intentional sales promotions by firms and does not assume monotony. We will use data from
a randomized encouragement design experiment conducted by a Japanese alcoholic beverage
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manufacturer on a new product in the beer category. The experiment was conducted in May
2023 at stores of a major retail chain. There are 133,733 subjects in the experiment, 80,000
in the treatment group, and 53,733 in the control group. Let Z(1) be the coupon assignment
and D(1) be whether or not each subject purchased the new product in the week following the
coupon assignment. There are four outcomes of interest Y (1): the amount spent by each subject
on products in the beer category from this manufacturer; the amount spent by each subject
on products in the beer and RTD category from this manufacturer; the amount spent by each
subject on products excluding the new product in the beer category from this manufacturer;
and the amount spent by each subject on products excluding the new product in the beer and
RTD category from this manufacturer. These outcomes are measured over a one-week period
following coupon assignment. For each Y (1), let Y (∗) be measured for one week in March 2023,
before the new product is released. Let D(0) be whether or not each subject purchased the new
product during the week in May before the experiment. During this period, no coupons for this
new product were distributed. We estimate LATE, ATT, and ATE with the assumptions of
unstable.

The results of the estimation are presented in Table 8. In all estimates (LATE, ATT, ATE),
the total sales of the category including the new product increased significantly, and the change
in the total sales of the category excluding the new product was not significant. These results
indicate that there was no cannibalization within the category and that the entry of the new
product increased the total sales of the category. Comparing the estimated values for LATE,
ATT, and ATE shows that LATE underestimates increased sales. In addition, it was estimated
as (pa, pc, pd, pn) = (0.001, 0.015, 0.013, 0.97). The large proportion of never-takers indicates that
there are few purchasers of new products, whether consumers have coupons or not. Since getting
consumers to buy this new product could lead to an increase in total sales for the category, it
would probably be worth spending more on sales promotion to get more new purchasers.

Including the new product Excluding the new product
Beer category Beer and RTD category Beer category Beer and RTD category

LATE 537.8 570.1 -10.9 21.5
(145.1) (259.0) (161.1) (243.5)

ATT 550.3 578.3 -21.6 6.3
(133.3) (242.6) (150.2) (226.6)

ATE 713.4 681.9 -165.2 -196.7
(197.4) (252.2) (133.0) (215.2)

Note: Significant estimates are denoted in boldface type. Parentheses refer to standard deviations with
200 bootstraps. The unit is yen.

Table 8. Estimates and bootstrap standard deviations of new product effects
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Appendix A. Mathematical appendix

A.1. Proof of Theorem 1. First, note that µa
1, µ

n
0 , p

a, pn, pc, µc
1, µ

c
0 are identified under As-

sumptions Y (i), (ii), and (iv) as

µa
1 = E[Y (1)

1 |D(1)
1 = 1, D

(1)
0 = 1] = E[Y (1)

1 |D(1)
0 = 1] = E[Y (1)|Z(1) = 0, D(1) = 1],

µn
0 = E[Y (1)

0 |D(1)
1 = 0, D

(1)
0 = 0] = E[Y (1)

0 |D(1)
1 = 0] = E[Y (1)|Z(1) = 1, D(1) = 0],

pa = P(D(1)
1 = 1, D

(1)
0 = 1) = P(D(1)

0 = 1) = P(D(1) = 1|Z(1) = 0),

pn = P(D(1)
1 = 0, D

(1)
0 = 0) = P(D(1)

1 = 0) = P(D(1) = 0|Z(1) = 1),

pc = P(D(1)
1 = 1)− pa = P(D(1) = 1|Z(1) = 1)− pa,

µc
1 =

(pc + pa)E[Y (1)
1 |D(1)

1 = 1]− paµa
1

pc
=

(pc + pa)E[Y (1)|D(1) = 1, Z(1) = 1]− paµa
1

pc
,

µc
0 =

(pc + pn)E[Y (1)
0 |D(1)

0 = 0]− pnµn
0

pc
=

(pc + pn)E[Y (1)|D(1) = 0, Z(1) = 0]− pnµn
0

pc
.

Each of the first equality of the first four equations uses Assumption Y (ii) and the second
equality of all equations uses Assumptions Y (i) and (iv). Thus, ATE for compliers is identified
as

ATE(c) = µc
1 − µc

0.

Second, µa
0 is identified with Assumption Y (v) in addition to Y (i), (ii), (iii), and (iv) as follows:

µa
1 − µa

0 = E[Y (1)
1 |U = a]− E[Y (1)

0 |U = a]

= E[Y (1)
1 |U = a]− E[Y (1)

0 |U = a]− E[Y (∗)|U = a] + E[Y (∗)|U = a]

= {E[Y (1)
1 |U = a]− E[Y (∗)|U = a]} − {E[Y (1)

0 |U = a]− E[Y (∗)|U = a]}

= E[Y (1)
1 − Y (∗)|U = a]− E[Y (1)

0 − Y (∗)|U = a]

= E[Y (1)
1 − Y (∗)|U = a]− E[Y (1)

0 − Y (∗)|U = n]

= E[Y (1)
1 |U = a]− E[Y (∗)|U = a]− E[Y (1)

0 |U = n] + E[Y (∗)|U = n]

= µa
1 − E[Y (∗)|U = a]− µn

0 + E[Y (∗)|U = n]

= µa
1 − µa

pre − µn
0 + µn

pre,

where

µa
pre = E[Y (0)|D(1)

1 = 1, D
(1)
0 = 1] = E[Y (0)|D(1)

0 = 1] = E[Y (0)|Z(1) = 0, D(1) = 1],

µn
pre = E[Y (0)|D(1)

1 = 0, D
(1)
0 = 0] = E[Y (0)|D(1)

1 = 0] = E[Y (0)|Z(1) = 1, D(1) = 0].

