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Abstract

We study sequential assignment systems in which objects are assigned to agents in multiple
stages. While such systems are prevalent in real-life school choice and college admissions, Dur
and Kesten (2019) show that these systems are neither non-wasteful nor straightforward in
general. To overcome this negative observation, we consider a model in which the mechanism
designer chooses an allocation schedule, i.e., in which stage to allocate each object, as well
as the allocation mechanisms it uses within a system. Our analysis newly reveals that (i) in
general, no allocation schedules avoid wastefulness/non-straightforwardness and (ii) a non-
wasteful/straightforward allocation schedule exists if and only if the preference domain is
“tiered.” This result supports practices in which the tiered domain naturally arises (e.g.,
Chinese college admissions practice). However, this also highlights the difficulty of sequential
assignments in more diverse preference domains.
JEL Classification: C78; D47; D61; D78

Keywords: sequential assignment system; non-wastefulness; straightforwardness; tiered do-
main

1 Introduction

In recent decades, market design has been successful in analyzing and improving real-life resource
allocations where monetary transfers are not allowed, for example, school choice (Abdulkadiroğlu
and Sönmez, 2003) and college admissions (Balinski and Sönmez, 1999). While much of the existing
literature concentrates on (and contributes by) designing static allocation systems, several systems

∗I am grateful to Onur Kesten and Morimitsu Kurino for helpful comments and suggestions. I also thank Takashi
Akahoshi, Yuji Fujinaka, Ryo-ichi Nagahisa, Nariaki Nishino, Ryosuke Sakai, and seminar participants at Kansai
University and the 2023 JEA Spring Meeting for comments. I acknowledge financial support from JST SPRING
Grant Number JPMJSP2123 and the Keio Economic Society.

†Graduate School of Economics, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan. E-mail:
t.hatakeyama@keio.jp
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Order Position category Example(s) First exam Announcement of result
1 National ministries Ministry of Finance April 9 June 8
2 Metropolitan government Tokyo April 30 July 14
3 Prefectural governments Osaka, Kyoto June 18 August
4 City offices many local cities September 19 depends on cities

Table 1: 2023 exam timeline in Japan

in reality allocate resources sequentially in the sense that some are allocated first (e.g., this month)
and the remaining are next (e.g., the next month).

In many regions of the United States, for example, Boston, Chicago, and New York, student
enrollment systems for exam, charter, magnet, private, and specialized schools are operated sepa-
rately from the enrollment system for regular (mainstream) schools with different timelines. Every
student can participate in multiple systems where different systems adopt different mechanisms
(e.g., student-proposing deferred acceptance or serial dictatorship) and different priority structures
(e.g., lottery numbers or exam scores). Therefore, one student may participate in the exam school
system and proceed to the regular school system only when she is not assigned to any exam school,
while another student may only participate in the regular school system.

In China, the college admissions system comprises several stages where admissions for top-
tier (the most prestigious) colleges are followed by admissions for lower-tier (less prestigious)
colleges. In Japan, a similar sequential system is used in employment exams for public officers,
that is, exams for the most prestigious national employee positions are followed by those for less
prestigious prefecture/city-level employee positions (see Table 1).1 Although extensively practiced,
as shown in Dur and Kesten (2019), a sequential enrollment/admission has deficiencies, including
inefficiency of allocations (wastefulness) and student incentives in reporting true preferences (non-
straightforwardness).2

These examples pose a puzzle: a sequential assignment is not desirable in theory, but it is
so prevalent in practice. In fact, static resource allocation is not that easy in some practices.
According to Manjunath and Turhan (2016), a journalist says that it is difficult to unify public
and private school enrollment systems in Milwaukee because they are in competition for the same
students and have no incentives for coordination. Toward addressing this puzzling observation, we
ask if there are circumstances when these deficiencies can be avoided. We show that despite the
general result, under a restrictive but realistic condition (the tiered preference domain), a sequential
assignment overcomes the above deficiencies. More interestingly, outside the tiered domain, the
general impossibility result always holds (Proposition 2). Thus, our results also highlight the
difficulty of sequential assignments in general diverse domains.

