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1 Introduction

Market design has found various applications to improve existing markets in the past few
decades. Although applications are increasing year after year, design requests are becoming
more demanding. Matching theory traditionally assumes that the quotas or capacities of schools
(a quota distribution) are exogenous. The literature has successfully developed a theory of stable
matching, guiding a market designer to manage a matching market. Remarkable examples
include entry-level medical labor markets in the US (Roth, 1984) and school choice programs in
many countries (Abdulkadiroğlu and Sönmez, 2003).

However, it is often the case that a market designer can actively control quota distribution.1
Prominent applications include a resident-hospital matching with regional caps (Kamada and
Kojima, 2015), and school choice with affirmative actions (Ehlers et al., 2014). In addition, there
are several important real-life situations in which the market designer should determine the
quota distribution:

• Program selection at the University of Tsukuba

The first example is undergraduate students’ selection of their programs at the University
of Tsukuba – one of the largest national universities in Japan. Each academic department
offers one or more educational programs. The university president decided to introduce
a matching mechanism where students can “choose” their programs at the end of their
first year. A distinctive feature is that the university desired quotas of programs to be
adjusted depending on their popularity among students. However, the range of total
quotas of all programs within a department is not allowed to change due to government
regulations. Thus, the university faces a distributional constraint where some specific
quota distributions are allowed.

• Vaccine distribution

Another example is vaccine distribution.2 As vaccines are shot by doctors, each state
prepares inoculation venues. People who are willing to take a shot need to reserve a
venue. Subject to the aggregate supply, the government needs to distribute vaccines to
venues. People have preferences over venues but they are unknown ex-ante. In practice,
the government predicts the demand at each venue and distributes vaccines accordingly.

1There is existing literature that determines quotas endogenously in two-sided matching markets (Sönmez,
1997). It investigates whether a hospital (or school) truly reports its quota. Unlike the market designer in our study,
the quotas are determined through a mechanism by hospitals.

2This is not the reservation but the distribution. See Hakimov et al. (2021) for a desirable reservation system.
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However, it often happens that some places are short of vaccines though some places are
left with surplus.

• College admission in Ukraine

Ukraine’s college admission since 2008 is another example of quota adjustments in terms
of the matching problem (Kiselgov, 2011). Public universities offer two types of seats:
state-financed and open-enrollment. The former has no tuition fees and the latter does.
The quotas of state-financed seats are adjusted depending on popularity. Although this
policy affects students, it is not known how an “optimal” quota distribution can be found.

From the above examples, we can derive the result that a quota distribution is rather a control
variable for market designers.

This study extends the matching problem by allowing a quota distribution to be a variable.
The extended problem consists of the set of students, students’ preferences for programs, the
set of programs with the upper quotas, priority rankings of programs over students, and the
set of departments with fixed quotas. Each program belongs to one department, and the sum
of the quotas of programs in some department is equal to its fixed quota. Thus, as long as
each program does not exceed its upper limit, the quotas of programs within a department are
variable. A quota distribution is an element of the product of the set of quota distributions of all
departments. Hence, such a quota distribution can be implemented by a market designer. Given
a quota distribution, each student is matched with at most one program, and each program can
accept students up to the quota of the given quota distribution.

The literature has successfully developed the theory of stable matchings when a quota
distribution is given exogenously. A matching is stable if no pair of a student and a program
finds it preferable to deviate from the current matching. Gale and Shapley (1962) introduced
the deferred acceptance (DA) mechanism which finds a stable matching. Moreover, the DA
mechanism finds a stable matching that is not Pareto dominated by any other stable matching,
and Dubins and Freedman (1981) and Roth (1982) pointed out its strategy-proofness in that it is
immune to strategic manipulation by a single student. However, when a quota distribution is
variable, it is important to note that the literature has never had any guidance as to which quota
distribution (and thus, which matching) is “good” or “bad” in any sense.

We say that a matching is ex-post student-optimal stable if given a student’s preference
profile, it is stable at some implementable quota distribution and is not Pareto dominated by
any other stable matching at any quota distribution. We abbreviate ex-post student-optimal
stable matching as ESOSM. It is clear that an ESOSM always exists. This solution concept
mainly has the two interpretations: Intuitively, the ESOSM coincides with one of the matchings
obtained via DA mechanism at various quota distributions as if a market designer knew a quota
distribution which maximizes the welfare of students among all stable matchings. Another
interpretation is that it is more theoretical. Among all matchings at all quota distributions, no
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group of students and programs can find it preferable to deviate from an ESOSM, except for a
case in which a student and a program rematch while some other student desires that program
and has a higher priority. We say that a quota distribution is optimal if it achieves an ESOSM.

While keeping the resulting matching stable, the choice of quota distribution matters. Given
a fixed total quotas, it is not optimal to choose a quota distribution arbitrarily; that is, some
stable matching at some quota distribution, even though it is not Pareto dominated by any other
stable matching at that quota distribution, may be Pareto dominated by another stable matching
at the other quota distribution. The following example clarifies this point:

Example 1. There are 100 agents, 𝑖1, 𝑖2, · · · , 𝑖100, and 100 venues 𝑥1, 𝑥2, · · · , 𝑥100 and each agent
𝑖𝑘 lives in place of 𝑥𝑘 . The aggregate number of vaccines is 101, and each venue prepares at least
one vaccine. In each venue, the highest priority is given to an agent living in the area. Thus, the
government must distribute one additional shot to one of the 100 venues.

Now suppose that each agent, except 𝑖100, likes to receive a shot at the venue near their area
(in ascending order of proximity) and at the venue in her place next, that is, 𝑖𝑘 (𝑘 ∈ {1, 2, · · · , 99})
prefers 𝑥𝑘+1 the most and 𝑥𝑘 the second most, and 𝑖100 likes 𝑥100. As the government is not aware
of their preferences when determining where to distribute the extra shot to, it may distribute it
to 𝑥1. Then, it is easy to see that each agent ends up taking a shot at the venue in which they
live near. However, if the government distributes one more shot to 𝑥100, then all the agents are
weakly better off. In particular, 99% of all the agents are strictly better off. A similar argument
applies to a case where all but 𝑖1 likes to take a shot at the venue next to their place (in a
descending manner) and the government distributes an extra shot to 𝑥100. 3

This simple example shows that an arbitrary quota distribution does not achieve ESOSM.
More importantly, there is no unique optimal quota distribution for all the preference profiles.
Rather, the optimal quota distribution is preference-dependent. The example also indicates
that even a small difference leads to a large welfare improvement. Although market designers
can improve welfare through an optimal quota distribution, they do not know the students’
preferences in advance. Hence, it is challenging to determine an optimal quota distribution
endogenously. In summary, we address the following new concern in designing a matching
market:

Among all implementable quota distributions, does a market designer endogenously find an
optimal quota distribution (and achieve an ESOSM) or not?

