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1 Introduction

Knowledge spillovers have been central to various fields of economics such as trade, growth,

and geography. However, little is known about the idea-generating process through knowledge

spillovers despite Marshall’s (1890) simple explanation:

if one man starts a new idea, it is taken up by others and combined with suggestions

of their own; and thus it becomes the source of further new ideas.

While intuitive, testing for this channel has been challenging. The main difficulty lies in

possible endogeneity: those who generate new ideas tend to cluster together.

To uncover this idea-generating process, we identify a causal effect of top inventor inflows

on the patent productivity of local inventors at the commuting-zone level in the United States.

In doing so, we use the PatentsView database, which is an open data platform supported by

the United States Patent and Trademark Office (USPTO). Since top inventor inflows are likely

endogenous, we predict those flows by constructing Bartik (1991) instruments: the predicted

probability that a top inventor migrates from origin to destination constitutes a share, and

inventors in the origin correspond to a shift.

We consider two types of outcomes: the productivity gains of all local inventors and

those of external inventors who are not directly connected to incoming inventors through

organizations or co-inventor relationships. Our baseline results suggest that the former and

latter gains from an additional top inventor inflow are 6% and 4%, respectively. The former

are interpreted as local productivity gains from both internal knowledge sharing and external

knowledge spillovers. The latter gains go beyond organizational boundaries and co-inventor

relationships and thus pertain to the most frequently quoted passage from Marshall (1890):

“The mysteries of the trade become no mysteries; but are as it were in the air.”

Our identification strategy consists of main three steps. We first analyze the impact of

spatial and temporal variation in individual income tax rates on the migration probability

of top inventors for any pair of origin and destination commuting zones while controlling
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for origin-destination characteristics. We then aggregate, for each destination commuting

zone, the estimated bilateral location choice probabilities across origin commuting zones to

construct a Bartik instrument, which depends on the tax differences between that destination

and all other commuting zones. We finally employ an instrumental variable (IV) approach,

where we use the Bartik instrument in the first-stage regression to proxy for top inventor

inflows and estimate a structural equation with the outcome being local patent productivity.

The identifying assumption is that the patent productivity in the destination does not directly

depend on the tax differences between that destination and all other commuting zones.1

Our novelty lies in the construction of the Bartik instrument. Since we derive the predicted

migration probability from a location choice problem of a top inventor who faces spatial and

temporal differences in individual income tax rates, our framework can be used to examine

to what extent those tax differences distort the spatial distribution of inventive activity. To

illustrate this, we run a counterfactual experiment by setting individual income taxes to their

average and find that the existence of tax differences affects local patent productivity up to

−64.8% to 72.3% with considerable spatial heterogeneity. We further decompose those gains

and losses into two: the direct gains from tax changes; and the indirect gains from tax changes

through top inventor migration. We find that the former effect is 26.5% while the latter is

73.5%.

The contribution of our paper to the literature is threefold. First, we shed new light on

the idea-generating process described in Marshall (1890) using Bartik (1991) instruments.

Our work thus contributes to the agglomeration and innovation literature, where according

to Carlino and Kerr (2015) “there is very little insight into how knowledge is transmitted

among individuals living in close geographic proximity.” Our paper addresses this important

yet unexplored issue in an environment where tax-induced migration of top inventors brings

about new knowledge to local inventors in their destination.

1For example, the assumption holds if local patent productivity in commuting zone 37500 (Santa Clara–
Monterey–Santa Cruz, CA) does not directly depend on the sum of the tax difference between commuting
zones 37500 and 19600 (Bergen–Essex–Middlesex, NJ), the tax difference between commuting zones 37500
and 24300 (Cook–DuPage–Lake, IL), and so forth.
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Second, we disentangle productivity gains due to external knowledge spillovers from those

due to internal knowledge sharing, which allows us revisit the mysteries of the trade in the air.

The theoretical background of this distinction between pure knowledge spillovers and market-

mediated knowledge transfer dates back at least to Griliches (1979) and Romer (1990). To

the best of our knowledge, however, this partially nonexcludable good nature of knowledge

has not been studied in a spatial framework using modern causal inference methods. Since

the existence of the gains from external knowledge spillovers constitutes a rationale for spa-

tial agglomeration of inventive activity, our analysis, which leverages spatial and temporal

variation in tax rates, contributes to the innovation policy literature that considers both the

benefits and costs of entrepreneurial clusters (e.g., Chatterji, Glaeser, and Kerr, 2014).

Last, we derive the Bartik instruments from a location choice model involving policy

variables à la Moretti and Wilson (2017). The theory-based Bartik instruments can be readily

used for counterfactual experiments and applied to various contexts where origin-destination

flows are affected by the difference in policy variables across locations. Our counterfactual

analysis illustrates this type of experiment and bridges the gap between the tax and innovation

literature (e.g., Stantcheva, 2021; Akcigit et al., 2022; Akcigit and Stantcheva, 2022) and the

tax and migration literature (e.g., Kleven et al., 2020). Since our analysis allows not only

for the direct productivity gains from tax changes but also for the indirect gains through

tax-induced migration of top inventors, it complements these two strands of literature.

The remainder of the paper is organized as follows. In Section 2, we explain the data and

show descriptive statistics. In Section 3, we analyze how tax differences affect the migration

of top inventors and construct the Bartik instruments. Section 4 presents our baseline results

by employing the IV approach. In Section 5, we check the robustness of the main results

in terms of time, space, and aggregation. We estimate an event study model, consider the

spatial extent of local productivity gains, and disaggregate local inventors according to their

productivity. Section 6 discusses the underlying mechanisms through which local productivity

gains materialize by focusing on two key channels: patent citations and trade secrets. We

conduct the counterfactual experiment in Section 7 and conclude the paper in Section 8.
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2 Data and descriptive statistics

Our main dataset is the PatentsView database, which is an open data platform supported

by the USPTO and provides various administrative data on issued patents and patent ap-

plications. The data are based on the disambiguation process and contain, for each issued

patent, patent inventors, assignees, residential addresses of patent inventors, and patent ci-

tations. Our sample period is from 1977 to 2009, during which there were 3, 011, 262 patent

applications by 1, 280, 374 unique inventors (see Appendix A for a more detailed description

of the main and secondary data sources).2

Since our objective is to estimate the impact of top inventor migration on the productivity

of local inventors in the destination, we need to determine (i) who qualify as top inventors;

(ii) under what condition we detect the migration of a top inventor; and (iii) who in the

destination potentially gain from top inventor inflows.

To this end, we first define the productivity of an inventor as the number of patents applied

for by that inventor weighted by the number of co-inventors. We then identify, for each year,

the top five inventors by productivity over the last ten years and call them the top inventors

for short.3 We detect the migration of a top inventor if the commuting zone of residence of

an inventor recorded in the patent application data differs in two consecutive years and if

that inventor was a top inventor in the first year.4 In our sample, the total number of top

inventor migrations is 9, 178, and the number of unique top inventors who migrated at least

once is 6, 182. Thus, on average, each top inventor moved 1.485 times, conditional on moving

at least once.5

2The sample period is dictated by data availability and consistent with that in Moretti and Wilson (2017).
3This definition of top inventors is similar to Moretti and Wilson (2017).
4We assume that the migration occurs at the end of the first year and use the definition of commuting

zones as of 1990. When an inventor applied for more than one patent in a year, the most frequently observed
commuting zone is regarded as that inventor’s place of residence in that year. In case of a tie, we use the
commuting zone observed for the first time in that year. We exclude commuting zones in Alaska and Hawaii.

5While the disambiguation algorithm adopted in PatentsView is known to be highly accurate, it is not
error-free (see Toole et al., 2021). Thus, different inventors with the same name might be mistakenly recognized
as the same inventor, which could generate seemingly frequent moves. To cope with possible overdetection of
moves, we focus on the top inventors who moved fewer than eight times. This still leaves us with more than
ninety-nine percent of the inventors who applied for patents in two consecutive years and who qualified as
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Since we analyze the impact of top inventor migration on the productivity of local inventors

in the destination, we aggregate migration flows at the destination level. Figure 1 depicts

the geographic distribution of all 9, 178 top inventor inflows by commuting zone, and Table 1

summarizes top 10 commuting zones by top inventor inflows.6

When assessing the impact of top inventor migration into a commuting zone, we focus

on the local inventors who lived in that commuting zone at that time while excluding the

top inventors who moved in that commuting zone. In our sample, the number of those local

inventors is 1, 274, 192 and they applied for 2, 027, 777 patents (weighted by the number of co-

inventors) from 1977 to 2009. Figure 2 illustrates the geographic distribution of local patent

productivity (in logs), and Table 2 summarizes the top 10 commuting zones by local patent

productivity.

As seen from Figures 1 and 2, their spatial patterns are quite similar. The correlation

between the top inventor inflows and local patent productivity (the log of local patent pro-

ductivity) is 0.97 (0.52) and their rank correlation is 0.85. However, since a high correlation

does not always imply causation, we take an IV approach to examine the causal effect of the

top inventor inflows on the productivity of local inventors. As explained below, we use the

variation in the individual income average tax rates (ATRs) by state and year to construct

predicted flows of top inventors by commuting zone and year.7 We also consider corporate

income tax rates (CITRs), investment tax credits (ITCs), and R&D tax credits (RTCs) that

can affect top inventor migration.8 Table 3 presents summary statistics for the top inventor

inflows and the local patent productivity at the commuting zone × year level. We show in

Appendix A the summary statistics for other commuting zone-level variables, as well as state

taxes and tax credits, that we use in the subsequent analysis.

top inventors at least once.
6We aggregate migration flows at the commuting zone level because it captures stronger commuting ties

and thus more inventor interactions within labor market areas and because knowledge spillovers tend to be
localized at short distances (see Murata, Nakajima, Okamoto, and Tamura, 2014). We check the robustness
of the result regarding geographic space in Section 5.

7We assume that top inventors are taxpayers at the ninety-fifth (ninety-ninth) percentile of the U.S. income
distribution as a baseline (as a robustness check).

8All data on state taxes and tax credits for the years 1977 to 2009 are provided by Moretti and Wilson
(2017).
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Figure 1: Geographic distribution of top inventor inflows.
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Notes: The inflows are defined as the number of top inventors who migrated into each
commuting zone from 1977 to 2009.

Figure 2: Geographic distribution of local patent productivity (in logs).
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local inventors from 1977 to 2009, weighted by the number of co-inventors. It excludes the
number of patents by top inventors who moved in.
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Table 1: Top 10 commuting zones by top inventor inflows.

rank cz number counties state inflows
1 37500 Santa Clara–Monterey–Santa Cruz CA 724
2 37800 Alameda–Contra Costa–San Francisco CA 557
3 38300 Los Angeles–Orange–San Bernardino CA 408
4 19600 Bergen–Essex–Middlesex NJ 372
5 20500 Middlesex–Worcester–Essex MA 335
6 38000 San Diego CA 266
7 19400 Kings–Queens–New York NY 240
8 19700 Philadelphia–Montgomery–Delaware PA 220
9 24300 Cook-DuPage–Lake IL 219

10 20901 Hartford–Fairfield–New Haven CT 195

Notes: The inflows are defined as the number of top inventors who migrated
into each commuting zone from 1977 to 2009.

Table 2: Top 10 commuting zones by local patent productivity.

rank cz number counties state productivity
1 37500 Santa Clara-Monterey-Santa Cruz CA 143,069.321
2 38300 Los Angeles-Orange-San Bernardino CA 116,303.629
3 37800 Alameda-Contra Costa-San Francisco CA 81,828.603
4 20500 Middlesex-Worcester-Essex MA 80,486.767
5 19600 Bergen-Essex-Middlesex NJ 77,093.518
6 24300 Cook-DuPage-Lake IL 75,095.386
7 11600 Wayne-Oakland-Macomb MI 63,437.324
8 19400 Kings-Queens-New York NY 54,570.527
9 21501 Hennepin-Ramsey-Dakota MN 50,587.528
10 39400 King-Pierce-Snohomish WA 49,760.915

Notes: The productivity in each commuting zone is defined as the number of
patents by local inventors from 1977 to 2009, weighted by the number of co-
inventors. It excludes the number of patents by top inventors who moved in.

Table 3: Summary statistics (main variables)

total mean sd min max
Local patent productivity (overall) 2,027,776.570 85.821 386.089 0.000 10205.625
Local patent productivity (internal) 1,061,199.866 44.913 252.589 0.000 8,232.745
Local patent productivity (external) 966,576.704 40.908 152.466 0.000 3,108.842
Top inventor inflows (overall) 9,178.000 0.388 2.139 0.000 81.000
Top inventor inflows (intrastate) 2,271.000 0.096 0.929 0.000 37.000
Top inventor inflows (interstate) 6,907.000 0.292 1.453 0.000 48.000
Number of observations 23,628
Number of commuting zones 716
Number of years 33

Notes: Summary statistics are based on the data described in Section 2 for the years 1977
to 2009. The local patent productivity can be decomposed into two: One is by the internal
inventors who share the same assignee as the migrating top inventors and/or who are co-
inventors of the migrating top inventors; and the other is by the external inventors. The
top inventor inflows can be decomposed into intrastate and interstate migration. Of the 722
commuting zones, four have no patents and two have only one patent during the sample
period. We thus use 716 commuting zones in our regression analysis with fixed effects.
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We further classify local inventors into internal and external inventors. Local inventors

are internal if they share the same assignee as the migrating top inventors and/or if they are

co-inventors of the migrating top inventors. All the other local inventors are external because

they are not directly linked to the migrating top inventors. In our sample, 42.20% of local

inventors are internal, whereas the remaining 57.80% are external. The knowledge of the

migrating top inventors can be shared with internal inventors within the same organization

and/or through co-inventors relationships (“knowledge in the lab”), or it can spill over to

external inventors within the same commuting zone (“knowledge in the air”). We call the

former internal knowledge sharing and the latter external knowledge spillovers.