By slightly modifying the setting of Dur and Kesten (2019) and Andersson et al. (2018), this
1Table 1 is based on the webpage https://90r.jp/schedule.html (written in Japanese, accessed March 26, 2023).
2See Section 4 of Dur and Kesten (2019).
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paper introduces a problem of designing an allocation schedule: Given a fixed number of stages
(available dates) in which objects can be allocated, a mechanism designer (a local government)
chooses in which stage to allocate each object to agents. The designer has two standard objectives:
non-wastefulness (no object should be disposed if there is someone who wishes it) and straight-
forwardness (no lie should be profitable). We assume that objects (schools) are not strategic and
they can coordinate enough to follow a fixed schedule. To focus on the design of the allocation
schedule, we assume that each mechanism used at each stage satisfies certain desirable properties.3

If we pick one stage and allocate all the objects in that stage, because it is a static system, we can
readily achieve both non-wastefulness and straightforwardness. While we wish to allocate objects
in two or more stages, Proposition 1 shows a negative result in general domains. This means that
there are cases in which any schedule comprising multiple stages leads to wastefulness and non-
straightforwardness. Afterward, we search for a condition for a positive result, that is, a condition
under which non-wasteful and straightforward allocation schedules exist. The main result is that
a special type of domain, the so-called “tiered domain,” is necessary and sufficient for a possibility
(Proposition 2). Roughly speaking, this domain contains two types of profiles: the one with all
agents partially agreeing on which objects are good (bad) and the other with agents preferring
only specific objects to being unassigned.

Proposition 2 gives us an implication on when sequential assignment costs (does not cost)
wastefulness or non-straightforwardness. The tiered domain is highly restricted but it naturally
arises under specific circumstances. In Chinese college admissions (Japanese employment exams),
it is commonly presumed that everyone prefers a more prestigious college (position). As long
as these presumptions are realistic, prestige-based preference tiers naturally arise, and thus, non-
wastefulness and straightforwardness are both achievable via a sequential assignment. Interestingly,
the allocation schedule in reality is actually “better tiers in earlier stages,” which achieves non-
wastefulness and straightforwardness.4 This observation indicates that the schedule in reality may
not be problematic in theory. In contrast, under more general, diverse preference profiles where
no tiers exist, such a positive result does not hold.5

Related literature. After pioneering works by Balinski and Sönmez (1999) and Abdulkadiroğlu and
Sönmez (2003), many papers study real-life school choice and college admissions systems. Among
them, Abdulkadiroğlu et al. (2005) document a concern on that two-stage implementation of sta-
ble mechanisms for specialized and regular schools possibly violates stability. Recently, several

3The properties are described in the next section. Specific mechanisms that satisfy these properties appear in
Corollary 2.

4See Example 1 for this type of schedule. In cases (ii) and (iii), {a, b} are better objects for everyone and thus
they are allocated earlier than other objects.

5The example of school choice is a bit more complicated. If we just focus on regular and specialized schools, it
is not implausible to assume that students who apply to specialized schools prefer them to any regular schools
and the other majority students prefer being unassigned to any specialized schools. Under this assumption,
regular/specialized-based preference tier arises. However, it is ambiguous if we can treat other (e.g., private)
schools in the same manner. Preference tier may not exist in this example.
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papers study sequential assignment problems similar to ours. Ekmekci and Yenmez (2019) study
school incentives to join the common enrollment system and explain why exam and regular school
markets operate separately. Dur and Kesten (2019) show that sequential allocation systems in
practice suffer from several deficiencies, including wastefulness and non-straightforwardness, and
analyze equilibria of associated preference revelation games. Andersson et al. (2018) and Doğan
and Yenmez (2023) also study the properties of equilibria in sequential preference revelation games.
The former finds a straightforward allocation system that minimizes wasted seats, while the lat-
ter finds a condition under which an additional stage improves student welfare. Our approach is
different from these papers’ in two directions: in this study, (i) we view the allocation schedule as
a design variable, i.e., chosen by the mechanism designer, instead of a primitive, and (ii) to over-
come deficiencies of the system, we restrict the preference domain instead of weakening normative
requirements or restricting the priority structure. A similar problem is also studied under differ-
ent commitment assumptions (Manjunath and Turhan, 2016; Turhan, 2019; Doğan and Yenmez,
2019). In their models, multiple mechanisms allocate school seats to students simultaneously, and
students choose the most preferred school seat from assigned ones. That is, students participate
in all the stages and can dispose assigned seats. Since this assumption makes the problem essen-
tially different from ours, the solution to recover non-wastefulness is also different from ours. For
instance, in Manjunath and Turhan (2016), a sufficient number of iterative re-matching processes
recover non-wastefulness.

The paper is structured as follows. Section 2 describes the model. Section 3 establishes the
results. Section 4 concludes. Proofs are in the Appendix.