This study explores a method to find an optimal quota distribution (and achieve an ESOSM).
The simplest way to do so is to compare all outcomes of the DA mechanism at all quota
distributions in terms of students’ welfare. However, the number of implementable quota
distributions becomes exponential, and this procedure is computationally difficult. We alternatively
propose a new algorithm, the quota adjustment process (QAP), which is a two-step algorithm:
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The first step calculates the matching of the DA mechanism for an arbitrary quota distribution.
The second step updates a matching and quota distribution such that an updated matching is
stable at an updated quota distribution, and that the matching Pareto dominates the updating
matching. We call the second-step algorithm the quota-adjustment stable improvement cycle
(QASIC). We show that a stable matching at some quota distribution is an ESOSM if and only if
there is no QASIC. Therefore, the set of ESOSMs was fully characterized by the QAP. Notably,
the computational complexity of QAP is polynomial.

We also show that the QAP is immune to strategic manipulation. A single-valued mechanism
is strategy-proof if the truth-telling strategy is a dominant strategy in its induced preference
revelation game. As previously mentioned, the DA mechanism is strategy-proof. As the QAP
is not necessarily single-valued, we employ the extended notion of strategy-proofness, called
strategy-resistance (Jackson, 1992). It states that any deviation from the truth-telling strategy
does not result in a matching that is strictly better than all the matching obtained by the truth-
telling strategy. We show the strategy-resistance of the QAP.

We then conducted computer simulations to evaluate the performance of the QAP by varying
the upper bounds of the quotas. In the simulation, we proportionally increased the upper
bounds of all quotas by 𝛾, starting from an initial quota distribution. When there is no correlation
among students’ preferences and programs’ priorities, QAP improves by about 50 students out
of 2,000, even when 𝛾 = 0.05. Comparatively, we observe that with more correlation, the number
of students better off is high; for instance, the number is twice when 𝛾 = 0.05 and ten times
when 𝛾 = 0.5. This is remarkable because more correlation means more popularity of students
and programs (i.e., more conflicts among them), thus implying less room for welfare gains. The
simulation also shows that in any environment, the increase in the flexibility rate 𝛾 increases
the number of students who are better off, which is consistent with Proposition 2. These results
show considerable welfare gains from small quota distribution changes.3

We emphasize that the QAP is applied to the real-life matching market. During the process
of admission reform at the University of Tsukuba in Japan, we were asked to advise on how to
solve the program selection problem (the second example mentioned above). We proposed the
QAP in 2018, which has been implemented since 2021.

Finally, we conclude the introduction by briefly discussing how it relates to previous
literature. Notably, Kamada and Kojima (2017) proposed two stability notions – strong and
weak stability – in a similar framework. Strong stability is immune to any pairwise deviation,
but does not necessarily exist. Weak stability is immune to restricted pairwise deviation. The
difference from ESOSM comes from the deviation by group. Our ESOSM is shown to be immune

3We share the same spirit with several papers on a matching problem with indifferences in the sense that
indifferences matter for a stable matching realized when student preferences are unknown ex-ante (Erdil and
Ergin, 2008; Abdulkadiroğlu et al., 2009). The critical problem is how to break ties in indifferent priorities. If we
know the students’ preferences, then we know that there exists a specific tie breaking; thus, DA achieves an optimal
stable matching for students.
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to a large class of group deviations. Thus, the set of ESOSMs is a proper subset of weakly stable
matchings and there is no logical relationship between ESOSM and strong stable matching.
We will discuss the related literature in more details in Section 5. The proofs of all results are
provided in the Appendix.

2 Model

First, we describe a matching problem without any quota adjustment (𝑁, 𝑋, 𝑞, 𝑅, ≻), which is
the standard school choice problem (Abdulkadiroğlu and Sönmez, 2003). Here, 𝑁 is a finite set
of students and 𝑋 is a finite set of programs. The quota or capacity of the program 𝑥 ∈ 𝑋 is
the maximum number of students that program 𝑥 can accept. We call the vector of quotas of
all programs 𝑞 := (𝑞𝑥)𝑥∈𝑋 a quota distribution. An outside option, denoted by ∅, is available
to each student. Each student 𝑖 ∈ 𝑁 has a complete, transitive, and antisymmetric preference
relation 𝑅𝑖 over 𝑋 ∪ {∅}. Let 𝑃𝑖 denote the strict part of 𝑅𝑖 and ℛ be the set of all preference
relations. Let 𝑅 = (𝑅𝑖)𝑖∈𝑁 be the preference profile. Each program 𝑥 ∈ 𝑋 is endowed with a
complete, transitive, and antisymmetric priority order ≻𝑥 over𝑁 . We denote the priority profile
as ≻= (≻𝑥)𝑥∈𝑋 .

Next, we introduce a matching problem with a quota adjustment that adds the variation
of 𝑞 to the matching problem without any quota adjustment (𝑁, 𝑋, 𝑞, 𝑅, ≻). A finite set of
departments exist, denoted by 𝐾. Each program 𝑥 ∈ 𝑋 belongs to exactly one department and
𝑘(𝑥) denotes the department to which 𝑥 belongs. Thus, letting 𝑋𝑘 be the set of programs in
department 𝑘, we have

∀𝑘, 𝑘′ ≠ 𝑘, 𝑋𝑘 ∩ 𝑋𝑘′ = ∅, 𝑋 =
⋃
𝑘∈𝐾

𝑋𝑘 .

In other words, the set of programs𝑋 is partitioned into different departments. Each department
𝑘 ∈ 𝐾 has a fixed quota, 𝑞̄𝑘 , which is the maximum number of students who belong to the
programs in department 𝑘. The quota adjustment of programs is expressed by the assumption
that the quota 𝑞𝑥 of program 𝑥 can take integer values from 0 to 𝑞̄𝑥 . Thus, 𝑞̄𝑥 denotes the upper
bound of the quota at 𝑥. However, the sum of the quotas of the programs in department 𝑘
should be equal to the quota of department 𝑘. In other words,

∑
𝑥∈𝑘 𝑞𝑥 = 𝑞̄𝑘 . Let 𝑞̄ := (𝑞̄𝑥). In

summary, a market designer can control the quota distribution within the set 𝑄 :=
∏

𝑘∈𝐾 𝑄𝑘

where

𝑄𝑘 :=

{
(𝑞𝑥)𝑥∈𝑘 ∈ Z|𝑋𝑘 |+

��� ∑
𝑥∈𝑘

𝑞𝑥 = 𝑞̄𝑘 , 0 ≤ 𝑞𝑥 ≤ 𝑞̄𝑥
}
.