In the equation of µa
1−µa

0, the second equality uses Assumption Y (iii) and the fifth equality uses
Assumption Y (v). In the equations of µa

pre and µn
pre, each of the first equality uses Assumption

Y (ii) and the second equality uses Assumptions Y (i) and (iv). Also, ATT is identified as

ATT =
pc(µc

1 − µc
0)− pa(µa

1 − µa
0)

pc + pa
.

25



Finally µn
1 is identified with Assumption Y (vi) as

µn
1 = µn

0 + µa
1 − µa

0

Therefore, ATE is identified as

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0).

A.2. Proof of Theorem 4. First, note that µc
1, µ

a
1, µ

n
0 , µ

d
0, p

c, pa, pn, pd are identified under
Assumptions 1, 2 (i) and 2 (ii) as

µc
1 = E[Y (1)

1 |D(1)
1 = 1, D

(1)
0 = 0] = E[Y (1)

1 |D(1)
1 = 1, D(0) = 0] = E[Y (1)|Z(1) = 1, D(1) = 1, D(0) = 0],

µa
1 = E[Y (1)

1 |D(1)
1 = 1, D

(1)
0 = 1] = E[Y (1)

1 |D(1)
1 = 1, D(0) = 1] = E[Y (1)|Z(1) = 1, D(1) = 1, D(0) = 1],

µn
0 = E[Y (1)

0 |D(1)
1 = 0, D

(1)
0 = 0] = E[Y (1)

0 |D(1)
1 = 0, D(0) = 0] = E[Y (1)|Z(1) = 1, D(1) = 0, D(0) = 0],

µd
0 = E[Y (1)

0 |D(1)
1 = 0, D

(1)
0 = 1] = E[Y (1)

0 |D(1)
1 = 0, D(0) = 1] = E[Y (1)|Z(1) = 1, D(1) = 0, D(0) = 1],

pc = P(D(1)
1 = 1, D

(1)
0 = 0) = P(D(1)

1 = 1, D(0) = 0) = P(D(1) = 1, D(0) = 0|Z(1) = 1),

pa = P(D(1)
1 = 1, D

(1)
0 = 1) = P(D(1)

1 = 1, D(0) = 1) = P(D(1) = 1, D(0) = 1|Z(1) = 1),

pn = P(D(1)
1 = 0, D

(1)
0 = 0) = P(D(1)

1 = 0, D(0) = 0) = P(D(1) = 0, D(0) = 0|Z(1) = 1),

pd = P(D(1)
1 = 0, D

(1)
0 = 1) = P(D(1)

1 = 0, D(0) = 1) = P(D(1) = 0, D(0) = 1|Z(1) = 1).

Each of the first equality uses Assumption 2 (ii) and the second equality uses Assumptions 1
and 2 (i). Second, µd

1, µ
c
0 are also identified with Assumption 1, 2 (i) and (ii) as

µd
1 =

(pa + pd)E[Y (1)
1 |D(1)

0 = 1]− paµa
1

pd

=
(pa + pd)E[Y (1)|Z(1) = 0, D(1) = 1]− paµa

1

pd

=
(pa + pd)E[Y (1)|Z(1) = 0, D(1) = 1, D(0) = 1]− paµa

1

pd
,

µc
0 =

(pc + pn)E[Y (1)
0 |D(1)

0 = 0]− pnµn
0

pc

=
(pc + pn)E[Y (1)|Z(1) = 0, D(1) = 0]− pnµn

0

pc

=
(pc + pn)E[Y (1)|Z(1) = 0, D(1) = 0, D(0) = 0]− pnµn

0

pc
.

Each of the second equality uses Assumptions 1 and 2 (i) and the second equality uses Assump-
tion 2 (ii). ATE for compliers is identified as

ATE(c) = µc
1 − µc

0.
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Second, µa
0 is identified with Assumption 3 (i) in addition to 1, 2 (i) and (ii) as

µa
1 − µa

0 = E[Y (1)
1 |U = a]− E[Y (1)

0 |U = a]

= E[Y (1)
1 |U = a]− E[Y (1)

0 |U = a]− E[Y (∗)|U = a] + E[Y (∗)|U = a]

= {E[Y (1)
1 |U = a]− E[Y (∗)|U = a]} − {E[Y (1)

0 |U = a]− E[Y (∗)|U = a]}

= E[Y (1)
1 − Y (∗)|U = a]− E[Y (1)

0 − Y (∗)|U = a]

= E[Y (1)
1 − Y (∗)|U = a]− E[Y (1)

0 − Y (∗)|U = n]

= E[Y (1)
1 |U = a]− E[Y (∗)|U = a]− E[Y (1)

0 |U = n] + E[Y (∗)|U = n]

= µa
1 − E[Y (∗)|U = a]− µn

0 + E[Y (∗)|U = n]

= µa
1 − µa

pre − µn
0 + µn

pre,

where

µa
pre = E[Y (∗)|D(1)

1 = 1, D
(1)
0 = 1] = E[Y (∗)|D(1)

1 = 1, D(0) = 1] = E[Y (∗)|Z(1) = 1, D(1) = 1, D(0) = 1],

µn
pre = E[Y (∗)|D(1)

1 = 0, D
(1)
0 = 0] = E[Y (∗)|D(1)

1 = 0, D(0) = 0] = E[Y (∗)|Z(1) = 1, D(1) = 0, D(0) = 0].

