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Abstract: We estimate the causal effect of ride-hailing entry on transport-related air pollu-
tion in U.S. cities, using granular satellite-based NO, concentration data in the staggered
difference-in-differences research design. Our empirical strategy accounts for treatment ef-
fect heterogeneity both within and across cities, coupled with two additional strategies to
strengthen identification: using geography-based instruments and exploiting a sharp, unan-
ticipated change in ride-hailing activity in Austin due to its rule change. We find robust
evidence that ride-hailing tends to improve air quality in highly dense cities, but has no
significant impact in cities with low and medium density. We also find evidence that the
NO; reduction in highly dense cities is associated with a decrease in private car use and an
increase in public transit use. Taken together, our findings suggest that the environmental
effect of ride-hailing depends on the complementarity between ride-hailing and public transit:
While ride-hailing may increase congestion by inducing deadheading or displacing of mass
transit for parts of daily trips, it may still decrease overall air pollution if a combined use of

ride-hailing with other transit displaces private car use more than such adverse behavior.
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1. Introduction

"Ride-hailing is an attractive option for many travelers, and can increase mobility
for households who lack a private vehicle. Yet in communities across the country,
ride-hailing is increasing vehicle travel, climate pollution, and congestion." — the
Union of Concerned Scientists (2020)

Over the last decade, Uber, Lyft, and other ride-hailing services have expanded rapidly,
bringing innovations into the transport sector in numerous cities around the world. Econo-
mists have attempted to quantify the economic gains from this transport innovation for a
number of important economic margins: Consumer’s gain from Uber’s congestion pricing
(Cohen et al., 2018; Castillo, 2023) and from reducing information asymmetry (Liu et al.,
2018) and drivers’ gain from Uber’s compensation scheme (Angrist et al., 2021) and from
flexible workstyle (Chen et al., 2019). Economists have also refuted some of the criticisms
against these ride-hailing companies, and instead, find: Uber’s entry increased public transit
riderships (Hall et al., 2018), reduced driving under the influence, fatal accidents, arrests for
assault and disorderly [Dills and Mulholland (2018), Anderson and Davis (2023)], and had
no significant effects on taxi driver’s labor supply although reducing their relative earnings
by about 10 percent (Berger et al., 2018). Against these economic benefits, however, a ris-
ing number of studies have also started to document the negative environmental impacts of
ride-hailing services [Diao et al. (2021), Erhardt et al. (2019), Kong et al. (2020), Rayle et
al. (2016), Tarduno (2021), Krishnamurthy and Ngo (2024)].

Ride-hailing is thought to increase air pollution and congestion primarily for two reasons
— ‘deadheading’ (miles without a passenger between hired rides) and ‘displacing’ (miles
that might have displaced mass transit or other low-emission travel modes). For example,
the Union of Concerned Scientists (UCS) estimates that the former contributes 47% more
emissions per trip while the latter adds 69% more per trip, based on the data from U.S. cities
(UCS, 2020). Such claims often receive support from observational studies that document a
surge in road traffic upon ride-hailing entry (e.g., T&E, 2019). While we agree with the gen-
eral sentiment of these studies, they miss an important economic channel: Complementarity
between ride-hailing and other transit modes. Ride-hailing customers may use public transit
in combination with hired rides, and such a combined use may displace the use of private
driving, not only for primary commuting but also for daily errands. Put differently, the UCS
study compares hired rides with other transport modes that could have replaced the rides,
but that isn’t a valid counterfactual if the aforementioned channel exists. In this case, a

valid counterfactual comparison would be, instead, to compare a sequence of daily transport



choices in the presence of ride-hailing against those in its absence. The goal of our study
is to establish credible evidence on the causal effect of ride-hailing on ambient air pollution,
based on the empirical design better suited to make such a counterfactual comparison.

To do so, we start by the canonical two-way fixed effect (TWFE) regression with the
staggered difference-in-differences (DD) design, exploiting the variation in ride-hailing entry
over time and across cities. Our basic empirical strategy is to estimate this TWFE-DD
regression on monthly observations of ambient air pollution on a panel of 348 MSAs during
the 9-year period, 2010-2018. Thus, our causal inference relies on how we carefully design
treatment-control structures on the study sample. This basic strategy itself is analogous to
previous studies [Berger et al. (2018), Hall et al. (2018), Li et al. (2021), Ward et al. (2019),
Kim and Sarmiento (2021)].

We, however, take three new approaches to strengthen the identification of the causal
effect. First, we construct a measure of de facto ride-hailing entry into a MSA boundary,
using both Google’s keyword search trends for both Uber and Lyft. This measure of entry
is more complete in coverage, is more accurate in both entry timing and location, and also
helps us avoid the possibility of falsely refuting the critics’ argument in favor of ours. We
demonstrate these points more forcefully in Section 4.

Second, we use satellite-based nitrogen dioxides (NOs) concentration data. We specif-
ically avoid use of U.S. Environmental Protection Agency (EPA)’s monitoring-based data
on other pollutants for the identifiability of ride-hailing’s impacts on transport-related air
pollution. Monitoring data may not be reliable for credible inference for various reasons:
Monitoring sites are spatially unevenly located and are not necessarily located in high pollu-
tion areas (Fowlie et al.,2019); site locations change over time, making it difficult to compare
data consistently over time; and there is an "unwatched pollution problem" in that local
governments may have incentives to strategically locate monitoring sites or avoid recording
high pollution episodes (Zou, 2021; Grainger and Schreiber, 2019). In contrast, we use the
satellite-based NOs concentration data to calculate the ambient air pollution on spatially
delineated subareas within each MSA. This allows us to compare, for example, urban-area
NO, concentrations of ride-hailing entry city against that of no-entry city consistently over
time.

Third, we take three carefully designed identification strategies so as not to rely on a
single set of identifying assumptions for credible inference. The major identification threat
to the staggered DD design is that ride-hailing entry may occur in cities exactly when
and where residents’ transport-related behavior is expected to change. This leads to the
violation of the parallel trend in unobservables. Although we include a MSA-specific linear

trend along with other fixed effects and time-varying controls, this may not completely



eliminate all unobservables that are correlated with both the treatment and the outcome.
Our first strategy is to mimic the idea of matched DD (Heckman et al., 1997). We start
by noting that entry dates are highly correlated with population density, which are also
correlated with other MSA-level socioeconomic variables such as income, manufacturing
employment, and the share of public transit commuters. Hence, we use MSA-level population
density as a sufficient statistic for unobservable trends in transport-related behavioral change,
and estimate the causal effect on each subsample of MSAs stratified by population density
quintile. We then employ the de Chaisemartin-D’Haultfoeulle (dCDH, 2020; 2024) estimator
to estimate heterogeneous dynamic treatment effects.! The second strategy exploits the
sharp, unanticipated change in the supply of ride-hailing service in Austin, Texas, due to
its rule change on fingerprint checks on ride-hailing drivers. We apply the synthetic control
method (SCM) on the residualized outcomes to visualize the impacts of both the entry and
the rule change on Austin’s air quality, using this incidence as a quasi-experiment. Our last
strategy applies an instrumental variable (IV) method to the TWFE-DD regression. Our
instruments are reported entry dates, taken from Hall et al. (2018), interacted with the
geography-based instruments, which are widely used in the empirical economic geography
literature [Baum-Snow (2007), Duranton and Turner (2011; 2012), Faber (2014), Redding
and Turner (2015)]. The basic idea here is that the geography-based instruments create
‘hypothetical highway routes’, which predict the current routes (hence, the current economic
size of the cities) well, yet are not correlated with contemporaneous economic shocks after
controlling for observables today.

Using these approaches, we find robust evidence that ride-hailing entry tends to decrease
ambient NO, concentrations (in terms of both monthly mean and maximum) in MSAs with
high population density, particularly in their urban areas. We also find no evidence of
ride-hailing entry leading to an increase in ambient NOy concentrations in low- and medium-
density MSAs. We also confirm these findings in the event study of dynamic treatment effects
using a version of the dCDH estimator. The signs of the estimated impacts are largely
consistent across different identification/estimation strategies, although their magnitudes
vary. In particular, our DD-IV estimation leads to unreasonably large estimates in lower
density MSAs. We suspect that given the form of the DD-IV estimand, the lack of reported
entry dates for these MSAs overly inflate the estimates. Nonetheless, the estimates for the
urban areas of MSAs in the highest density quartiles are always negative, have relatively small
standard errors, and range from -0.034 log points (TWFE-DD) to -0.104 log points (DD-

! Alternatively, we may use the Callaway-Sant’Anna (CS) estimator, which is theoretically identical with
the dCDH estimator in the absence of covariates. As we explain in Section 5, we absorb the influence of all
time-varying covariates using the imputation method (Catenao et al., 2023). Hence, we should obtain the
similar estimates using either estimator.



IV). Assuming a linear relationship between satellite-based and EPA monitoring records,
these impacts translate into the reductions of monthly mean NO, concentrations by roughly
0.53-1.62 ppb.

As a supplement to our main analysis, we also use annual household-level data on com-
muting modes to work from the American Community Survey (ACS) to further explore
the economic mechanism underlying our main results. For this, we use commuting mode
indicators as the outcome variables, and apply all three identification strategies discussed
above. The results are quite supportive to our argument. We find that the air-pollution im-
pacts of ride-hailing is significantly associated with changes in commuting patterns. In the
highest density MSAs, where ride-hailing entry is estimated to decrease NOy concentrations,
ride-hailing entry is also significantly associated with a decrease in private car commuters,
and increases in public transit commuters and in the other commuting modes. Interestingly,
we also find that the sharp decrease in the supply of ride-hailing in Austin due to its rule
change is estimated to reduce, rather than increase, the ambient NO, pollution and the share
of private car commuters while increasing the share of public transit and other commuting
modes. Taken together, these results support our argument that the environmental effect of
ride-hailing depends critically on the degree of complementarity (or substitutability) between
ride-hailing and other transit modes. In highly dense cities, such a complementarity is high
so that a combined use of ride-hailing with mass transit can reduce private car use whereas
in lower dense cities, the complementarity is weak so that ride-hailing tends to steer people
away from mass transit. These results are in sharp contrast to critics’ views cited above, but
are indeed consistent with Hall et al. (2018), who find complementarity between ride-hailing
and other transport modes.

Our work complements several vibrant areas of research: (a) empirical studies that esti-
mate the causal effects of ride hailing on various economic outcomes [Anderson and Davis
(2023), Angrist et al. (2021), Berger et al. (2018), Chen et al. (2019), Cohen et al. (2018),
Dills and Mulholland (2018), Hall et al. (2018), Liu et al. (2018), Tarduno (2021), Kr-
ishnamurthy and Ngo (2024)], (b) a large body of literature that examines pollution- or
congestion-relief effect of public transportation infrastructures [Chen-Whalley (2012), Li et
al. (2019), Gendron-Carrier et al. (2022), Gu et al. (2021), other papers cited in Anas
and Lindsey (2011)], and (c) the economic studies that structurally investigate the general
equilibrium impacts of ride-hailing into the taxi industry [Buchholz (2023), Fréchette et al.
(2019), Hall et al. (2020), Rosaia (2023)].

Of these, our work is most closely related to Krishnamurthy and Ngo (2024) and Kim and
Sarmiento (2021). Krishnamurthy and Ngo (2024) use hourly freeway traffic and daily air
pollution data from California and apply a DD design exploiting the staggered rollouts of ride-



hailing entry at the country-level. They find that ride-hailing entry reduces weekday freeway
congestion and PMs 5 concentrations in the average county entered, although congestion and
PM,; 5 concentrations are increased during the evening rush hour and in the most populated
counties. Our study nicely complements theirs in that our findings are quite consistent,
yet our scope is quite different from theirs — we use more aggregate data for virtually all
MSAs in the U.S. while they use more disaggregate data only for California. Kim and
Sarmiento (2021) use the Callaway-Sant’Anna estimator in an empirical design similar to
ours and find that Uber’s entry is estimated to improve air quality (as measured in the Air
Quality Index and ground-level ozone), particularly during the summer when bad air quality
episodes are expected. Our study complements and further strengthens their findings in
four regards. First, while they rely mostly on state-level reported entry dates of Uber, we
construct MSA-level de facto entry dates from the Google Trends Index for both Uber and
Lyft. We show in Section 4 that our entry dates are likely to be more complete in its
coverage, more accurate in both location and timing, and correctly capture the ride-hailing
activity. Second, while they rely on EPA’s monitoring data and use county-level observations,
we rely on satellite-based data and urban areas of MSAs as study units. Third, while they
rely on one identification strategy (staggered DD with various specifications, controls, and
robustness checks), we take three alternative identification strategies and find consistent
results. Fourth, while they focus only on ambient air quality as outcomes, we also explore
the economic mechanism underlying the main results. We find the estimated impacts of
ride-hailing entry on commuting modes are indeed consistent with the estimated impacts on
ambient air quality.