We state that a quota distribution 𝑞 is implementable when 𝑞 is in 𝑄.
A matching is a function 𝜇 : 𝑁 → 𝑋 ∪ {∅} that assigns a program or an outside option,

𝜇(𝑖), to every student 𝑖 ∈ 𝑁 . A matching is feasible at quota distribution 𝑞 if, for each 𝑥 ∈ 𝑋,
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|𝜇−1(𝑥)| ≤ 𝑞𝑥 . Let ℳ(𝑞) be the set of all the matchings feasible at 𝑞 and ℳ =
⋃
𝑞∈𝑄ℳ(𝑞)

be the set of all feasible matchings at implementable quota distributions. Matching 𝜇 ∈ ℳ is
individually rational at𝑅 if, for each 𝑖 ∈ 𝑁 ,𝜇(𝑖) 𝑅𝑖 ∅. We say that a program 𝑥 ∈ 𝑋 is acceptable
to student 𝑖 ∈ 𝑁 if 𝑥 is preferred over the outside option ∅ for student 𝑖, i.e., 𝑥 𝑃𝑖 ∅. Thus,
for an individual rational matching 𝜇, the matched program 𝜇(𝑖), if not the outside option, is
acceptable to every student 𝑖. Given a matching 𝜇 ∈ ℳ(𝑞), pair (𝑖 , 𝑥) of a student and a program
is called a blocking pair of 𝜇 at (𝑅, 𝑞) if 𝑥 𝑃𝑖 𝜇(𝑖) and [|𝜇−1(𝑥)| < 𝑞𝑥 or for some 𝑗 ∈ 𝜇−1(𝑥),
𝑖 ≻𝑥 𝑗]. The Gale and Shapley’s (1962) stability is standard in literature, and is also important
in both theory and practice (Roth, 2002). However, this notion is applicable when there is no
quota adjustment. As our model allows for quota adjustment, we rename it distribution-specific
stability to avoid confusion: a matching 𝜇 is distribution-specific stable at (𝑅, 𝑞) if 𝜇 ∈ ℳ(𝑞),
𝜇 is individually rational at 𝑅, and there is no blocking pair of 𝜇 at (𝑅, 𝑞). A matching 𝜇 Pareto
dominates another matching 𝜈 at 𝑅 if for all 𝑖 ∈ 𝑁 , 𝜇(𝑖) 𝑅𝑖 𝜈(𝑖), and there exists 𝑗 ∈ 𝑁 such that
𝜇(𝑗) 𝑃𝑗 𝜈(𝑗). Note that Pareto domination does not depend on a quota distribution 𝑞. Thus, the
efficiency consideration itself is independent of 𝑞, so we say that 𝜇 is efficient at 𝑅 if no matching
inℳ Pareto dominates 𝜇 at 𝑅. We say that matching 𝜇 is distribution-specific student-optimal
stable at (𝑅, 𝑞) if 𝜇 is distribution-specific stable at (𝑅, 𝑞) and no other distribution-specific
stable matching Pareto dominates 𝜇 at (𝑅, 𝑞). The distribution-specific student-optimal stable
matching is obtained via Gale and Shapley’s (1962) student-proposing deferred acceptance (DA)
algorithm:

DA algorithm

• 𝑞 = (𝑞𝑥)𝑥∈𝑋 ∈ 𝑄, 𝑅 = (𝑅𝑖)𝑖∈𝑁 , and ≻= (≻𝑥)𝑥∈𝑋 are given.

Step 1 All students apply to their most preferred program among acceptable ones. Each
program 𝑥 tentatively fills its quota 𝑞𝑥 by accepting students among the applicants
according to its priority ≻𝑥 , and the others are rejected.

Step 𝑠 (𝑠 ≥ 2) Students who are rejected at Step 𝑠 − 1 apply to their next preferred program
among acceptable ones. Each program 𝑥 tentatively fills its quota 𝑞𝑥 by accepting
students among those tentatively accepted in the step 𝑠 − 1 and the new applicants
according to its priority ≻𝑥 , and the others are rejected.

END If each student is either tentatively accepted at some program or rejected by all
acceptable programs, then the algorithm ends and outputs that matching.

Using this algorithm, we obtain a feasible matching at 𝑞 ∈ 𝑄. We call this DA matching. The
DA matching is distribution-specific student-optimal stable (Gale and Shapley, 1962), which
implies the existence of a distribution-specific student-optimal stable matching in a problem for
each quota distribution. For the matching problem with and without quota adjustment, 𝑅 is
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primitive, so we drop 𝑅 and simply use 𝑞 to express the properties of the matchings as long as
no confusion arises.

We now turn to mechanisms and their incentive properties. A mechanism is a function (not
necessarily single valued) 𝑓 from the set of preference profiles ℛ𝑁 to the set of matchings,ℳ.
Accordingly, the efficiency and stability are extended to a mechanism. Mechanism 𝑓 is efficient
if for all 𝑅 ∈ ℛ𝑁 , each matching in 𝑓 (𝑅) is efficient at 𝑅. We say that mechanism 𝑓 is stable if for
all 𝑅 ∈ ℛ𝑁 , each matching in 𝑓 (𝑅) is distribution-specific stable at (𝑅, 𝑞) for some 𝑞 ∈ 𝑄. When
mechanism 𝑓 is single-valued, it is a selection of matchings for each 𝑅. Therefore, we interpret
𝑓 (𝑅) to be a matching and we write 𝑖’s match at 𝑓 (𝑅) as 𝑓𝑖(𝑅). We also say that 𝑓 is strategy-proof
if for all 𝑖 ∈ 𝑁 , 𝑅 ∈ ℛ𝑁 and 𝑅′𝑖 ∈ ℛ, we have 𝑓𝑖(𝑅𝑖 , 𝑅−𝑖) 𝑅𝑖 𝑓𝑖(𝑅′𝑖 , 𝑅−𝑖). Strategy-proofness simply
states that stating true preferences is a dominant strategy for everyone. We also use an extended
notion of strategy-proofness, called strategy-resistance, for a correspondence (Jackson, 1992).
We say that 𝑓 is strategy-resistant if there exists no 𝑖 ∈ 𝑁 , 𝑅 ∈ ℛ𝑁 , 𝑅′𝑖 ∈ ℛ, 𝜈 ∈ 𝑓 (𝑅′𝑖 , 𝑅−𝑖) such
that 𝜈(𝑖) 𝑃𝑖 𝜇(𝑖) for all 𝜇 ∈ 𝑓 (𝑅). Strategy-resistance states that regardless of others’ strategies
there is no misrepresentation of preferences such that one of the resulting matchings Pareto
dominates all matching under truth telling. Thus no one can certainly be better off because of
misrepresentation.

For convenience, keeping the quota distribution 𝑞 fixed, we denote 𝐷𝐴𝑞 as the single-valued
mechanism that always selects the DA matching as the output.