In the equation of µa
1−µa

0, the second equality uses Assumption B (iii) and the fifth equality uses
Assumption 3 (i). In the equations of µa

pre and µn
pre, each of the first equality uses Assumption

2 (ii) and the second equality uses Assumptions 1 and 2 (i). ATT is identified as

ATT =
pc(µc

1 − µc
0)− pa(µa

1 − µa
0)

pc + pa
.

Finally µn
1 is identified with Assumption 3 (ii) as

µn
1 = µn

0 + µa
1 − µa

0.

Therefore, ATE is identified as

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0).

A.3. Proof of Theorem 6. We provide a proof of identification of µa
0, µn

1 , ATT, and ATE.
Other parameters (i.e., µc

1, µ
c
0, µ

a
1, µ

n
0 , µ

d
1, µ

d
0, p

c, pa, pn, pd, and ATE(c)) are identified in the same
way as the proof of Theorem 4.

Proof under Assumptions 3a (i) and 3 (ii). Under Assumption 3a (i) in addition to 1, 2a (i),
and 2a (ii), µa

0 and ATT are identified as

µa
1 − µa

0 = E[Y (1)
1 |U = a]− E[Y (1)

0 |U = a] + E[Y (0)
1 |U = a]− E[Y (0)

1 |U = a]

= E[Y (1)
1 − Y

(0)
1 |U = a]− E[Y (1)

0 − Y
(0)
1 |U = a]

= E[Y (1)
1 − Y

(0)
1 |U = a]− E[Y (1)

0 − Y
(0)
1 |U = d]

= µa
1 − E[Y (0)

1 |U = a]− µd
0 + E[Y (0)

1 |U = d],
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where

E[Y (0)
1 |U = a] = E[Y (0)|Z(1) = 1, D(1) = 1, D(0) = 1],

E[Y (0)
1 |U = d] = E[Y (0)|Z(1) = 1, D(1) = 0, D(0) = 1].

In the equation of µa
1 − µa

0, the third equality uses assumption 3a(i). Each equality in the
equations of E[Y (0)

1 |U = a] and E[Y (0)
1 |U = d] uses Assumptions 1, 2a (i), and 2a (ii). ATT is

identified as
ATT =

pc(µc
1 − µc

0)− pa(µa
1 − µa

0)

pc + pa
.

Next, µn
1 and ATE are identified under Assumption 3 (ii) as

µn
1 = µn

0 + µa
1 − µa

0.

Therefore, ATE is identified as

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0).

Proof under Assumptions 3a (ii) and 3 (ii). Under Assumption 3a (ii) instead of 3a (i), µa
0,

ATT, µn
1 , and ATE are also identified as

µn
1 − µn

0 = E[Y (1)
1 |U = n]− E[Y (1)

0 |U = n] + E[Y (0)
0 |U = n]− E[Y (0)

0 |U = n]

= E[Y (1)
1 − Y

(0)
0 |U = n]− E[Y (1)

0 − Y
(0)
0 |U = n]

= E[Y (1)
1 − Y

(0)
0 |U = c]− E[Y (1)

0 − Y
(0)
0 |U = n]

= µc
1 − E[Y (0)

0 |U = c]− µn
0 + E[Y (0)

0 |U = n],

where

E[Y (0)
0 |U = c] = E[Y (0)|Z(1) = 1, D(1) = 1, D(0) = 0],

E[Y (0)
0 |U = n] = E[Y (0)|Z(1) = 1, D(1) = 0, D(0) = 0].

In the equation of µn
1 − µn

0 , the third equality uses Assumption 3a (ii). Each equality in the
equations of E[Y (0)

0 |U = c] and E[Y (0)
0 |U = n] uses Assumptions 1, 2a (i), and 2a (ii). ATT is

not yet identified. Next, µa
0 is identified under Assumption 3 (ii) as

µa
0 = µa

1 − µn
1 + µn

0 .

Then, ATT and ATE are identified as

ATT =
pc(µc

1 − µc
0)− pa(µa

1 − µa
0)

pc + pa
,

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0).

Proof under Assumptions 3a (i) and 3a (ii). As mentioned above, under Assumptions 1, 2 (i),
2 (ii), and 3a (i), µa

0 and ATT are identified as

µa
0 = µa

1 − E[Y (0)
1 |U = a]− µd

0 + E[Y (0)
1 |U = d],

ATT =
pc(µc

1 − µc
0)− pa(µa

1 − µa
0)

pc + pa
.
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Next, µn
1 and ATE are identified under Assumption 3a (ii) as

µn
1 = µn

0 + µa
1 − µa

0,

ATE = pc(µc
1 − µc

0) + pa(µa
1 − µa

0) + pn(µn
1 − µn

0 ) + pd(µd
1 − µd

0).