3 Tax differences and the migration of top inventors

We first analyze how tax differences across states affect the migration of top inventors from

origin commuting zone o to destination commuting zone d in Sections 3.1-3.4, which reproduce

the results in Moretti and Wilson (2017). We then present in Section 3.5 a new method to

construct a Bartik instrument by using the predicted flows of top inventors.

Let σ(o) and σ(d) denote the states to which origin and destination commuting zones

belong, respectively. In the beginning of period t, the inventors in o, whose number is de-

noted by Iot, observe individual income tax rates in origin and destination states, τσ(o)t and

{τσ(d)t}d̸=o. By the end of period t, they decide whether to migrate to d or to stay in o. The

number and share of inventors who migrate from o to d in period t is defined as Modt and

Podt = Modt/Iot, respectively. Similarly, the number and share of inventors who stay in o in

period t is defined as Moot and Poot =Moot/Iot.

3.1 Inventors

In each period, inventors choose the location that gives them the highest utility. The utility of

an inventor i, who lived in commuting zone o in the previous period and moves to commuting

zone d in the current period t, is given by Uiodt = α ln(1− τσ(d)t) + α lnwdt +Zd −Cod + εiodt,
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where wdt is the wage in d; Zd captures consumption amenities and the cost of living in d; Cod

is the cost of migration measured in utility; and εiodt represents time-varying idiosyncratic

preferences for location. The utility of an inventor i who stays in o is given by Uioot =

α ln(1−τσ(o)t)+α lnwot+Zo−Coo+εioot, where we assume that Coo = 0. Taking the difference

between Uiodt and Uioot yields the utility change for inventor i, conditional on moving from

o to d. Assume that εiodt is independent and identically Gumbel distributed. Let Podt/Poot

denote the share of inventors who move from o to d relative to the share of inventors who

stay in o. The log odds ratio is then given by

ln(Podt/Poot) = α
[
ln(1− τσ(d)t)− ln(1− τσ(o)t)

]
+ α [lnwdt − lnwot] + [Zd − Zo]− Cod. (1)

3.2 Firms

In each period, firms choose the location that yields the maximum profit. The profit of firm j,

which is located in commuting zone o in the previous period and moves to commuting zone

d in the current period t, is given by ln πjodt = β ln(1 − τ ′σ(d)t) − lnwdt + Z ′
d − C ′

od + ε′jodt,

where τ ′σ(d)t stands for state policies such as CITRs, ITCs, and RTCs in σ(d); Z ′
d represents

production amenities in d; C ′
od is the cost of migration for a firm; and ε′jodt represents the

time-varying idiosyncratic productivity match between a firm and a commuting zone. As in

the case with inventors, assume that ε′jodt is independent and identically Gumbel distributed.

Let P ′
odt/P

′
oot denote the share of firms that move from o to d relative to the share of firms

that stay in o. The log odds ratio for firms is then given by

ln(P ′
odt/P

′
oot) = β

[
ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)

]
− [lnwdt − lnwot] + [Z ′

d − Z ′
o]− C ′

od. (2)

3.3 Equilibrium

In equilibrium, labor demand equals labor supply in each commuting zone in each year.

To derive the equilibrium, we first solve (2) for lnwdt − lnwot. We then plug the resulting

expression into (1) and use the equilibrium condition ln(P ′
odt/P

′
oot) = ln(Podt/Poot) to obtain
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the equation that we estimate as follows (see Appendix B for the derivation):

ln(Podt/Poot) = η
[
ln(1− τσ(d)t)− ln(1− τσ(o)t)

]
+ η′

[
ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)

]
+γd + γo + γod + uodt, (3)

where η = α
1+α

and η′ = αβ
1+α

are parameters governing inventor (and firm) mobility; γd =

1
1+α

[Zd + αZ ′
d] and γo = − 1

1+α
[Zo + αZ ′

o] are origin and destination fixed effects that account

for consumption and production amenities; γod = − 1
1+α

[Cod + αC ′
od] stands for fixed effects

that are specific to each pair of commuting zones to capture the cost of migration for inventors

and firms; and uodt is an error term.

3.4 Estimation

When estimating (3), we proxy for τσ(d)t with the ATR for a hypothetical taxpayer at the

ninety-fifth or ninety-ninth percentile of the U.S. income distribution because, as in Moretti

and Wilson (2017), we do not observe top inventors’ income.9 We regard τ ′σ(d)t as consisting

of the CITR, ITC, and RTC. We use year fixed effects or region pair × year fixed effects and

report robust standard errors that allow for three-way clustering by commuting zone pair,

origin-state × year, and destination-state × year.

Table 4 shows that the interstate migration result in Moretti and Wilson (2017) can be

replicated fairly well at the commuting zone level: The elasticity of the migration of top

inventors with respect to the difference in ATRs between origin and destination is positive

and significant in all cases. In what follows, we use the result in Column (2) of Table 4 since

the specification is most closely related to the baseline case in Moretti and Wilson (2017).

9We report the result at the ninety-fifth percentile in the main body and the result at the ninety-ninth
percentile in Appendix C.1 as a robustness check.
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Table 4: The impact of tax differences on the migration of top inventors

(1) (2) (3) (4)
∆ ln(1−ATR) 7.357 6.902 6.406 6.586

(1.611) (1.420) (1.292) (1.124)
∆ ln(1− CITR) -0.435 -0.195 -0.300 -0.140

(1.058) (0.999) (0.812) (0.717)
∆ ln(1 + ITC) 0.172 -0.083 0.118 -0.034

(0.737) (0.688) (0.993) (0.689)
∆ ln(1 + RTC) 0.323 0.311 0.377 0.178

(0.443) (0.395) (0.321) (0.281)

CZ pair FE Yes Yes No No
Origin CZ FE and No No Yes Yes

destination CZ FE
Year FE Yes No Yes No
Region pair × Year FE No Yes No Yes

Observations 4866 4866 7226 7225

R
2
(total) 0.893 0.904 0.907 0.917

R
2
(within) 0.400 0.458 0.411 0.013

Notes: The dependent variable in each column is the log-
odds ratio in (3). ATR, CITR, ITC, and RTC stand for indi-
vidual income average tax rate at the ninety-fifth percentile,
corporate income tax rate, investment tax credit, and R&D
tax credit, respectively. Cluster-robust standard errors are in
parentheses.

3.5 Bartik instrument

Our aim here is not to establish a causal relationship between inventor mobility and income

taxes. Instead, we construct a Bartik instrument from the estimated parameters in Column

(2) of Table 4 as follows:

Bdt =
∑
o ̸=d

P̂odtIot,

which is used in the first-stage regression that we explain in the next section. Observe that

Bdt is the prediction of the top inventor inflows defined as Mdt =
∑

o ̸=dModt =
∑

o ̸=d PodtIot.

We derive the predicted probability P̂odt that top inventors moved from o to d in year t by

the following three steps. First, equation (3) implies that for any pair of commuting zones c

12



and d, Poct and Podt must satisfy

Poct

Podt

=
exp

{
η ln(1− τσ(c)t) + η′ ln(1− τ ′σ(c)t) + γc + γoc

}
exp

{
η ln(1− τσ(d)t) + η′ ln(1− τ ′σ(d)t) + γd + γod

} .
Second, let C denote the set of commuting zones. Since

∑
c∈C Poct = 1 holds, we have

∑
c∈C Poct

Podt

=
1

Podt

=

∑
c∈C exp

{
η ln(1− τσ(c)t) + η′ ln(1− τ ′σ(c)t) + γc + γoc

}
exp

{
η ln(1− τσ(d)t) + η′ ln(1− τ ′σ(d)t) + γd + γod

} .

Last, using the estimated parameters η̂, η̂′, {γ̂c}c∈C, and {γ̂od}o,d∈C, we obtain

P̂odt =
exp

{
η̂ ln(1− τσ(d)t) + η̂′ ln(1− τ ′σ(d)t) + γ̂d + γ̂od

}
∑

c∈C exp
{
η̂ ln(1− τσ(c)t) + η̂′ ln(1− τ ′σ(c)t) + γ̂c + γ̂oc

} , (4)

where η̂, η̂′, {γ̂c}c∈C, and {γ̂od}o,d∈C are the estimated parameters.

4 The migration of top inventors and local patent productivity

We analyze the impact of top inventor inflows on local patent productivity. In this section, we

present a baseline case using a static framework. We then extend it to a dynamic setting in

the next section to check the robustness of our results. In both cases, we consider two types

of outcomes: (a) productivity gains of all local inventors and (b) those of external inventors.

The former will be interpreted as aggregate productivity gains from both internal knowledge

sharing and external knowledge spillovers. The latter will be viewed as the gains from external

knowledge spillovers because the gains go beyond organizational boundaries and co-inventor

relationships. Our main focus is on the latter since they pertain to what Marshall (1920)

referred to as the mysteries of trade in the air.
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4.1 Empirical specifications

We start with the fixed effect (FE) model:

lnYdt = ϕMdt + ξXdt + εdt, (5)

where Ydt is the productivity of inventors in destination commuting zone d in period t

(measured by the number of applied for patents weighted by the number of inventors),

Mdt =
∑

o ̸=dModt is the number of top inventors who migrate to destination commuting

zone d in period t, ϕ measures the productivity effect, Xdt captures time-varying factors in

destination commuting zone d and taxes in state σ(d), as well as commuting zone and time

fixed effects,10 and εdt is an i.i.d. shock. We assume that E(εdt|Xdt) = 0, i.e., εdt is mean

zero conditional on Xdt.
11 When estimating (5), we cluster standard errors at the commuting

zone level.12

However, the top inventor inflows Mdt may be correlated with εdt due to reverse causal-

ity or the existence of omitted variables that have direct impacts on both the top inventor

inflows and local patent productivity. Reverse causality arises when greater local patent pro-

ductivity attracts top inventors, whereas omitted variables exist when there are unobserved

consumption and production amenities that have been studied since Roback (1982).

To address these endogeneity issues, we employ an IV regression, which consists of the

structural equation

lnYdt = ϕsMdt + ξsXdt + εsdt, (6)

10In the baseline case, we use the ATR at the ninety-fifth percentile of the U.S. income distribution. As
robustness checks, we consider the ATR at the ninety-ninth percentile in Appendix C.1 and manufacturing
employment in commuting zone d and other taxes and tax credits in state σ(d) in Appendix C.2.

11One may worry that the conditional mean assumption E(εdt|Xdt) = 0 fails due to omitted variables. To
address this concern, we also consider a specification that allows Xdt to include state-year fixed effects.

12When estimating (5), we replace lnYdt with ln(1 + Ydt) in the baseline case to accommodate commuting
zone × year observations with no patents. As a robustness check, we drop such observations and estimate (5)
while retaining lnYdt. As reported in Appendix C.3, the results are quite similar to those in the baseline case.
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and the first-stage regression

Mdt = ψfBdt + ξfXdt + εfdt with Bdt =
∑
o ̸=d

P̂odtIot, (7)

where Iot is the number of top inventors in commuting zone o in the beginning of period t.

Since P̂odt is the fitted value from the regression in (3), it captures the estimated probability

that an inventor, located in o at the beginning of period t, moves to d by the end of period t.

When estimating (6), we cluster standard errors at the commuting zone level.13

Recall that Bdt is a Bartik instrument, which consists of the shares P̂odt and the shifts Iot. It

is derived from a simple theory of migration, namely that the flow of inventors to destination d

is the sum of the products of these two elements. We follow the shares perspective (Goldsmith-

Pinkham et al., 2020), i.e., it is the shares P̂odt that provide the exogenous variation satisfying

E(εdtP̂odt|Xdt) = 0. Indeed, as seen from (4), the shares P̂odt depend not only on the tax

rates in the destination state, {τσ(d)t, τ ′σ(d)t}, but also on the distribution of tax rates across

states, {τσ(c)t, τ ′σ(c)t}c∈C. Thus, the state taxes, {τσ(c)t, τ ′σ(c)t}σ(c) ̸=σ(d), other than those in the

destination, {τσ(d)t, τ ′σ(d)t}, have an indirect effect on the destination productivity Ydt only

via P̂odt. This indirect effect, rather than the “pull” effect captured by the destination taxes

{τσ(d)t, τ ′σ(d)t}, works as an exclusion restriction for identifying the productivity effect ϕs.14

We describe the conditions to ensure the share exogeneity E(εdtP̂odt|Xdt) = 0 in Appendix E.

We further consider two variants of the Bartik instruments to assess the sensitivity of our

results. One is the prediction of the between-state top inventor inflows, Bσ
dt =

∑
o/∈σ(d) P̂odtIot,

and the other is the predicted top inventor inflows into commuting zone ν(d) in the nearest

neighborhood of d, Bν
dt =

∑
o ̸=d,ν(d) P̂oν(d)tIot.

13When estimating (6), we replace lnYdt with ln(1 + Ydt) in the baseline case to accommodate commuting
zone × year observations with no patents. As a robustness check, we drop such observations and estimate (6)
while retaining lnYdt. As reported in Appendix C.3, the results are quite similar to those in the baseline case.

14Although our identification relies on the exclusion restriction that the tax in one state does not directly
affect the local productivity in other states, state tax competition may induce their interstate correlation.
To alleviate this concern, we examine the possibility of strategic interactions among state governments by
estimating a reaction function such that the income tax in one state responds to the income taxes in its
neighboring states (see, e.g., Brueckner, 2003). As shown in Appendix D, we find no evidence of state tax
competition, which is consistent with the exclusion restriction.
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4.2 Main results

Table 5 reports the estimation results for the FE and IV regressions. Column 1 reports

the FE case. Columns 2-6 are the results for different IV regressions. Column 2 considers

Bdt =
∑

o ̸=d P̂odtIot in (7). Columns 3 adds to Column 2 an instrument, Bσ
dt =

∑
o/∈σ(d) P̂odtIot,

which captures top inventor flows only from other states. Column 4 further adds to Column 3

an additional instrument, Bν
dt =

∑
o ̸=d,ν(d) P̂oν(d)tIot, which involves top inventor flows into

commuting zone ν(d) in the nearest neighborhood of d. Columns 5 and 6 report the results

when controlling for time-varying state-specific unobservables by year×destination state FE.