3 Results

This section consists of four subsections: The first subsection introduces ESOSM and proves its
existence. The second subsection verifies the method of finding an ESOSM endogenously in
polynomial time. Here, we introduce our main mechanism: QAP. The third subsection analyzes
the welfare properties of ESOSM. The last subsection presents the incentive properties of QAP.

3.1 Ex-post student-optimal stable matching

Here, we introduce our main solution concept.

Definition 1. For a matching problem with quota adjustment, a matching 𝜇 is an ex-post
student-optimal stable matching (ESOSM) at 𝑅 if 𝜇 is distribution-specific stable at some 𝑞 ∈ 𝑄
and there is no 𝑝 ∈ 𝑄 and stable matching 𝜈 at 𝑝 such that 𝜈 Pareto dominates 𝜇. We say that a
quota distribution 𝑞 is optimal if there is an ESOSM 𝜇 such that 𝜇 ∈ ℳ(𝑞).

Note that multiple ESOSMs exist (See Example 2 in the next subsection). In addition,
depending on the preferences realized, the optimal quota distribution varies. There is an
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important relationship between the set of ESOSMs (denoted by 𝐸𝑆𝑂𝑆𝑀(𝑅)) and the set of DA
matchings at all implementable quota distributions: for all preference profiles 𝑅 ∈ ℛ𝑁 ,

𝐸𝑆𝑂𝑆𝑀(𝑅) ⊂
⋃
𝑞∈𝑄
{𝐷𝐴𝑞(𝑅)}

In general, the left-hand side is a proper subset of the right-hand side. As stated in the
introduction, depending on 𝑅, the optimal quota distribution varies. Hence, an arbitrary choice
of quota distribution always has room for weak welfare improvement, and such improvement
becomes possible after the students’ preferences are realized.

First, we demonstrate the existence of ESOSM.

Theorem 1. For any matching problem with quota adjustment, there exists an ESOSM.

Given our definition of ESOSM, one may wonder if there are many deviations across the
quota distributions. To clarify this, we introduce another stability concept that is immune to
deviations across the quota distributions.

Definition 2. A matching 𝜇 ∈ ℳ is stable across distributions if whenever 𝑥 𝑃𝑖 𝜇(𝑖), the
following three conditions hold.

(1) For each 𝑗 ∈ 𝜇−1(𝑥), 𝑗 ≻𝑥 𝑖.
(2)

∑
𝑦∈𝑋𝑘(𝑥) |𝜇−1(𝑦)| = 𝑞̄𝑘(𝑥).

(3) Let 𝜈 be a matching such that all but 𝑖 are the same as 𝜇 and 𝑖 is matched with 𝑥 instead
of 𝜇(𝑖). If 𝜈 ∈ ℳ, then there is 𝑗 ∈ 𝑁 such that 𝑥 𝑃𝑗 𝜇(𝑗) and 𝑗 ≻𝑥 𝑖.

This notion states that with conditions (1) and (2), the matching 𝜇 is distribution-specific
stable at its corresponding quota distribution. With condition (3), even if it is feasible to move
student 𝑖 to their preferred program 𝑥 with adjusted quotas, we can find another agent 𝑗
preferring 𝑥 to his matched program with higher priority.

Proposition 1. If a matching 𝜇 is an ESOSM, then it is stable across distributions.

Hence, although the ESOSM is defined on distribution-specific stable matchings, it prevents
deviations across quota distributions. The relationship to stability notions in the literature is
discussed later in Section 5.

3.2 Quota adjustment process

As we showed the existence of ESOSM for any matching problem, we will explore how to find
it. As discussed in the introduction, the simplest way to find an ESOSM is to run the DA
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algorithm for all the quota distributions. However, this approach is computationally infeasible.
Alternatively, we propose a novel procedure, QAP, to find an ESOSM, and a corresponding
optimal quota distribution.

QAP is a two-step algorithm. The first step runs the DA algorithm for an arbitrary quota
distribution to find a distribution-specific stable matching. The second step updates the
obtained distribution-specific stable matching and the quota distribution through exchanges of
programs among students who prefer one of those to their matched programs, while preserving
distribution-specific stability at an updated quota distribution. Note that several types of welfare
improvement cycles are present in the literature. As we allow changes in quota distributions,
the main difficulty here is that, because our exchanges consist of not only students but also
vacant seats, we need to control the balance in quotas between departments. To this end, we
introduce two types of chains.

Definition 3. Given is that 𝑅 and 𝑞. For each 𝑥 ∈ 𝑋, a unit chain for stable matching 𝜇 at (𝑅, 𝑞)
is a vector (𝑥, 𝑖) ∈ 𝑋 × 𝑁 such that 𝑥 𝑃𝑖 𝜇(𝑖) and 𝑖 ≻𝑥 𝑗 for each 𝑗 ∈ { 𝑗 ∈ 𝑁\{𝑖} | 𝑥 𝑃𝑗 𝜇(𝑗)}; that
is, student 𝑖 prefers program 𝑥 to the matched program 𝜇(𝑖), and is the highest priority among
those who prefer 𝑥 to their matched programs.

We denote the sets of students and programs involved in a set of unit chains by 𝑁𝜇 and 𝑋𝜇,
respectively. Given matching 𝜇, for each department 𝑘, if it has a vacant seat, we introduce
one dummy student 𝑑𝑘 regardless of the number of vacant seats. We denote the set of dummy
students as 𝐷 (perhaps empty). We match each dummy student with a program with a vacant
seat in the department to which she belongs. Thus, we extend the matching 𝜇 to 𝜇̄ with domain
𝑁 ∪ 𝐷 such that 𝜇̄|𝑁 = 𝜇|𝑁 and for each 𝑑𝑘 ∈ 𝐷 and some 𝑧 ∈ 𝑋𝑘 with |𝜇−1(𝑧)| < 𝑞𝑧 , we have
𝜇̄(𝑑) = 𝑧.

Definition 4. Let matching 𝜇̄ and a set of unit chains for 𝜇 be given. For each 𝑑 ∈ 𝐷, a unit
chain by dummy student 𝑑 is a vector (𝑥, 𝑑) ∈ (𝑋 ∪ {∅}) × 𝐷 such that 𝑥 is assigned to some
student 𝑖 ∈ 𝑁𝜇 and is neither in 𝑋𝜇 nor 𝑋𝑘(𝑑).

To avoid confusion, we sometimes refer to a unit chain as a unit chain by a real student in
Definition 3. Note that there could be multiple unit chains for a specific dummy student. This
occurs in the following situations. Given unit chains and department 𝑘 with vacant seats, there
are multiple programs assigned in unit chains where those programs are not in unit chains nor
in department 𝑘. Then, dummy student 𝑑𝑘 is paired with all programs for unit chains by a
dummy student. We use 𝜄 for a real or dummy student; that is, 𝜄 ∈ 𝑁 ∪ 𝐷.