Appendix B. Simulation

B.1. Data generating process. The data generation process in this simulation study is as
follows. For unit i, covariates are generated as Xi1, Xi2 ∼iid N(1, 0.5), Xi3, Xi4 ∼iid N(−1, 0.5),
Wi1,Wi2,Wi3 ∼iid N(0, 0.3), and Vi1, Vi2, Vi3, Vi4 ∼iid N(0, 0.3). Add intercepts and put them
together into vectors Xi = (1, Xi1, . . . , Xi4)

′, Wi = (Wi1, . . . ,Wi4)
′, and Vi = (Vi1, . . . , Vi4)

′. In
the setup with monotonicity, the principal strata are generated by the logistic model:

logit(P(Ui = u|Wi)) =
exp(ϕ′

uWi)∑
v exp(ϕ′

vWi)
,

where u ∈ {c, a, n}, ϕc = (0.2, 0.1, 0.1,−0.1)′, ϕa = (0.15,−0.2, 0.2,−0.1)′, and ϕn = (0.15, 0.2,−0.2,−0.1)′.
In the setup without monotonicity, D(0)

1 and D
(0)
0 are generated by the following logistic models:

logit(P(D(0)
i1 = 1|Wi1,Wi2)) =

exp(ζ ′
1(1,Wi1,Wi2)

′)

1 + exp(ζ ′
1(1,Wi1,Wi2)′)

,

logit(P(D(0)
i0 = 1|Wi1,Wi3)) =

exp(ζ ′0(1,Wi1,Wi3))

1 + exp(ζ ′0(1,Wi1,Wi3))
,

where ζ1 = (0.2, 0.3,−0.1)′ and ζ0 = (−0.2, 0.3,−0.1)′. In the setup without monotonicity, the
treatment status before and after assignment is allowed to be different so D

(1)
i1 and D

(1)
i0 are

generated as
D

(1)
i1 = D

(0)
i1 , D

(1)
i0 = D

(0)
i0 .

In the all setups, principal stratum is generated as

Ui =


a if (D

(1)
i1 , D

(1)
i0 ) = (1, 1)

c if (D
(1)
i1 , D

(1)
i0 ) = (1, 0)

d if (D
(1)
i1 , D

(1)
i0 ) = (0, 1)

n if (D
(1)
i1 , D

(1)
i0 ) = (0, 0)

.

The outcomes following the normal distribution are generated as

Y
(1)

iD
(1)
i

|Xi,Vi,Wi2, D
(1)
i ∼ N(α+ γ′X,Ui

Xi + γ′V Vi + γWWi2 + βUi , σ
2),

where α = 2, γX,a = (1, 1,−1, 1)′, γX,c = (3, 1,−1, 1)′, γX,n = (−2, 1,−1, 1)′, γX,d = (−1, 1,−1, 1)′,
γV = (2,−1, 2,−2)′, γW = 1, βa = 1, βc = 2, βn = 1, βd = 3, and σ2 = 0.3. The outcomes
following the Bernoulli distribution are generated as

Y
(1)

iD
(1)
i

|Xi,Vi,Wi2, D
(1)
i ∼ Ber

(
exp(α+ γ′X,Ui

Xi + γ′V Vi + γWWi2 + βUi)

1 + exp(α+ γ′X,Ui
Xi + γ′V Vi + γWWi2 + βUi)

)
,

where γX,a = (1,−1, 1, 0.5)′, γX,c = (3,−1, 1.5, 1)′, γX,n = (−2,−1, 0.5, 0.5)′, γX,d = (−1,−1, 1, 1)′,
and the values of the other parameters are the same as those used to generate from the normal
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distribution. The pre-assignment outcome Y (∗) or Y pre is generated as

Y
(∗)
i = Y

(1)
0i −∆i, ∆i ∼ N(δUi , 0.5),

for the normal distribution outcome with δc = 3, δa = 1, δn = 1, and δd = 2, and also

Y
(∗)
i = Y

(1)
0i −∆i, ∆i ∼ Ber(δUi),

for the Bernoulli distribution outcome with δc = 0.3, δa = 0.2, δn = 0.2, and δd = 0.1.
In the case of the random assignment, the assignment variable Z(1) is randomly generated so

that half of the values are 1 and the other half are 0. In the cause of the conditional ignorability,
Z(1) is generated based on the following model:

logit(P(Z(1)
i = 1|Xi)) =

exp(κ′Xi)

1 + exp(κ′Xi)
,

where κ = (0.5, 1, 0.5, 0.5, 1)′. In the case of the random assignment, none of the covariates are
observed, and in the case of the conditional ignorability, only X of the covariates is observed.

B.2. Simulation result. Using numerical simulations, we evaluate the properties of estimators
based on finite samples in two setups: monotonicity and stable. For each setup, we evaluated the
following eight scenarios: two sample sizes (1000 and 10000), two distributions of the outcome
variable (normal and Bernoulli), and two assignment assumptions (random assignment and
conditional ignorability). The data generation process in the last subsection is based on the
assumption that all assumptions hold. In the conditional ignorability scenario, all models are
correctly specified. We evaluate the average estimates, the average biases and coverage rates
over 1000 repeated drawings from the data generating process. To calculate standard errors, we
conduct 200 bootstraps. Table 9 shows the results for the normal distribution scenarios, and
Table 10 shows the results for the Bernoulli distribution scenarios. In both tables, the results
of the LATE using the typical wald type estimator are shown in the first row for comparison
with the proposed method (only for the random assignment scenario), and the results of the
estimation using the proposed method are shown in the second row and subsequent rows. In our
method, the parameters µu

1 , µu
0 , and pu are estimated for each principal strata, so the tables show

the results of the estimation of each parameter. Since there is no difference in the evaluation of
the results between the normal distribution and the Bernoulli distribution scenarios, the results
of the normal distribution will be primarily evaluated below.