Lastly, our analysis gives a clear answer to an ongoing debate among policy practitioners
and scientists (i.e., "Does ride-hailing decrease or increase air pollution and congestion?)
in ways that can embrace and reconcile seemingly conflicting empirical findings in the lit-
erature. On one hand, studies based on disaggregate data tend to find that ride-hailing
increases congestion in particular segments of transport demand (e.g., rush hours, urban
freeways, populated counties) while decreasing congestion in other segments (e.g., non-rush
ours, non-urban freeways, less populated counties) [Erhardt et al. (2019), Tarduno (2021),
and Krishnamurthy and Ngo (2024)]. On the other hand, studies that rely on more aggre-
gate data such as MSA-level or monthly-level data tend to find that ride-hailing increases
use of mass transit (Hall et al., 2018), decrease congestion (Li et al., 2021), decrease am-
bient air pollution (Kim and Sarmiento, 2021), and vehicle emissions (Ward et al., 2019).
Our results suggest that the key to reconciling these mixed findings is the heterogenous
effects of ride-hailing on various segments of transport demand. That is, ride-hailing may

decrease air pollution by encouraging a combined use of ride-hailing and mass transit in



cities that have dense public transit networks, yet may increase congestion in some part
of the cities, due to deadheading by ride providers or use of hired rides in place of mass
transit for part of the daily trips (but not the entire sequence of daily trips). Our results
is also consistent with Agrawal and Zhao (2023), who argue, based on a simulation-based
study using the monocentric city model, that subsidizing ride-hailing services as a “last-mile”
provider can be welfare-increasing and whether ride-hailing and public transit are substitutes
or complements is a policy choice. Thus, our manuscript provides an important insight into
an important policy debate that seeks to strike a balance between increasing mobility and

fighting air pollution in cities around the world.

2. Background and Motivation

2.A. Ride-hailing Service and Its Environmental Concerns

Uber Technologies Inc. ("Uber") started as a developer of a smartphone application that
would make ride-hailing as simple as "tapping a button". Uber launched its first ride-hailing
service in San Francisco in July, 2010 and in New York in May, 2011. During the initial phase,
Uber mainly operated the ride-hailing platform for expensive limousines ("black car"), but
later introduced a more affordable service, UberX. UberX was first launched in San Francisco
in January, 2013, quickly became Uber’s standard ride-hailing service throughout the U.S.,
and is often seen as a direct competitor against the traditional yellow cab service. Lyft Inc.
("Lyft"), on the other hand, started as a long-distance ride-sharing service between college
campuses in 2007, with a brand name Zimride. Its first short-distance ride-sharing service
appeared in San Francisco in August, 2012 as a complementary service of Zimride. In 2013,
the company changed its name from Zimride to Lyft and sold it to Enterprise Holdings.
Uber and Lyft have entered roughly 80% of U.S. cities and stayed active there. Today, Uber
accounts for roughly 70% of the ride-hailing service sales in the U.S., with Lyft holding the
remaining 30%, and users are royal to their service providers — most customers use only
one service and rarely switch services (Second Measure, 2021).

Ride-hailing services are known to provide a number of economic benefits: ease of access
to transit, flexible workstyle, increased employment opportunities for the poor, reducing
information asymmetry and mismatch in the taxi market, and promoting smartphone-based
innovations in other areas of the economy. Against these benefits, however, they are often
criticized for the downsides of their business model. One of the important controversies is

whether ride-hailing services decrease or increase congestion and road traffic, particularly in
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dense urban metro areas. Increased congestion and road traffic, if true, are a cause of serious
concerns from an environmental perspective. Internal combustion of fossil fuels by vehicles is
the leading source of harmful air pollutants such as CO and NO,. Such pollutants are known
to increase the risk of stroke, heart disease, lung cancer, and chronic and acute respiratory
diseases. There is a large body of literature that establishes a positive relationship between
increased congestion/traffic and air pollution/carbon emissions from on-road vehicles [See
Anas and Lindsey (2011) for a nice review on this issue]. Hence, the congestion problem
could also be directly linked to climate and pubic health concerns. Recent reports from two
high-profile organizations tout for such concerns [T&E (2019); UCS (2020)].

There are two competing views on the environmental effect of ride-hailing. On one hand,
proponents of Uber and Lyft (including the companies themselves) argue that ride-hailing
apps provide easy access to shared mobility on demand, allowing commuters to rely less
on private car ownership and more on public transit and other transport modes such as
bicycling and walking. On the other hand, critics argue that ride-hailing can add road
traffic either because of ‘deadheading’ (driving without a passenger between hired rides) or
because ride-hailing increases reliance on hired rides rather than on public transit and other
transit modes. Previous studies indeed find mixed results on this issue. Studies that rely on
interviews, surveys, and micro-level trip data in specific cities [Erhardt et al. (2019), Kong
et al. (2020), Rayle et al. (2016); UCS (2020)] tend to find results in support of the critics’
arguments while studies that rely on quasi-experimental research design [Hall et al. (2018);
Li et al. (2021); Ward et al. (2019)] tend to refute the critics” arguments.?

One point we wish to clarify in this paper is that these mixed findings arise mostly
because they make empirically quite different counterfactual comparisons. Studies that find
in support of the critics’ arguments compare hired rides with other transport modes that
could have potentially replaced the rides. For example, in the UCS study, a hired ride with an
average level of deadheading is compared against other modes of travel an average commuter
might opt for in the absence of ride-hailing services. However, in our view, that is not a fair
or valid counterfactual. Consumers make a sequence of daily transport choices, and hence,
use ride-hailing in combination with other transport modes (We discuss this point more fully
in the next section). A valid counterfactual in this case, instead, is to compare a sequence of
transport choices over a course of the day in the presence of ride-hailing against those in its

absence. In other words, we need a counterfactual comparison that accounts for behavioral

2 An exception is Diao et al. (2021), who uses a difference-in-differences research design analogous to Hall
et al. or Li et al., but finds, in contrast, that ride-hailing entry increases congestion and decreases public
transit ridership. In our view, however, Diao et al. fails to deliver credible results because they fail to control
for MSA-specific time trends and instead use mostly endogenous controls and highly suspicious IVs along
with a prohibited second-stage regression using the predicted probability from the first-stage logit regression.



changes in equilibrium commuting patterns in a city. We discuss this point more forcibly in

the next section.

2.B. Why May Ride-hailing Decrease or Increase Transport Emissions?

U.S. cities have experienced substantial suburbanization over the last half century. Cen-
tral city population declined by 17% whereas total MSA-level population increased by 72%
between 1950 and 1990 for large MSAs, due primarily to the rapid development of limited
access highways over this period (Baum-Snow, 2007). As a result of this suburbanization, a
majority of MSA residents make either suburb-to-central city or suburb-to-suburb commute
for their work. About 63% of MSA commuters make such trips and about 87% use private
cars for daily commuting in 2000 (U.S. Census Bureau, Journey to Work). Thus, the impact
of ride-hailing entry on transport-related emissions depend on how it affects commuters’
transport choices in such a suburbanized city.

In this regard, a recent empirical finding by Hall et al. (2018) — that ride-hailing services
are a complement to public transportation, particularly in large cities — gives us an impor-
tant insight. In large cities where commuters have access to sufficiently dense public transit
networks, ride-hailing can complement public transit in a variety of ways. For example, pub-
lic transit stations may be far from commuters’ homes but may be close to their workplace.
Ride-hailing can connect such commuters to their nearest transit, potentially allowing them
to switch from private driving to public transit. For another example, commuters may run
a variety of chores while at work. Commuters may opt to drive their own car to work, not
just for convenience of commuting but for such anticipated chores. Low-cost, easy-to-hail
ride services may alleviate this latter need for driving their own cars. This line of reasoning
suggests that ride-hailing can potentially reduce private driving more than simply replaces
it — the ride-hailing service is used in place of private driving, but the use of public transit
(or ride-hailing) for other parts of travel that comes with it can replace private driving as
well.

We demonstrate this point using Chicago as an illustrative example. Figure 1 shows
major train and bus routes in the urban and suburban areas of Chicago, along with a stylized
diagram intended to conceptualize a certain segment of the city. As with many cities in the
U.S., Chicago has a radial network of public transit routes that are highly concentrated
around the central business district (CBD) and extend radially outward from the CBD to
the suburban areas. As a result, many suburban areas have sparse transit networks that

cannot directly connect their residents to either the CBD or other employment centers.



Imagine a commuter who lives in a suburb and commute to a city’s employment center for
work. Often, the nearest station is not located within a walking distance from/to commuter’s
home or workplace. Hence, the commuter may need to take another mass transit to the
nearest station. Given this inconvenience, the commuter may opt to drive her car to work
in the absence of low-cost, easy-to-hail ride services. This driving distance is denoted by s,
in the diagram. In addition, the commuter may use her car to run a few ‘daily chores’ while
at work: attending meetings at other places, buying things at stores, going to restaurants,
etc. For simplicity, the driving distance is denoted by a radius s. from her workplace. In
the presence of convenient ride-hailing services, however, the commuter could hire rides to
the nearest station, either from her home or from her workplace, and take the mass transit
instead. The driving distances by hired rides in this case are denoted r; and r,,, respectively.
Furthermore, such a commuter may also use hired rides to replace the driving distance for
daily chores s.. Assuming that the mass transit operation stays the same, the total amount
of air pollution depends only on the total driving distance, which would change from s. + s,
to 1, + 1y + Se if a complementarity between ride-hailing and public transit exists. In this
case, ride-hailing would decrease the total driving distance if s. > r, + r,, yet increase the
congestion in the urban area because s, < r,, + s.. Of course, if such complementarity does
not exist or is not strong enough, hired rides might simply displace mass transit commuting
m. Figure Al in the Appendix provides some anecdotal evidence in support of such
complementary use of ride-hailing services. The figure displays the observed geographic
distribution of ride-hailing trips during the weekday rush hours in Chicago, demonstrating
that roughly 75% of the rush-hour trips from the suburban community areas do not travel
the full distance to the CBD.

It is, therefore, largely an empirical question to what extent such complementarity exists,
and whether it is strong enough to outweigh the increase in driving activity by ride-service
providers. In addition, these discussions suggest that the impact of ride-hailing can be
highly heterogeneous across cities because the degree of complementarity (or substitutability)

between ride-hailing and mass transit is likely to depend on the density of public transit.

3. Estimation and Identification Strategy

3.A. Overview

Our empirical strategy employs a staggered difference-in-differences (DD) research design,
building on earlier empirical studies [Berger et al. (2018); Hall et al. (2018); Li et al. (2021)].
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For all analyses, we use metropolitan statistical areas (MSAs) as our study units. Our study
covers the period 2010-2018 and uses the 2009 core-based statistical area (CBSA) boundaries
for all years’ observations. This coverage ensures that each treated MSA has sufficient leads
and lags before and after its ride-hailing entry, and that the period does not overlap with
Uber Eats activity.

As a basis of our analysis, we start with the standard two-way fixed effect (TWFE)
specification of the staggered DD regression, following Hall et al. (2018) and Berger et al.
(2018). For an outcome variable Yy, in year ¢ and month m of city (MSA) ¢, we specify our

TWFE regression as:

ygtm = Q¢ + )‘tm + Z 58Dctm + Xétm’y + ec(t) + €ctm s (1)
s

where D, is our treatment variable and equals 1 if ride-hailing service enters/exists in
MSA ¢ and 0 otherwise in period tm, 6, is the heterogenous treatment effect parameter
corresponding to s-th quartiles of MSA-level population density with s € § ={1,2,3,4},
Xem 18 & vector of (exogenous) time-varying covariates, a. and Ay, are MSA and year/month
fixed effects, and 60.(t) is a MSA-specific linear time trend. Our main outcome variables of
interest are ambient levels of nitrogen oxides (NOy) concentrations in logged terms. Section
4 justifies the use of NO, concentrations as the most appropriate measure of transport-related
air pollution for our purpose. We use two measures of our outcome: the MSA-level means
(over girded cells) of (1) monthly average NO, concentrations and (2) monthly maximum NO,
concentrations. Time-varying controls include temperature, wind speed, their polynomials,
gasoline prices, and non-attainment status for 1997 CAAA standards for PM2.5 and Os.
Temperature, wind speed, and gasoline prices are aggregated at the state level to avoid
substantial data attrition as well as confounding with our treatment.®> We carefully choose
our time-varying controls since inclusion of endogenous time-varying controls is known to
cause severe bias in the estimates. The population density quintile is based on the 2010 data
to ensure that it is the pre-treatment status.

There are several important empirical challenges in estimating eq. (1), and we address
each of them as follows.

First, earlier studies use reported Uber/Lyft entry dates, making use of information

drawn from local newspapers, official blogs/websites, and social networking services. These

3We use temperature and wind data from the monitoring records available at the EPA’s AirData. As we
shall discuss in Section 4, monitoring data are available only sparsely. Hence, a non-negligible share of our
sample would need to be dropped if we were to aggregate these data at the MSA level. Furthermore, we
would like only the supply-side variation in gasoline prices, excluding the influence of MSA-level demand-side
factors for gasoline consumption.
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reported dates may have incomplete coverage, potentially multiple dates of entry, and some
reporting errors. More importantly, in some cities, reported entry occurs well before the
ride-hailing service achieves sufficient market penetration. This endangers the risk of false
negative by construction — i.e., Uber/Lyft would not increase transport-related air pollution
until a sufficiently large number of commuters respond to it. To overcome this problem, we
construct a measure of de facto entry, constructed from the Google Trends Index. In the
next section, we define our measure of de facto entry and discuss its empirical properties
more fully.