In both Panels (a) and (b), we exclude the patents by top inventors who moved in from the

dependent variable.

As seen from Table 5, the semi-elasticities of local patent productivity with respect to top

inventor inflows, as well as the elasticities of local patent productivity with respect to ln(1−

ATR), are virtually identical for all IV regressions within each panel.15 Panel (a) in Table 5

shows that an inflow of a top inventor raises the patent productivity of all local inventors

by approximately 6%. Panel (b) shows that an inflow of a top inventor raises local patent

productivity by approximately 4% when we focus on external inventors who are not directly

connected to the migrating top inventors. The latter result can be interpreted as evidence for

the existence of the mysteries of trade in the air as the number reflects neither knowledge flows

within the same assignee nor those between co-inventors. Our results obtained from the IV

regressions thus differ from Zacchia (2018), who finds no city-wide spillover effect of inventor

inflows. Our 4 percent patent productivity gains for local inventors due to an additional

inventor inflow could be compared with the 12 percent gains for incumbent plants’ TFP due

to a new plant opening studied in Greenstone, Hornbeck, and Moretti (2010). However, given

the difference between inventor arrival and firm entry, it is not surprising that the former

effect is smaller.16

15The semi-elasticities of local patent productivity with respect to top inventor inflows are somewhat smaller
for the FE regression. One possible explanation for this is the presence of urban costs such as land rents and
commuting costs that are specific to commuting zones and can vary over time (see Duranton and Puga, 2020).

16Our paper also differs from De la Roca and Puga (2017) and Moretti (2021) in that these papers focus
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Table 5: The impact of top inventor inflows on local patent productivity

(1) (2) (3) (4) (5) (6)
(a) All local inventors
Top inventor inflows 0.043 0.062 0.060 0.059 0.059 0.060

(0.006) (0.013) (0.012) (0.011) (0.013) (0.012)
ln(1−ATR) 6.041 5.915 5.899 6.017

(1.038) (1.040) (1.038) (1.038)

Effective F statistic 37.755 33.377 33.040 35.130 34.997
τ = 5% 37.418 31.930 34.734 31.214 32.989
τ = 10% 23.109 19.892 21.389 19.473 20.364
τ = 20% 15.062 13.094 13.901 12.839 13.272
τ = 30% 12.039 10.531 11.093 10.336 10.610

(b) External inventors
Top inventor inflows 0.027 0.042 0.040 0.041 0.036 0.038

(0.004) (0.010) (0.009) (0.009) (0.010) (0.010)
ln(1−ATR) 4.781 4.684 4.641 4.616

(0.848) (0.851) (0.848) (0.842)

Effective F statistic 37.755 33.377 33.040 35.130 34.997
τ = 5% 37.418 31.921 34.738 31.203 32.988
τ = 10% 23.109 19.887 21.392 19.467 20.364
τ = 20% 15.062 13.091 13.902 12.835 13.272
τ = 30% 12.039 10.529 11.094 10.333 10.610

CZ FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes No No
Year × state FE No No No No Yes Yes

Observations 23,628 23,628 23,628 23,463 23,562 23,397

Notes: The coefficient on top inventor inflows is converted to semi-elasticity. ATR
stands for the individual income average tax rate at the ninety-fifth percentile.
The coefficient on ln(1−ATR) is converted to elasticity. Cluster-robust standard
errors are in parentheses. Column 1 does not control for endogeneity of top
inventor inflows. Column 2 uses Bdt as an instrument. Column 3 uses Bdt and
Bσ

dt as instruments. Column 4 uses Bdt, B
σ
dt, and Bν

dt as instruments. Columns
5 and 6 replace ln(1−ATR) in Columns 3 and 4 with Year× state FE.

We check the robustness of these results using the specification curve analysis as in Simon-

sohn, Simmons, and Nelson (2020). We consider different specifications of the IV regressions

by focusing on five dimensions.17 Figure 3 plots the specification curve for ϕs with 90% and

on the impacts on those who migrate.
17We consider (i) whether to use the ATR at the ninety-fifth or ninety-ninth percentile; (ii) whether to use

ln(1 + Ydt) or drop commuting zones with Ydt = 0; (iii) whether to use {Bdt}, {Bdt, B
σ
dt} or {Bdt, B

σ
dt, B

ν
dt};

(iv) whether to include state-year FE; and (v) whether to include each of the other controls. Since the usual
caveat on weak instruments is applicable here, we adopt only specifications for which the null hypothesis of
weak instruments is rejected.
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Figure 3: Specification curve analysis.

(a) all local inventors

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
.0

7
.0

8
.0

9
.1

baseline estimate other estimates 95% CI 90% CI

(b) external inventors

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
.0

7
.0

8
.0

9
.1

baseline estimate other estimates 95% CI 90% CI

Notes: Panel (a) (Panel (b)) illustrates the impacts of inventor inflows on local patent
productivity without (by) excluding co-inventors and inventors in the same assignee. The
specification curve is depicted using 409 alternative specifications explained in footnote 17.
The vertical axis is the value of ϕs.

95% confidence intervals. As seen from Panels (a) and (b), the productivity gains of approxi-

mately 6% and 4% are fairly robust for 409 alternative specifications, thus verifying that the

baseline estimates do not come from data mining.18 In what follows, we use the specification

in Column 3 of Table 5 as a baseline unless otherwise stated.

4.3 Relevance and validity of empirical strategy

Our empirical strategy relies on relevance and validity of the Bartik instruments. We now

discuss these two assumptions.

To assess the relevance of the Bartik instruments, we first plot in Figure 4 the rela-

tionship between the actual migration flows Mdt =
∑

o ̸=dModt and the Bartik instruments

constructed from the fitted migration flows. For the latter, we consider Bdt =
∑

o ̸=d P̂odtIot,

Bσ
dt =

∑
o/∈σ(d) P̂odtIot, and B

ν
dt =

∑
o ̸=d,ν(d) P̂oν(d)tIot, in Panels (a), (b), and (c), respectively.

18We summarize the results for some representative cases of these alternative specifications in Appendix
C.1-C.3. In particular, we check the robustness of our results by using an alternative ATRs in Appendix C.1,
by including other controls in Appendix C.2, and by dropping commuting zone × year observations with no
patents in Appendix C.3. As seen from Tables C2, C3, and C4, the results are fairly robust.
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Figure 4: Actual versus fitted flows of top inventors.
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Notes: In each panel, the vertical and horizontal axes are the actual migration flows and the
Bartik instruments constructed from the fitted migration flows, respectively. The actual flows
in Panels (a), (b), and (c) are defined as Mdt. The Bartik instruments in Panels (a), (b), and
(c) are Bdt, B

σ
dt, and B

ν
dt, respectively.

There is a positive relationship in each panel, and the correlation coefficients for Panels (a),

(b), and (c) are given by 0.78, 0.74, and 0.38, respectively.

We further apply a test for weak instruments developed by Montiel Olea and Pflueger

(2013) to these Bartik instruments. The test is robust to heteroskedasticity, autocorrelation,

and clustering (see also Andrews, Stock, and Sun, 2019). The bottom panel of Table 5 reports

the effective F statistic, which is a scaled version of the nonrobust first-stage F statistic.

Following their baseline, we set the threshold at τ = 10% and the significance at 5%. In all

cases, the effective F statistic exceeds the critical value reported at τ = 10%, thus rejecting

the null hypothesis of weak instruments.

To address the validity of the Bartik instruments, we follow the shares perspective and

focus on the exogeneity of the shares P̂odt conditional on the characteristics of the commuting

zones Xdt. We assess the plausibility of the exogeneity assumption in two steps. We first use

the decomposition result in Goldsmith-Pinkham et al. (2020) to rewrite the overall estimate

of the productivity effect as ϕ̂s =
∑

o∈C ω̂
s
oϕ̂

s
o, which consists of the origin-specific weight ω̂s

o

and the origin-specific productivity effect ϕ̂s
o. The former is referred to as the Rotemberg
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weight (Rotemberg, 1983) and measures to what extent the bias originating from commuting

zone o contributes to the overall bias. We then assess the exogeneity of the shares {P̂odt}d∈C

for commuting zones o with the top five highest Rotemberg weights ω̂s
o by considering the

correlation between the predicted shares {P̂odt}d∈C and the characteristics of the commuting

zones {Xdt}d∈C.

We summarize the results in Appendix F. Table F1 presents the summary of the Rotem-

berg weights. The origin commuting zones with the top five highest weights are Bergen-Essex-

Middlesex, Cook-DuPage-Lake, Kings-Queens-NewYork, Philadelphia-Montgomery-Delaware,

and Allegheny-Westmoreland-Washington.19 Table F2 reports the destination commuting

zones to which top inventors moved from these top five origin commuting zones. The result

that most migrations are interstate is in line with the assumption that the main source of

identifying variation comes from inventor mobility caused by personal income tax differences

between states. Table F3 reports, for each top five origin commuting zone, the correlation

between the share and the log of manufacturing employment conditional on the controls and

fixed effects.20 Reassuringly, the correlations are low, and the regression coefficients on the

log of manufacturing employment are not statistically significant at the five percent level in

all specifications.

5 Robustness

In this section, we examine the robustness of our main results in terms of time, space, and

aggregation. We first extend our static framework to a dynamic setting, which allows us to

assess the impacts on local patent productivity before and after top inventor inflows. We

then check the robustness of our main results in terms of the geographic extent of produc-

19The name of each commuting zone shown here is a list of three counties with the largest numbers of
inventors (in descending order) in that commuting zone.

20Table C3 shows that manufacturing employment is related to local patent productivity. We thus use
manufacturing employment as an observable confounder. In principle, we could examine the correlation of
the share with other commuting zone characteristics that affect local patent productivity. However, in practice,
such time-varying data on commuting zone characteristics are not readily available for the time period that
we consider.
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tivity gains. We finally consider a disaggregated case where local inventors are classified by

their patent productivity. In Appendix C, we further conduct additional robustness checks

by considering: the case where the ATR for a hypothetical taxpayer is assumed to be at

the ninety-ninth percentile of the U.S. income distribution; the case where we include other

controls in our baseline specification; and the case where we drop commuting zone × year

observations with no patents in our main analysis.

5.1 Dynamic analysis

As a first robustness check, we conduct event study analysis to examine whether the baseline

results are sensitive to the inclusion of lead and lag effects of top inventor inflows. To this

end, we extend (6) as follows:

lnYdt =

j∑
j=j+1

ϕℓ
jMdt−j + ξℓXdt + εℓdt, (8)

which is a distributed lag model in levels with a binning window [j+1, j]. Thus, when j = −1

and j = 0, the model degenerates into the static model (6). Schmidheiny and Siegloch (2023)

show that equation (8) is equivalent to the event study model given by21

lnYdt =

j∑
j=j

µes
j ∆M

(j)
dt + ξesXdt + εesdt, (9)

where

∆M
(j)
dt =


∑j

k=−∞ (Mdt−k −Mdt−k−1) if j = j < 0

Mdt−j −Mdt−j−1 if j < j < j∑∞
k=j (Mdt−k −Mdt−k−1) if j = j > 0

. (10)

Our aim is to estimate {µes
j , µ

es
j+1, ..., µ

es
j−1
, µes

j
} with normalization µes

−1 = 0. The event study

coefficients capture the cumulative effect of the event of top inventor inflows, i.e., µes
j = µes

j−1+

21Unlike in standard event study models with a single treatment of identical intensity, we consider a more
general case with multiple treatments of varying intensities. See Schmidheiny and Siegloch (2023) for the
detailed classification of event study models.
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ϕℓ
j =

∑j
h=0 ϕ

ℓ
h for j = 0, 1, ..., j and µes

j = µes
j+1 − ϕℓ

j+1 = −
∑−1

h=j+1 ϕ
ℓ
h for j = −2,−3, ..., j.

Thus, the coefficients for j ≥ 0 denote cumulative productivity effects from event year 0

(when there are top inventor inflows) to year j. Since the static model abstracts from the

lead and lag effects, the baseline model may produce biased estimates of productivity gains.

As in the static analysis, we incorporate the Bartik instruments into the event study model.

Let ∆Bdt = [∆B
(j)

dt · · ·∆B(j)
dt ]

′ denote a (j+ j+1)×1 vector of the first time difference of the

IVs, where ∆B
(j)
dt is defined in a similar way as in (10). The IV event study model consists

of the structural equation (9) and the first-stage regression analogous to (7) as follows22

∆M
(j)
dt = ψef (j)∆Bdt + ξef

(j)
Xdt + εefdt

(j)
, (11)

where ψef (j) = [ψef (j,j) · · ·ψef (j,j)] is a vector of coefficients.23

Figure 5 shows the results for the IV event study regressions. Panel (a) illustrates the

dynamic impact of top inventor inflows on the patent productivity of all local inventors,

which includes not only internal knowledge sharing within the same assignee and between

co-inventors but also external knowledge spillovers. Panel (b) corresponds to the dynamic

productivity gains of external inventors, which go beyond organizational boundaries and co-

inventor relationships. In both cases, we observe a substantial increase in local patent pro-

ductivity in event year 0 when there are top inventor inflows. The post-event semi-elasticities

go up to approximately 0.05, which ensures our baseline results in Section 4.2. In contrast,

the pre-event semi-elasticities are close to zero and are not statistically significant in any

pre-event year in Panel (b), thus suggesting no productivity gains prior to the event of top

inventor migration.24

22In this robustness check we abstract from the possibility that treatment effects can be heterogeneous.
Although several recent papers have explored under what conditions event study models provide valid average
treatment effects in the presence of heterogeneous treatment effects (e.g., de Chaisemartin and D’Haultfœuille,
2023), they are not readily applicable to our IV event study model with multiple treatments of varying
intensities.