2 Model

Let I and H be finite sets of agents and objects with |I|, |H| ≥ 2. For each object h ∈ H, qh ∈ N
is its capacity, or the number of available copies. Each agent i ∈ I has a linear preference
relation Pi over H ∪ {∅} and each object h ∈ H has a linear priority �h over I ∪ {∅}, where for
both agents and objects, ∅ represents “being unassigned.” Let Ri denote the associated “at least
as good as” relation of agent i. We denote a preference profile by P = (Pi)i∈I and the sets of all
the possible preferences and preference profiles by P and PI . To exclude trivial cases, we assume
for each P ∈ PI , for each h ∈ H, there is i ∈ I such that hPi∅.6 We call a tuple (I,H, P, q,�),
where q = (qh)h∈H and �= (�h)h∈H , an (assignment) problem. Throughout the paper, we fix
(I,H, q,�) and denote a problem by a preference profile P .

A matching µ : I → H ∪ {∅} is a function such that the number of agents assigned an object
does not exceed its capacity, that is, for each h ∈ H, |µ−1(h)| ≤ qh. A matching µ is individually

6Technically, we can add any number of objects that are not preferred to being unassigned by any agents. Such
objects can be assigned at any stage (defined in Section 3), but they are not to be assigned to any agent as long as
(ϕs) are individually rational. Therefore, they do not affect the outcome of mechanisms/systems.
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rational at P if for each i ∈ I, µ(i)Ri∅ and i �µ(i) ∅. That is, no agent is assigned an object that
is worse than being unassigned nor he is unacceptable for. A matching µ is non-wasteful at P if
there is no agent-object pair (i, h) such that |µ−1(h)| < qh, i �h ∅, and hPiµ(i). That is, there is
no object being unassigned, even though an acceptable agent prefers it to what she is assigned.

A mechanism ϕ is a function that associates a matching to each problem, where its domain
is denoted by D = ×i∈IDi ⊆ PI . We denote the matching that ϕ selects for problem P by ϕ(P )

and the object that ϕ assigns to i ∈ I at P by ϕi(P ). We say that a mechanism ϕ is individually
rational (non-wasteful) on D if the matching ϕ(P ) is individually rational (non-wasteful) for each
problem P ∈ D. A mechanism ϕ is strategy-proof on D if for each i ∈ I, for each P ∈ D
and each P ′i ∈ Di, ϕi(P )Riϕi(P

′
i , P−i). That is, truthfully reporting his preference is always

a (weakly) dominant strategy for every agent. A mechanism ϕ is minimally non-bossy on
D if for each i ∈ I, for each P ∈ D and each P ′i ∈ Di, if ϕi(P ) = ϕi(P

′
i , P−i) = ∅, then

{j ∈ I : ϕj(P ) = ∅} = {j ∈ I : ϕj(P
′
i , P−i) = ∅}. That is, no unassigned agent can make

other agent unassigned by misreporting without being assigned an object. Remark 1 below shows
that this new property is weak enough in that it is implied by two general axioms. When ϕ is
individually rational, non-wasteful, strategy-proof, or minimally non-bossy on PI , we may omit
the part “on PI .”
Remark 1. When ϕ is either non-bossy or stable, it is minimally non-bossy.

We consider a (sequential assignment) system Ψ = (ϕ1, ..., ϕ|S|, σ), a combination of |S| ≥
2 mechanisms and a schedule function. For each (I,H, q,�), a schedule function σ assigns
objects to stages {1, ..., |S|}. We denote the assigned stage for object h by σh(I,H, q,�) ∈
{1, ..., |S|}, or simply σh. We note that the outcome of a schedule function does not depend on
the preference profile. This is because, in many real-life situations, the allocation schedule is fixed
before agents report their preferences and the designer commits to a predetermined schedule. To
focus on the design of the schedule function, we fix mechanisms (ϕs) to be individually rational
and non-wasteful ones. For notational simplicity, for each I ′ ⊆ I and each H ′ ⊆ H, we denote
by P |I ′, H ′ a restriction of a problem P to agents in I ′ and objects in H ′ (i.e., P |I ′, H ′ denotes
(I ′, H ′, (Pi|H′)i∈I′ , (qh)h∈H′ , (�h |I′)h∈H′) to be more precise). For each problem P , a system Ψ

associates a matching Ψ(P ) (object Ψi(P ) ∈ H ∪ {∅} for agent i ∈ I) in the following sequential
procedure.7

Stage 1. Set I1 = I and H1 = {h ∈ H : σh = 1}. For each i ∈ I, let µ1(i) = ϕ1
i (P |I1, H1).

Stages s = 2, ..., |S|. Set Is = {i ∈ I : µs−1(i) = ∅} and Hs = {h ∈ H : σh = s}. For each i ∈ I, let

µs(i) =

ϕsi (P |Is, Hs) (i ∈ Is)

µs−1(i) (i ∈ I\Is)
.