We are now ready to define our improvement cycle.

Definition 5. A quota-adjustment stable improvement cycle (QASIC) for 𝑅, 𝜇, 𝑞 and 𝜇̄ is an
ordered set of unit chains by real or dummy students,

⟨(𝑥ℓ , 𝜄ℓ )⟩𝑚ℓ=0, 𝑚𝑜𝑑(𝑚)
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(𝑚 ≥ 1), such that

1. real students and dummy students involved are distinct,

2. at least one real student is involved, i.e., 𝜄ℓ ∈ 𝑁 for some ℓ ∈ {1, . . . , 𝑚},
3. for all ℓ ∈ {1, . . . , 𝑚},

(a) 𝜇(𝜄ℓ−1) ≠ ∅ implies 𝜇(𝜄ℓ−1) ∈ 𝑋𝑘(𝑥ℓ ),
(b) 𝜇(𝜄ℓ−1) = ∅ implies 𝑥ℓ = ∅, and

4. for all ℓ ∈ {1, . . . , 𝑚}, 𝜇(𝜄ℓ−1) ≠ 𝑥ℓ implies 𝑞𝑥ℓ < 𝑞̄𝑥ℓ .

We sometimes explicitly denote a QASIC as follows:

(𝑥0, 𝜄0) ← (𝑥1, 𝜄1) ← · · · ← (𝑥𝑚−1, 𝜄𝑚−1) ← (𝑥𝑚 , 𝜄𝑚) = (𝑥0, 𝜄0),

where each unit chain (𝑥ℓ , 𝜄ℓ ) points to the next unit chain (𝑥ℓ−1, 𝜄ℓ−1). In the traditional cycle,
such as in Gale’s top trading cycle (Shapley and Scarf, 1974), we carry out trades in a cycle such
that student 𝜄ℓ receives the next student 𝜄ℓ−1’s program 𝜇(𝜄ℓ−1), that is, 𝑥ℓ = 𝜇(𝜄ℓ−1). However,
because we have a quota adjustment, we must allow 𝑥ℓ ≠ 𝜇(𝜄ℓ−1). In this case, as we have to
maintain the department quota, we require student 𝜄ℓ ’s receiving school, 𝑥ℓ , to be in the same
department as that of 𝜄ℓ−1’s assigned program 𝜇(𝜄ℓ−1). This is why we have conditions (3)-(a)
and (4). This argument is applicable only when student 𝜄ℓ−1’s assigned program 𝜇(𝜄ℓ−1) is not
an outside option. However, when quotas are adjusted to increase, some students may want
an increased program from their assigned outside options. To accommodate this, we used a
dummy student’s unit chain. In particular, when program 𝜇(𝜄ℓ−1) is the outside option, because
no real student prefers the outside option to the matched program owing to the individual
rationality of 𝜇, some unit chain by a dummy student, (∅, 𝑑), points to the unit chain (𝑥ℓ−1, 𝜄ℓ−1)
so that student 𝜄ℓ−1 can move from the outside option to program 𝑥ℓ−1. Therefore, we have
condition (3)-(b).

Given unit chains by real or dummy students, because ESOSMs are on the Pareto frontier
of distribution-specific stable matchings and the Pareto order is partial, more than one QASIC
might exist (See Example 2). As we will show, QASICs fully characterize the set of ESOSMs
which Pareto dominates a starting distribution-specific stable matching.

We define the main algorithm as follows:

Quota Adjustment Process (QAP)

• Given 𝑅, ≻, 𝑄 and arbitrary 𝑞 ∈ 𝑄
Step 0 Set 𝑞0 = 𝑞. Run the DA algorithm at (𝑅, ≻, 𝑞0) and obtain a matching 𝜇0.
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Step 𝑢 (𝑢 ≥ 2).

Step 𝑢.1 Find unit chains for 𝜇𝑢−1, ⟨(𝑥𝑢−1
ℓ , 𝑖𝑢−1

ℓ )⟩.
· If 𝐷 for 𝜇𝑢−1 is non-empty, then construct 𝜇̄𝑢−1 in a way that for each 𝑑 ∈ 𝐷,

choose program 𝑧 ∈ 𝑋𝑘(𝑑) which has a vacant seat randomly, and 𝜇̄(𝑑) = 𝑧.
Then find unit chains by dummy students for 𝜇̄𝑢−1, and proceed.

· Otherwise proceed.
Step 𝑢.2 Given unit chains by students and dummy students, ⟨(𝑥𝑢−1, 𝜄𝑢−1)⟩,

· if there is no QASIC, then terminate the process and output (𝜇𝑢−1, 𝑞𝑢−1).
· Otherwise, we have a QASIC for matching 𝜇𝑢−1, ⟨(𝑥ℓ , 𝜄ℓ )⟩𝑚−1

ℓ=0 (𝑚 ≥ 1).
If there are multiple QASICs, then pick one randomly. Construct (𝜇𝑢 , 𝑞𝑢) as
follows:

𝜇𝑢(𝑗) =

𝑥ℓ if 𝑗 = 𝜄ℓ , for some ℓ ∈ {0, . . . , 𝑚 − 1} and 𝜄ℓ is a student
∅ if 𝑗 = 𝜄ℓ , for someℓ ∈ {0, . . . , 𝑚 − 1} and 𝜄ℓ is a dummy student
𝜇𝑢−1(𝑗) otherwise

and
𝑞𝑢𝑥ℓ = 𝑞𝑢−1

𝑥ℓ + 1, for some ℓ ∈ {0, . . . , 𝑚 − 1}
𝑞𝑢
𝜇(𝜄ℓ ) = 𝑞𝑢−1

𝜇(𝜄ℓ ) − 1, for some ℓ ∈ {0, . . . , 𝑚 − 1}
𝑞𝑢𝑥 = 𝑞𝑢−1

𝑥 , otherwise

Go to Step 𝑢 + 1. 3
In other words, when there is a QASIC, we update the matching such that a student receives

the program in the unit chain, which is made possible by updating the quotas. We refer to the
resulting matching as QAP matching. Figure 1 illustrates the way in which QAP works.