23When estimating the event study models with multiple instruments, we set ∆Bσ
dt = [∆B

σ(j)

dt · · ·∆B
σ(j)
dt ]′

and ∆Bν
dt = [∆B

ν(j)

dt · · ·∆B
ν(j)
dt ]′ and use [∆Bdt

′ ∆Bσ
dt

′]′ or [∆Bdt
′ ∆Bσ

dt
′ ∆Bν

dt
′]′ as instruments in (11).

24We report the numbers used in Figure 5 and the associated first-stage statistics in Tables C5 and C6,
respectively. In Appendix G, we further assess robustness to possible violations of the parallel trends assump-
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Figure 5: IV event study regressions.
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Notes: Panel (a) (Panel (b)) illustrates the dynamic impact of inventor inflows on local
patent productivity without (by) excluding co-inventors and inventors in the same assignee.
In each panel, IV ES1 uses Bdt and B

σ
dt as instruments and IV ES2 uses Bdt, B

σ
dt, and B

ν
dt as

instruments.

5.2 Geographic space

To check the robustness of our main results in terms of the geographic extent of productivity

gains, we replace the structural equation in (6) with

lnYdt =
6∑

r(d)=1

ϕsr
r(d)Mr(d)t + ξsrXdt + εsrdt , (12)

where r(d) is the distance ring defined for each destination commuting zone d and Mr(d)t is

the predicted inflows of top inventors in the r(d)-th ring. The first ring r(d) = 1 stands for

destination d itself. r(d) ̸= 2, ..., 6 corresponds to commuting zones that are 0-50, 50-100,

100-150, 150-200, and 200-250 miles away from commuting zone d.25

Figure 6 illustrates the estimated coefficients {ϕ̂sr
r(d)}6r(d)=1. Panel (a) (Panel (b)) illustrates

the impact of top inventor flows in r(d) on patent productivity in d without (by) excluding

co-inventors and inventors in the same assignee. In each panel, the impact is significant only

tion, following the method developed by Rambachan and Roth (2023).
25The distance between any pair of two commuting zones is calculated using the great circle formula.
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Figure 6: Distance-ring regression.
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Notes: Panel (a) (Panel (b)) illustrates the impact of inventor inflows on local patent pro-
ductivity without (by) excluding co-inventors and inventors in the same assignee. In each
panel, IV1 uses Bdt as an instrument, IV2 uses Bdt and Bσ

dt as instruments, and IV3 uses
Bdt, B

σ
dt, and B

ν
dt as instruments.

in the first ring for all three different IVs, which implies that top inventor inflows affect patent

productivity only in the commuting zone where they enter. Such localized productivity gains

are reminiscent of localized knowledge spillovers in Jaffe et al. (1993) and Murata et al. (2014).

We will discuss the mechanism of localized productivity gains in terms of localized knowledge

spillovers as evidenced by patent citations in Section 6.1.

We also conduct a permutation-based placebo test to assess the plausibility of our findings

that productivity gains are localized within each commuting zone. This is done by examining

the impact of top inventor migration into commuting zone d on productivity gains in a

randomly drawn hypothetical commuting zone R(d) ̸= d in state σ(d). We thus replace the

structural equation in (6) with

lnYR(d)t = ϕsRMdt + ξsRXdt + εsRdt (13)

and estimate (13) for each IV specification 1000 times with replacement to obtain the distri-

bution of {ϕsR
i }1000i=1 . We then check if the null hypothesis of no productivity gains, ϕsR = 0,
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Figure 7: Placebo.
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Notes: Panel (a) (Panel (b)) illustrates the impact of inventor inflows on local patent pro-
ductivity without (by) excluding co-inventors and inventors in the same assignee when lnYdt
in the structural equation is replaced with lnYR(d)t, where R(d) ̸= d is a commuting zone
that is randomly drawn from state σ(d) to which commuting zone d belongs. In each panel,
IV1 uses Bdt as an instrument, IV2 uses Bdt and B

σ
dt as instruments, and IV3 uses Bdt, B

σ
dt,

and Bν
dt as instruments.

is rejected. Figure 7 depicts the 95% confidence interval and the mean of the distribution for

each IV specification. The results in both Panels (a) and (b) show that top inventor flows

into commuting zone d do not significantly change patent productivity in randomly drawn

commuting zone R(d) ̸= d from state σ(d), thus implying that the extent of productivity

gains is geographically limited within each commuting zone.

5.3 Productivity gains by inventor productivity

We have thus far shown that top inventor inflows enhance patent productivity only for local

inventors. Since local inventors differ in their patent productivity, we further delve into the

foregoing result by addressing who gain more from top inventor inflows. To this end, we

disaggregate local inventors by their patent productivity and estimate the causal effect for

each productivity level.

Panel (a) of Figure 8 illustrates the case with all local inventors. We observe that there
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Figure 8: Productivity gains by inventor productivity.
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Notes: Panel (a) (Panel (b)) illustrates the impact of inventor inflows on local productivity
gains by inventor productivity without (by) excluding co-inventors and inventors in the same
assignee. In each panel, IV1 uses Bdt as an instrument, IV2 uses Bdt and B

σ
dt as instruments,

and IV3 uses Bdt, B
σ
dt, and B

ν
dt as instruments.

are productivity gains at each productivity level and that more-productive local inventors

tend to gain more from top inventor inflows. We find a similar pattern in Panel (b). Hence,

even when we focus on external inventors who are not directly connected to the migrating top

inventors, our result suggests that more-productive local inventors benefit more from their

inflows.

6 Mechanisms

The productivity gains estimated in the previous sections suggest that local inventors acquire

knowledge from migrating top inventors, regardless of whether local inventors are internal

or external. We now discuss the underlying mechanisms through which those productivity

gains materialize. We first focus on patent citations that have been widely used as proxy for

knowledge flows since Jaffe et al. (1993). Specifically, we count how many times local inventors

cite incoming top inventors and estimate the percentage change in the number of citations

caused by top inventor inflows. Furthermore, Jaffe et al. (1993) recognize the existence of
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other knowledge flows that cannot be captured by patent citations. We thus complement the

foregoing analysis by using state-year variation in legal protection of trade secrets documented

by Png (2017a, 2017b) as a quasi-natural experiment. We expect that knowledge flows from

migrating top inventors to local external inventors would be greater in states where legal

protection of trade secrets is weaker, so that there would be additional local productivity

gains in those states. Our results presented below are consistent with Marshall’s insight on

knowledge spillovers since external inventors can not only learn patentable knowledge but

also obtain other forms of knowledge from migrating top inventors as if they were in the air.

6.1 Patent citations

To see the impact of top inventor inflows on local patent citations, we count how many times

the patents of the top inventors who migrated into commuting zone d in year t were cited by

the local inventors in commuting zone d in year t and denote it by Cdt. When constructing

Cdt, we focus on the patents that had been applied over the last ten years. Replacing patent

productivity Ydt in (6) with the number of citations Cdt, we consider the structural equation

for citations as follows:

lnCdt = ϕscMdt + ξscXdt + εscdt,

while retaining the same first-stage equation (7). The coefficient ϕsc gauges the magnitude of

knowledge flows from migrating top inventors to local inventors.

Panels (a) and (b) of Figure 9 illustrate the estimated coefficients for the case of all local

inventors and that of external inventors, respectively. In both panels, local inventors are

classified by their productivity. In Panel (a), an additional top inventor inflow raises the

number of local inventors’ citations to incoming top inventors by 10-20% regardless of the

productivity of local inventors. By contrast, in Panel (b), the external inventors, especially

those with higher productivity, tend to cite substantially more patents of the top inventors

who moved in the same commuting zone. These results suggest the existence of knowledge

flows from the migrating top inventors to the local inventors, even when we focus on the
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Figure 9: Citations.
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Notes: Panel (a) (Panel (b)) illustrates the impact of an additional top inventor inflow on
the number of all local inventors’ (external inventors’) citations to incoming inventors (in
percentage). In each panel, we use Bdt and B

σ
dt as instruments.

external inventors who are not directly connected to the migrating top inventors.26

6.2 Trade secrets

Trade secrets were formerly defined and protected from misappropriation by common law in

the United States. However, these definitions and protections have been codified into law with

the enactment of federal legislation known as the Uniform Trade Secrets Act (UTSA). While

most states had already adopted the UTSA, there had been substantial heterogeneity in the

states’ approaches to trade secrets due to the differences in the timing of the adoption of the

UTSA and the strength of trade secrets protection during the common law era. We exploit

the state-year variation in trade secrets protection to uncover productivity gains through

knowledge flows that cannot be captured by patent citations.

Given the heterogeneity in legal protection of trade secrets, inventors who migrate to a

26It is perhaps puzzling that the impact is smaller in Panel (a). One possible explanation is that internal
inventors, who account for approximately 40% of all local inventors, had already collaborated with or worked in
the same organization as the incoming top inventors and thus had already cited them prior to their migration.
In that case, we would expect less additional percentage changes in the number of internal inventors’ citations
after the arrival of the top inventors.
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state with weaker protection would exchange knowledge more with other inventors outside

their organizations, thereby bringing about additional productivity gains to local external in-

ventors. In contrast, the change in legal protection of trade secrets would not affect knowledge

sharing within an organization, thus leaving the productivity gains of local internal inventors

unaffected.

We examine those differential impacts of top inventor migrations on local patent produc-

tivity. To this end, we use the state-level index of trade secrets in Png (2017a, 2017b), which

captures both the legal protection under common law and the enactment of the UTSA.27 The

index ranges between 0 and 1, and a higher score implies stronger legal protection. Let Sσ(d)t

denote an indicator variable for whether the trade secrets index in state σ(d) in year t is below

the median of the trade secrets index distribution. If Sσ(d)t = 1, the degree of trade secrets

protection is low in commuting zone d in year t, so that we expect higher patent productivity

due to a greater amount of knowledge brought about by inventor migration.

Let ϕs = [ϕs
0 ϕ

s
1 ϕ

s
2] and Edt = [Mdt Sσ(d)t MdtSσ(d)t]

′ denote a vector of coefficients and a

vector of endogenous variables. The structural equation is then given by

lnYdt = ϕ
sEdt + ξsXdt + εsdt. (14)

Our interest is in the coefficient ϕs
2 on MdtSσ(d)t. If ϕs

2 > 0, top inventor inflows lead to

higher local patent productivity in commuting zones with lower trade secrets protection,

which suggests that knowledge brought about by top inventor migration is more likely to spill

over to local inventors in commuting zones with lower trade secrets protection.

As before, we use the Bartik instruments Bdt and Bσ
dt for the top inventor flows Mdt to

mitigate the endogeneity concern. To address the potential endogeneity of the trade secrets

indicator Sσ(d)t, we follow Png (2017b) who argues that the enactment of the UTSA is related

to the enactment of other state-level uniform laws such as the Uniform Determination of Death

Act (UDDA), Uniform Federal Lien Registration Act (UFLRA), and Uniform Fraudulent

27Png (2017a) provides the index for the years 1979 to 1998, and Png (2017b) extends it to the years 1970
to 2010.
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Figure 10: Trade secrets.
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Notes: Panel (a) (Panel (b)) illustrates the coefficients ϕs
2 on the interaction term MdtSσ(d)t

in (14) without (by) excluding co-inventors and inventors in the same assignee. In each
panel, we use Bdt and B

σ
dt as instruments.

Transfer Act (UFTA) because these laws were introduced to harmonize state laws. Since the

three laws are unlikely to be associated with local shocks, we use them as instruments for the

trade secrets indicator. The first-stage equation that accompanies (14) is thus given by

Edt = ψ
fZdt + ξfXdt + εfdt, (15)

where ψf is a vector of coefficients and Zdt = [(Bdt, B
σ
dt)##(UDDA

σ(d)t , U
FLRA
σ(d)t , U

FTA
σ(d)t)]

′ is a vector

of IVs, with U ℓ
σ(d)t indicating whether uniform law ℓ = {DDA,FLRA,FTA} was in effect in

state σ(d) in year t, and ## denotes an interaction-term operator.28

Panel (a) in Figure 10 illustrates the result for all local inventors. Since the strength

of trade secrets protection is unlikely to affect internal knowledge sharing within the same

assignee and between co-inventors, it is not surprising that the overall impact is insignificant

regardless of the productivity of local inventors. Panel (b) in Figure 10 presents the result

for external inventors, where the impacts for top 5, top 10, and top 25 local inventors (top

28The interaction-term operator ## generates all possible combinations of elements for a given pair of sets.
For example, let S1 = {A,B} and S2 = {C,D}, where each set Si has two elements. Then, [S1##S2]

′ =
[{A,B}##{C,D}]′ = [A B C D AC AD BC BD]′.

30



50 and top 75) are significant at the five percent (ten percent) level. Hence, top inventor

migration tends to enhance the patent productivity of external inventors in commuting zones

with lower trade secrets protection.

7 Counterfactuals

We now conduct a counterfactual experiment. Using the baseline specification in Section 4,

we consider what happens to the geographic distribution of patent productivity if all state

individual income taxes are set to their average. This experiment is useful for assessing to

what extent state tax differences contribute to patent productivity differences across space.