Second, recent advances in the environmental economics literature indicate that the use
of EPA’s monitoring data may lead to substantially biased statistical inferences. EPA’s mon-
itoring stations are spatially unevenly located, and many of them are discontinued or change
locations over time (Fowlie et al., 2019). Furthermore, there is an "unwatched pollution prob-
lem” in that local governments may strategically choose monitoring sites or avoid recording
high air pollution episodes (Zou, 2021; Granger-Schreiber, 2019). These characteristics make
it very hard to credibly compare pollution data over time and across space. Instead, we make
use of the National Aeronautics and Space Administration (NASA)’s satellite-based NOy
concentration data, which are available at relatively high resolutions (0.25° x 0.25° girded
cells) consistently throughout our study period. We discuss our NO, data more thoroughly
in Section 4.

Third, although NO, has a known distance-decay relationship (Cape et al., 2004; EPA,
2008), it may still travel far distance and affect ambient concentration levels several miles
away from its emissions sources (Su et al., 2009).* This implies that the violation of STUVA
(or no-spillover) condition may occur in several ways, particularly between neighboring
MSAs. To avoid such spillover effects, we delineate urban, suburban, and non-urban bound-
aries within each MSA, calculate the monthly NO, concentration statistics for each of these
subareas j € {urban, suburban, non-urban}, and run a separate regression for each j in eq.
(1). This allows us to compare, for example, urban-area NO, concentration of entry city
against urban-area NO, of no-entry city. Because urban areas are quite far apart from each
other, this minimizes the risk of STUVA violation. Furthermore, our discussion in Section
2 suggests that ride-hailing entry may have different air-pollution impacts on different sub-

areas of cities. Since we expect some spatial spillovers across subareas of cities, how the

41t is known that the effect of emissions from on-road vehicles on ambient NOy concentrations declines
quickly with distance — 90% of the decline occurs within just a 10-meter distance and the return to the
baseline concentration levels occurs between 200 and 500 meters [see EPA (2008) and papers cited therein].
However, recent studies have shown that the influence of NO2 emissions may extend beyond this conventional
distance range through complex reactive/mixing processes with background pollutants in the atmosphere.
Applying the land-use regression models in Los Angels, Sue et al. (2009), for example, found that the spatial
extent of influence can reach as far as 5-20 kilometers from the emissions source.
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treatment effects differ over subareas of cities is also an important empirical question.

Fourth, the major threat to identification in eq. (1) comes from the violation of parallel
trends in unobservables. As discussed in Hall et al. (2018), ride-hailing services mostly
enter cities in the rank order of population size (or population density). However, even
if ride-hailing entry is mostly exogenous to residents’ transport choices, the parallel-trend
assumption may still be violated because Uber/Lyft happen to enter cities exactly where and
when transport-related air pollution is expected to decline (say, due to preferences/public
efforts toward more eco-friendly transportation behavior) or is expected to rise (say, due
to growth of economic activities). Indeed, we show in the Appendix that entry dates are
highly correlated with population density, the share of manufacturing employment, and the
share of workers who use public transit for daily commuting. To overcome this challenge,
we employ three identification strategies. In this section, we discuss our first strategy below,
leaving the other two in Sections 6 and 7, respectively.

Our first strategy mimics the idea of matched difference-in-differences approach (Heck-
man et al., 1997). Ideally, we would compare the outcomes of cities with similar air pollution
trends in the absence of Uber/Lyft entry. If we have a large sample of cities with large vari-
ation in timing of Uber/Lyft entry, we would match cities based on all available observables.
We, however, have only 348 MSAs with little variation in entry timing. Thus, matching on
even a few observables can quickly exhaust observations that can be used as control units
because Uber/Lyft enter similar cities at similar timings. This makes it infeasible to directly
apply the matched DD method. Instead, we rely on the (arguably heuristic) argument that
population density is likely a sufficient statistic for unobserved trends. Specifically, our first

approach makes the following identifying assumption:

A1l. Conditional on exogenous (time-varying) covariates Q. = {ae, Mimy Xetm, 0e(t)},

parallel trends in unobservables hold for all MSAs in the same population density cohort:
E[EC,T - EC,T—1|DCT =1, Qc] = E[EC,T - EC,T—1|DC’T =0, Qc]a
for each city ¢ within each population density quartile s for all periods .

Note that in the staggered DD setup, parallel trends (in unobservables) need to hold
for each timing group: i.e., unobservables for cities treated in g-th period would move in
the same way as for all cities not treated in that period [Goodman-Bacon (2021), Sun
and Abraham (2021), Callaway-Sant’Anna (2021)]. The assumption A1 helps relax this
assumption by requiring the parallel trends for each timing group to hold only within the

same density cohort. We take two alternative estimation strategies under this assumption.
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The first is to estimate the treatment effect parameter separately on each density-quintile
subsample. This approach is taken in our event-study estimation in Subsection 5.B as well
as our instrumental variable approach in Subsection 7.B. The second is to fully interact the
population density quintile dummies with the treatment variable. The latter is the approach
we take with our TWFE specification in eq. (1).

The specification in (1) also helps our identification in two other regards. As discussed in
Hall et al. (2018), ride-hailing services mostly entered cities in the rank order of population
size (or, more precisely, population density as shown in the Appendix B). Because we ex-
pect the treatment timing to vary by population density, our specification is a parsimonious
way to interact the timing group dummies (=~ the population density quintile dummies)
with the treatment variable. This is known to remove bias arising from the possible corre-
lation between treatment effect heterogeneity and the timing of entry [Sun and Abraham
(2021), Wooldridge (2021)]. Furthermore, our specification also helps us explicitly account
for heterogeneous treatment effects of ride-hailing entry to vary by (pre-treatment) popula-
tion density. This is important because we expect the complementarity between ride-hailing
service and public transit to be greater in cities with density (both public transit density
as well as proximity to each other are important). Stoczynski (2020) has shown that when
such heterogeneity exists, the best way to identify the true treatment effect is to interact the

treatment with the sources of heterogeneity rather than to include them as controls.

3.B. Event Study

It is now increasingly common to estimate dynamic treatment effects, using event-study
specifications. Recently, a series of studies have documented that severe biases may arise in
estimating TWFE event-study regressions in the staggered DD setup, particularly when the
effects are both dynamic and heterogeneous [de Chaisemartin-D’Haultfoeulle (2020, 2024)
Goodman-Bacon (2021), Sun and Abraham (2021), Callaway-Sant’Anna (2021)]. In the
worst case, the bias may be so severe that the TWFE estimates may have the signs that
are opposite to the true parameters. Several alternative estimators are proposed that can
properly address the problem. Among others, de Chaisemartin-D’Haultfoeulle (dCDH) and
Callaway-Sant’ Anna (CS) estimators are probably the most robust to misspecifications (and
probably the most widely used). The problem with the CS estimator, however, is that it does
not allow for time-varying covariates. In our context, air pollution concentration is highly
seasonal and is affected by time-varying climatic conditions such as wind and temperature.
Hence, failing to control for the effect of such time-varying confounds is likely to give us biased

estimates. Hence, to address this issue, we exploit the imputation approach suggested by by
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Gardner (2021) and Catenao et al. (2023): we can use pre-treatment observations to purge
out the effect of (exogenous) time-varying confounders. Specifically, we take the following

steps:

1. Estimate the following using only pre-treatment data:
Yotm = Qe+ M+ Xy +0c(8) + €ctm (2)

2. Estimate “residuals” using all data (incl. post-treatment):

A

6itm = ygtm - (dc + j\tm + X(/:tm;)/ + éc(t))

3. Apply the following dCDH/CS estimator to the estimated residuals, separately for each
subarea j and each density-cohort subsample s (not pooling all MSAs): For MSAs that
receive treatment in g-th period, estimate the average treatment effect on the treated
(ATT) for 7-th period as’

ATTj’S(ga T) = E[éir - ég,g—1|G9 =1] - E[égﬂ' o éig_1|C =1 (3)

where G, is an indicator of g-th timing group (i.e., equals 1 if MSAs receive treatment in
g-th period for the first time and 0 otherwise), and C' is an indicator of not-yet-treated
MSAs as of 7-th period (or never treated MSAs if such MSAs exist).

There are several reasons why this approach using steps 1-3 may yield more consistent
estimates of ATTs than the TWFE regression (1). First and the foremost, the dCDH/CS
estimator removes the bias that arises from heterogeneous dynamic treatment effects. The
primary reason for such a bias is that the TWFE regression uses ‘already treated’ observa-
tions as effective control units when estimating the impact of entry on ‘later treated’ units.
Although our specification mitigates this problem by including interactions with density co-
hort dummies, the dCDH/CS estimator removes the bias all together by specifically avoiding
use of such units. Second, by step 1, we remove the potential bias that may arise due to

time-varying covariates. Time-varying covariates are known to produce biased estimates if

This is a version of the CS estimator without covariate adjustment, which is essentially the same as the
dCDH estimator in the absence of switchers. The original CS estimator adjusts weights for different units
using generalized propensity scores estimated on pre-treatment time-invariant covariates. As discussed in the
previous subsection, we instead use pre-treatment population density as a sufficient statistic and estimate
the dCDH/CS estimator separately on each density-quintile subsample.
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they are correlated with treatment assignment. We avoid the bias by estimating the para-
meters using pre-treatment observations. Third, this approach explicitly makes use of the
assumption A1, and estimate ATTs using only observations in the same density cohort.
Hence, our approach compares only ‘similar units’ in terms of the pre-treatment population
density.°

One potential drawback of this estimator, however, is that we use only ‘relevant’ ob-
servations that provide valid comparisons. Thus, this estimator tends to produce larger
standard errors than the TWFE regression when there are a small number of comparable
units. Hence, we should keep in mind that there is a trade-off between consistency and

efficiency in interpreting the estimates from the two estimators.
4. Data

A. Ride-hailing Entry: Given our goal of making the counterfactual comparison dis-
cussed in Section 2, the chronology of the ride-hailing industry makes it difficult to define
‘entry’ of ride-hailing service in a city for a number of reasons. First, earlier studies use
reported Uber/Lyft entry dates, making use of information drawn from local newspapers,
official blogs/websites, and social networking services. These reported dates are often incom-
plete and sometimes inaccurate. Second, Uber and Lyft enter each city in different timings,
with varying levels of market presence. Yet, presence of either of the two companies may be
sufficient to induce changes in commuting patterns. Third, the official dates of entry may be
an imprecise measure of a ride service’s penetration into the city’s market. We need a mea-
sure of de facto entry that embodies the sufficient market penetration. This is particularly
important in our study context. Changes in transport choice would not have occurred on a
large scale, say, in San Francisco immediately after Uber’s entry in 2010 or UberX’s entry in
2013. Defining this date as ride-hailing entry would falsely refute critics” argument because
Uber’s entry probably had no immediate effect on ambient air pollution almost by definition.
Put differently, we should see the negative effect of ride-hailing (if critics are right) only after
ride-hailing sufficiently penetrated the city’s taxi market.

To overcome these challenges, we use Google Trends data to construct a measure of ride-
hailing entry, building upon Hall et al. (2018) argument that normalized Google Trends
closely coincide with monthly trends in active Uber drivers in their sample of U.S. cities.
Figure 2 reinforces Hall et al.’s as well as our arguments. In Figure 2-(a), we plot normal-

ized Google Trends indices for Uber and Lyft in San Francisco. Search activities were the

6We, however, do not use a generalized propensity score to condition on other pre-treatment covariates
X unlike the original CS estimator. As discussed above, matching on pre-treatment covariates was infeasible
due to the small sample size with little variation in entry timing.
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highest in 2017 in San Francisco for both Uber and Lyft. Relative to the level we observe
in 2017, search activities were close to zero during the first few years of ride-hailing entry
(2010-2012). In particular, search activity for Uber only begins to rise after UberX is offi-
cially announced in 2013. We plot the same indices for Austin, Texas in Figure 2-(b), which
provides a strong case for our argument. In May 2016, both companies officially announced
their exit from Austin after the city’s voters supported fingerprint checks for their drivers.
But, they returned a year later after the state passed the bill that requires the minimum
background checks but no fingerprint checks for their drivers (L.A. Times, May 29, 2017).
The figure confirms that both Uber and Lyft search activities rose sharply at the same time
after their entry, but collapsed immediately after both companies announced their exit upon
the fingerprint ruling in May 2016, and returned to the pre-2016 level after the passing of
the state bill that overturned the fingerprint rule. Furthermore, although we do not report
on other cities, we observe all sorts of patterns in these indices: Search activities exist for
both Uber and Lyft in some cities, only one in some, and none in others; Search activity
for Uber precedes Lyft in some cities and vice versa in other cities. For these reasons, we
believe Google Trends indices for Uber and Lyft in each city are good proxies for their market
presence in that city.

Given the above, we construct a unified measure of ride-hailing entry based on these
normalized Google Trends indices as follows. For each MSA in our sample, we obtain search
trend indices from January 2010 to December 2018, using "Uber" and "Lyft" as keyword
entries.” We then define entry if the maximum of the two indices exceeds a certain threshold.
That is, for each MSA ¢ and for each month ¢,

Entry,; =1 {max(Trendsgber, Trendsftyft) > c} .