Example 2 (Multiple QASICs and ESOSMs, and execution of QAP). Four students, {𝑖1, 𝑖2, 𝑖3, 𝑖4}
and four programs, {𝑥1, 𝑥2, 𝑥3, 𝑥4} with (𝑞̄𝑥1 , 𝑞̄𝑥2 , 𝑞̄𝑥3 , 𝑞̄𝑥4) = (1, 2, 2, 2). The four programs are
sorted into two departments: 𝑋𝑘 = {𝑥1} and 𝑋𝑘′ = {𝑥2, 𝑥3, 𝑥4} with 𝑞̄𝑘 = 1 and 𝑞̄𝑘′ = 3. The
preferences and priorities are as follows:

𝑅𝑖1 𝑅𝑖2 𝑅𝑖3 𝑅𝑖4
𝑥3 𝑥2 𝑥2 𝑥3

𝑥2 𝑥3 ∅ ∅
𝑎𝑛𝑦 𝑎𝑛𝑦

,

≻𝑥1 ≻𝑥2 ≻𝑥3 ≻𝑥4

𝑎𝑛𝑦 𝑖1 𝑖2 𝑎𝑛𝑦

𝑖3 𝑖4
𝑖2 𝑖1
𝑎𝑛𝑦 𝑎𝑛𝑦
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Students’ Welfare (𝑅)

Step 1 : 𝜇1 = 𝐷𝐴𝑞
1(𝑅)

𝑆𝑞
1(𝑅)

Step 2 : 𝜇2
Step 3 : 𝜇3 = 𝐷𝐴𝑞

2(𝑅)

𝑆𝑞
2(𝑅) = 𝑆𝑞3(𝑅)

𝑆𝑞
0(𝑅)Step 0 : 𝜇0 = 𝐷𝐴𝑞

0(𝑅)

“•” indicates a feasible matching

Figure 1: Illustration of the QAP

Suppose that a market designer sets the initial quota distribution to (1, 1, 1, 1). Then

𝐷𝐴(1,1,1,1)(𝑅) =
(
𝑖1 𝑖2 𝑖3 𝑖4
𝑥2 𝑥3 ∅ ∅

)
.

For this matching, there are two unit chains, (𝑥2, 𝑖3), (𝑥3, 𝑖4), and two unit chains by dummy
students, (∅, 𝑑1), (∅, 𝑑2) where 𝜇(𝑑1) = 𝑥1 and 𝜇(𝑑2) = 𝑥4. It is easy to verify that both
{(𝑥2, 𝑖3), (∅, 𝑑2)} and {(𝑥3, 𝑖4), (∅, 𝑑2)} are QASICs. If we implement the former, we obtain

𝜈 =

(
𝑖1 𝑖2 𝑖3 𝑖4
𝑥2 𝑥3 𝑥2 ∅

)
with 𝑞1 = (1, 2, 1, 0). It can be verified that 𝜈 is an ESOSM. If we implement the latter, we obtain

𝜈′ =

(
𝑖1 𝑖2 𝑖3 𝑖4
𝑥2 𝑥3 ∅ 𝑥3

)
with 𝑞1 = (1, 1, 2, 0). It can be verified that 𝜈′ is also an ESOSM. 3

Our main theorem states that if a distribution-specific stable matching is an ESOSM, then
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we do not find a QASIC any more; conversely, if it is not an ESOSM, there exists a QASIC. Thus,
this fully characterizes the relationship between ESOSM and QASIC, where QAP always stops
in finite steps and reaches an ESOSM.

Theorem 2. For a matching problem with quota adjustment, a distribution-specific stable matching is
an ESOSM if and only if there is no QASIC for the matching.

Theorem 2 directly implies the following.

Corollary 1. QAP matching is an ESOSM, regardless of which QASIC selections are made during the
process.

For practical use, the QAP algorithm terminates in a polynomial time. The computational
complexity of DA is known to be𝑂(|𝑁 |2) and that of a QASIC search is𝑂((|𝑁 |+ |𝐾 |)(|𝑋 |+1)).4 In
each step of the QASIC at least one student becomes better off. Thus, the number of search steps
of QASICs in the second stage is at most |𝑁 | |𝑋 | times.5 However, if we run the DA algorithm for
all implementable quota distributions, we can encounter computational difficulties.6 Therefore,
it is obvious that the QAP is fast, and thus an applicable algorithm in practice. As noted in the
introduction, QAP was implemented at University of Tsukuba in 2021.

3.3 Welfare

Here, we provide welfare analysis. First, expanding the set of implementable quota distributions
increases student welfare. The simplest way to expand such a set is to increase all of the upper
bounds weakly. This corresponds to an increase in the total supply. More importantly, it is
also possible to reduce the number of departments. If we reduce the number of departments,
while the sum of the upper bound of the departmental quota does not change, and none of them
decrease, then the total supply does not change, but the set of implementable quota distributions
weakly increase. In both cases, we conclude that students’ welfare increases weakly.

Proposition 2. For any 𝑅, ≻, 𝑄, 𝑄′ and 𝑞 ∈ 𝑄, if 𝑄 ⊂ 𝑄′, then there exists no QAP matching for 𝑄
such that it Pareto dominates any QAP matching for 𝑄′.

Proposition 2 implies the following.

Corollary 2. If the number of 𝐾 decreases while the sum of the upper bound of the departmental quota
does not change, and each of them do not decrease, then there is no QAP matching for the problem before
decreasing 𝐾, which Pareto dominates any QAP matching for the problem after decreasing 𝐾.

4To search a QASIC, consider a directed graph 𝐺 = (𝑉, 𝐸) such that 𝑉 is a set of unit chains by students
and dummy students and 𝐸 ⊂ 𝑉 × 𝑉 is a set of connected unit chains. Thus, |𝑉 | ≤ |𝑁 | + |𝐾 | and |𝐸 | ≤
(max𝑘∈𝐾 |𝑘 |)(|𝑁 | + |𝐾 |) because each unit chain can connect to another unit chain; that is, 𝑘(𝜇(𝜄)) = 𝑘(𝑥). In
such a directed graph, a cycle is found, for example, by a depth-first search method in 𝑂(|𝐸 | + |𝑉 |).

5In contrast with matching with indifferences, cycle searches in Erdil and Ergin’s (2008) stable improvement
cycle (SIC) are 1

2 |𝑁 |(|𝑋 | − 1) because a shortest SIC consists of two students. However, in the present case, the
shortest QASIC consists of one student. Furthermore, a student who is assigned nothing obtains a program.

6For instance, if 𝑞̄𝑥 = 𝑞̄𝑘 for all 𝑥 ∈ 𝑋, the number of non-zero quota distributions is |𝑄 | = ∏
𝑘∈𝐾

(
𝑞̄𝑘−1𝐶 |𝑋𝑘 |−1

)
.
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3.4 Incentives

We turn to the strategic properties of QAP to see whether each student truthfully states their
preferences. When employing QAP, students face a multiplicity of ESOSMs. Thus, we examine
strategy-resistance, requiring that no student should improve his/her match by misrepresenting
his/her preferences.

Theorem 3. Let 𝑅, ≻, 𝑄 and 𝑞 ∈ 𝑄 be given. Then the QAP is strategy-resistant.