Recalling that the changes in state taxes affect the choice probabilities P̂odt in (4) and the

Bartik instruments Bdt in (7), as well as Bσ
dt, the procedure of the counterfactual experiment

can be summarized as follows. We first derive the counterfactual probabilities P̃odt to construct

the counterfactual Bartik instruments {B̃dt, B̃
σ
dt}, which allow us to estimate the counterfac-

tual migration flows M̃dt via the first-stage regression (7). We then define the counterfactual

changes in the migration flows as ∆̃Mdt =
(

M̃dt−M̂dt

M̂dt

)
Mdt, whereMdt, M̂dt, and M̃dt are the ac-

tual, fitted, and counterfactual migrations flows, respectively.29 We finally apply the counter-

factual changes in migration flows ∆̃Mdt to the structural equation (6) to construct the coun-

terfactual changes in the log patent productivity ∆̃ lnYdt = ϕ̂s∆̃Mdt + ξ̂s∆̃ ln(1 − ATRσ(d)t),

where ∆̃ ln(1− ATRσ(d)t) = ln(1− ÃTRσ(d)t)− ln(1− ATRσ(d)t) captures the counterfactual

tax changes.30 Thus, the overall impact of tax changes on ∆̃ lnYdt can be decomposed into

two: the direct effect ξ̂s∆̃ ln(1−ATRσ(d)t) and the indirect effect via the changes in migration

flows ϕ̂s∆̃Mdt. The indirect effect can be further decomposed into two: productivity gains

due to internal knowledge sharing and those due to external knowledge spillovers.

29If the actual and fitted flows coincide, the definition reduces to ∆̃Mdt = M̃dt −Mdt. However, since the

actual and fitted flows generally differ, we compute the percentage change in the migration flows
(

M̃dt−M̂dt

M̂dt

)
based on the fitted and counterfactual flows in the tax induced migration model and then multiply it by the
actual flows Mdt.

30When computing the counterfactual change, we replace ∆̃ lnYdt with ∆̃ ln(1 + Ydt) as before to accom-
modate commuting zone × year observations with no patents.
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Figure 11: Counterfactual experiment (Setting state taxes to their average).
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Notes: The figure illustrates the counterfactual percentage change in the number of patents
at the commuting zone level when all state individual income taxes in 2009 are set to their
average. We use Bdt and B

σ
dt as instruments.

Figure 11 illustrates the percentage change in local patent productivity when state taxes

are set to their average. The overall impact tends to be large in commuting zones in California,

Oregon, North Carolina, and New York, where state taxes and initial patent productivity are

high.31 Table 6 summarizes the top 10 commuting zones by patent productivity gains. For

instance, if state taxes were equal, the number of patents in Santa Clara–Monterey–Santa

Cruz (which is the commuting zone with the highest patent productivity in Table 2) would

be larger by 72.3%. In contrast, the overall impact tends to be small in commuting zones

in Texas, Washington, Florida, and New Hampshire, where state taxes are low and initial

patent productivity is high. Table 7 summarizes the bottom 10 commuting zones by patent

productivity gains. For instance, if state taxes were equal, the number of patents in King–

Pierce–Snohomish (which is ranked as the tenth most productive commuting zone in Table 2)

31Notably, the counterfactual changes are heterogeneous even within states, although we equalize taxes
between states. The reason is that the counterfactual choice probabilities P̃odt, which are obtained by setting
all state taxes equal in (4), include fixed effects at the commuting zone level.
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Table 6: Top 10 commuting zones by patent productivity gains (%).

rank cz number counties state gains (%)
1 37500 Santa Clara–Monterey–Santa Cruz CA 72.291
2 37800 Alameda–Contra Costa–San Francisco CA 53.377
3 38300 Los Angeles–Orange–San Bernardino CA 47.115
4 38801 Multnomah–Washington–Clackamas OR 46.022
5 38000 San Diego CA 38.042
6 1701 Wake–Durham–Orange NC 35.253
7 19400 Kings–Queens–New York NY 35.080
8 38901 Lane–Marion–Linn OR 31.310
9 35801 Ada–Canyon–Elmore ID 29.754
10 39203 Deschutes–Crook–Jefferson OR 29.206

Notes: The patent productivity gains are defined as the percentage change in
the number of patents when all state individual income taxes in 2009 are set
to their average. We use Bdt and Bσ

dt as instruments.

Table 7: Bottom 10 commuting zones by patent productivity gains (%).

rank cz number counties state gains (%)
1 39400 King–Pierce–Snohomish WA -64.777
2 31201 Travis–Williamson–Hays TX -50.710
3 32000 Harris–Fort Bend–Galveston TX -49.002
4 33100 Dallas–Denton–Collin TX -46.491
5 20600 Hillsborough–Rockingham–York NH -41.326
6 7100 Palm Beach–St. Lucie–Martin FL -38.194
7 7400 Orange–Seminole–Lake FL -35.219
8 5202 Shelby–DeSoto–Tipton TN -35.020
9 6900 Sarasota–Manatee–Charlotte FL -34.585
10 7000 Dade–Broward–Monroe FL -34.561

Notes: The patent productivity gains are defined as the percentage change in
the number of patents when all state individual income taxes in 2009 are set
to their average. We use Bdt and Bσ

dt as instruments.

would be smaller by 64.8%. These results suggest that the presence of state tax differences

significantly distorts the spatial distribution of inventive activity.

To see which states are most affected by the presence of tax differences, we first define,

for each commuting zone d, the counterfactual change in the number of patents ∆̃Ydt =(
Ỹdt−Ŷdt

Ŷdt

)
Ydt in the same way as we define ∆̃Mdt, where Ydt, Ŷdt, and Ỹdt are the actual,

fitted, and counterfactual numbers of patents in commuting zone d, respectively. We then

aggregate ∆̃Ydt within each state σ to obtain the counterfactual changes in the number of

patents ∆̃Yσt =
∑

d∈σ ∆̃Ydt. Denoting by Yσt =
∑

d∈σ Ydt the actual number of patents at the

state level, we finally compute the percentage change in the number of patents at the state
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Figure 12: Counterfactual experiment (Setting state taxes to their average)
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Notes: The figure illustrates the counterfactual percentage change in the number of patents
for the states of California, New York, Massachusetts, Michigan, Texas, and Washington when
all state individual income taxes in 2009 are set to their average. The overall change for each
state is decomposed into the direct effect via the change in state taxes and the indirect effect
via the tax-induced migration. The latter consists of the internal knowledge sharing effect
and the external knowledge spillover effect. We use Bdt and B

σ
dt as instruments.

level ∆̃Yσt

Yσt
.32

Figure 12 illustrates the percentage change in the number of patents for selected states

when state taxes are set to their average. For instance, if state taxes were equal, the number

of patents in California (where state taxes and patent productivity are high) would be greater

by 55.1%, which can be decomposed into the direct effect via the reduction in California state

taxes (15.6%) and the indirect effect via the tax-induced migration (39.5%). The indirect

effect can be further decomposed into the internal sharing effect (31.4%) and the external

spillover effect (8.1%). In contrast, the number of patents in Texas (where state taxes are low

32Observe that ∆̃Yσt

Yσt
=

∑
d∈σ ∆̃Ydt∑
d∈σ Ydt

=
∑

d∈σ

(
Ỹdt−Ŷdt

Ŷdt

)
Ydt∑

d∈σ Ydt
. The latter is the weighted average of the

percentage change
(

Ỹdt−Ŷdt

Ŷdt

)
with weight being the share of actual number of patents Ydt∑

d∈σ Ydt
. If the actual

and fitted numbers of patents coincide, the percentage change in the number of patents at the state level

reduces to ∆̃Yσt

Yσt
=

∑
d∈σ Ỹdt−

∑
d∈σ Ydt∑

d∈σ Ydt
.
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and patent productivity is high) would be smaller by 45.3%, which can be decomposed into

the direct effect via the rise in Texas state taxes (28.5%) and the indirect effect via the tax-

induced migration (16.8%). The indirect effect can be further decomposed into the internal

sharing effect (12.7%) and the external spillover effect (4.1%).

These results suggest that the indirect effect via tax-induced migration can be substantial.

To see the relative role of the direct and indirect effects at the national level, we aggregate

those changes in the number of patents across all commuting zones in all states that we

consider in the paper. We find that the share of the indirect effect is 0.735 (and that of the

direct effect is 0.265). Our results thus complement Akcigit et al. (2022) who assess the direct

impact of state taxes on innovation.

8 Concluding remarks

In this paper we have uncovered the idea-generating process described by Marshall (1890)

using Bartik (1991) instruments. We have identified a significant causal effect of top inventor

inflows on the patent productivity of all local inventors. Even when we focus on local external

inventors who are not directly connected to incoming inventors through organizations or co-

inventor relationships, the effect remains significant and is approximately 4%, thus implying

that the mysteries of the trade are in the air.

Since our analysis has disentangled productivity gains due to pure knowledge spillovers

from those due to market-mediated knowledge transfer, our findings are consistent with the

partially nonexcludable good nature of knowledge, whose implications have been explored

theoretically in the technology and growth literature. The existence of the gains from pure

knowledge spillovers constitutes a rationale for spatial agglomeration of inventive activity,

thus contributing to the innovation policy literature that considers both the benefits and

costs of entrepreneurial clusters.

Our counterfactual experiment suggests that the existence of tax differences across states

distort the spatial distribution of inventive activity up to −64.8% to 72.3% with considerable
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spatial heterogeneity. The decomposition of those gains and losses reveals that not only

the direct gains from tax changes but also the indirect gains from tax changes through top

inventor migration matter. Thus, more research is needed to bridge the gap between the tax

and innovation literature and the tax and migration literature.
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Appendix A Data Appendix

A.1 Data sources and data construction

Patent data. The main data come from the USPTO PatentsView website (https://

patentsview.org/). It includes data on patents, inventors, inventors’ addresses, assignees,

and patent citations and provides data files regarding the disambiguation of inventor and

assignee names (https://patentsview.org/disambiguation/). Additional procedures are

used to allocate inventors’ addresses to commuting zones. We first use the latitude and lon-

gitude of each inventor’s address (which are taken from the PatentsView data) to identify

his/her county of residence. We then relate it to the commuting zone in which the inventor

resides based on the correspondence table between counties and commuting zones in 1990 on

the IPUMS USA website (https://usa.ipums.org/usa/volii/1990lma.shtml).

State taxes and tax credits. Data on U.S. state taxes and tax credits for 1976-2019

are distributed on the Open ICPSR web page (https://www.openicpsr.org/openicpsr/

project/113057/version/V1/view). Summary statistics are presented in the Online Ap-

pendix for Moretti and Wilson (2017).

Employment data. The employment data are taken from the County Business Patterns

(CBP) database (http://fpeckert.me/cbp/). Eckert et al. (2021) provide a detailed de-

scription of the data. Since the original employment data is at the county level, we aggregate

it at the commuting zone level. We use 2012 NAICS codes 31-33 to obtain the number of

employees in manufacturing.

Trade secrets data. Data on trade secrets are compiled by Png (2017a, b). Each state has

six binary scores regarding the strength of legal protection of trade secrets under the common

law and the Uniform Trade Secrets Act (UTSA). The trade secrets index used in our analysis

is the sum of the six scores divided by six, which takes a value between zero and one.
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Data for state tax competition analysis. Data on the socio-politico-economic character-

istics used in the state tax competition analysis are taken from multiple sources. The data on

population for various age and race groups are from the “U.S. Intercensal County Population

Data by Age, Sex, Race, and Hispanic Origin” web page (https://www.nber.org/research/

data/us-intercensal-county-population-data-age-sex-race-and-hispanic-origin)

operated by NBER. The key economic and state finance data are from the “State Economic

and Government Finance Data” web page (https://doi.org/10.7910/DVN/CJBTGD) pro-

vided by Klarner (2015). The political party affiliation of each state governor is from the

National Governors Association web page (https://www.nga.org/governors/).

A.2 Other summary statistics

Table A1: Summary statistics at the commuting zone level (other variables)

mean sd min max
ATR 0.238 0.030 0.164 0.330
ATR99 0.315 0.032 0.244 0.410
ATR50 0.108 0.027 0.033 0.169
CITR 0.064 0.027 0.000 0.138
ITC 0.009 0.023 0.000 0.100
RTC 0.022 0.038 0.000 0.250
TSI 0.340 0.235 0.000 0.767
EMP 22398.524 61797.154 0.000 1152493.572
# CITES ALL 21.966 347.065 0.000 17344.000
# CITES EXT 2.098 37.218 0.000 2215.000
Number of observations 23,628
Number of commuting zones 716
Number of years 33

Notes: Summary statistics are based on the data described in Section 2 for
the years 1977 to 2009. ATR (ATR99, ATR50), CITR, ITC, RTC, and TSI
stand for individual income average tax rate at the ninety-fifth (ninety-ninth,
fiftieth) percentile, corporate income tax rate, investment tax credits, R&D
tax credits, and trade secrets index, respectively. EMP, # CITES ALL, and
# CITES EXT are manufacturing employment, the number of citations by
all local inventors, and the number of citations by local external inventors.

41



Table A2: Summary statistics at the state level (other variables)

mean sd min max
ATR 0.240 0.030 0.164 0.330
ATR99 0.317 0.032 0.244 0.410
ATR50 0.108 0.026 0.033 0.169
CITR 0.067 0.028 0.000 0.138
ITC 0.009 0.022 0.000 0.100
RTC 0.024 0.044 0.000 0.250
TSI 0.339 0.227 0.000 0.767
Number of observations 1,584
Number of states 48
Number of years 33

Notes: Summary statistics are based on the data de-
scribed in Section 2 for the years 1977 to 2009. ATR
(ATR99, ATR50), CITR, ITC, RTC, and TSI stand for
individual income average tax rate at the ninety-fifth
(ninety-ninth, fiftieth) percentile, corporate income tax
rate, investment tax credits, R&D tax credits, and trade
secrets index, respectively.