For all subsequent analyses, we use the cutoff value of ¢ = 0.2. We tested several values
for the cutoff, but eventually chose the cutoff value of 0.2 to match the ideal of our quasi-
experimental design. That is, the cutoff value must be such that below the cutoff, there is
virtually no Uber/Lyft activity and above the cutoff, Uber/Lyft activity jumps and continues
to grow thereafter. Put differently, we avoid the cutoff values that would generate similar
Uber/Lyft activity levels in both sides of the cutoff.

Another problem is that even in cities where no ride-hailing exists, residents may still
search for Uber or Lyft for other purposes. Because the indices are normalized against the
highest month of search trends for each MSA, even low search frequencies can result in a

large search index. This may result in the false signal for ride-hailing entry. We correct for

TGoogle Trends are calculated for digital marketing areas (DMAs). Hence, we use 2009 MSA boundaries
to convert DMA boundaries to MSA boundaries.
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such anomaly in the following way. First, for each MSA, we calculate the maximum search
index observed before December 2012 — i.e., before any entry would have occurred for most
cities. We then subtract this pre-treatment maximum from the original index values. This
normalization ensures that the adjusted index values exceed zeros only if their original values
exceed the pre-treatment maximum. Second, we hire a graduate student to manually search
for fictitious rides for Uber and Lyft on randomly chosen locations in each city using the
smartphone’s google map application. If we don’t find any UberX or Lyft service for the
fictitious ride requests, we classify that city as having ‘no service’ as of 2020. We then
visually check each city individually and confirm that for no-entry MSAs, the normalized
trend indices never cross the threshold whereas for entry MSAs, the indices continue to grow
over time and stays above the threshold once they cross it.

Panel (a) of Figure 3 compares the distribution of our de facto entry dates constructed
from this measure against that of (i) reported entry dates of UberX, taken from Hall et al.
(2018) and (ii) official UberX launch dates obtained from Uber Inc.®* We see that both
reported entry and official entry precede de facto entry for some cities while a much larger
number of MSAs are recorded with ride-hailing entry in our de facto entry measure. The
differences also come from the fact that we account for Lyft’s activity. Thus, readers should
be cautious in comparing our study with earlier studies because we use a different measure
of ride-hailing entry (and a different identification strategy as a consequence).

Panel (b) of Figure 3 compares the event-study estimates of the effects of entry on

9 There are several

the normalized Google Trend Index, using the three entry measures.
important take-away messages from the figure. First, the estimated impacts of reported
entry and official entry are quite small over the two-year window after entry, and even
smaller than the cutoff value (¢ = 0.2) used to determine the de facto entry. Thus, if we
use reported entry as the treatment variable, we would only get at the average treatment
effect from this small activity level of Uber/Lyft. Second, there is a discontinuous jump in
the estimated impact at the de facto entry timing, suggesting that the Google Trend Index
increases rather abruptly around the cutoff value. We take this as a sign that our choice of the
cutoff value is well calibrated to mimic the quasi-experimental design. Third, the estimated
impacts of de fact entry gradually increase over the two-year window. This implies that we
would expect the treatment effect of Uber/Lyft entry to be dynamic, gradually increasing
over time. Fourth, there is no sign of violation of the no-anticipation assumption even if

we use the de facto entry as our treatment variable — the estimated impacts during the

8Qur special thanks go to Michiko Numazu, a data scientist at Uber Inc. who kindly provided the data
for us.
9We use the dCDH/CS estimator without covariates.
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pre-entry periods are nearly zero and are precise.

B. Ambient Air Quality: Our second data source is the satellite-based nitrogen oxides
(NO,) data from the National Aeronautics and Space Administration (NASA)’s Goddard
Earth Sciences (GES) Data and Information Services Center (DISC). GES-DISC provides
level-3 daily total column NO, in molecules per cm? on the 0.25x0.25 degree global grids.

We focus on ambient NO, pollution not only because it is an important transport-related
air pollutant but also because we wish to minimize the risk of falsely capturing the effects
of other confounders on air pollution. NO, is a leading cause of respiratory diseases such as
asthma, is a known precursor to ozone (Oj3), and is often used as the indicator for the larger
group of nitrogen oxides (NO,). Because NOs is released into the air from combustion of
fossil fuels, the primary sources of NOs emissions are cars, trucks and buses, power plants,
and off-road industrial equipment. According to the U.S. Environmental Protection Agency
(EPA) National Emissions Inventory (NEI), road transportation accounts for roughly 36%
of total NO, emissions, but accounts for only 2-4% of PM, 5, PM;o, and VOC emissions in
the United States. The share of road transportation gets even higher in urbanized areas. For
example, road transportation accounts for 48% in Chicago. Therefore, if there is any effect
of ride-hailing on transport-related air pollution, we should expect to see it most vividly in
NO, concentration levels.!”

We rely on the satellite-based air quality data for its coverage, granularity as well as
temporal consistency. AirData from U.S. EPA provide daily air pollution data from mon-
itoring stations at the ground level for all five criteria pollutants as well as climate data
such as temperatures and wind speeds for all monitoring stations in the U.S. However, the
monitoring stations are only sparsely located across U.S. cities. The monitoring data are
also sparsely monitored over time, with missing records for some months and with moni-
toring stations frequently added and discontinued. As a result, ambient air pollution data
are consistently available over time only for 69 MSAs (18.8% of the full MSA sample). Our
main analysis would thus have to be restricted to this subset of MSAs if we rely on mon-
itoring data. Furthermore, recent studies find that air quality data from monitoring sites
may be systematically biased due to strategic compliance behavior, either by local authority
(Grainger et al., 2021) or by polluters (Zou, 2021).

For illustration, Figure 4 plots our satellite-based NO, grid data along with monitor-
ing site locations for three example cities in the U.S. The NO, data are grid-level monthly

averages for January, 2014. The map also shows the MSA boundary as well as the Census-

0Previous studies have also used carbon monoxide (CO) and aerosol optical depth (AOD) for similar
reasons. But we chose not to do so because we only have access to the satellite-based CO and AOD data on
much less granular level (0.5x0.5 grided cells or larger).
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tract-level population density. The monitoring sites are located mostly around the city
centers, but only sparsely. As a result, the monitoring sites do not necessarily coincide with
high-pollution areas. Furthermore, the map shows that the high-pollution incidence can go
beyond the central urban areas to suburban or non-urban areas. This occurs partly due to
wind direction but also due to suburb-to-urban or suburb-to-suburb commuting. Our argu-
ment outlined in Section 2 suggests that ride-hailing entry may have different air-quality
impacts for different subareas of cities, say, urban versus non-urban areas. Another benefit
of using the satellite-based data is that it allows us to calculate (area-weighted) monthly
means and maximums for urban, suburban, and non-urban areas within each MSA. We use
the 2010 Census definition of urban-area boundaries for all study periods. To validate the
satellite-based data, we regress these satellite-based means and maximums on EPA’s moni-
toring data. Consistent with earlier studies, the satellite-based data are highly significantly
correlated with the monitoring data, with the urban-area statistics having the most predic-
tive power. See also Figure A3 in the Appendix, which plots the satellite-based NO; data
against the EPA monitoring data using MSA-level monthly averages.

C. Commuting Patterns and Other Variables: We also use yearly household-level
commuting mode data in order to explore the economic mechanism behind our main results
on NO, concentration levels. To do so, we compile all microfiles from the U.S. American
Community Survey (ACS) to construct repeated cross-section data. We only have panel
structures at the MSA level since the microfiles do not allow us to trace out household
identifiers over years to construct panels at the household level. We also use the ACS data
to construct a variety of pre-treatment covariates such as the median age, the median income,
the share of manufacturing employment, and the share of college graduates.

We also supplement our data from a few other sources. We obtain monthly temperature
and wind data from the EPA’s Air Data, monthly regional gasoline price data from North
American Electric Reliability Corporation (NERC), MSA-level population density from U.S.
Census Bureau, and historical time series of county-level nonattainment status for five criteria
pollutants from EPA’s Greenbook website. We use these to construct time-varying control
variables.

As discussed in Section 3, the parallel-trend assumption may be violated if there exist
confounding factors that would systematically affect the trends in NOy concentrations that
are also correlated with the location and timing of Uber/Lyft entry. One plausible confounder
is the local compliance efforts for the National Ambient Air Quality Standards (NAAQS).
The 1990 Clean Air Act Amendments requires the EPA to set the NAAQS for five criteria
pollutants. Under the CAAA, if a county is designated as "nonattainment" of the standards,

then states were mandated to regulate plant-level sources of these pollutants. Although the
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NAAQS stayed the same for NO,, major changes to the NAAQS occurred in 1997, 2006,
and 2012 for PM2.5 and in 1997, 2008, and 2015 for O3. Because NO, is a known precursor
to both pollutants, the nonattainment status for either pollutant may affect the time trends

for NO, concentrations at the MSA level. Thus, we control for these in our regression.!!

D. Descriptive Statistics and Treatment-Control Structures: Table 1 provides
a statistical overview of main outcome and pre-treatment variables by treatment status. The
earliest de facto entry occurs in 2013 whereas the majority of entry occurs in 2014. Roughly
18% of the MSAs in our sample do not show sufficient Uber /Lyft activity to be classified as
de facto entry. The table confirms that entry is correlated with MSA-level socioeconomic
covariates: Uber/Lyft enter cities with higher population density, higher median income,
higher share of college graduates, and higher share of public transit commuters earlier than
others. Furthermore, there is an indication that cities with early Uber/Lyft entry may be
more polluted, as measured in EPA monitoring data. However, the use of satellite-based NO,
data reveals that this may be due to systematic bias in monitoring data. EPA monitoring
data are available for about 22-27% of observations for cities where Uber/Lyft enter before
2015 whereas only 5-8% are available for cities where Uber/Lyft entry never occurs or occurs
after 2015. If we use the satellite-based data, differences in NOy concentrations across cities

by entry status become less obvious.

5. Estimation Results

5A. TWFE Estimates

We start by presenting the estimation results from the TWFE regression of eq. (1).12 We
use Sergio Correia’s Reghdfe package in Stata to efficiently absorb multi-way fixed effects.
Table 2- A presents the results using (the area-weighted means of ) monthly means (in logged

values) as the outcome whereas Table 2-B uses (the area-weighted means of) monthly

HThere is a subtle discussion as to whether the nonattainment statuses for these pollutants are ‘bad
controls’ in our context. On one hand, the local authorities with nonattainment status for PM2.5 or O3 may
take a variety of compliance measures, some of which may affect the local emissions sources of NOg directly
or indirectly. Hence, the failure to control for them is likely to overstate the estimated impact of ride-hailing
entry if the nonattainment status coincides with the entry timing/location. On the other hand, ride-hailing’s
impact on ambient NOg may also affect ambient levels of PM2.5 or Og, which in turn may trigger changes
in the nonattainment statuses for these pollutants. If this were the case, the inclusion of these controls may
lead to the overstatement of the entry’s impact. As we discussed above, transport-related emissions account
for only 2-4% of PM and VOC pollutants. Hence, the latter effect must be quite small even if it exists. Our
estimation results seem to confirm this point — the estimated impacts of entry on ambient NOy are smaller
when we include these controls.

12We use Sergio Correia’s reghdfe package in Stata to efficiently absorb two-way fixed effects.

21



maximums (in logged values). Each table shows the results from three regressions, with
varying sets of controls, for each of the subareas (urban, suburban, non-urban). The first
column controls for MSA /year/month fixed effects, the second controls for climate conditions,
and the third includes other time-varying covariates such as MSA-specific linear time trend,
regional gasoline price, and nonattainment status for O3 and PM; 5. Inclusion of endogenous
time-varying controls can potentially bias our estimates since they can be correlated with
unobservables in the estimating equation. Hence, we avoid use of such controls. Standard
errors are clustered at the MSA level.

In both tables, there is a tendency that the estimated impacts tend towards positive
values with more controls, suggesting that our estimates may be biased towards negative
values. Hence, we focus on the results with full controls. In Table 2-A, we see that de facto
ride-hailing entry is estimated to decrease ambient concentration levels of NO, for cities
in the highest population density quartile. The estimates are statistically significant, and
range from -0.032 log points (in non-urban areas) to -0.034 log points (in urban areas). If
we use a linear transformation evaluated at the mean concentration levels, these estimates
imply that ride-hailing entry reduces NOs concentrations by 0.50-0.53 ppb for these cities.
Interestingly, the estimates get smaller in magnitude for less densely populated cities, and
eventually turn positive for cities in the lowest density quartile. The results are consistent
with our prediction in Section 2 — In cities with sufficient public transit networks, a
combined use of ride-hailing with public transit can displace use of private cars, reducing
overall vehicle emissions, but in cities without such public transit networks, ride-hailing may
simply induce more driving, increasing overall vehicle emissions.