7We allow at each stage s, |Is| ∈ {0, 1} or |Hs| ∈ {0, 1}. When |Is| = 1 or |Hs| = 1, the mechanism ϕs works in
the same way as |Is|, |Hs| ≥ 2. When |Is| = 0 or |Hs| = 0, to be precise, the stage s works as follows. If |Is| = 0,
let µ|S|(i) = µs−1(i) for each i ∈ I and proceed to stage |S|+ 1. If |Hs| = 0, let µs(i) = µs−1(i) for each i ∈ I and
proceed to stage s+ 1.
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Stage |S|+ 1. For each i ∈ I, let Ψi(P ) = µ|S|(i).

Following Dur and Kesten (2019), we employ a crucial assumption on agent commitment. (i)
At each stage, every agent chooses whether to participate in that stage,8 and (ii) when an object
is assigned to an agent, she cannot dispose that object and proceed to the next stage. Although
strong, such a commitment rule is actually adopted, for instance, in Turkish school choice system
(Andersson et al., 2018). To benefit from using multiple stages, we restrict our attention on multi-
shot schedule functions. A function σ is multi-shot if for each problem P , there are objects
h, h′ ∈ H such that σh 6= σh′ .9 We say that a system Ψ is individually rational (non-wasteful) on
D if the matching Ψ(P ) is individually rational (non-wasteful) for each problem P ∈ D. As an
incentive property in a sequential assignment, we consider straightforwardness, which is introduced
by Andersson et al. (2018). A system Ψ is straightforward on D if for each i ∈ I, for each P ∈ D
and each P ′i ∈ Di, Ψi(P )RiΨi(P

′
i , P−i). That is, reporting true preference at all stages is always a

(weakly) dominant strategy for every agent.

3 Results

We first see the result on the full domain D = PI .

Proposition 1. Let (ϕs) be individually rational and non-wasteful mechanisms on PI . If σ is
multi-shot, ((ϕs), σ) is neither non-wasteful nor straightforward on PI .

Motivated by this impossibility result, we characterize a preference domain where a multi-shot
system achieves non-wastefulness/straightforwardness. For |T | ∈ N, a preference profile P ∈ PI is
(|T |-)tiered if objects H are partitioned to {HP

t }t∈{1,...,|T |} such that for each h ∈ HP
t and each

h′ ∈ HP
t′ with t < t′, for each i ∈ I with h, h′Pi∅, hPih′.10 We call the set of all possible tiered

preference profiles with |T | ≥ 2 as a tiered domain and denote it by PI(T ).
Roughly speaking, 2-tiered preferences are more “similar to each other” than 1-tiered prefer-

ences, and 10-tier is much more than 2-tier. However, by definition, PI(T ) also includes preference
profiles in which for each h ∈ HP

t and each h′ ∈ HP
t′ with t < t′, there is no i ∈ I with h, h′Pi∅. In

such cases, tiered preferences are not similar to each other (see the next example).

Example 1. Agents and objects are I = {1, 2} and H = {a, b, c, d}. Table 2 shows several
preference profiles. In cases (vi) and (v), P1 and P2 are not similar to each other, but they are also
tiered.

8An agent can choose not to participate in stage s by reporting that all objects to be allocated at stage s are
worse than being unassigned.

9When this does not hold, at problem P , using system ((ϕs), σ) is equivalent to allocating all objects at some
stage s via mechanism ϕs. Such an allocation is not what we intend.

10A tiered preference domain in a matching environment is also studied in Kesten (2010) and Kesten and Kurino
(2019). The definition in the current study is slightly different from theirs in that we do not restrict the number of
tiers to be two. Akahoshi (2014) and Kandori et al. (2010) also study similar domains.
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case P1 P2 |T | {HP
t } σ

(i) a, b, c, d d, c, b, a - - -
(ii) a, b, c, d b, a, d, c 2 {a, b}, {c, d} σa = σb = 1, σc = σd = 2
(iii) a, b, c, d a, b, c, d 4 {a}, {b}, {c}, {d} σa = σb = 1, σc = σd = 2
(vi) a, b c, d 2 {a, b}, {c, d} σa = σb = 1, σc = σd = 2
(v) a, b, c, d a 2 {a}, {b, c, d} σa = 1, σb=σc = σd = 2

Table 2: Example 1
Note: In columns 2 and 3, objects are ordered by preference relations. Objects below ∅ are omit-
ted. Columns 3, 4, and 5 show examples of possible |T |’s, {HP

t }’s, and σ’s that attain non-
wastefulness/straightforwardness when mechanisms are appropriately chosen (e.g., the serial dictatorship).
Hyphen means no tier (nonexistence).

Our main result is the next proposition.

Proposition 2. The following three are equivalent.
(a) When (ϕs) are individually rational and non-wasteful, there is a multi-shot σ where Ψ is non-
wasteful on D ⊆ PI .
(b) When (ϕs) are strategy-proof, minimally non-bossy, individually rational, and non-wasteful,
there is a multi-shot σ where Ψ is straightforward on D ⊆ PI .
(c) The domain is a subset of a tiered domain, that is, D ⊆ PI(T ).