Appendix B Derivation of equation (3)

To derive (3), we first solve (2) for lnwdt − lnwot as follows

lnwdt − lnwot = β
[
ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)

]
+ [Z ′

d − Z ′
o]− C ′

od − ln(P ′
odt/P

′
oot).

Plugging this expression into (1) and setting ln(P ′
odt/P

′
oot) = ln(Podt/Poot), we obtain

ln(Podt/Poot) = α
[
ln(1− τσ(d)t)− ln(1− τσ(o)t)

]
+α

{
β
[
ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)

]
+ [Z ′

d − Z ′
o]− C ′

od − ln(Podt/Poot)
}

+ [Zd − Zo]− Cod,

which yields

(1 + α) ln(Podt/Poot) = α
[
ln(1− τσ(d)t)− ln(1− τσ(o)t)

]
+α

{
β
[
ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)

]
+ [Z ′

d − Z ′
o]− C ′

od

}
+ [Zd − Zo]− Cod.
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We thus have

ln(Podt/Poot) =
α

1 + α

[
ln(1− τσ(d)t)− ln(1− τσ(o)t)

]
+

αβ

1 + α

[
ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)

]
+

1

1 + α
[Zd − Zo] +

α

1 + α
[Z ′

d − Z ′
o]−

1

1 + α
[Cod + αC ′

od]

=
α

1 + α

[
ln(1− τσ(d)t)− ln(1− τσ(o)t)

]
+

αβ

1 + α

[
ln(1− τ ′σ(d)t)− ln(1− τ ′σ(o)t)

]
+

1

1 + α
[Zd + αZ ′

d]−
1

1 + α
[Zo + αZ ′

o]−
1

1 + α
[Cod + αC ′

od] .

Setting η = α
1+α

, η′ = αβ
1+α

, γd =
1

1+α
[Zd + αZ ′

d], γo = − 1
1+α

[Zo + αZ ′
o], γod = − 1

1+α
[Cod + αC ′

od]

and adding uodt, we obtain the expression in (3).

Appendix C Additional robustness checks

C.1 An alternative average tax rate

In the log odds regressions, we proxy for τσ(d)t with the ATR for a hypothetical taxpayer

at the ninety-fifth percentile of the U.S. income distribution. We report an alternative case

where we use the ninety-ninth percentile in Table C1. Using specification (2) in Table C1

we construct the three types of Bartik instruments as before and check the robustness of our

main results in Table C2. As seen from Table C2, our main semi-elasticities are virtually

identical to the baseline cases: Panel (a) shows that an inflow of a top inventor raises the

patent productivity of all local inventors by approximately 6%, and Panel (b) shows that an

inflow of a top inventor raises local patent productivity by approximately 4% when we focus

on external inventors.

Using this alternative ATR, we also conduct the dynamic analysis in Figure C1. Panel

(a) illustrates the dynamic impact of inventor inflows on the patent productivity of all local

inventors, which includes not only internal knowledge sharing within assignees and between

co-inventors but also external knowledge spillovers. Panel (b) corresponds to the case of “the

mysteries of the trade in the air”, where we exclude co-inventors and inventors in the same
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Table C1: The impact of tax differences on the migration of top inventors (robustness)

(1) (2) (3) (4)
∆ ln(1−ATR99) 2.340 2.504 2.382 2.455

(1.315) (1.198) (1.150) (0.966)
∆ ln(1− CITR) -0.440 -0.251 -0.147 -0.018

(1.115) (1.063) (0.841) (0.750)
∆ ln(1 + ITC) -0.700 -0.913 -0.549 -0.711

(0.719) (0.672) (0.948) (0.666)
∆ ln(1 + RTC) 0.223 0.234 0.319 0.124

(0.445) (0.392) (0.324) (0.285)

CZ pair FE Yes Yes No No
Origin CZ FE and No No Yes Yes

destination CZ FE
Year FE Yes No Yes No
Year FE × Region pair No Yes No Yes

Observations 4866 4866 7226 7225

R
2
(total) 0.892 0.902 0.906 0.916

R
2
(within) 0.392 0.451 0.405 0.003

Notes: The dependent variable in each column is the log-odds
ratio in (3). ATR99, CITR, ITC, and RTC stand for indi-
vidual income average tax rate at the ninety-ninth percentile,
corporate income tax rate, investment tax credits, and R&D
tax credits, respectively. Cluster-robust standard errors are in
parentheses.

Figure C1: IV event study regressions (robustness).

(a) all local inventors
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(b) external inventors
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IV ES1 IV ES2

Notes: Panel (a) (Panel (b)) illustrates the dynamic impact of inventor inflows on local
patent productivity without (by) excluding co-inventors and inventors in the same assignee.
In each panel, IV ES1 uses Bdt and B

σ
dt as instruments and IV ES2 uses Bdt, B

σ
dt, and B

ν
dt as

instruments.
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Table C2: The impact of top inventor inflows on local patent productivity (robustness)

(1) (2) (3) (4) (5) (6)
(a) All local inventors
Top inventor inflows 0.044 0.064 0.062 0.062 0.059 0.060

(0.007) (0.013) (0.012) (0.012) (0.013) (0.012)
ln(1−ATR99) 2.580 2.625 2.604 2.658

(0.693) (0.699) (0.697) (0.699)

Effective F statistic 36.605 33.598 33.179 35.170 35.141
τ = 5% 37.418 31.742 34.735 30.971 33.112
τ = 10% 23.109 19.781 21.385 19.330 20.431
τ = 20% 15.062 13.025 13.894 12.751 13.309
τ = 30% 12.039 10.478 11.086 10.269 10.637

(b) External inventors
Top inventor inflows 0.027 0.044 0.043 0.044 0.035 0.038

(0.004) (0.010) (0.009) (0.009) (0.010) (0.010)
ln(1−ATR99) 2.142 2.178 2.136 2.160

(0.617) (0.621) (0.618) (0.619)

Effective F statistic 36.605 33.598 33.179 35.170 35.141
τ = 5% 37.418 31.713 34.738 30.948 33.112
τ = 10% 23.109 19.764 21.386 19.318 20.431
τ = 20% 15.062 13.016 13.895 12.744 13.309
τ = 30% 12.039 10.471 11.086 10.263 10.636

CZ FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes No No
Year × state FE No No No No Yes Yes

Observations 23,628 23,628 23,628 23,463 23,562 23,397

Notes: The coefficient on top inventor inflows is converted to semi-elasticity.
ATR99 stands for the individual income average tax rate at the ninety-ninth per-
centile. The coefficient on ln(1−ATR99) is converted to elasticity. Cluster-robust
standard errors are in parentheses. Column 1 does not control endogeneity of top
inventor inflows. Column 2 uses Bdt as an instrument. Column 3 uses Bdt and
Bσ

dt as instruments. Column 4 uses Bdt, B
σ
dt, and Bν

dt as instruments. Columns 5
and 6 replace ln(1−ATR99) in Columns 3 and 4 with Year×destination state FE.

assignee. In both cases, the results are quite similar to the baseline cases: the pre-event

semi-elasticities are close to zero and post-event semi-elasticities increase to approximately

0.05, which ensures the results of our static model. We report the numbers that we use in

Figure C1 and the associated first-stage statistics in Tables C5 and C6, respectively.
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C.2 Including other controls in our baseline specification

We further check the robustness of our main results in Table 5 by including additional con-

trols such as the ATR at the fiftieth percentile (ATR50), CITR, ITC, and RTC, as well as

manufacturing employment (EMP) at the commuting zone level. Table C3 shows that our

baseline results are virtually identical for all specifications including both the FE and IV

cases. In particular, the IV regressions reported in Panel (a) show that an inflow of a top

inventor raises the patent productivity of all local inventors by approximately 6%. The IV

regressions reported in Panel (b) show that an inflow of a top inventor raises local patent

productivity by approximately 4% when we focus on external inventors.

C.3 Dropping commuting zone × year observations with no patents

We check the robustness of our main results in Table 5 by dropping commuting zone × year

observations with no patents, instead of using log(1 + Ydt) as in the baseline case. Table C4

shows that the results are qualitatively similar to our baseline results for all specifications

including both the FE and IV cases. In particular, the IV regressions reported in Panel (a)

show that an inflow of a top inventor raises the patent productivity of all local inventors by

approximately 5-6%. The IV regressions reported in Panel (b) show that an inflow of a top

inventor raises the patent productivity of external inventors by approximately 3-4%.
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Table C3: The impact of top inventor inflows on local patent productivity

(1) (2) (3) (4) (5) (6) (7) (8)
(a) All local inventors
Top inventor inflows 0.043 0.063 0.060 0.060 0.044 0.066 0.064 0.064

(0.006) (0.013) (0.012) (0.011) (0.007) (0.013) (0.012) (0.011)
ln(1−ATR) 6.159 6.175 6.137 6.217 6.245 6.267 6.201 6.256

(1.179) (1.182) (1.179) (1.183) (1.147) (1.146) (1.144) (1.148)
ln(1−ATR50) -0.181 -0.285 -0.325 -0.234 -0.385 -0.510 -0.544 -0.437

(1.388) (1.376) (1.377) (1.379) (1.372) (1.358) (1.360) (1.363)
ln(1− CITR) 0.021 -0.176 -0.090 -0.134 -0.129 -0.354 -0.245 -0.288

(0.645) (0.647) (0.640) (0.654) (0.637) (0.638) (0.632) (0.646)
ln(1 + ITC) 0.127 0.160 0.133 0.120 0.257 0.300 0.262 0.254

(0.409) (0.408) (0.407) (0.407) (0.404) (0.403) (0.402) (0.402)
ln(1 + RTC) -0.100 -0.212 -0.174 -0.172 -0.095 -0.219 -0.171 -0.165

(0.251) (0.252) (0.248) (0.253) (0.250) (0.251) (0.247) (0.251)
ln(1 + EMP) 0.118 0.124 0.121 0.122

(0.025) (0.025) (0.025) (0.025)
Effective F statistic 38.554 33.272 32.878 38.751 33.214 32.814
τ = 5% 37.418 31.894 34.721 37.418 31.953 34.724
τ = 10% 23.109 19.871 21.381 23.109 19.905 21.384
τ = 20% 15.062 13.081 13.895 15.062 13.102 13.898
τ = 30% 12.039 10.521 11.088 12.039 10.537 11.091

(b) External inventors
Top inventor inflows 0.027 0.042 0.040 0.041 0.028 0.044 0.042 0.044

(0.004) (0.010) (0.009) (0.009) (0.004) (0.010) (0.009) (0.009)
ln(1−ATR) 4.790 4.802 4.756 4.690 4.847 4.864 4.805 4.734

(0.978) (0.983) (0.980) (0.977) (0.958) (0.961) (0.958) (0.958)
ln(1−ATR50) -0.127 -0.207 -0.255 -0.102 -0.264 -0.359 -0.418 -0.269

(1.181) (1.176) (1.175) (1.176) (1.170) (1.164) (1.163) (1.165)
ln(1− CITR) 0.325 0.174 0.228 0.153 0.225 0.055 0.124 0.047

(0.543) (0.544) (0.541) (0.551) (0.542) (0.543) (0.540) (0.550)
ln(1 + ITC) 0.272 0.298 0.277 0.293 0.359 0.392 0.364 0.387

(0.395) (0.395) (0.394) (0.393) (0.393) (0.393) (0.392) (0.392)
ln(1 + RTC) -0.050 -0.137 -0.103 -0.102 -0.047 -0.141 -0.100 -0.098

(0.218) (0.221) (0.218) (0.221) (0.218) (0.221) (0.218) (0.222)
ln(1 + EMP) 0.079 0.084 0.082 0.083

(0.020) (0.020) (0.020) (0.020)
Effective F statistic 38.554 33.272 32.878 38.751 33.214 32.814
τ = 5% 37.418 31.884 34.726 37.418 31.941 34.729
τ = 10% 23.109 19.865 21.384 23.109 19.899 21.387
τ = 20% 15.062 13.078 13.897 15.062 13.098 13.900
τ = 30% 12.039 10.519 11.089 12.039 10.534 11.093

CZ FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Year × state FE No No No No No No No No
Observations 23,628 23,628 23,628 23,463 23,628 23,628 23,628 23,463

Notes: The coefficient on top inventor inflows is converted to semi-elasticity. ATR (ATR50) stands
for the individual income average tax rate at the ninety-fifth (fiftieth) percentile. The other coeffi-
cients are converted to elasticity. Cluster-robust standard errors are in parentheses. Column 1 does
not control endogeneity of top inventor inflows. Column 2 uses Bdt as an instrument. Column 3
uses Bdt and Bσ

dt as instruments. Column 4 uses Bdt, B
σ
dt, and Bν

dt as instruments. Columns 5 to 8
repeat the same specifications as Columns 1 to 4 with ln(1 + EMP) at the commuting zone level.
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Table C4: The impact of top inventor inflows on local patent productivity

(1) (2) (3) (4) (5) (6)
(a) All local inventors
Top inventor inflows 0.039 0.054 0.051 0.050 0.051 0.052

(0.006) (0.012) (0.010) (0.010) (0.012) (0.011)
ln(1−ATR) 6.934 6.838 6.841 7.017

(1.257) (1.260) (1.259) (1.255)

Effective F statistic 37.096 32.976 32.657 34.258 34.170
τ = 5% 37.418 31.930 34.704 31.378 33.007
τ = 10% 23.109 19.892 21.372 19.569 20.377
τ = 20% 15.062 13.094 13.890 12.897 13.282
τ = 30% 12.039 10.531 11.085 10.380 10.619

CZ FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes No No
Year × state FE No No No No Yes Yes

Observations 20,038 20,038 20,038 19,941 19,972 19,875

(b) External inventors
Top inventor inflows 0.023 0.034 0.032 0.033 0.029 0.031

(0.004) (0.009) (0.008) (0.008) (0.009) (0.009)
ln(1−ATR) 5.450 5.380 5.357 5.340