Next, we turn to the results on monthly maximums in Table 2-B. The results are gener-
ally consistent with those of Table 2-A. That is, the estimates are negative and statistically
significant for cities in the highest density quartiles; the estimates get smaller for cities in
the lower density cohorts, and turn positive for non-urban areas in the lowest density cities.
There is one important difference, however. The estimated impacts are larger, more statis-
tically significant, and range from -0.049 log points (in suburban areas) to -0.050 log points
(in urban areas). From these, we infer that ride-hailing entry mostly affects the peaks of
transport-related air pollution. That is, it tends to reduce transport-related air pollution
on days when pollution levels are high (i.e., when heavy vehicle traffic are expected). This
also explains the relatively large estimates on the mean concentration levels because the
monthly means are highly sensitive to the maximum concentration levels. These results are
also consistent with Kim and Sarmiento (2021), who finds that much of the air qualitydCDH

improvement comes from a decline in the number of bad air quality days in summer.
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5.B. Event Study Estimates

Next, we present the event study estimates from the dCDH/CS estimator.'® As explained
in Section 3, we implement the dCDH estimator separately for each density quartile (rather
than pooling all observations) after purging out the influence of exogenous time-varying
covariates. Hence, the identification is much clearer here. By construction, this estimator
uses only ‘not-yet-treated” MSAs for each treatment timing within the same population
density cohort as comparison units. As a result, the estimates are not contaminated from
use of either already treated MSAs or other non-similar MSAs in different density cohorts.

Figure 5 plots the estimates of the ATTs in relative time to entry (7 = 0). The first
two graphs on the top panel plot the estimates pooling all MSAs. The other graphs plot
the estimates using a subsample of MSAs on each population density quartile. To avoid
busy graphs, we only present the results using monthly maximum NOy except for the first
graph on the pooled sample. For the highest density cohort, eventually all units get treated,
and hence, we are able to estimate the ATTs only within the two-year window. Thus, for
consistency, we use only not-yet-treated units as control units and estimate the ATTs over
the two-year window for all density cohorts.

We see that in line with the results from the TWFE regression, on the pooled sample as
well as on the highest density cohort, NOy concentrations start to decline after ride-hailing
entry (relative to not-yet-treated units), and the magnitudes of the decline get larger over
time. This is also consistent with Figure 2, which shows that Uber/Lyft activity grows
over time. On the other hand, we do not see any sign of either a rise or decline in NO,
concentrations (relative to not-yet-treated units) for the medium- and low-density cohorts.
The graphs also indicate that there is no sign of violation of parallel-trend assumption during
the pre-treatment period. There results boost our confidence in the estimated impacts of

ride-hailing entry.

6. Exploring Economic Mechanism

So far, our results are consistent with the economic mechanism outlined in Section

2. That is, while ride-hailing may increase congestion and vehicle emissions by inducing

deadheading or displacing of mass transit for parts of daily trips, it may still decrease overall

13We use multiplegt in Stata to implement the dCDH estimator. The CS estimator (using csdid package
in Stata) produces essentially the same results, but was far slower in our computing environment.
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air pollution if a combined use of ride-hailing with mass transit displaces private car use
more than such adverse behavior. Thus, transport-related air pollution may decline in cities
with high public transit density where the complementarity between ride-hailing and public
transit is strong. In this subsection, we explore whether such an economic mechanism indeed
exists behind our results.

To do so, we draw household-level data from the American Community Survey (ACS)
on workers’ commuting mode choice. We construct an indicator I;;; of each household ¢’s
commuting mode j to work in year ¢, and run the TWFE regressions similar to eq. (1), with
I;j+ as outcome variables. We run the regression separately for each commuting mode j. We
do not impose any structural restriction on the parameters across these regressions. Because
we only have access to PUMA data (so our geographic identifiers are county and city of
residence), we only have panel structures at the MSA level. Hence, we include household-
level demographic controls such as education, income, and race.

In the ACS survey, respondents are asked to record only one commuting mode they used
to get to work during the week before the survey, and if they use more than one method,
they are asked to record one that is used for most of the distance. The ACS’s choice set
includes 12 methods of transportation. For ease of interpretation, we consolidate these into
three primary commuting modes for the first set of regressions: commuting by private car
(I.), commuting by public transit (I,;), and commuting by other modes (I,). These three
modes account for 99.1% of all commuting mode choices in our sample (85.6%, 4.8%, 8.7%,
respectively for I., I, and I,). The remaining 1% of the sample commutes by taxicab,
motorcycle, or bicycle.!* In the second set of regressions, we disaggregate ‘other modes’
further into three modes: commuting by walking (I,q ), working at home (Iome), and other
(Lother)- Thus, I, = Lyaik + Thome + Lother Dy definition.

The difficulty we have is that none of the transport modes in the ACS survey directly
captures the use of ride-hailing services. Our argument here is that I,; + I, is a good proxy
for the use of ride-sharing, I, + I, =~ I,,, for several reasons. The starting point for our
argument is that the ACS survey format does not allow respondents to record the combined
use of several transport methods, and hence, some of the actual daily transport choices are
likely to be absorbed into one of the chosen transport modes. On one hand, commuters
using ride-hailing mostly to connect to public transit stations are likely to appear as an
increase in [,, whereas commuters using ride-hailing mostly for daily errands would show

up as an increase in [,q,. On the other hand, only those who use ride-hailing as a primary

M There is a possibility that Uber/Lyft may be synonymized with conventional taxi, and the commuters
using Uber/Lyft to work may record ‘taxi’ instead of ‘other’ as their primary commuting mode. Hence, we
also estimated the same regressions in Table 3 and 7 using I, = Lyaik + Thome + Ltazi + Lother instead, but
the results were quite similar.
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commuting mode (e.g., car-pooling or using ride-hailing directly to the employment center)
would appear in I .. This line of reasoning suggests that much of the increase in the use
of ride-hailing might be unobserved by nature. However, there must be an increase in the
supply of ride-hailing to accommodate such an unobserved increase in the use of ride-hailing
(i.e., associated with increases in I, Lyaik, OF Lother). We would expect this would show up
as an increase in Ipm,e. Admittedly, this is an important limitation to the use of the ACS
data for our study purpose, and hence, we refrain from making strong inferences from the
ACS data.

With this limitation in mind, we estimate the impact of ride-hailing entry on commuting
mode indicators [;;; and see if the estimates are consistent with the economic mechanism
we discussed in Section 2. Per our discussion, we expect vehicle emissions to increase if
commuting by public transit declines (I, |) and commuting by ride-hailing increases (1, 1)
while commuting by private car stays roughly constant (Al. ~ 0). This is the case of ride-
hailing being a substitute for public transit. In contrast, we expect vehicle emissions to
decrease if both commuting by public transit and by ride-hailing increase (I, T and I, 1)
while commuting by private car declines (I. |). This is the case of ride-hailing and public
transit being complements to each other, and a joint substitute for commuting by private car.
An ambiguous case occurs when commuting by private car declines (I. |) and commuting by
ride-hailing increases (I, T) while commuting by public transit declines (I,; |). There are,
of course, other plausible explanations, given the limitation of our measurement on I;;;. We
discuss this point below when discussing the results.

Table 3-A reports the results of the TWFE regressions on the first set of outcomes (1,
I

o, and I,,). In all regressions, we include the MSA and year fixed effects as well as household-

level demographic controls. For each outcome, the second column includes weather controls
whereas the third column also includes other time-varying controls such as gasoline price
and nonattainment status. Table 3-B repeats the same, but use the sub-categories of I, as
outcomes (Lyak, Tnome, and Ioiner). As with our main results, there is an indication that the
estimates get smaller in magnitude as we include more controls. Hence, to be conservative,
we focus on results with full controls.

The results in Table 3-A are not only consistent with our main results in Table 2
but also with the economic mechanism discussed above. In the highest density MSAs, the
ride-hailing entry is estimated to decrease the share of commuting by private car by 1.3 ppt,
increase that of public transit by 0.4 ppt, and increase that of other modes by 0.7 ppt. The
estimated impacts roughly sum to zero, and hence, the estimated impacts are consistent
with each other (despite that we make no structural restriction on them). As discussed

above, the estimates for the highest density MSAs correspond to the case of ride-hailing
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and public transit being complements to each other while being a substitute for private car
commuting. Hence, these estimates are also consistent with the pollution-decreasing effect
of ride-hailing entry for these MSAs in Table 2. Furthermore, in the third-quartile MSAs,
the estimates are significantly negative for private car commuting, insignificant for public
transit commuting, and significantly positive for other modes. This corresponds to the case
of ambiguous pollution impacts. For the second quartile MSAs, we essentially see no impact
of ride-hailing on commuting modes. For the lowest density quartile, we see that ride-hailing
entry is associated with increases in private car commuting. All of these are indeed consistent
with the signs of the effect of ride-hailing entry reported in Table 2.

Although the results so far are consistent with our expectation, turning to the results
in Table 3-B reveals something we did not expect a priori. In the highest density MSAs,
ride-hailing entry is significantly associated with increases in commuting by walking (Za)
and working at home (Ipome), but has no effect on the other mode (Iper). As discussed
above, this may imply that much of the use of ride-hailing is absorbed into the combined
use of ride-hailing with either public transit or walking. We also interpret the increase in the
share of those working at home as the sign of the associated increase in ride-service providers.
We, however, found it somewhat puzzling to see there is no impact on the other commuting
mode. A priori, we expected I, to be a good ‘direct’ indicator of the use of ride-sharing
service, and hence, we expected its share to increase. But, the result suggests that this was
not the case, and instead, the ride-hailing entry did not change the share of those who use
ride-sharing or carpooling as the primary commuting mode. Taken together, these results
seem to suggest that commuters are using ride-hailing service mostly as a complementary
means of commuting rather than the primary commuting mode.

Interestingly, in the third quartile, virtually all of the increase in the share of other modes
is explained by the increase in the share of those working at home, and the magnitude of the
impact (+0.5 ppt) is roughly the same as that of the reduction in the share of commuting
by private car (-0.4 ppt). On one hand, these two effects tend to cancel out each other in
terms of their impact on mean NOy concentrations in these MSAs because the shares of the
other commuting modes did not change. On the other hand, these effects tend to decrease
maximum NQOy concentrations in these MSAs because private car commuters decline while
commuters using ride-hailing service as the primary mode do not change — ride-hailing
service providers are mostly offering services to those who use the services as complements
to their primary modes of travel. Hence, these results are consistent with findings from Hall
et al. (2018) and Kim and Sarmiento (2021).

7. Alternative Identification Strategies
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The results so far rely on the conditional parallel trend assumption A1 to hold on each
population density cohort. Because we include a MSA-specific linear trend, this identifying
assumption would be valid as long as there are no unobservable shocks that happen to occur
at the same timing as the ride-hailing entry that are correlated with the outcomes in the
same cohort of MSAs. Here, one disadvantage of our empirical strategy arises from the fact
that we construct our de facto entry measure from the Google Trends Indices. The Google
Trends Indices are the equilibrium outcomes, rather than the measures of exogenous changes
in supply of ride-hailing service (Hall et al., 2018). Suppose, for example, highly dense cities
consist of a larger share of residents who have higher demand for more eco-friendly means
of transportation. The changes in their behavior over time may be correlated with changes
in demand for ride-hailing services. In such a case, the estimated impacts in the previous
section get at the combined effect of their demand for eco-friendly transportation and that
for ride-hailing. To address this issue, we take two alternative approaches. The first is
to exploit quasi-experimental settings in Texas, and the other is to apply the instrumental

variable (IV) approach using geography-based instruments.

7.A. Quasi-experimental Setup in Texas

In this approach, we restrict our study sample only to twenty-four MSAs in Texas. There
are several advantages for doing so. First and foremost, Austin, the state capital of Texas,
voted for the fingerprint rule (FR) in 2016, which would mandate the fingerprint check for
all ride-hailing drivers. In response to the rule, Uber and Lyft halted all their services in
May, 2016. A year later, both companies resumed the services at the end of May, 2017 after
the state passed the bill that removes the requirement for fingerprint checks for their drivers.
As indicated in Figure 2-(b), this incident caused a sharp, unanticipated decline and a
subsequent rise in the supply of Uber/Lyft services. Importantly, this incidence occurred
only in Austin, but no other neighboring MSAs. There is one caution here — a number
of small ride-hailing companies, such as GetMe and RideAustin, operate in Austin during
this period. Therefore, Uber and Lyft customers may have switched to their service. Hence,
we take the FR as an event that caused an exogenous change in the supply of ride-hailing
service, but not the complete exit. Second, de facto entry dates mostly correspond to
reported entry dates in Texas. Therefore, the treatment assignment is unlikely to be driven

by unobservable demand shocks that are correlated with the outcomes. This minimizes
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the risk of identification failures we discussed above. Third, there is sufficient variation in
treatment status. Out of twenty-four MSAs, entry occurs in fourteen MSAs in 2014 and in
two MSAs in 2016. We do not observe ride-hailing activity for the remaining eight MSAs.
The urban areas of these MSAs are sufficiently far apart from each other (see Figure A4).
Therefore, focusing on Texas allows us to control for state-level confounds while exploiting
variation in timing and location of ride-hailing entry.

There are also disadvantages, however. First, the small sample size precludes the use of
certain estimation strategies for reliable statistical inference. In particular, we cannot reliably
use the dCDH/CS estimator because there are not enough ‘relevant’ MSAs for each treatment
timing for each density cohort. Second, air pollution concentration data are highly volatile,
with large variation remaining even after controlling for many observables. This also prevents
us from using certain (otherwise credible) approaches such as regression discontinuity (RD).
For example, Tarduno (2021) also uses Austin’s FR as a natural experiment and estimates
the difference-in-differences RD regression, comparing hourly traffic speeds before and after
May 9th, 2016 against those of 2015. Unfortunately, as we shall see below, this approach
fails to deliver credible statistical inference in our case.