As shown in the Appendix, the proof provides a specific class of schedule functions that maps
better tiers to earlier stages without reversal. Using this class joint with well-designed mechanisms,
the result can be extended as follows: when the designer wishes to use three or more stages,
straightforwardness and non-wastefulness are both achievable under sufficiently fine tiers.

Corollary 1. When P ∈ PI(T ) with |T | ≥ |S|, there is a straightforward and non-wasteful system
in which an object is allocated at each stage, that is, for each s ∈ {1, ..., |S|}, there is h ∈ H such
that σh = s.

Finally, we relate our result with well-known mechanisms that are strategy-proof, individually
rational, and non-wasteful, such as agent/object-proposing deferred acceptance (aDA/oDA), top
trading cycles (TTC), and serial dictatorship (SD). Since oDA, TTC, and SD are non-bossy (Afacan
and Dur, 2017; Pápai, 2000; Svensson, 1999) and aDA is stable, Remark 1 leads to the following.

Corollary 2. When each ϕs is either aDA, oDA, TTC, or SD, there is a multi-shot σ where Ψ is
straightforward and non-wasteful on PI(T ).

4 Conclusion

This paper searches for a solution to a puzzle in which a sequential assignment is not desirable
in theory but commonly used in practice. The main result gives a rationale for the practice of
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Chinese college admissions but makes clear that a sequential assignment system is always wasteful
and non-straightforward in more diverse preference domains. This result provides a practical
insight on when (not) to use a sequential assignment system.

It may also be valuable to collect evidence on whether the tiered profile is realistic. A positive
result further supports sequential assignment practice and vice versa. We leave it for future
research.
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Appendix

Proof of Remark 1. “Non-bossy⇒minimally non-bossy” is immediate from the definitions. We
show “stable⇒minimally non-bossy.” Let ϕ be a stable mechanism and fix i ∈ I, P ∈ D, and
P ′i ∈ Di such that ϕi(P ) = ϕi(P

′
i , P−i) = ∅. Denote ϕ(P ) = µ and ϕ(P ′i , P−i) = µ′. Immediately

from the definition of a stable matching, in a problem without i, i.e., (I\{i}, H, (Pj)j∈I\{i}, q,�),
µ and µ′ are also stable. The rural hospital theorem (Roth and Sotomayor, 1990) implies that
{j ∈ I\{i} : µ(j) ∈ H} = {j ∈ I\{i} : µ′(j) ∈ H}, i.e., {j ∈ I : µ(j) = ∅} = {j ∈ I : µ′(j) = ∅}.
2

Hereafter, we refer individual rationality as IR, non-wastefulness as NW, strategy-proofness as SP,
minimal non-bossiness as MNB, and straightforwardness as SF. Also, for each tiered profile P ∈
PI(T ), for each object h ∈ H, we denote the tier which the object belongs to by t(h) ∈ {1, ..., |T |}.

Proof of Proposition 1. Consider a problem with agents I = {1, 2}, objects H = {h, `},
preference P1 : h, `, ∅ and P2 : `, h, ∅, capacity qh = q` = 2, and priority �h,�`: 1, 2, ∅. Let |S| = 2

and (ϕ1, ϕ2) be IR and NW. It is sufficient to show that σh 6= σ` leads to violation of NW/SF.

(i) (σh, σ`) = (1, 2). I1 = {1, 2} and H1 = {h}. Since there is a unique IR and NW matching,
ϕ1 selects ϕ1

1(P |{1, 2}, {h}) = ϕ1
2(P |{1, 2}, {h}) = h. Thus, (Ψ1(P ),Ψ2(P )) = µ = (h, h). µ

is wasteful because |µ−1(`)| = 0 < 2 = q`, 2 �` ∅, and `P2µ(2). Moreover, if agent 2 reports
P ′2 : `, ∅, h, by IR and NW of (ϕ1, ϕ2), (ϕ1

1(P1, P
′
2|{1, 2}, {h}), ϕ1

2(P1, P
′
2|{1, 2}, {h})) = (h, ∅) and

ϕ2
2(P1, P

′
2|{2}, {`}) = `. It follows (Ψ1(P1, P

′
2),Ψ2(P1, P

′
2)) = (h, `) and Ψ2(P1, P

′
2)P2Ψ2(P ). Ψ is

not SF.
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(ii) (σh, σ`) = (2, 1). I1 = {1, 2} andH1 = {`}. The same argument as case 1 leads (Ψ1(P ),Ψ2(P )) =