(1.054) (1.056) (1.054) (1.044)

CZ FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes No No
Year × state FE No No No No Yes Yes

Effective F statistic 37.072 32.971 32.651 34.229 34.137
τ = 5% 37.418 31.917 34.706 31.350 32.995
τ = 10% 23.109 19.885 21.373 19.553 20.370
τ = 20% 15.062 13.090 13.891 12.888 13.278
τ = 30% 12.039 10.528 11.085 10.373 10.615

Observations 19,903 19,903 19,903 19,806 19,837 19,740

Notes: The coefficient on top inventor inflows is converted to semi-elasticity. ATR
stands for the individual income average tax rate at the ninety-fifth percentile.
The coefficient on ln(1−ATR) is converted to elasticity. Cluster-robust standard
errors are in parentheses. Column 1 does not control endogeneity of top inventor
inflows. Column 2 uses Bdt as an instrument. Column 3 uses Bdt and Bσ

dt as
instruments. Column 4 uses Bdt, B

σ
dt, and Bν

dt as instruments. Columns 5 and 6
replace ln(1−ATR) in Columns 3 and 4 with Year× destination state FE.
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Table C5: The dynamic impact of top inventor inflows on local patent productivity

(1) (2) (3) (4) (5) (6) (7) (8)
Top inventor inflows (j = −5) -0.023 -0.020 0.001 0.000 -0.020 -0.018 0.004 0.003

(0.010) (0.008) (0.007) (0.006) (0.009) (0.008) (0.007) (0.006)
Top inventor inflows (j = −4) -0.019 -0.013 -0.007 -0.007 -0.021 -0.016 -0.008 -0.008

(0.014) (0.008) (0.011) (0.007) (0.011) (0.008) (0.009) (0.007)
Top inventor inflows (j = −3) -0.002 -0.001 0.006 0.008 -0.004 -0.001 0.006 0.009

(0.010) (0.009) (0.008) (0.007) (0.010) (0.009) (0.009) (0.007)
Top inventor inflows (j = −2) -0.018 -0.014 -0.004 -0.005 -0.018 -0.014 -0.003 -0.004

(0.010) (0.007) (0.009) (0.006) (0.008) (0.006) (0.008) (0.006)
Top inventor inflows (j = 0) 0.027 0.035 0.033 0.038 0.030 0.037 0.038 0.042

(0.012) (0.009) (0.011) (0.010) (0.011) (0.009) (0.012) (0.010)
Top inventor inflows (j = +1) 0.046 0.047 0.043 0.050 0.047 0.049 0.047 0.054

(0.015) (0.014) (0.014) (0.013) (0.015) (0.013) (0.015) (0.013)
Top inventor inflows (j = +2) 0.046 0.045 0.037 0.037 0.045 0.045 0.040 0.042

(0.013) (0.013) (0.012) (0.012) (0.013) (0.012) (0.012) (0.011)
Top inventor inflows (j = +3) 0.051 0.048 0.044 0.040 0.049 0.048 0.043 0.040

(0.012) (0.011) (0.011) (0.009) (0.012) (0.011) (0.011) (0.009)
Top inventor inflows (j = +4) 0.027 0.026 0.030 0.030 0.033 0.032 0.036 0.035

(0.014) (0.011) (0.013) (0.011) (0.013) (0.011) (0.014) (0.012)
Top inventor inflows (j = +5) 0.043 0.045 0.045 0.049 0.054 0.055 0.057 0.060

(0.013) (0.013) (0.013) (0.012) (0.013) (0.013) (0.014) (0.013)

Observations 15752 15642 15752 15642 15752 15642 15752 15642

Notes: Odd number columns use Bdt and Bσ
dt as instruments. Even number columns use Bdt, B

σ
dt, and

Bν
dt as instruments. Columns (1) to (4) use ATR95, whereas Columns (5) to (8) use ATR99 as robustness

checks. The dependent variable in Columns (1), (2), (5), and (6) is the patent productivity for all local
inventors, whereas that in Columns (3), (4), (7), and (8) is the patent productivity for external inventors.
Cluster-robust standard errors are in parentheses.
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Table C6: First-stage statistics for the dynamic analysis

(1) (2) (3) (4)
(a) Sanderson-Windmeijer (under identification)
Top inventor inflows (j = −5) 340.216 575.561 391.350 671.175

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = −4) 156.024 284.008 160.880 248.067

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = −3) 177.020 308.252 217.101 325.561

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = −2) 163.037 223.759 211.554 254.252

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = 0) 257.894 446.932 204.805 397.033

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = +1) 442.020 477.121 372.415 463.968

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = +2) 208.149 421.991 194.555 381.307

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = +3) 255.615 465.129 277.758 503.246

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = +4) 126.082 266.307 130.618 229.608

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = +5) 271.808 417.144 216.519 338.164

(0.000) (0.000) (0.000) (0.000)

(b) Sanderson-Windmeijer (weak identification)
Top inventor inflows (j = −5) 30.805 27.280 35.435 31.812

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = −4) 14.127 13.461 14.567 11.758

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = −3) 16.028 14.610 19.658 15.431

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = −2) 14.762 10.606 19.155 12.051

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = 0) 23.351 21.183 18.544 18.818

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = +1) 40.023 22.614 33.721 21.991

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = +2) 18.847 20.001 17.616 18.073

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = +3) 23.145 22.046 25.150 23.852

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = +4) 11.416 12.622 11.827 10.883

(0.000) (0.000) (0.000) (0.000)
Top inventor inflows (j = +5) 24.611 19.771 19.605 16.028

(0.000) (0.000) (0.000) (0.000)

Notes: Odd number columns use Bdt and Bσ
dt as instruments. Even number columns use

Bdt, B
σ
dt, and Bν

dt as instruments. Columns (1) and (2) use ATR95, whereas Columns (3)
and (4) use ATR99 as robustness checks.
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Appendix D State tax competition

We test the null hypothesis that state governments strategically determine their taxes. Based

on the previous studies (e.g., Brueckner, 2003), we estimate a reaction function where a state

responds to the choices of its neighboring states as follows:

τσt = ρ
∑
σ′ ̸=σ

ωσσ′τσ′t + βXσt−1 + γσ + γt + εσt. (16)

The dependent variable τσt is the tax in state σ in year t, and the term
∑

σ′ ̸=σ ωσσ′τσ′t on the

right-hand side is the weighted sum of the taxes in the neighboring states with the weight

being ωσσ′ . Xσt−1 stands for local patent productivity and a vector of socio-politico-economic

characteristics for state σ in year t−1 (see Table D1).33 γσ and γt denote state and year fixed

effects, respectively, and εσt is the error term.

Our null hypothesis is that ρ > 0. If ρ > 0 were to hold, there would be strategic tax

competition between state governments, which would induce interstate correlation between

taxes and productivity. In that case, the exclusion restrictions would be violated since the

top inventor inflows would not mediate the interstate correlation.

However, measuring ρ is challenging because state tax decisions are simultaneous. To

address the potential endogeneity problem that the main regressor
∑

σ′ ̸=σ ωσσ′τσ′t is correlated

with the error term εσt, we follow Kelejian and Prucha (1998) and use the weighted sum of

neighboring states’ socio-politico-economic characteristics as an instrument. Let Xσt−1 =

[x1,σt−1, · · · , xK,σt−1]
′, where xk,σt−1 is the k-th characteristic. We first generate the weighted

sum
∑

σ′ ̸=σ ωσσ′xk,σ′t−1 for each characteristic {xk,σt−1}Kk=1. These K instruments are then

used to estimate the predicted value of the weighted sum of neighboring states’ tax rates,∑
σ′ ̸=σ ωσσ′τσ′t, in the first-stage regression.

Estimating ωσσ′ is difficult due to lack of degrees of freedom. We thus consider several

33When the state governments make a tax rate decision, they observe the information on the socio-politico-
economic conditions in the previous year. We thus use the lagged variables Xσt−1.
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Table D1: Summary statistics

mean sd min max obs
log patent productivity 6.285 1.422 2.881 10.201 1617
log population 15.011 1.009 12.951 17.430 1617
share of black or African American population 0.114 0.121 0.002 0.705 1617
share of population younger than 20 0.292 0.028 0.205 0.414 1617
share of population older than 64 0.124 0.018 0.075 0.184 1617
unemployment rate 5.919 2.046 2.342 17.350 1617
log total income 18.015 1.185 15.010 21.186 1617
log gross state product 18.191 1.170 15.106 21.403 1617
democrat governor (dummy variable) 0.511 0.500 0.000 1.000 1617
log tax revenue 15.291 1.159 12.318 18.581 1584
log government debt 15.302 1.253 10.872 18.819 1584
log government revenue 16.110 1.134 13.301 19.511 1584

Notes: Summary statistics are based on the data described in Appendix A.1 for the
years 1977 to 2009.

alternative weights and examine the sensitivity of the estimates. In the baseline cases, we

use the following two types of weights. One is the first-order contiguity weight: ωσσ′ = 1 if

state σ′ is contiguous with σ and ωσσ′ = 0 otherwise. The other is constructed such that it is

proportional to top inventor flows from state σ′ to state σ.34

Table D2 reports the regression results for the sample period 1977-2009.35 Columns 1-2

(3-4) use the first-order contiguity (top-inventor-inflow) weights. Columns 1 and 3 show that

the estimated values of ρ are negative and insignificant. Columns 2 and 4 include the own-

state productivity and show that it does not significantly affect the estimates of ρ. These

results imply that there is neither strategic tax competition nor a direct relationship between

tax and productivity across states. We further apply a test by Montiel Olea and Pflueger

(2013) to each specification in Table D2. The effective F -statistics indicate that in all cases

34In the specification curve analysis below, we consider four other weights: (i) the second-order contiguity
weight, i.e., ωσσ′ = 1 if state σ′ is contiguous with σ or is contiguous with the states that are contiguous with
state σ; (ii) the inverse-distance weight, i.e., ωσσ′ is inversely related to the geographical distance between σ
and σ′; (iii) the inverse-distance weight with a cutoff distance, i.e., the interstate effect is assumed to be zero
beyond 1000 miles; and (iv) the top-inventor-inflow weight, i.e., ωσσ′ is proportional to the total number of
top inventors who migrated from σ′ to σ. All weights are normalized such that

∑
σ′ ̸=σ ωσσ′ = 1 for any σ.

35We proxy for τσt with the log of one minus ATR at the ninety-fifth percentile, ln(1−ATRσt), in state σ
in year t since it significantly affects top inventor migration as shown in Section 3. We drop Washington D.C.
from the sample because some state characteristics are unavailable.
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Table D2: State tax competition

(1) (2) (3) (4)∑
σ′ ̸=σ ωσσ′τσ′t -0.163 0.027 -1.364 -1.071

(0.314) (0.260) (0.822) (0.797)
log patent productivity 0.005 0.005

(0.003) (0.003)
log population 0.016 0.016 0.017 0.013

(0.038) (0.033) (0.029) (0.029)
share of black or African American population 0.193 0.236 0.111 0.165

(0.107) (0.117) (0.120) (0.124)
share of population younger than 20 -0.175 -0.160 -0.192 -0.167

(0.179) (0.168) (0.165) (0.160)
share of population older than 64 0.024 0.029 0.051 0.088

(0.287) (0.249) (0.222) (0.212)
unemployment rate -0.000 -0.000 -0.000 -0.000

(0.001) (0.001) (0.001) (0.000)
log total income 0.003 -0.005 -0.009 -0.013

(0.032) (0.031) (0.028) (0.029)
log gross state product 0.029 0.028 0.036 0.036

(0.015) (0.016) (0.014) (0.014)
democrat governor 0.001 0.002 0.001 0.002

(0.001) (0.001) (0.001) (0.001)
log tax revenue -0.024 -0.027 -0.023 -0.025

(0.012) (0.011) (0.011) (0.010)
log government debt 0.000 -0.000 -0.000 -0.000

(0.002) (0.002) (0.002) (0.002)
log government revenue -0.002 0.001 -0.002 -0.000

(0.004) (0.003) (0.004) (0.003)

Effective F statistic 15.924 18.517 50.742 50.307
τ = 5% 26.392 26.689 25.159 25.143
τ = 10% 15.173 15.368 14.444 14.355
τ = 20% 9.191 9.320 8.745 8.639
τ = 30% 7.055 7.156 6.715 6.612

Observations 1,584 1,584 1,584 1,584

Notes: Columns 1-2 (3-4) use the first-order contiguity (top-inventor-inflow) weights.
Columns 2 and 4 include the own-state productivity lnYσt−1.

we can reject the null hypothesis of a weak instrument at the conventional level.

We check the robustness of the results using the specification curve analysis as in Simon-

sohn, Simmons, and Nelson (2020). We consider different specifications of equation (16) by

focusing on three dimensions. First, we include four other weights discussed in footnote 34 in

the specification curve analysis to examine the sensitivity of the estimates. Second, we esti-

mate the model for every possible combination of the variables listed in Table D1. Last, since

53



Figure D1: Specification curve
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Notes: The specification curve is depicted using 30, 843 alternative specifications explained
in Appendix D. The vertical axis is the value of ρ.

the model is overidentified, we use different combinations of neighboring states’ characteristics

as instruments, which allows us to explore the sensitivity of the estimates.36

Figure D1 plots the specification curve for ρ with 90% and 95% confidence intervals. The

signs of the estimated coefficient are not significantly positive at the 10% level for 30, 843

alternative specifications, thus verifying that the baseline estimates do not come from data

mining. Hence, we may conclude that there was no strategic tax competition between states

during the sample period.