Given these pros and cons, we employ two estimation strategies. Our first strategy
is to apply a version of the synthetic control method (SCM) a la Abadie et al. (2010)
to visually present the impacts of both the ride-hailing entry and the FR relative to the
counterfactual trend. We implement this strategy as follows. We first estimate the auxiliary
regression (2) using only the pre-treatment observations and predict the residuals for all
observations on the Texas sample. We then apply the SCM using lags up to 12 months
as covariates. By construction, this allows us to use all available information to construct
the counterfactual Austin’s residualized NO, trend. Figure 6 plots the synthetic Austin’s
NO, residuals (squares in maroon) against the actual Austin’s NO, residuals (dots in navy).
To visualize the impacts, we also plot the local polynomial smoothing of these residuals,
respectively as dashed and solid lines. Figure 6-A uses monthly means whereas Figure
6-B uses monthly maximums. The figure indicates that both mean and maximum NO,
concentrations have an upward trend before the ride-hailing entry even after controlling for
observable confounds, but switch to a declining trend after the entry. The declining trend
continues during the FR period, and then returns to the pre-FR level after the FR period.
Importantly, we see these trends relative to the counterfactual NO, trends, not just relative
to the pre-treatment period. The figure also illustrates why the RD design is unlikely to
work in our case — we see unusually high (non-seasonal) NO, concentration levels to the
right of both the ride-hailing entry and the FR cutoffs, even after controlling for year/month
fixed effects.
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Our second approach is to estimate the TWFE regression in (1) on Texas MSAs while
adding another FR dummy, which equals 1 for Austin during the FR period. This approach
does not take full advantage of the sharp identification due to the FR, but allows us to
explore its impact on the commuting mode choices. Table 4 presents the results on NOy
concentrations. To make the results comparable to Table 2, we use the same population
density quartiles as in Table 2. The results are somewhat similar to those of the full
sample reported in Table 2, with notable exceptions. The estimated impacts of ride-hailing
entry are negative and statistically significant for MSAs with higher population density,
both on monthly means and monthly maximums. As in Table 2, the estimated impacts
are generally larger on monthly maximums than on monthly means. Unlike in Table 2,
however, the estimated impacts on the second quartile MSAs are positive and statistically
significant when monthly maximums are used. Interestingly, the fingerprint rule is estimated
to decrease NO, concentrations, and the estimated impacts are large. Note that the FR
dummy is defined as the Austin dummy times the FR period dummy. Hence, the impacts
are estimated relative to no-entry status. Because Austin belongs to the highest population
density quartile, we obtain the pure impacts of the FR by subtracting the estimates for that
quartile: 0.051-0.056 log point decrease in mean NOy concentrations. This result may seem
puzzling at first because it implies that both the increase (i.e., ride-hailing entry) and the
decrease (i.e., FR) in the supply of ride-hailing service reduce transport-related air pollution.
However, exploring the economic mechanism behind the results, we find that they are indeed
consistent, not only with our argument, but also with each other.

Table 5 reports the results of our supplementary TWFE regressions using yearly household-
level commuting modes as outcomes. The same explanations as in Section 6 apply to all
regressions in Table 5, except that the regressions are run on the Texas sample along with
the additional FR dummy. The results suggest that the FR is estimated to decrease private
car commuting by 1.1 ppt, increase public transit commuting by 0.5 ppt, and increase other
commuting modes by 0.6 ppt. These changes are also associated with a 1.2-ppt increase
in the share of those working at home, a 0.4-ppt decrease in commuting by walking, and a
0.2-ppt decrease in the other mode. By subtracting the estimates for the highest population
density quintile, we arrive at the pure impacts of the FR in Austin (relative to the pre-FR
period): -0.5 ppt in private car commute, +0.6 ppt in public transit commute, -0.6 ppt in
walking to work, 4+0.5 ppt in working at home, and -0.4 ppt in the other mode. Thus, we
conclude that the sharp decline in the supply of ride-hailing service due to the FR further de-
creased commuting by private car while encouraging the use of public transit, and that these
changes in the commuting patterns decreased transport-related air pollution. Although the

exact economic mechanism is still ambiguous, the results are consistent with our argument
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in that the impact of ride-hailing depends on how it changes the overall commuting patterns.

7.B. Instrumental Variable Approach

Our last identification strategy is to apply an instrumental variable (IV) approach to
the DD regression (1), building upon recent advances in empirical research on economic
geography. To arrive at credible instruments, we distinguish two sources of endogeneity.
Our entry variable D, is an indicator of when and where our normalized Google Trends
Index crosses the threshold. Because the frequency of the keyword searches is an equilibrium
outcome, both the level and the timing of treatment is endogenous and may coincide with
unobservables that affect air quality. Therefore, we need instruments that predict both the
location and the timing of ride-hailing service’s market penetration, yet do not affect ambient
air pollution directly after controlling for pre-treatment covariates.

To arrive at our instruments, we first start by constructing three types of geography-
based instruments [see Redding and Turner (2015) for a more thorough discussion of these
instruments]. The first is based on the highway construction plan as of 1947 developed under
the mandate to serve military services. This IV is known as the "planned route IV" and is
used in Baum-Snow (2007) and Duranton and Turner (2011; 2012). The second is based on
the railroad network as of 1870. This IV is known as the "historical route IV" and is used in
Duranton and Turner (2011; 2012). The third is based on the Euclidean spanning network
connecting large cities as of 1860. This is known as the "inconsequential unit IV" and is
used in Faber (2014). All three variables are the MSA-level indicators, each of which equals
1 if the route passes through the MSA.

Although these IVs exploit conceptually quite different quasi-random variations, they are
often used in conjunction with each other and generate quantitatively similar variations in
practice (Redding and Turner, 2015). In essence, these IVs are designed to construct ‘hypo-
thetical’ routes for a given geography, which predict the observed routes, but are presumably
uncorrelated with contemporaneous economic shocks after controlling for the current eco-
nomic conditions. These geography-based instruments are known to work well for estimating
the causal effect of road network on economic outcomes. We tailor this line of argument for
our purpose: the ‘hypothetical routes’ are a good predictor of the current population size,
which is a good predictor of ride-haling entry/activity, but do not affect the current air qual-
ity except through the ride-hailing entry, after controlling for the current (pre-treatment)
economic conditions. Hence, these variables serve as a set of good instruments for the location
of ride-hailing service’s market penetration. Details of how we construct these instruments

are explained in the Appendix F.
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The geography-based instruments, however, give us only cross-sectional variation, and
thus, are a poor predictor of the timing of the market penetration. For this, we use reported
entry dates of UberX and Lyft from Hall et al. (2018), which are collected from newspapers,
blog posts, and web entries, and hence, are plausibly considered official entry dates of these
services. Specifically, we construct our IVs as follows. For each geography-based instrument
k, Z¥ for city ¢ and time T is:

ZF = Rey x GY.

On one hand, because ride-hailing service’s market penetration into a city occurs only after
the service officially enters the city, de facto entry dates are monotonic in reported ride-hailing
entry dates (D., > R.;). On the other hand, as Hall et al. or Berger et al. (2018) argue,
the timing of reported ride-hailing entry is exogenous after controlling for pre-treatment
covariates such as the current population size. Identification is strong because we interact
reported entry with geography-based instruments — we only use the timing of reported
entry to predict the timing of de facto entry whereas using hypothetical routes to predict
the location of de facto entry.

For implementation, we apply the two-stage least squares (2SLS) estimator on the DD
regression in eq. (1), separately on each population density cohort (i.e., not pooling all
MSAs). We do this to ensure we can interpret our estimates as the local average treatment
effect (LATE). For the DD-IV estimates to be the valid LATE, we require the following
identifying assumptions (Duflo, 2001; Hudson et al., 2017):

A2. For MSAs in the same population density cohort s,

1. Relevance and monotonicity: E[D..|Z., = 1] > E[D.,|Z.. = 0].
2. Exclusion restriction: Z., affects Y., only through D...

3. Conditional parallel trends in Y., on Z..: Conditional on exogenous (time-varying)
covariates .., parallel trends in unobservables hold for all MSAs in the same popula-

tion density cohort s.

E[ec,r - EC,Tf].‘ZCT =1, QCT] = E[ec,‘r - 6c,‘r71|ZcT =0, QcT]v Vee S, VseS.

Table 6 reports the DD-IV estimation results on mean NOy concentrations, using all
three geography-based instruments interacted with the reported ride-hailing entry dummy.
We use the same set of controls and the standard errors are clustered at the MSA level as in

Table 2. Our DD-IV estimates are robust to varying sets of controls. Hence, we only report

31



the estimates with full controls. In the table, we also report Cragg-Donald’s F' statistics for
weak IV as well as Hansen’s J statistics for over-identification (for urban-area regressions
only). The F statistics are well above Stock-Yogo’s critical values, and J statistics are not
statistically significant. There is a sign, however, that the DD-IV estimates are less precise
than the TWFE estimates. This is expected not only because the 2SLS estimation generally
leads to larger standard errors but also because we run the 2SLS estimation on each density
subsample.

The table indicates that the DD-IV estimates have essentially the same signs as the
TWEFE estimates, but are much larger in magnitude. Ride-hailing entry is estimated to re-
duce mean NO, concentrations for cities with high population density (i.e., the 4th quartile),
particularly in urban areas. The signs of the estimates turn positive for medium- and lowest-
density MSAs. The estimated effects on the 2nd quartile MSAs are negative but statistically
insignificant due to their large standard errors (consistent with the TWFE regression). We
take these as supportive evidence for our main results.

We also run the DD-IV regressions on household-level commuting modes, in the same
way as in Table 6. The results are reported in Table 7. The DD-IV estimates are quite
similar, at least in signs, with the TWFE estimates in Table 3, and are also consistent with
the estimated impacts on air quality in Table 6. For the highest density MSAs, ride-hailing
entry is estimated to decrease private car commuters by 6.1 ppt, but much of this decline
is associated with an increase in public transit commuters (by 5.0 ppt) rather than in other
modes. In contrast, for the 3rd quartile MSAs, a decrease in private car commuters (by 1.3
ppt) is accompanied by an increase in the share of other commuting modes (by 0.9 ppt), and
much of this change comes from an increase in the share of working at home (by 0.6 ppt).

The magnitudes of the estimates seem economically too large, however, particularly for
lower population density cohorts. For example, ride-hailing entry is estimated to increase
mean urban-area NOy concentrations by 0.121 log points in the lowest quartile and to de-
crease by 0.119 log points in the second quartile. There can be two interpretations on this
result. The first is, of course, that our instruments satisfy all identifying assumptions in
A2, and thus, our DD-IV estimates get at the true LATE estimates for the ‘compliers’: i.e.,
the true impacts on MSAs that are affected by the instruments. The second interpretation,
however, is that our instruments fail to satisfy one or more assumptions in A2, and thus, our
estimates are biased. We are lean toward the second interpretation for the following reason.
Recall that our treatment variable is a binary indicator of entry, and hence, our DD-IV
estimand can be written in a manner similar to the familiar Wald formula. Hence, if our
instruments do not predict entry well, then it tends to overly inflate the estimated impacts.

Now, recall our discussion on reported entry (or see Figure 3-(a)). Reported entry dates
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are incomplete, and their coverage is particularly poor for small, low-density cities. This is
evident in relatively small Cragg-Donald’s F' statistics in Table 6. Therefore, our DD-IV
estimates are likely biased away from zero, particularly for lower-density MSAs, although
the signs of the estimates should stay the same as long as the other identifying assump-
tions hold. Given this, we refrain from drawing too strong conclusions, particularly on lower
density cohorts. Nonetheless, ride-hailing entry seems to affect commuting patterns quite
differently across different MSAs, and these differences are well associated with differential

changes in air pollution levels.

8. Conclusion

Air pollution and congestion are major concerns for cities around the world. There is an
ongoing debate as to whether ride-hailing services such as Uber and Lyft decrease or increase
air pollution and congestion. We investigate this question empirically, exploiting staggered
rollout of ride-hailing entry into U.S. cities. Though ours is not the first to investigate the
question, we answer it with three new approaches: (1) we construct MSA-level de facto
entry dates from the Google Trends Index for both Uber and Lyft; (2) we use satellite-based
data, which allow us to compare spatially delineated subareas of MSAs consistently over
time; and (3) we take three complementary identification strategies, namely difference-in-
differences with stratification, the fingerprint rule in Austin as a quasi-experiment, and the
instrumental variable method (along with the difference-in-differences with stratification).
The paper provides robust evidence that ride-hailing entry tends to reduce air pollution in
large, dense cities, but has no significant effect in lower dense cities. We further support these
results by another set of evidence, showing that private car use declines, with an increase in
use of public transit, for large cities.