Therefore, manipulation is limited to a certain extent ex-ante.
Traditionally, the literature has explored whether a matching mechanism is strategy-proof.

When a quota distribution is exogenously given, DA and Gale’s top trading cycles algorithm are
single-valued and strategy-proof. Unfortunately, there is no strategy-proof selection for QAP,
as shown below.

Theorem 4. No single-valued ex-post student-optimal stable function is strategy-proof.

Under quota adjustment, we share similarity to a matching problem with indifferences. This
is a matching problem with a fixed quota distribution and only one department. However,
the priorities of the programs are assumed to be complete and transitive (not necessarily
antisymmetric). Therefore, some students were ranked equally in some programs, which did not
differentiate between those students. In such cases, Erdil and Ergin (2008) and Abdulkadiroglu
et al. (2009) highlight a trade-off between distribution-specific student-optimal stability and
strategy-proofness. In our environment, Kamada and Kojima (2018) show that there is a strategy-
proof selection that is compatible with their stability. Together with Theorem 4, we can conclude
that there is a trade-off between ESOSM and strategy-proofness. Hence, given stability as one of
the design goals, a market designer must choose between efficiency and strategic robustness.7

4 Case Study

4.1 The background and the implementation of QAP

The University of Tsukuba (henceforth Tsukuba) is one of the largest national universities in
Japan. In 2017, the implementation of QAP was initiated by the university president. Tsukuba
decided to reform its admission process, which necessitated the introduction of a matching
mechanism. The second author of this paper was a faculty member at Tsukuba and was invited
to lead a matching task force which took charge of the admission reform. With much discussion
of the task force, because the university wanted to have quota flexibility while maintaining the

7The University of Tsukuba understood such a trade-off. As QAP is strategy-resistant and they assume that
students are not fully aware of the complex procedure of QAP, they would like to achieve the highest level of
welfare among distribution-specific stable matchings.
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Table 1: The current school-college structure at the University of Tsukuba
School College Quota School College Quota

Humanities 120 Mathematics 40
Humanities and Comparative culture 80 Physics 60

culture Japanese language 40 Science and Chemistry 50
and culture engineering Engineering sciences 120

Social and Social sciences 80 Engineering systems 130
international studies International studies 80 Policy and panning 120

Human sciences Education 35 sciences
Psychology 50 Information science 80
Disability sciences 35 Media, arts, science, 50

Life and environmental Biological sciences 80 Informatics and technology
sciences Agro-biological 120 Knowledge and 100

resource sciences library sciences
Geoscience 50 Medicine and Medicine 98

Physical education, health 240 medical sciences Nursing 70
and sport sciences Medical sciences 37

Art and design 100

stability and improving the efficiency, the authors of this paper invented QAP, which has been
officially approved for implementation in 2021. In this section, we discuss the background of
the implementation of the QAP as well as the simulation result.

Unlike most universities in Europe and the USA, in Japan, students must choose one of
the programs in their application for admission.8 It is very difficult for a student to change
their program during the enrollment process in college. A number of universities, such as the
University of Tokyo and Hokkaido University, did not adopt this admission system. However,
in their systems a student can “choose” one program at the end of their first or second year.
Thus, they used a matching mechanism to match students with programs. Tsukuba also wanted
to adopt this system as part of the reform.

Every year, approximately 2,000 students are enrolled in Tsukuba. The university has
eight schools, each consisting of several colleges. Note that the terms of schools and colleges
correspond to that of the departments and the programs in our matching problem with quota
adjustment. Each college has a quota, and the quota of a school is just the sum of the quotas of
all affiliate colleges. See Table 1 for the structure of schools and colleges with these capacities
for 2020.

The reform necessitated a matching mechanism for students at the end of their first year.
With such a mechanism, each student submits a preference ranking for colleges and each
college has a priority ranking determined by GPA or other criteria. This can be modeled as
the Abdulkadiroğlu and Sönmez’ (2003) school choice problem. However, Tsukuba wished for

8The matching process for admissions in Japan is not centralized but decentralized. See Hafalir et al. (2018) for
an analysis.
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quota adjustment, which could reflect the students’ popularity, to make the reform seem more
attractive. At the same time, there are two constraints on its quota distribution: (1) Each school
must keep the initial quota – the sum of all the quotas of its colleges, according to the Ministry
of Education, Culture, Sports, Science and Technology; (2) Flexibility of colleges’ quotas are not
welcome, because they are related to their budgets. This resulted in the adoption of the upper
bounds of quotas for colleges.

Tsukuba desired stability as the most important property of its mechanism, followed by
efficiency. As efficiency and strategy-proofness is incompatible (Theorem 4), its choice is
efficiency-oriented or strategy-proof among stable mechanisms. Tsukuba was less anxious
about the strategic properties of the QAP: Even if the QAP is only strategy-resistant, its strategic
manipulation is not as obvious as in the Boston mechanism. For these reasons, the task force
team chose QAP with an emphasis on efficiency. Tsukuba has approved the use of QAP for
implementation in 2021.9

4.2 Simulation

Our theoretical results show that the QAP reaches the Pareto frontier among all distribution-
specific stable matchings (Theorem 2), and improves all students’ welfare unambiguously, as
flexibility increases (Proposition 2). In this subsection, we describe a computer simulation, to
quantify welfare gains under QAP compared to DA, and those from the quota flexibility in the
Tsukuba environment.10

In the simulation, we set the number of students to 𝑛 = 2, 065, the number of schools is
|𝐾 | = 9, and the number of colleges is |𝑋 | = 25. See Table 1 for the quotas of each college
and other details. The upper bounds of the quotas of colleges are set as +5%, +10% · · · +50%
uniformly (rounding up to decimal places). We use 𝛾 as the parameter of the quota flexibility
such that for each college 𝑥 ∈ 𝑋,

𝑞̄𝑥 = (1 + 𝛾)𝑞0
𝑥 .

We vary the parameter 𝛾 from 0.05 to 0.50 in increments of 0.05.
Following the specifications of Erdil and Ergin (2008), we randomly create preferences and

priorities based on utility functions of students and colleges. The utilities of student 𝑖 ∈ 𝑁 are

9For instance, the University of Tokyo uses the three rounds of matching process: The first round uses the variant
of Boston (immediate acceptance) algorithm for 70% of its total quota; the second round uses DA algorithm for the
rest of the quota, and a scrambled market opens in the final round. The resulting matching becomes unfair in some
situations, when a student finds other colleges more preferable than her matched college, and there is another
student who is less prioritized but still matched with that college, and these mechanisms can be manipulated.