In all scenarios, for each estimand and each parameter, the proposed method provides esti-
mates that are sufficiently close to the true values. The coverage rates are around 0.95. It is
important for decision-makers to be able to obtain appropriate estimation results not only for
ATE(c), ATT and ATE, but also for µu

1 , µu
0 , and pu for each principal strata, since parameters

are useful for determining the content and target of interventions. The standard deviations for
the n = 1000 scenarios was about three times larger than for the n = 10000 scenarios, but
even with n = 1000 it is not enough to have a significant impact on the interpretation of the
causal effect. (For example, in the scenarios of normal distribution and random assignment in
the monotonicity setup, ATE is 1.34, with a standard deviation of 0.21 for n = 1000 and a
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standard deviation of 0.07 for n = 10000). In addition, there is no significant difference between
the scenarios of random assignment and the scenarios of conditional ignorability (For example,
in the scenarios of normal distribution and n = 1000 in the stable setup, ATE is 1.70, with a
standard deviation of 0.20 for the scenario of random assignment and a standard deviation of
0.23 for the scenario of conditional ignorability). In the monotonicity setup, LATE and ATE(c)
are the same. On the other hand, in the stable setting, which do not assume monotonicity,
LATE will naturally be a result that deviates from the true value (For example, in the scenarios
of normal distribution and n = 1000 (the true value is 2.00), the estimated value is -0.52 and the
standard deviation is 58.36 for the stable setup). The proposed method can obtain reasonable
estimation results even in situations where the bias and variance of LATE are large.

31



Random assignment Conditional ignorability

n = 1000 n = 10000 n = 1000 n = 10000

θ θ̂ sd cover θ θ̂ sd cover θ θ̂ sd cover θ θ̂ sd cover

With monotonicity

LATE 2.00 1.99 0.59 0.94 2.00 2.00 0.18 0.95 2.00 - - - 2.00 - - -

ATE(c) 2.00 1.99 0.59 0.94 2.00 2.00 0.18 0.95 2.00 1.98 0.70 0.95 2.00 2.00 0.21 0.94
ATT 1.51 1.51 0.30 0.95 1.51 1.51 0.10 0.95 1.51 1.51 0.35 0.94 1.51 1.51 0.11 0.94
ATE 1.34 1.34 0.21 0.95 1.35 1.34 0.07 0.96 1.34 1.35 0.24 0.94 1.35 1.34 0.08 0.94
µc
1 − µc

0 2.00 1.99 0.59 0.94 2.00 2.00 0.18 0.95 2.00 1.98 0.70 0.95 2.00 2.00 0.21 0.94
µa
1 − µa

0 1.00 1.00 0.06 0.94 1.00 1.00 0.02 0.94 1.00 1.01 0.08 0.93 1.00 1.00 0.02 0.94
µn
1 − µn

0 1.00 1.00 0.06 0.94 1.00 1.00 0.02 0.94 1.00 1.01 0.08 0.93 1.00 1.00 0.02 0.94
µc
1 8.02 8.03 0.41 0.94 8.00 8.02 0.13 0.93 8.02 8.07 0.47 0.94 8.00 8.02 0.14 0.93

µa
1 5.01 5.04 0.17 0.93 5.02 5.04 0.05 0.92 5.01 5.08 0.24 0.94 5.02 5.05 0.07 0.92

µn
1 1.95 1.95 0.19 0.95 1.94 1.94 0.06 0.95 1.95 1.95 0.17 0.93 1.94 1.94 0.05 0.95

µc
0 6.02 6.04 0.56 0.96 6.00 6.02 0.17 0.95 6.02 6.09 0.70 0.95 6.00 6.02 0.21 0.95

µa
0 4.01 4.04 0.17 0.93 4.02 4.04 0.06 0.93 4.01 4.07 0.22 0.93 4.02 4.04 0.07 0.92

µn
0 0.95 0.95 0.18 0.94 0.94 0.94 0.06 0.96 0.95 0.94 0.15 0.94 0.94 0.94 0.05 0.95

pc 0.34 0.34 0.03 0.94 0.35 0.34 0.01 0.94 0.34 0.34 0.03 0.95 0.35 0.34 0.01 0.93
pa 0.33 0.33 0.02 0.94 0.33 0.33 0.01 0.95 0.33 0.33 0.03 0.93 0.33 0.33 0.01 0.94
pn 0.33 0.33 0.02 0.94 0.33 0.33 0.01 0.94 0.33 0.33 0.02 0.95 0.33 0.33 0.01 0.95

Without monotonicity

LATE 2.00 -0.52 58.36 0.86 2.00 -0.06 0.70 0.09 2.00 - - - 2.00 - - -

ATE(c) 2.00 1.98 0.55 0.95 2.00 2.00 0.17 0.95 2.00 1.96 0.64 0.94 2.00 1.99 0.20 0.95
ATT 1.55 1.54 0.31 0.95 1.55 1.55 0.10 0.95 1.55 1.53 0.36 0.94 1.55 1.54 0.11 0.95
ATE 1.70 1.70 0.20 0.95 1.71 1.71 0.06 0.95 1.70 1.70 0.23 0.94 1.71 1.70 0.07 0.95
µc
1 − µc

0 2.00 1.98 0.55 0.95 2.00 2.00 0.17 0.95 2.00 1.96 0.64 0.94 2.00 1.99 0.20 0.95
µa
1 − µa

0 1.00 1.00 0.06 0.94 1.00 1.00 0.02 0.94 1.00 1.00 0.07 0.95 1.00 1.00 0.02 0.94
µn
1 − µn

0 1.00 1.00 0.06 0.94 1.00 1.00 0.02 0.94 1.00 1.00 0.07 0.95 1.00 1.00 0.02 0.94
µd
1 − µd