Our results are also consistent with recent studies that find mixed and heterogeneous
impacts of public transportation infrastructures [Chen-Whalley (2012); Li et al. (2019);
Gendron-Carrier et al. (2022)]. In a study covering 58 subway openings worldwide, for ex-
ample, Gendron-Carrier et al. (2022) find highly heterogeneous impacts of subway openings:
in 12 cities, subway openings had no effect; in 20 cities, air quality got worse; and air quality
improved in 23 cities with initially high levels of air pollution. Gendron-Carrier et al. argue
that ridership is a key driver explaining these heterogeneous impacts — meaningful air pol-
lution reduction occurred in cities where ridership is largest. The same goes for ride-hailing
— the pollution-reducing effect of ride-hailing is largest in cities where its complementarity

with public transit is highest.
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Our results also have important policy implications. City and urban planning practition-
ers around the world are increasingly concerned with the effect of ride-hailing on air pollution
and congestion in urbanized areas. In response to this rising concern, Uber launched a new
Uber Green service and made a $800 million fund available for Uber drivers to transit to
EVs by 2025 in Canada, Europe, and the U.S. While we agree that such an effort would
likely reduce air pollution per hired ride, its effect on carbon emissions and congestion may
be ambiguous as ride-hailing may still increase hours of driving. In this context, our results
suggest, in line with Agrawal and Zhao (2023), that policies that incentivise complementarity
between hired rides and mass transit commuting, say, via monetary incentives for commuters
or better public transportation planning, may have the double effects of increasing ridership

while reducing air pollution and carbon emissions from road transportation.
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Figure 1. Complementarity Effect of Ride-hailing Entry on Daily Transport Choices
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Figure 2. Google Trends as Measure of Uber/Lyft Market Presence
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Figure 3. De Facto versus Reported Entry

(a) Share of MSAs with Uber/Lyft Entry
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Note: The top panel report the cumulative distribution of ride-hailing entry using three alternative measures of entry: our
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bottom panel report the event study estimates regressing entry timings on the composite Google Trends index using
alternative entry measures. Whiskers represent the 95% confidence intervals using robust standard errors clustered at the
MSA level.
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Figure 4. Satellite-based versus Monitoring Data on NO, Concentration

Monthly Average in January 2014
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Figure 5. Event Study Estimates of

the Effect of Entry on NO; Concentrations

Daily mean NO:

r"_!_
—&%=  Urkan

o &~ Syburb
— “®  Rural
1T . ﬁi
6 | I
I._II!||I|IJ||||L|||||||

-B-T-6-5-4-3-2-10123 45 6T 8%10N12

Quarters since entry
High Density

I-'E._
1.-‘!_

Sy

=
I ] LI} ] T I T T I ] ] ] T ) T ] ]
B-7-4-5-4-3-2-10123 458678
Quarters since entry
Medium Low
-\.'3._
r‘!_
e !
-]

| 0 NS . . OO i O O L T L O G T
B-7T-6-5-4-3-290123 454678
Quarters since entry

Daily max MO
—%—  Urban
“A=  Suburh
B Rural

F T T T T T T 0T 7T T 1T T T T T O T RO IO
-B-7-6-5-4-3-2-10123 4567 89210112
Quarters since entry

Medium High

 EE O O O O G O O N O O O P A |
B-7-6-5-4-3-210123 45678
Quarters since entry

Low Density

Tt O . [ A L . O O s O O L . |
-B8-7-6-5-4-3-210123 45678
Quarters since entry

Note: The two graphs on the top panel report the event study estimates from the dCDH estimator on the pooled sample.

The other four graphs plot the event study estimates on each population density quartile using monthly maximum NO>

concentrations. Whiskers represent the 95% confidence intervals using robust standard errors clustered at the MSA level.



Figure 6. Synthetic vs. Observed NO; Trends in Austin, Texas
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Note: Circles (navy) are the predicted residuals from the regression of monthly NO; concentrations on all covariates and
fixed effects using only pre-treatment data. Squares (maroon) are the counterfactual NO2 concentration residuals based
on the synthetic control method using the 12-month lags as covariates. The solid lines plot the local polynomial

smoothing of the actual residuals. The dashed lines plot the local polynomial smoothing of the counterfactual residuals.
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Table 2. TWFE Estimates of Effect of Ride-hailing Entry
on Ambient Air Quality

A. Monthly Mean NO; Concentrations

Mean NO2 Concentration
Urban Area Suburban Area Non-urban Area
Entry
x 1st QuartileMSAs 0.000 0.007 0.007 0.002 0.008 0.008 0.025 0.033 * 0.033
(0.015) (0.016) (0.016) (0.015) (0.015) (0.016) (0.017) (0.017) (0.018)
X 2nd Quartile MSAs -0.018 -0.013 -0.01 -0.018 -0.012 -0.01 -0.016 -0.01 -0.006
(0.012) (0.011) (0.011) (0.011) (0.010) (0.011) (0.010) (0.000) (0.010)
x 3rd Quartile MSAs -0.013 -0.008 -0.005 -0.014 -0.009 -0.006 -0.014 -0.009 -0.005
(0.014) (0.015) (0.014) (0.013) (0.014) (0.013) (0.012) (0.013) (0.012)
x 4th Quartile MSAs -0.044 -0.038 * -0.034 = -0.042 = -0.036 * -0.033 * -0.041 = -0.036 * -0.032 =
(0.014) (0.014) (0.013) (0.014) (0.013) (0.013) (0.013) (0.013) (0.012)
Controls included:
Year/Month FE v v v v v v v v v
MSA FE v v v v v v v v v
Climate controls v v v v v v
Other controls v v v
Obs. 38,011 35,023 35,023 30,300 35,421 35,421 30,254 35,367 35,367
Adj. R? 0.759 0.757 0.757 0.765 0.762 0.762 0.781 0.778 0.778
Note: In parenthesis are robust standard errors clustered at the MSA level.
B. Monthly Maximum NO; Concentrations
Max NO2 Concentration
Urban Area Suburban Area Non-urban Area
Eatry
x 1st QuartileMSAs -0.011 -0.007 -0.007 -0.000 -0.005 -0.006 0.012 0.017 0.018
(0.017) (0.018) (0.018) (0.016) (0.017) (0.017) (0.014) (0.014) (0.015)
x 2nd Quartile MSAs -0.027 -0.025 -0.023 -0.028 -0.027 -0.024 -0.026 -0.024 -0.020
(0.019) (0.019) (0.019) (0.020) (0.019) (0.019) (0.015) (0.014) (0.016)
% 3rd Quartile MSAs -0.030 * -0.024 -0.021 -0.031 -0.025 * -0.022 -0.032 * -0.027 * -0.021
(0.013) (0.014) (0.013) (0.013) (0.014) (0.013) (0.011) (0.012) (0.012)
X 4th Quartile MSAs -0.059 ** -0.054 -0.050 * -0.058 ** -0.054 -0.049 * -0.059 ** -0.055 -0.050 *
(0.021) (0.020) (0.018) (0.020) (0.019) (0.018) (0.019) (0.017) (0.016)
Controls included:
Year/Month FE v v v v v v v v v
MSA FE v v v v v v v v v
Climate controls v v v v v v
Other controls v v v
Obs. 38,011 35,023 35,023 30,300 35,421 35,421 30,254 35,367 35,367
Adj. R 0.662 0.66 0.661 0.679 0.677 0.677 0.712 0.709 0.709

Note: In parenthesis are robust standard errors clustered at the MSA level.
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Table 3. TWFE Estimates of Effect of Ride-hailing Entry

on Commuting Mode Choice

A. Primary Commuting Mode

Commuting Mode to Work
Private Car Public Transit Other Mode
Entry
x Ist QuartileMSAs 0.002 0.003 * 0.003 * 0.000 -0.001 -0.001 -0.001 -0.002 -0.002
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
% 2nd Quartile MSAs -0.001 0.000 0.001 -0.001 -0.001 -0.001 0.002 0.000 0.000
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001)
% 3rd Quartile MSAs -0.006 *** -0.005 #*+ -0.004 #** 0.000 0.000 -0.001 0.006 *** 0.005 *** 0.004 *=*
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
% 4th Quartile MSAs -0.014 #** -0.014 ==+ -0.013 #** 0.005 * 0.005 * 0.004 * 0.008 *** 0.007 *** 0.007 ***
0.003) (0.003) 0.002) (0.002) (0.002) (0.002) (0.001) (0.001) 0.001)
Controls included:
Year FE v v v v v v v v v
MSA FE v v v v v v v v v
Demog. Controls v v v v v v v v v
Climate controls v v v v v v
Other controls v v v
Obs. 18,936,750 17,872,388 17,872,388 18,936,750 17,872,388 17,872,388 18,936,750 17,872,388 17,872,388
Adj. R’ 0.061 0.063 0.063 0.115 0.116 0.116 0.007 0.007 0.007

Note: In parenthesis are robust standard errors clustered at the MSA level. Repeated cross-section, household-level

commuting mode data from American Community Survey (ACS). Demographic controls include household-level

covariates.
B. Other Commuting Mode: Subcategories
Other Commuting Mode to Work
Walking Work at Home Other Mode
Entry
x 1st QuartileMSAs -0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001 -0.001 -0.001
(0.001) 0.001) (0.001) (0.001) (0.001) 0.001) (0.000) (0.000) (0.000)
% 2nd Quartile MSAs -0.001 -0.001 * -0.001 * 0.002 ** 0.001 0.001 0.000 0.000 0.000
(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
% 3rd Quartile MSAs 0.000 0.000 0.000 0.006 *** 0.005 *** 0.005 *** 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)
x 4th Quartile MSAs 0.002 *** 0.001 *** 0.001 *** 0.006 *** 0.005 *** 0.005 *#* 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)
Controls included:
Year FE v v v v v v v v
MSA FE v v v v v v v v
Demog. Controls v v v v v v v v v
Climate controls v v v v v v
Other controls v v v
Obs. 18,936,750 17,872,388 17,872,388 18,936,750 17,872,388 17,872,388 18,936,750 17,872,388 17,872,388
Adj. R? 0.007 0.007 0.007 0.010 0.010 0.010 0.002 0.002 0.002

Note: In parenthesis are robust standard errors clustered at the MSA level. Repeated cross-section, household-level

commuting mode data from American Community Survey (ACS). Demographic controls include household-level

covariates.
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Table 4. TWFE Estimates of Effect of Ride-hailing Entry on Ambient Air Quality
Texas MSAs Only

A. Monthly Mean NO; Concentrations

Mean NO2 Concentration
Urban Area Suburban Area Non-urban Area
Eatry
x 1st QuartileMSAs -0.006 -0.003 -0.011 -0.001 0.002 -0.005 -0.003 -0.001 -0.005
(0.016) (0.017) (0.018) (0.016) (0.016) (0.017) (0.014) (0.014) (0.016)
% 2nd Quartile MSAs 0.021 0.026 0.023 0.021 0.026 * 0.024 0.024 * 0.027 * 0.025 *
(0.015) (0.016) (0.016) (0.014) (0.014) (0.014) (0.013) (0.013) (0.013)
% 3rd Quartile MSAs -0.005 0.000 -0.003 0.003 0.008 0.006 0.004 0.007 0.004
(0.013) (0.014) (0.012) (0.011) (0.012) (0.010) (0.012) (0.013) (0.013)
% 4th Quartile MSAs -0.020 **  -0.026 ** -0.018 ~ -0.023 * -0.020 = -0.013 * -0.008 -0.006 -0.000
(0.010) (0.010) (0.008) (0.009) (0.009) (0.007) (0.009) (0.000) (0.007)
Fingerprint Rule -0.070 =~ .0.077 **  -0.072 =* -0.060 **  .0.068 **  -0.064 *** -0.066 **  -0.065 **  -0.065 **
(0.007) (0.007) (0.010) (0.007) (0.006) (0.010) (0.006) (0.006) (0.000)
Coantrols included:
Year/Month FE v v v v v v v v v
MSA FE v v v v v v v v v
Climate controls v v v v v v
Other controls v v v
Obs. 2,016 2,016 2,016 2,016 2,016 2,016 2,016 2,016 2,016
Adj. R? 0.767 0.772 0.772 0.764 0.769 0.769 0.762 0.767 0.767
Note: In parenthesis are robust standard errors clustered at the MSA level.
B. Monthly Maximum NO; Concentrations
Max NO2 Concentration
Urban Area Suburban Area Non-urban Area
Eatry
X 1st QuartileMSAs -0.019 -0.015 -0.021 -0.014 -0.009 -0.013 -0.007 -0.003 -0.006
(0.020) (0.019) (0.019) (0.018) (0.017) (0.017) (0.012) (0.012) (0.013)
X 2nd Quartile MSAs 0.031 == 0.037 = 0.035 = 0.025 = 0.032 = 0.031 = 0.018 * 0.024 =~ 0.023 =
(0.011) (0.011) (0.010) (0.012) (0.012) (0.011) (0.010) (0.010) (0.010)
% 3rd Quartile MSAs -0.048 **  -.0.043 **  -0.040 ** -0.033 * -0.026 -0.024 -0.020 * -0.014 -0.015
(0.010) (0.011) (0.009) (0.017) (0.018) (0.015) (0.010) (0.011) (0.011)
X 4th Quartile MSAs -0.070 **  .0.075 **  -0.054 ** -0.075*  -0.070 **  -0.054 ** -0.043 **  -0.039 **  .0.035 **
(0.019) (0.020) (0.013) (0.016) (0.016) (0.012) (0.011) (0.011) (0.010)
Fingerprint Rule -0.123*  -0.118 **  -0.123 ** -0.103 =+ -0.099 **  .0.102 *** -0.008 =+ .0.004 **  .0.004 ***
(0.010) (0.010) (0.010) (0.009) (0.008) (0.010) (0.009) (0.009) (0.009)
Coantrols included:
Year/Month FE v v v v v v v v v
MSA FE v v v v v v v v v
Climate controls v v v v v v
Other controls v v v
Obs. 2,016 2,016 2,016 2,016 2,016 2,016 2,016 2,016 2,016
Adj. R 0.680 0.692 0.692 0.704 0.708 0.707 0.723 0.727 0.726