µ′ = (`, `). µ′ is wasteful because |µ′−1(h)| = 0 < 2 = qh, 1 �h ∅, and hP1µ
′(1). For P ′1 : h, ∅, `,

(Ψ1(P ′1, P2),Ψ2(P ′1, P2)) = (h, `) and Ψ2(P ′1, P2)P1Ψ2(P ). Ψ is not SF. 2

Proof of Proposition 2.
(c)⇒(a): Suppose (c) is true and (ϕs) are IR and NW. Let σ be such that for any t, t′ ∈{1,...,|T|}
with t ≤ t′, for each h ∈ HP

t and each h′ ∈ HP
t′ , σh ≤ σh′ . Denote Ψ(P ) = µ. Take h ∈ H such

that |µ−1(h)| < qh and i ∈ I such that i �h ∅ arbitrarily. If there are no such pairs, µ is NW.
Suppose there is at least one such pair and show µ(i)Rih, i.e., µ(i)Pih or µ(i) = h.
case 1.1. i /∈ Iσh . For some s < σh, i is assigned an object µs(i) = ϕsi (P |Is, Hs) ∈ Hs. If
t(µs(i)) ≥ t(h), since σµs(i) = s < σh, it contradicts to (c). Hence, t(µs(i)) < t(h) implies µs(i)Pih.
We have µ(i) = µ|S|(i) = µs(i) and µ(i)Pih.
case 1.2. i ∈ Iσh . Since ϕσh is NW, ϕσhi (P |Iσh , Hσh)Rih. If ϕσhi (P |Iσh , Hσh) = ∅, ∅Pih.
Since (ϕσh+1, ..., ϕ|S|) are all IR, µ(i)Ri∅Pih. Otherwise, i /∈ Iσh+1 implies µσh+1(i) = µσh(i) =

ϕσhi (P |Iσh , Hσh). Repeating this, we have µ(i) = µ|S|(i) = ϕσhi (P |Iσh , Hσh) and µ(i)Rih.

(a)⇒(c): We show its contrapositive “not (c)⇒not (a).” Suppose P /∈ PI(T ). Fix a multi-shot σ
and IR and NW (ϕs) arbitrarily. We construct a problem, i.e., q and �, so that Ψ(P ) is wasteful.

case 2.1. Suppose that there are s, s′ ∈ {1, ..., |S|} with s < s′, h, ` ∈ Hs, h′, `′ ∈ Hs′ , and i, i′ ∈ I
such that h, `′Pi∅ and `, h′Pi′∅. We do not exclude h = ` or h′ = `′, but we exclude hPi`′Pi∅
and `Pi′h′Pi′∅, i.e., since the case is symmetric, we specify the case to `′PihPi∅. This is because,
if for any h, ` ∈ Hs and any h′, `′ ∈ Hs′ , for any i, i′ ∈ I with h, `′Pi∅ and `, h′Pi′∅, hPi`′ and
`Pi′h

′, we immediately have P ∈ PI(T ) by setting {HP
t } = {Hs}, i.e., for each t ∈ {1, ..., |T |},

HP
t := {h ∈ H : σh = t} = Ht. Let (i) i �h ∅ and i �`′ ∅, (ii) for each j ∈ I\{i}, ∅ �h j and
∅ �`′ j, and (iii) for each k ∈ H\{h, `′}, ∅ �k i. At each stage r ∈ {1, ..., s−1}, by (iii), ϕr, which is
IR, never assigns any k ∈ Hr ( H\{h, `′} to i, thus i ∈ Is. At stage s, by (ii), ϕs, which is IR, never
assigns h ∈ Hs to any j ∈ Is\{i} and by (iii), it never assigns any k ∈ Hs\{h} ( H\{h, `′} to i.
Since hPi∅, ϕs, which is NW, assigns h ∈ Hs to i ∈ Is, thus, ϕsi (P |Is, Hs) = h. We have Ψi(P ) = h.
At stage s′, by (ii), ϕs′ , which is IR, never assigns `′ ∈ Hs′ to any j ∈ Is′ ( I\{i}, thus for each
j ∈ Is′ , ϕs

′
j (P |Is′ , Hs′) 6= `′, i.e., Ψj(P ) 6= `′. Ψ(P ) = µ is wasteful because |µ−1(`′)| = 0 < q`′ ,

i �`′ ∅, and `′Piµ(i).