36Since the usual caveat on weak instruments is applicable here, we adopt only specifications for which the
null hypothesis of weak instruments is rejected.
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Appendix E Assumptions to ensure share exogeneity

We impose the following two assumptions to obtain share exogeneity in Section 4.3. First,

εdt has mean zero conditional on Xdt, i.e.,

E(εdt|Xdt) = 0, (17)

where Xdt consists of the own state tax τσ(d)t and fixed effects δ = {δd, δt}. Second, other

state taxes {τσ(c)t}c ̸=d and εdt are independent conditional on Xdt, i.e.,

τσ(c)t ⊥ εdt|Xdt for c ̸= d and c, d ∈ C, (18)

where A ⊥ B|C denotes conditional independence of A and B given C. Under these assump-

tions, we can show that E(εdtP̂odt|Xdt) = E(εdtP̂odt|τσ(d)t, δ) = 0 as follows.

By the property of conditional expectations, we have

E(εdtP̂odt|τσ(d)t, δ) = E[E(εdtP̂odt|τ t, δ)|τσ(d)t, δ],

where τ t = {τσ(c)t}∀c∈C. The right-hand side of the above equation becomes:

E[E(εdtP̂odt|τ t, δ)|τσ(d)t, δ] = E[P̂odtE(εdt|τ t, δ)|τσ(d)t, δ]

= E[P̂odtE(εdt|τσ(d)t, δ, {τσ(c)t}c ̸=d)|τσ(d)t, δ]

= E[P̂odtE(εdt|τσ(d)t, δ)|τσ(d)t, δ]

= E[P̂odt · 0|τσ(d)t, δ] = 0.

The first equality follows because Podt is a function of τ t and δ. The second equality holds

because τ t = {τσ(d)t, {τσ(c)t}c ̸=d}. The third equality is due to the conditional independence

assumption (18). The last equality comes from the conditional mean assumption (17).
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Appendix F Decomposition of the Bartik estimator

To assess the validity of the Bartik estimator, we follow Goldsmith-Pinkham et al. (2020) and

decompose it into the weighted sum of just-identified IV estimators, ϕ̂s =
∑

o∈C ω̂oϕ̂
s
o. In our

context, the coefficient ϕ̂s
o is the origin-specific productivity effect using the share P̂odt as a

separate instrument. The Rotemberg weight ω̂o measures how sensitive the estimate ϕ̂s is to

possible misspecification in each instrument.

Table F1 presents the summary statistics.37 Panel A shows that the Rotemberg weights

are positive in almost all cases. Panel B shows that the weights are highly correlated with the

variances of the shares var(P̂o), where the variances are taken across destination commuting

zones d and times t. Panel C reports origin commuting zones with the top five highest

Rotemberg weights. These commuting zones account for 26.3 percent of the total share.

Panel D provides the heterogeneous effects interpretation of the Bartik instrument. The

Bartik estimator can be rewritten as ϕ̂s =
∑

d ϕ̂
s
d

∑
o ω̂ov̂od, where ϕ̂

s
d is the destination-specific

productivity effect and v̂od ≥ 0 is defined in the same way as in Proposition 4 in Goldsmith-

Pinkham et al. (2020). Since negative Rotemberg weights for some origin commuting zones o

may make
∑

o ω̂ov̂od negative, the Bartik estimator ϕ̂s may become a nonconvex combination.

However, since Panel D shows that the positive part
∑

o|ω̂o>0 ω̂oϕ̂
s
o is much larger than the

negative part
∑

o|ω̂o<0 ω̂oϕ̂
s
o, the negative Rotemberg weights are unlikely to be a problem for

the LATE-like interpretation of the productivity effect.

We further assess the validity of the identification assumption. For each of the top five

origin commuting zones in Panel C of Table F1, Table F2 lists the top five destination

commuting zones by the predicted top inventor migration probability. The result that most

migrations are predicted to be interstate aligns with the assumption that the main source of

identifying variation comes from inventor mobility caused by individual income tax differences

across states.

37Since the decomposition is applicable to a single estimator, we focus on the simple case with Bdt =∑
o̸=d P̂odtIot.
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Table F1: Summary of the decomposition of the Bartik estimator

Panel A: Negative and positive weights
Sum Mean Share

Negative -0.0002 -0.0000 0.0002
Positive 1.0002 0.0099 0.9998

Panel B: Correlations

ω̂o Īo ϕ̂s
o F̂o var(P̂o)

ω̂o 1.0000
Īo 0.9204 1.0000

ϕ̂s
o -0.0478 -0.0365 1.0000

F̂o 0.0372 -0.0603 -0.0268 1.0000

var(P̂o) 0.7865 0.7801 -0.0417 -0.0845 1.0000

Panel C: Top five Rotemberg weight commuting zones

ω̂o Īo ϕ̂s
o 95% CI

19600 Bergen-Essex-Middlesex (NJ) 0.0838 186 0.0507 (0.033, 0.097)
24300 Cook-DuPage-Lake (IL) 0.0535 113 0.0617 (0.037, 0.170)
19400 Kings-Queens-New York (NY) 0.0448 63 0.0402 (0.011, 0.065)
19700 Philadelphia-Montgomery-Delaware (PA) 0.0414 68 0.0512 (0.033, 0.170)
16300 Allegheny-Westmoreland-Washington (PA) 0.0396 48 0.0358 (0.018, 0.059)

Panel D: Estimates of ϕ̂s
o for positive and negative weights

ω̂-weightd sum Share of overall ϕ̂s Mean
Negative 0.0001 0.0023 -0.5575
Positive 0.0417 0.9977 0.0478

Notes: Panel A reports the sum, mean, and share of the positive and negative Rotemberg weights. Panel B
reports correlations between the Rotemberg weights (ω̂o), the number of top inventors (Īo), the just-identified

coefficient estimates (ϕ̂s
o), the first stage F -statistic of the share (F̂o), and the variance of the shares across

destinations and times (var(P̂o)). Panel C reports the origin commuting zones with the top five highest
Rotemberg weights. The state of the representative county of each commuting zone is in parenthesis, where
the representative county is the one with the largest number of inventors. The ninety-five percent confidence
interval is the weak instrument robust confidence interval as in Chernozhukhov and Hansen (2008) over a range

from 0 to 0.5. In Panel D “ω̂-weighted sum” reports
∑

o|ω̂o<0 ω̂oϕ̂
s
o for negative and

∑
o|ω̂o>0 ω̂oϕ̂

s
o for positive

cases, and “share of overall ϕ̂s” reports (1/ϕ̂s)
∑

o|ω̂o<0 ω̂oϕ̂
s
o for negative and (1/ϕ̂s)

∑
o|ω̂o>0 ω̂oϕ̂

s
o for positive

cases.

We finally examine the relationship between the top five shares P̂odt and location-specific

characteristics that may be correlated with the outcome Ydt as suggested by Goldsmith-

Pinkham et al. (2020). For the shares P̂odt to satisfy the conditional exogeneity assumption

in Section 4.1, they should not be correlated with destination commuting zone characteristics

conditional on the controls and fixed effects in the structural equation (6).38 Based on the

38Let Wdt be destination commuting zone characteristics that may be correlated with Ydt. No correlation
between the shares and destination characteristics, corr(P̂odt,Wdt|Xdt, δ) = 0, is an observable analogue of

corr(P̂odt, εdt|Xdt, δ) = E(P̂odt ·εdt|Xdt, δ) = 0 under the conditional mean zero assumption E(εdt|Xdt, δ) = 0.
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Table F2: Destinations to which top inventors migrated from the highest-weight origins

State of the
representative

county

Predicted
migration
probability

(A) 19600 Bergen-Essex-Middlesex (the highest weight) NJ
38000 San Diego CA 0.0078
37500 Santa Clara-Monterey-Santa Cruz CA 0.0073
39400 King-Pierce-Snohomish WA 0.0071
35801 Ada-Canyon-Elmore ID 0.0070
37800 Alameda-Contra Costa-San Francisco CA 0.0069

(B) 24300 Cook-DuPage-Lake (the second highest weight) IL
7100 Palm Beach-St. Lucie-Martin FL 0.0113
9100 Fulton-DeKalb-Cobb GA 0.0091
11304 Fairfax-Montgomery-Prince George’s MD 0.0081
37000 Stanislaus-Merced-Tuolumne CA 0.0079
37500 Santa Clara-Monterey-Santa Cruz CA 0.0079

(C) 19400 Kings-Queens-New York (the third highest weight) NY
37500 Santa Clara-Monterey-Santa Cruz CA 0.0118
18600 Albany-Saratoga-Rensselaer NY 0.0114
37800 Alameda-Contra Costa-San Francisco CA 0.0111
38801 Multnomah-Washington-Clackamas OR 0.0100
39400 King-Pierce-Snohomish WA 0.0097

(D) 19700 Philadelphia-Montgomery-Delaware (the fourth highest weight) PA
Destination CZs
39400 King-Pierce-Snohomish WA 0.0151
28900 Denver-Jefferson-Arapahoe CO 0.0143
38000 San Diego CA 0.0131
38801 Multnomah-Washington-Clackamas OR 0.0116
37800 Alameda-Contra Costa-San Francisco CA 0.0113

(E) 16300 Allegheny-Westmoreland-Washington (the fifth highest weight) PA
37500 Santa Clara-Monterey-Santa Cruz CA 0.0217
37800 Alameda-Contra Costa-San Francisco CA 0.0211
38300 Los Angeles-Orange-San Bernardino CA 0.0195
21501 Hennepin-Ramsey-Dakota MN 0.0180
7000 Dade-Broward-Monroe FL 0.0175

Notes: The top five destination commuting zones are defined by the predicted migration probability of the top
inventors from each origin commuting zone. The representative county is the one with the largest number of
inventors.
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Table F3: Relationship between the shares and manufacturing employment size

Share: the predicted probability of top inventors from
19600 24300 19400 19700 16300
Bergen-
Essex-

Middlesex

Cook-
DuPage-
Lake

Kings-
Queens-
New York

Philadelphia-
Montgomery-
Delaware

Allegheny-
Westmoreland-
Washington

Correlation coefficient 0.0002763 -0.0027881 0.0013622 -0.0018730 0.0026412
Regression coefficient -0.0000013 -0.0000209 0.0000071 -0.0000080 0.0000201

(0.0000108) (0.0000128) (0.0000143) (0.0000112) (0.0000105)

Notes: The first row reports the correlation coefficient between the first-order time difference in the share and
the first-order time difference in the log of manufacturing employment. The second row reports the regression
coefficient of the log of manufacturing employment on the share conditional on ln(1−ATR), commuting zone
fixed effects, and year fixed effects. To control for commuting zone fixed effects in the regression, we take the
first-order time difference of the variables in the regression. Cluster-robust standard errors are in parentheses.

result in Table C3, we regard the log of manufacturing employment in destination commuting

zone d as such a characteristic. Table F3 presents the results of this analysis. We take the

time difference of the variables to control for commuting zone fixed effects. Reassuringly, the

correlations are low in all cases and the regression coefficients on the log of manufacturing

employment are not statistically significant at the five percent level, thus implying the absence

of correlation between the shares and possible confounders.

Appendix G Robustness to possible violations of the parallel trends

assumption

We examine the robustness to possible violations of the parallel trends assumption for the

event study analysis in Section 5. Following Rambachan and Roth (2023) we specify, for each

event study regression, a set ∆ = {δ : |(δt+1 − δt)− (δt − δt−1)| ≤M,∀t} to bound the degree

to which the slope of differential trend δ can vary between consecutive periods. We use the

default setting in the R package HonestDiD provided by Rambachan and Roth (2023), namely

that the value of M ranges from 0, which corresponds to a linear trend, to half a standard

deviation of the parameter of interest.

Figure G1 illustrates the robustness test result, where we assess the presence of a differ-

ential trend δ1 for the first-period effect µ1 under the normalization of µ−1 = 0. In Panel (a)
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Table G1: Summary statistics of the “break-down” values for the placebo simulations

95th percentile 99the percentile
(a) all local inventors 0.0000 0.0010
(b) external inventors 0.0000 0.0010

Notes: Panel (a) (Panel (b)) presents the distribution of the
“break-down” values of M obtained from the permutation-
based placebo analysis for the event study model, where
we consider all local inventors (external inventors). The
“break-down” value is defined as the value of M at which
the null hypothesis that the first period effect is zero can
no longer be rejected. The summary statistics are for 200
simulation results.

(Panel (b)), the “break-down” value of M , at which the null hypothesis that the first-period

effect is zero can no longer be rejected, is 0.006 (0.006). Since the value is 40 (42.90) percent

of the standard error of the estimated effect µ̂1, the parallel trends assumption holds for a

reasonable deviation from a linear trend.39

We further perform a permutation-based placebo analysis to see how likely the “break-

down” value of M = 0.006 is to occur. Specifically, we first estimate each event study model

200 times by randomly reshuffling the commuting zones to which top inventors moved and

then apply the sensitivity analysis proposed by Rambachan and Roth (2023) mentioned above

to the estimates.

Table G1 shows the summary statistics of the simulated “break-down” values of M . In

both Panels (a) and (b), the values are zero in ninety-five percent of cases. These results

indicate that the deviation from the linear trend up to M = 0.006 occurs extremely rarely.

Therefore, we may conclude that the parallel trends assumption is unlikely to be violated.

39We examine the parallel trends assumption for the IV event study regression using Bdt and Bσ
dt as

instruments, which corresponds to the IV ES1 case presented in Figure 5. The standard error of the first-
period effect µ̂1 for all local inventors (for external inventors) is 0.015 (0.014).
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Figure G1: Robustness to possible violations of parallel trends assumption
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Notes: Panel (a) (Panel (b)) illustrates the sensitivity analysis proposed by Rambachan
and Roth (2023) for the event study model, where we consider all local inventors (external
inventors). In each panel, the leftmost bar is the ninety-five percent confidence interval of
the estimate µ̂1 and the other bars are fixed length confidence intervals (FLCIs) considered
Rambachan and Roth (2023).
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