0 3.00 2.98 0.46 0.93 3.00 3.00 0.14 0.94 3.00 3.05 0.55 0.93 3.00 3.00 0.16 0.94
µc
1 7.98 7.98 0.21 0.94 8.00 7.99 0.07 0.94 7.98 8.01 0.19 0.94 8.00 7.99 0.06 0.95

µa
1 4.99 4.99 0.19 0.94 4.99 4.99 0.06 0.96 4.99 5.01 0.19 0.94 4.99 4.99 0.06 0.94

µn
1 2.01 2.01 0.22 0.95 2.01 2.01 0.07 0.94 2.01 2.02 0.18 0.95 2.01 2.01 0.06 0.95

µd
1 5.04 5.02 0.41 0.95 4.99 5.02 0.13 0.94 5.04 5.07 0.52 0.93 4.99 5.02 0.15 0.94

µc
0 5.98 5.99 0.51 0.95 6.00 5.99 0.16 0.95 5.98 6.05 0.62 0.95 6.00 6.00 0.19 0.95

µa
0 3.99 3.98 0.20 0.95 3.99 3.99 0.06 0.96 3.99 4.00 0.18 0.94 3.99 3.99 0.06 0.94

µn
0 1.01 1.01 0.21 0.95 1.01 1.01 0.07 0.94 1.01 1.02 0.17 0.95 1.01 1.01 0.05 0.94

µd
0 2.04 2.03 0.21 0.96 1.99 2.01 0.07 0.93 2.04 2.02 0.19 0.95 1.99 2.01 0.06 0.93

pc 0.30 0.30 0.02 0.95 0.30 0.30 0.01 0.94 0.30 0.30 0.02 0.95 0.30 0.30 0.01 0.95
pa 0.25 0.25 0.02 0.95 0.25 0.25 0.01 0.92 0.25 0.25 0.02 0.95 0.25 0.25 0.01 0.93
pn 0.25 0.25 0.02 0.94 0.25 0.25 0.01 0.94 0.25 0.25 0.02 0.95 0.25 0.25 0.01 0.94
pd 0.20 0.20 0.02 0.95 0.20 0.20 0.01 0.96 0.20 0.20 0.02 0.94 0.20 0.20 0.01 0.95

Note: The values in the θ column are the true values calculated from 100, 000 samples from the data generation
process. Columns θ̂, sd, and cover contain the average estimates, the average biases and coverage rates over

1000 repeated drawings from the data generating process, respectively. ATE(c) is the same definition as µc
1 − µc

0.
LATE is calculated by E[Y (1)|Z(1)=1]−E[Y (1)|Z(1)=0]

E[D(1)|Z(1)=1]−E[D(1)|Z(1)=0]
.

Table 9. Normal distribution case
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Random assignment Conditional ignorability

n = 1000 n = 10000 n = 1000 n = 10000

θ θ̂ sd cover θ θ̂ sd cover θ θ̂ sd cover θ θ̂ sd cover

With monotonicity

LATE 0.18 0.18 0.09 0.94 0.18 0.18 0.03 0.96 0.18 - - - 0.18 - - -

ATE(c) 0.18 0.18 0.09 0.94 0.18 0.18 0.03 0.96 0.18 0.17 0.11 0.95 0.18 0.18 0.03 0.95
ATT 0.16 0.16 0.05 0.94 0.16 0.16 0.02 0.95 0.16 0.15 0.06 0.93 0.16 0.16 0.02 0.95
ATE 0.15 0.15 0.05 0.94 0.15 0.15 0.01 0.94 0.15 0.15 0.05 0.94 0.15 0.15 0.02 0.94
µc
1 − µc

0 0.18 0.18 0.09 0.94 0.18 0.18 0.03 0.96 0.18 0.17 0.11 0.95 0.18 0.18 0.03 0.95
µa
1 − µa

0 0.14 0.14 0.06 0.95 0.14 0.14 0.02 0.95 0.14 0.13 0.07 0.95 0.14 0.14 0.02 0.95
µn
1 − µn

0 0.12 0.14 0.06 0.95 0.12 0.14 0.02 0.86 0.12 0.13 0.07 0.94 0.12 0.14 0.02 0.89
µc
1 0.87 0.87 0.06 0.95 0.87 0.87 0.02 0.94 0.87 0.87 0.07 0.94 0.87 0.87 0.02 0.94

µa
1 0.72 0.72 0.04 0.93 0.71 0.72 0.01 0.95 0.72 0.72 0.05 0.94 0.71 0.72 0.01 0.94

µn
1 0.35 0.37 0.07 0.95 0.35 0.37 0.02 0.88 0.35 0.37 0.08 0.94 0.35 0.37 0.02 0.89

µc
0 0.68 0.69 0.07 0.95 0.68 0.68 0.02 0.94 0.68 0.70 0.09 0.94 0.68 0.69 0.03 0.96

µa
0 0.58 0.58 0.06 0.94 0.58 0.58 0.02 0.95 0.58 0.59 0.07 0.93 0.58 0.58 0.02 0.94

µn
0 0.23 0.23 0.03 0.95 0.23 0.23 0.01 0.94 0.23 0.23 0.03 0.94 0.23 0.23 0.01 0.94

pc 0.34 0.34 0.03 0.95 0.35 0.34 0.01 0.94 0.34 0.34 0.03 0.95 0.35 0.34 0.01 0.94
pa 0.33 0.33 0.02 0.94 0.33 0.33 0.01 0.91 0.33 0.33 0.03 0.93 0.33 0.33 0.01 0.93
pn 0.33 0.33 0.02 0.94 0.33 0.33 0.01 0.95 0.33 0.33 0.02 0.95 0.33 0.33 0.01 0.95