case 2.2. Suppose that there are no s, s′ ∈ {1, ..., |S|} with s < s′, h, ` ∈ Hs, h′, `′ ∈ Hs′ , and
i, i′ ∈ I such that h, `′Pi∅ and `, h′Pi′∅, including the cases with h = ` or h′ = `′. That is, for
any s, s′ ∈ {1, ..., |S|} with s < s′, there is at most one i(s, s′) ∈ I such that h, h′Pi(s,s′)∅. If for
any s, s′, there is no i(s, s′), we immediately have P ∈ PI(T ) by setting {HP

t } = {Hs}. Thus, we
assume that there is at least one pair (s, s′) such that i(s, s′) ∈ I.

case 2.2.1. For each |M | ∈ {3, ..., |S|}, there are no {i1, ..., i|M |} ⊆ I and {{hm, h′m}}
|M |
m=1 ⊆ H

such that (i) for each m ∈ {1, ..., |M |}, σhm = σh′m and for any m,m′ ∈ {1, ..., |M |}, σhm 6= σhm′ ,
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and (ii) for each m ∈ {1, ..., |M |}, h′m+1Pimhm where h′m+1 = h′1. We do not exclude the cases
where for each m, hm = h′m. To show that P ∈ PI(T ), we first see that there is s̄ ∈ {1, ..., |S|}
such that for each h ∈ Hs̄, there is no i ∈ I and no h′ /∈ Hs̄ with h′Pih. Suppose that there are
no such s̄, i.e., for each s ∈ {1, ..., |S|}, there is h ∈ Hs such that there is i ∈ I and h′ /∈ Hs with
h′Pih. Then, we can construct {i1, ..., i|M |} ⊆ I and {{hm, h′m}}

|M |
m=1 ⊆ H by the following steps.

Step 1. Pick h ∈ H1 such that there is i ∈ I and h′ /∈ H1 with h′Pih. Let i1 = i, h1 = h, and
h′2 = h′.
Steps m = 2, ..., |S|. Pick h from the same stage as h′m’s such that there is i and h′ in another
stage with h′Pih. Let im = i, hm = h, and h′m+1 = h′.
By assumption, at each step m, σh′m+1

/∈ {σh1 , ..., σhm−1}. However, since |S| is finite, at step |S|,
there is no h′|S|+1 such that σh′|S|+1

/∈ {σh1 , ..., σh|S|−1
}, i.e., either σh′|S|+1

= σh′|S| or |S| = s̄. Hence,
there is s̄ ∈ {1, ..., |S|}. A partition {HP

1 , H
P
2 } = {Hs̄, H\Hs̄} is 2-tier preference, thus P ∈ PI(T ).

case 2.2.2. For some |M | ∈ {3, ..., |S|}, there are {i1, ..., i|M |} ⊆ I and {{hm, h′m}}
|M |
m=1 ⊆ H

described above. We show that Ψ(P ) is wasteful. By assumption, there is m ∈ {1, ..., |M |} such
that σhm < σh′m+1

and for im ∈ I, h′m+1Pimhm. Let (i) qhm = qh′m+1
= 1, (ii) im �hm ∅ and

im �h′m+1
∅, (iii) for each j ∈ I\{im}, ∅ �hm j and ∅ �h′m+1

j, and (iv) for each k ∈ H\{hm, h′m+1},
∅ �k im. By the same argument as case 2.1, we have Ψim(P ) = ϕσhm (P |Iσhm , Hσhm

) = hm, and
Ψ(P ) = µ is wasteful because |µ−1(h′m+1)| = 0 < qh′m+1

, im �h′m+1
∅, and h′m+1Pimµ(im).

(c)⇒(b): Suppose (c) is true and (ϕs) are SP, MNB, IR, and NW. Let σ be such that for any
t, t′ ∈{1,...,|T|} with t ≤ t′, for each h ∈ HP

t and each h′ ∈ HP
t′ , σh ≤ σh′ . Denote Ψ(P ) = µ. Fix a

problem and take i ∈ I arbitrarily. To lead a contradiction, suppose there is P ′i ∈ P(T ) such that
Ψi(P

′
i , P−i)PiΨi(P ). Denote the agents at stage s under profile P by Is and under (P ′i , P−i) by I ′s.

case 3.1. Ψi(P ) = ∅, i.e., for each s ∈ {1, ..., |S|}, ϕsi (P |Is, Hs) = ∅. Ψi(P
′
i , P−i)PiΨi(P ) implies

Ψi(P
′
i , P−i) 6= ∅, i.e., there is s′ ∈ {1, ..., |S|} such that for each s′′ < s′, ϕs′′i (P ′i , P−i|I ′s′′ , Hs′′) =

∅ and Ψi(P
′
i , P−i) = ϕs

′
i (P ′i , P−i|I ′s′ , Hs′) ∈ Hs′ . Since for each s′′ < s′, ϕs′′i (P |Is′′ , Hs′′) =