Note: In parenthesis are robust standard errors clustered at the MSA level.
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Table 5. TWFE Estimates of Effect of Ride-hailing Entry on Commuting Mode Choice
Texas MSAs Only

A. Primary Commuting Mode

Commuting Mode to Work

Private Car Public Transit Other Mode
Entry
x 1st QuartileMSAs 0.000 0.001 0.001 -0.001 -0.001 0.000 0.000 0.000 -0.001
(0.005) (0.004) (0.004) (0.002) (0.002) (0.002) (0.004) (0.003) (0.003)
x 2nd Quartile MSAs 0.001 -0.002 -0.002 0.001 0.001 0.001 -0.003 0.000 0.000
(0.003) (0.003) 0.003) 0.001) (0.001) 0.001) 0.003) (0.003) (0.003)
% 3rd Quartile MSAs 0.002 -0.003 -0.003 -0.002 *#* -0.002 = -0.002 = 0.001 0.005 0.005
(0.003) (0.004) (0.004) (0.000) (0.000) (0.000) (0.003) (0.004) (0.004)
% 4th Quartile MSAs -0.007 ** -0.006 ** -0.006 ** -0.001 ** -0.001 * -0.001 ** 0.007 ** 0.007 **= 0.007 **=
(0.003) (0.002) (0.002) (0.001) (0.001) (0.001) (0.003) (0.002) (0.002)
Fingerprint Rule -0.010 *=* -0.010 *** -0.011 #=* 0.004 ** 0.004 **= 0.005 **= 0.006 *** 0.006 *** 0.006 **=*
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Controls included:
Year FE v v v v v v v
MSA FE v v v v v v v
Demog. controls v v v v v
Other controls v v v
Obs. 968,841 968,841 968,841 968,841 968,841 968,841 968,841 968,841 968,841
Adj. R? 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

Note: In parenthesis are robust standard errors clustered at the MSA level. Climate and other time-varying controls that

vary only at the state level are excluded from these regressions.

B. Other Commuting Mode: Subcategories

Other Commuting Mode to Work

Walking Work at Home Other Mode
Entry
x 1st QuartileMSAs 0.003 0.002 0.002 -0.003 -0.002 -0.003 0.000 0.000 0.000
0.004) (0.003) 0.003) (0.003) (0.002) (0.002) 0.001) (0.001) 0.001)
x 2nd Quartile MSAs -0.001 0.003 ** 0.003 ** 0.002 0.001 0.001 -0.003 ** -0.004 = -0.004 =+
(0.003) (0.001) (0.001) (0.003) (0.003) (0.002) (0.001) (0.002) (0.002)
x 3rd Quartile MSAs 0.000 0.001 0.001 0.002 0.006 *** 0.005 ** -0.002 -0.001 -0.001
(0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
x 4th Quartile MSAs 0.002 ** 0.002 ** 0.002 ** 0.007 *** 0.006 *** 0.007 **= -0.002 -0.002 -0.002
(0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001)
Fingerprint Rule -0.004 *** -0.004 == -0.004 *=* 0.012 ** 0.012 **= 0.012 **= -0.003 *** -0.002 *** -0.002 **=
(0.001) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000)
Controls included:
Year FE v v v v v v v
MSA FE v v v v v v v
Demog. controls v v v v v v v v
Other controls v v v
Obs. 968,841 968,841 968,841 968,841 968,841 968,841 968,841 968,841 968,841
Adj. R 0.002 0.002 0.002 0.014 0.014 0.014 0.003 0.003 0.003

Note: In parenthesis are robust standard errors clustered at the MSA level. Climate and other time-varying controls that

vary only at the state level are excluded from these regressions.
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Table 6. DD-IV Estimates of Effect of Ride-hailing Entry on Ambient Air Quality

Population Density

Lowest 2nd 3rd Highest
MSAs MSAs MSAs MSAs
Mean NO,

Urban area 0.121 -0.119 0.029 -0.104
(0.108) (0.204) (0.057) (0.081)
Suburban area 0.097 -0.154 0.016 -0.066
(0.108) (0.256) (0.056) (0.078)
Non-urban area 0.062 -0.109 -0.012 -0.057
(0.111) (0.250) (0.054) (0.075)
Obs. 8,460 8,601 8,762 8,936
Weak IV stat. 71.49 16.09 177.53 120.90
Hansen's J stat. 0.812 1.177 5.845 0.053
(p-values) 0.368 0.555 0.054 0.974

Note: In parenthesis are robust standard errors clustered at the MSA level. We use the full set of controls for
all regressions. Weak identification/overidentification statistics are reported for urban area regressions only.

Regressions are separately estimated for each population density strata.
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Table 7. DD-IV Estimates of Effect of Ride-hailing Entry on Commuting Mode Choice

Population Density

Lowest 2nd 3rd Highest
MSAs MSAs MSAs MSAs
Commuting Mode to Work
Private Car -0.001 0.013 -0.013 -0.061 *
(0.008) (0.024) (0.009) (0.036)
Public Transit -0.001 -0.013 0.002 0.050
(0.002) (0.011) (0.003) (0.036)
Other Mode 0.002 0.001 0.009 0.007
(0.007) (0.016) (0.008) (0.012)
Obs. 1,624,938 2,066,010 3,626,698 10,464,084
Weak IV stat. 53,298 16,487 156,026 184,734
Hansen's J stat. 0.981 1.324 2.188 3.137
(p-values) 0.322 0.516 0.335 0.208

Note: In parenthesis are robust standard errors clustered at the MSA level. We use the full set of controls for
all regressions. Weak identification/overidentification statistics are reported for urban area regressions only.

Regressions are separately estimated for each population density strata.
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Appendix A

The City of Chicago provides detailed ride-hailing trip-level data since November 2018 at
data.cityofchicago.org. The data record all trips served by transportation network companies
that took place within the community area boundaries. The trip data exclude taxi trips. We
use the data to calculate the travel distance of each trip as well as the distance between each
trip’s pickup location to the centroid of the central business district (CBD) in Chicago. Figure
Al plots (A) the frequency distribution of ride-hailing trips during the weekday rush hours in
2019 (before the Covid-19 pandemic) and (B) the distribution of travel distance against the
distance to the CBD. The rush hours are defined as 6-9 am in the morning and 16-19 pm in
the evening. These rush hours are determined from the observed peaks in the number of ride-
hailing rides during the weekdays, and thus, may not necessarily match the rush hours in other
transportation modes such as freeway traffic and public transit. From panel (A), we see a large
fraction of ride-hailing rides occur outside the CBD, although the frequency of rides tends to
decrease with the distance to CBD. Panel (B) shows the centiles of trip distance originating
from each community area. The straight line in red is the 45-degree line. The idea here is that
if a resident takes the ride to commute from the pickup location all the way to CBD, then the
trip distance (on the vertical axis) should be greater than the distance to CBD (on the
horizontal axis) so that it should lie above the 45-degree line. For example, the figure indicates
that more than 75% of ride-hailing trips originating from O’Hare Airport travel lie above the
45-degree line, implying that customers on these trips are likely to be traveling to CBD. The
figure demonstrates that roughly 75% of weekday rush-hour rides that originate from 5 miles

away or more from CBD do not directly travel to CBD.

Figure Al. Geographic Distribution of Ride-hailing Trips in Chicago
Morning and Evening Rush Hours, Weekdays, 2019
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Appendix B

We run the following OLS and Tobit regressions to examine the correlation between
entry timing/location and MSA-level socioeconomic variables as of year 2010. For the Tobit

regression, we assume the entry dates are truncated at December 2020 for no-entry MSAs.
EntryDate, = a + X{ 50108 + €

Some socioeconomic variables are missing for three of the 348 MSAs used in our study, and

hence are omitted from the regressions.

Table Al. Association between entry timing and Pre-treatment Covariates.

Entry timing

OLS Tobit
Popaoio -3.246  (2.006) -3.661  (1.98) *
Pop. density,yo -9.850  (2.51)**  -11.893  (3.27) ***
Median age,g, -0.258  (0.45) -0.294  (0.58)
Median income,y;, -28.261 (18.04) -32.445 (19.63) *
College,go -5.056 (46.48) -7.377 (51.65)
Non-white,q;, -20.169 (15.83) -23.570 (21.79)
Manuf. share,g -61.602 (27.70) ** -73.591 (31.09) **
Poverty,o -14.184 (100.44) -18.643 (120.08)
Car commute,g 47.177 (68.17) 49.750 (81.96)
Pub. transit,q;, 200.934 (120.13) * 234.579 (111.73) *
N 345 345

R’ 0.1945
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Appendix C

The following map illustrates the entry timing and location using our de facto entry
measure. The map also shows the urban areas used to calculate urban-area NO,

concentrations in our main analysis.

Figure A2. Geographic Distribution of Ride-haling Entry and Urban Area Boundaries
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Appendix D

The following figure examines the relationship between EPA monitoring data versus
NASA’s satellite-based data. Although there is a clear (statistically significant) relationship
between the two, there is also substantial variation in the satellite-based NO, concentrations
for each level of EPA NO; concentrations. There is also an indication that EPA data might

be missing for high concentration episodes, as in Zou (2021) and Grainger (2021).
Figure A3. Satellite-based versus EPA Monitoring Data
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Appendix E

The following map illustrates the entry timing and location for Texas, in a manner

similar to Figure Al.

Figure A4. Geographic Distribution of Ride-haling Entry in Texas
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Appendix F. Geography-based Instruments

This appendix explains how we construct our geography-based instruments.

For the highway construction plan as of 1947, we use a digital image of the 1947 highway
plan from Duranton and Turner (2011; 2012) and covert it into a GIS map so that the two
maps' coordinates match each other. Figure A5 is a map showing which MSAs were planned
to connect on the 1947 highway plan. As Duranton and Turner note, many interstate
highways were built subsequently based on this highway plan.

For the railroad network as of 1870, we use GIS shapefiles from Katherine Walter's GIS
Railroads and the Making of Modern America Project at the University of Nebraska--Lincoln.
Figure A6 displays historical railroad maps between 1840 and 1970 using this data. As
Duranton and Turner (2011; 2012) argue, many of the railroads from this period are
abandoned and turned into roads, and hence, are good predictors of MSA-level road networks
and economic activities today.

To construct the Euclidean spanning tree network, we start with the cities that existed as
of 1860 and had a population of 10,000 or more. We then follow the Kruskal's algorithm to
compute the minimum number of edges that connect these large cities. The resulting route is
depicted in Figure A7. As shown in the figure, the Euclidean spanning tree network is less
precise in predicting today's road networks than the first two [Vs, yet covers several important

MSAs that are not on either IV's routes.

Figure A5. 1974 highway plan

— Highway Plan (1947)
T MSAs crossed by Planned Highways
T MSA

0 150 300 600 Km
I T S T— |

58



Figure A6. Railroad as of 1870
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Figure A7. Euclidean network connecting large cities as of 1860
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Appendix G. IV Falsification Test

We run the following regression to examine if our [Vs are likely to satisfy the exclusion
restriction.

thm = aC + Atm + Z ﬁkZé(tm + Xétmy + Hc(t) + ectm
k

In this regression, our main outcome variables, the monthly means and maximums of
ambient NO; concentration levels, are regressed on our three IVs on a subsample of MSAs
with no ride-hailing entry, with the same set of full controls used in Table 2 in the main text.
If the exclusion restriction holds, our IVs should not significantly affect the outcomes for
these MSAs.

Note, however, that by definition, there are no reported entry dates for these MSAs.
Hence, we create fictitious entry dates by using year dummies. Because most entry occurs in

2014, we use year 2013, 2014, and 2015 dummies and run each regression separately.
Zk . = GE X I.(t = year)

The following table displays the results from this falsification test. We see that the F
statistics on excluded instruments are statistically insignificant for all regressions. Hence, we
conclude that our IVs pass the falsification test and, thus, are unlikely to be correlated with
other unobserved confounds. There is a sign, however, that one of our IVs, the railroad-
based instrument, is weakly correlated with the monthly maximums and in the non-urban
areas. We, thus, interpret our IV results cautiously, particularly when using the monthly

maximums as the main outcome variable.

Table A2. Falsification Test (Reduced-form Regressions on Non-entry MSAs)

Mean NO2 Concentration Max NO2 Concentration
Urban Suburban Non-urban Urban Suburban Non-urban
F Statistics on
Excluded Instruments
Year 2013 0.33 0.51 0.22 2.42 1.74 2.73
(0.804) (0.687) (0.883) (0.141) (0.236) (0.114)
Year 2014 0.65 1.08 2.14 2.38 1.73 2.61
(0.603) (0.410) (0.174) (0.146) (0.238) (0.123)
Year 2015 0.56 0.84 0.69 1.70 1.99 1.01
(0.655) (0.511) (0.581) (0.244) (0.194) (0.439)
Obs. 5,791 5,788 5,776 5,791 5,788 5,776
Adj. R? 0.742 0.749 0.778 0.597 0.618 0.69

Note: P-values in parenthesis.
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