Without monotonicity

LATE 0.18 -0.39 9.10 0.73 0.18 -0.28 0.12 0.00 0.18 - - - 0.18 - - -

ATE(c) 0.18 0.18 0.07 0.94 0.18 0.18 0.02 0.93 0.18 0.18 0.09 0.95 0.18 0.18 0.03 0.93
ATT 0.16 0.16 0.05 0.94 0.16 0.16 0.02 0.93 0.16 0.16 0.06 0.95 0.16 0.16 0.02 0.94
ATE 0.20 0.21 0.04 0.93 0.20 0.21 0.01 0.92 0.20 0.21 0.05 0.94 0.20 0.21 0.01 0.94
µc
1 − µc

0 0.18 0.18 0.07 0.94 0.18 0.18 0.02 0.93 0.18 0.18 0.09 0.95 0.18 0.18 0.03 0.93
µa
1 − µa

0 0.14 0.14 0.07 0.94 0.14 0.14 0.02 0.95 0.14 0.14 0.07 0.95 0.14 0.14 0.02 0.95
µn
1 − µn

0 0.12 0.14 0.07 0.93 0.13 0.14 0.02 0.90 0.12 0.14 0.07 0.94 0.13 0.14 0.02 0.90
µd
1 − µd

0 0.42 0.41 0.10 0.94 0.41 0.41 0.03 0.96 0.42 0.42 0.11 0.95 0.41 0.41 0.03 0.96
µc
1 0.86 0.87 0.03 0.93 0.86 0.87 0.01 0.93 0.86 0.87 0.03 0.94 0.86 0.87 0.01 0.92

µa
1 0.71 0.71 0.04 0.93 0.71 0.71 0.01 0.94 0.71 0.71 0.04 0.94 0.71 0.71 0.01 0.94

µn
1 0.37 0.37 0.08 0.93 0.36 0.38 0.03 0.90 0.37 0.38 0.08 0.94 0.36 0.38 0.02 0.89

µd
1 0.65 0.65 0.09 0.94 0.64 0.64 0.03 0.95 0.65 0.65 0.11 0.95 0.64 0.64 0.03 0.95

µc
0 0.68 0.68 0.07 0.94 0.68 0.68 0.02 0.94 0.68 0.69 0.08 0.94 0.68 0.68 0.03 0.96

µa
0 0.57 0.57 0.07 0.94 0.57 0.57 0.02 0.95 0.57 0.57 0.07 0.94 0.57 0.57 0.02 0.95

µn
0 0.25 0.24 0.04 0.94 0.24 0.24 0.01 0.92 0.25 0.24 0.04 0.94 0.24 0.24 0.01 0.92

µd
0 0.24 0.23 0.04 0.95 0.24 0.23 0.01 0.94 0.24 0.24 0.04 0.95 0.24 0.23 0.01 0.95

pc 0.30 0.30 0.02 0.93 0.30 0.30 0.01 0.93 0.30 0.30 0.02 0.94 0.30 0.30 0.01 0.95
pa 0.25 0.25 0.02 0.94 0.25 0.25 0.01 0.94 0.25 0.25 0.02 0.95 0.25 0.25 0.01 0.95
pn 0.25 0.25 0.02 0.95 0.25 0.25 0.01 0.93 0.25 0.25 0.02 0.94 0.25 0.25 0.01 0.93
pd 0.20 0.20 0.02 0.95 0.20 0.20 0.01 0.95 0.20 0.20 0.02 0.95 0.20 0.20 0.01 0.94

Note: The values in the θ column are the true values calculated from 100, 000 samples from the data generation
process. Columns θ̂, sd, and cover contain the average estimates, the average biases and coverage rates over

1000 repeated drawings from the data generating process, respectively. ATE(c) is the same definition as µc
1 − µc

0.
LATE is calculated by E[Y (1)|Z(1)=1]−E[Y (1)|Z(1)=0]

E[D(1)|Z(1)=1]−E[D(1)|Z(1)=0]
.

Table 10. Bernoulli distribution case
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U Y (1) D(1) Z(1) Y (∗) D(0)

c or a Y
(1)
1 1 1 Y (∗) 0

c or a Y
(1)
1 1 1 Y (∗) 1

n or d Y
(1)
0 0 1 Y (∗) 0

n or d Y
(1)
0 0 1 Y (∗) 1

a or d Y
(1)
1 1 0 Y (∗) 0

a or d Y
(1)
1 1 0 Y (∗) 1

c or n Y
(1)
0 0 0 Y (∗) 0

c or n Y
(1)
0 0 0 Y (∗) 1

Table 11. Unstable case with auxiliary data

Appendix C. Extension: Unstable treatment status

In this subsection, we relax Assumption 2 (ii) on Case I in Section 3 (i.e., D
(1)
0 = D(0)).

Without this assumption, the relationships of the observables and principal strata variable are
summarized in Table 11. We call this case as unstable case.

Instead of Assumption 2 (ii), we impose the following assumptions.

Assumption 4.

(i): [Mean independence from pre-assignment status] It holds

E[Y (1)
d |U = u,D

(0)
0 = 1] = E[Y (1)

d |U = u,D
(0)
0 = 0] = E[Y (1)

d |U = u],

for each u ∈ {c, a, n, d} and d ∈ {0, 1} but if u = a then d = 1 and if u = n then d = 0.
If one of the equals is true, the rest are also true.