ϕs
′′
i (P ′i , P−i|I ′s′′ , Hs′′) = ∅ , MNB of ϕs′′ implies Is′′ = I ′s′′ , i.e., by induction, Is′ = I ′s′ . Ψi(P

′
i , P−i)PiΨi(P )

implies ϕs′i (P ′i , P−i|Is′ , Hs′)Piϕ
s′
i (P |Is′ , Hs′), a contradiction to SP of ϕs′ .

case 3.2. Ψi(P ) 6= ∅, i.e., there is s ∈ {1, ..., |S|} such that Ψi(P ) = ϕsi (P |Is, Hs) ∈ Hs. If
Ψi(P

′
i , P−i) = ∅, Ψi(P

′
i , P−i)PiΨi(P ) implies ∅Piϕsi (P |Is, Hs), a contradiction to that ϕs is IR. Thus,

Ψi(P
′
i , P−i) 6= ∅, i.e., there is s′ ∈ {1, ..., |S|} such that Ψi(P

′
i , P−i) = ϕs

′
i (P ′i , P−i|I ′s′ , Hs′) ∈ Hs′ .

case 3.2.1. s < s′. By the construction of σ, we have t(ϕsi (P |Is, Hs)) < t(ϕs
′
i (P ′i , P−i|I ′s′ , Hs′)).

Since each ϕs is IR, ϕsi (P |Is, Hs), ϕ
s′
i (P ′i , P−i|I ′s′ , Hs′)Pi∅ implies ϕsi (P |Is, Hs)Piϕ

s′
i (P ′i , P−i|I ′s′ , Hs′),

i.e., Ψi(P )PiΨi(P
′
i , P−i), a contradiction.

case 3.2.2. s ≥ s′. Since for each s′′ < s′, ϕs′′i (P |Is′′ , Hs′′) = ϕs
′′
i (P ′i , P−i|I ′s′′ , Hs′′) = ∅ , MNB of ϕs′′

implies Is′′ = I ′s′′ , i.e., by induction, Is′ = I ′s′ . Ψi(P
′
i , P−i)PiΨi(P ) implies ϕs′i (P ′i , P−i|Is′ , Hs′)Piϕ

s′
i (P |Is′ , Hs′),

a contradiction to SP of ϕs′ .

(b)⇒(c): We show its contrapositive “not (c)⇒not (b).” Suppose P /∈ PI(T ). Fix a multi-shot σ
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and (ϕs) satisfying SP, MNB, IR, and NW arbitrarily. We construct a problem, i.e., q and �, so
that Ψ is not SF. By the argument in (a)⇒(c), it is sufficient to see the following two cases.
case 4.1. Consider the same problem as case 2.1. That is, there are s, s′ ∈ {1, ..., |S|} with
s < s′, h, ` ∈ Hs, h′, `′ ∈ Hs′ , and i ∈ I such that `′PihPi∅. Let (i) i �h ∅ and i �`′ ∅, (ii)
for each j ∈ I\{i}, ∅ �h j and ∅ �`′ j, and (iii) for each k ∈ H\{h, `′}, ∅ �k i. Since (ϕs)

are IR and NW, it is obvious that Ψi(P ) = h. By misreporting P ′i in which `′P ′i∅P ′ih, i obtains
ϕsi ((P

′
i , P−i)|I ′s, Hs) = ∅ and ϕs′i ((P ′i , P−i)|I ′s′ , Hs′) = `′, hence Ψi(P

′
i , P−i) = `′. Ψ is not SF.

case 4.2. Consider the same problem as case 2.2.2. That is, there is {i1, ..., i|M |} ⊆ I and
{{hm, h′m}}

|M |
m=1 ⊆ H such that (i) for each m ∈ {1, ..., |M |}, σhm = σh′m and for any m,m′ ∈

{1, ..., |M |}, σhm 6= σhm′ , and (ii) for each m ∈ {1, ..., |M |}, h′m+1Pimhm where h′m+1 = h′1.
There is m ∈ {1, ..., |M |} such that σhm < σh′m+1

and for im ∈ I, h′m+1Pimhm. Let (i) qhm =

qh′m+1
= 1, (ii) im �hm ∅ and im �h′m+1

∅, (iii) for each j ∈ I\{im}, ∅ �hm j and ∅ �h′m+1
j,

and (iv) for each k ∈ H\{hm, h′m+1}, ∅ �k im. By the same argument as case 4.1, we have
Ψim(P ) = ϕσhm (P |Iσhm , Hσhm

) = hm and for misreporting h′m+1P
′
im∅P

′
imhm, Ψim(P ′im , P−im) =

ϕ
σh′m+1 ((P ′im , P−im)|I ′σh′m+1

, Hσh′m+1
) = h′m+1. Ψ is not SF. 2
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