(ii): [Independence from opposite treatment status conditional on pre-assignment] It holds

P(D(1)
z = 1|D(0)

0 = d,D
(1)
1−z = 1) = P(D(1)

z = 1|D(0)
0 = d,D

(1)
1−z = 0) = P(D(1)

z = 1|D(0)
0 = d),

for each z ∈ {0, 1} and d ∈ {0, 1}. One of the equals guarantees the rest.
(iii): [Pre-assignment treatment status is relevant to main] It holds

P(D(1)
z = 1|D(0)

0 = 1) ̸= P(D(1)
z = 1|D(0)

0 = 0),

for each z ∈ {0, 1}.
(iv): [Mean independence for Y (∗)] It holds

E[Y (∗)|U = u,D
(0)
0 = 1] = E[Y (∗)|U = u,D

(0)
0 = 0] = E[Y (∗)|U = u],

for each u ∈ {c, a, n, d}. If one of the equals is true, the rest are also true.

Under these assumptions, we obtain the following identification results.

Theorem 8. Consider the setup of this subsection.

(i): Under Assumptions 1, 2 (i)-(ii), and 4 (i)-(iii), ATE(c) is identified.
(ii): Under Assumptions 1, 2 (i)-(ii), 3 (i), and 4, ATT is identified.
(iii): Under Assumptions 1, 2 (i)-(ii), 3, and 4, ATE is identified.
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This theorem can be shown as follows. Using the notation ρ(z,d,d′) = E[D(1)
z = d|D(0)

0 = d′],
µu
1 ’s and µu

0 ’s are identified as follows. Note that

µu
b =

δ
(1)
(1,b,b′)ρ(0,1−b′,1−b′) − δ

(1)
(1,b,1−b′)ρ(0,1−b′,b′)

ρ(0,1−b′,1−b′) − ρ(0,1−b′,b′)
,

µu
b′ =

δ
(1)
(0,b′,b′)ρ(1,1−b,1−b′) − δ

(1)
(0,b′,1−b′)ρ(1,1−b,b′)

ρ(1,1−b,1−b′) − ρ(1,1−b,b′)
,

where

(b, b′) =


(1, 1) for u = a

(1, 0) for u = c

(0, 1) for u = d

(0, 0) for u = n

.

The outline for identification of µc
1 is as follows. Note that

δ
(1)
(1,1,0) = E[Y (1)

1 |D(1)
1 = 1, D

(0)
0 = 0]

= E[Y (1)
1 |U = c,D

(0)
0 = 0]E[D(1)

0 = 0|D(1)
1 = 1, D

(0)
0 = 0]

+E[Y (1)
1 |U = a,D

(0)
0 = 0]E[D(1)

0 = 1|D(1)
1 = 1, D

(0)
0 = 0]

= E[Y (1)
1 |U = c]E[D(1)

0 = 0|D(0)
0 = 0] + E[Y (1)

1 |U = a]E[D(1)
0 = 1|D(0)

0 = 0]

= µc
1ρ(0,0,0) + µa

1ρ(0,1,0),

where the third equality follows from Assumptions 4 (i)-(ii). Similarly we have

δ
(1)
(1,1,1) = µa

1ρ(0,1,1) + µc
1ρ(0,0,1).

From these equations, eliminating the term with µa
1 yields

µc
1 =

δ
(1)
(1,1,0)ρ

(1)
(0,1,1) − δ

(1)
(1,1,1)ρ

(1)
(0,1,0)

ρ
(1)
(0,1,1) − ρ

(1)
(0,1,0)

.

To avoid zero-division, Assumption 4 (iii) is imposed. Using Assumption 4 (ii), pu’s are identified
as follows. Note that

pu = π(1,b,b′)ρ(0,b′,b′) + π(1,b,1−b′)ρ(0,b′,1−b′),

where

(b, b′) =


(1, 1) for u = a

(1, 0) for u = c

(0, 1) for u = d

(0, 0) for u = n

.

Using Assumptions 4 (ii)-(iv), µa
∗ is identified as

µa
∗ =

δ
(∗)
(1,1,1)ρ(0,0,0) − δ

(∗)
(1,1,0)ρ(0,0,1)

ρ(0,0,0) − ρ(0,0,1)
=

δ
(∗)
(0,1,1)ρ(1,0,0) − δ

(∗)
(0,1,0)ρ(1,0,1)

ρ(1,0,0) − ρ(1,0,1)
.
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Using Assumptions 4 (ii)-(iv), µn
∗ is identified as

µn
∗ =

δ
(∗)
(1,0,0)ρ(0,1,1) − δ

(∗)
(1,0,1)ρ(0,1,0)

ρ(0,1,1) − ρ(0,1,0)
=

δ
(∗)
(0,0,0)ρ(1,1,1) − δ

(∗)
(0,0,1)ρ(1,1,0)

ρ(1,1,1) − ρ(1,1,0)
.

Then µa
0 and µn

1 are identified in the same way as in Case I in Section 3.
For identification under the ignorability condition, we consider the following models for doubly

robust estimator of ρ(z,d,d′).

P
(1)
d (X; ζ(1)) = E[D(1) = d|X], P

(0)
d′ (X; ζ(0)) = E[D(0) = d′|X],

for z, d, d′ ∈ {0, 1}. Considering the setup of this section, we obtain

The other required terms are identified in the same way as in Case I in Section 3.
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