10In the case of Tsukuba, the number of colleges and their quotas are asymmetric across schools. Therefore, the
simulation results may be biased, and hence affect the performance of the QAP. Thus, we also set up a symmetric
environment artificially, in which the number of students was 1,000, the number of schools was five, each school
had four colleges, and the initial quota for each college was 50. All simulation results are available upon request.
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generated as
𝑈𝑖𝑥 = 𝛼𝑍∗𝑥 + (1 − 𝛼)𝑍𝑖𝑥 ,

where 𝑍∗𝑥 , 𝑍𝑖𝑥 are independent, identical and normally distributed random variables, with a
mean of 0 and a variance of 1. In particular, 𝑍∗𝑥 reflects common preferences among students.
Then, the preference 𝑅𝑖 is obtained as 𝑥 𝑃𝑖 𝑦 ⇔ 𝑈𝑖𝑥 > 𝑈𝑖𝑦 . In case 𝑈𝑖𝑥 = 𝑈𝑖𝑦 , we randomly
break the ties. On the other hand, the utilities of college 𝑥 ∈ 𝑋 are generated as:

𝑉𝑥𝑖 = 𝛽𝑍∗𝑘𝑖 + (1 − 𝛽)𝑍𝑥𝑖

where 𝑍∗𝑘𝑖 , 𝑍𝑥𝑖 are independent, identical and normally distributed random variables, with a
mean of 0 and a variance of 1. In particular, 𝑍∗𝑖𝑘 reflects the common priority among colleges
belonging to department 𝑘(𝑥). Then, the priority ≻𝑥 of college 𝑥 belonging to school 𝑘 ∈ 𝐾 is
obtained as 𝑖 ≻𝑥 𝑗 ⇔ 𝑉𝑥𝑖 > 𝑉𝑥 𝑗 . In the case of 𝑉𝑥𝑖 = 𝑉𝑥 𝑗 , we randomly break ties.

Parameters 𝛼 and 𝛽 control how correlated students’ preferences or college priorities are
respectively. Thus, all parameters of zero indicate no correlation, where preferences and
priorities are independently generated. Note that, even when 𝛽 = 1, colleges belonging to
different departments had different priorities.

We compared the matchings of QAP and DA at the initial distribution. As QAP is identified
by its flexibility, we denote QAP as 𝑄𝐴𝑃(𝛾), whose flexibility is bounded above at 1 + 𝛾

where 𝛾 ∈ {0.05, 0.1, . . . , 0.45, 0.5}. Table 2 shows a comparison between 𝐷𝐴 and 𝑄𝐴𝑃(𝛾) for
𝛾 = 0.05, 0.1, 0.2, 0.5, with respect to the average number of students matched with their first
and second college of preference; the average of the mean of the rank matched for all students,
and the mean of the number of students better off from the DA matching. Figure 2 shows the
average number of students better off as a function of flexibility rate 𝛾.

These results show that, when preferences and priorities are uncorrelated, that is, (𝛼, 𝛽) =
(0, 0), approximately one-third of the students are matched with their first preference under
DA. In this case, because the preferences generated are so diverse, there is little conflict amongst
the students, which means there is little room for improvement, even though flexibility is
sufficiently high (50% of all college quotas). By contrast, when preferences and priorities are
positively correlated, for example as in (𝛼, 𝛽) = (0.5, 0.5), there are relatively popular colleges
among students, and relatively preferable students from colleges belonging to the same school.
This induces conflict among the students, and QAP improves many students’ situation with
an updated quota distribution. Thus, it is difficult for policymakers to set an initial quota
distribution well, and QAP can help them significantly. In particular, the more flexible the
quota distributions are, the more the students’ situations improve, which is consistent with
Proposition 2.
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Table 2: Comparison among 𝐷𝐴 and 𝑄𝐴𝑃(𝛾)
(𝛼, 𝛽) = (0, 0) 𝐷𝐴 𝑄𝐴𝑃(0.05) 𝑄𝐴𝑃(0.1) 𝑄𝐴𝑃(0.2) 𝑄𝐴𝑃(0.5)
1st ranked 763.04 780.29 782.61 783.93 784.22
2nd ranked 482.34 486.57 487.13 487.37 487.40
Average rank 2.68 2.63 2.62 2.62 2.62
Better off 0 44.47 50.28 53.46 54.19

(𝛼, 𝛽) = (0.5, 0.5) 𝐷𝐴 𝑄𝐴𝑃(0.05) 𝑄𝐴𝑃(0.1) 𝑄𝐴𝑃(0.2) 𝑄𝐴𝑃(0.5)
1st ranked 160.80 167.62 172.56 182.81 213.16
2nd ranked 171.14 177.90 182.90 193.07 223.41
Average rank 8.15 7.91 7.74 7.41 6.68
Better off 0 96.11 160.75 276.50 517.89
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Figure 2: Percent of improving students as a function of flexibility 𝛾. The vertical axis is the
average number of students better off, while the horizontal axis is the flexibility rate 𝛾.
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5 Discussion

5.1 Stability concepts

This study refines the notion of stability and introduces ex-post student-optimal stability. In
an independent work, Dur and Van der Linden (2022) also introduced the same notion of
stability. Our framework includes departments, but theirs do not, which can be viewed as
their model having only one department. Whereas we provide QAP, they provide a different
matching algorithm to achieve an ESOSM. As the two papers differs in terms of motivation,
the main algorithms have different features. We were initially requested the development of a
matching procedure for the University of Tsukuba. Their aim is to improve students’ welfare
through quota adjustments from the original quota distribution while maintaining stability and
departmental quota constraints. Hence, the QAP starts from an arbitrary implementable quota
distribution, which is different from the algorithm proposed by Dur and Van der Linden (2022).

As our model contains departments, it constrains implementable quota distributions. Thus,
our research contributes to part of literature which investigates matching under these constraints.
Thus, we have compared our stability concept with that of Kamada and Kojima (2017), who first
introduced matching under constraints. In their model, the implementable quota distributions
are more general than ours, and we let 𝑔 : 𝑍 |𝑋 |+ → {0, 1} be feasibility constraints, such that for
all 𝑤, 𝑤′ ∈ 𝑍 |𝑋 |+ , 𝑔(𝑤) ≥ 𝑔(𝑤′) when 𝑤 ≤ 𝑤′ and 𝑔(0) = 1. A variable 𝑤 is said to be feasible
if 𝑔(𝑤) = 1, and not feasible if 𝑔(𝑤) = 0. We use a notation 𝑤(𝜇) as a vector of the number of
matched students at 𝜇, which is 𝑤(𝜇) = (|𝜇−1(𝑥1)|, |𝜇−1(𝑥2)|, · · · , |𝜇−1(𝑥 |𝑋 |)|). Then in our model,

𝑔(𝑤) =
{

1 if 𝑤 ≤ 𝑞, ∀𝑞 ∈ 𝑄
0 otherwise

Now, we rephrase their notions of strong stability and weak stability. The first is strong stability.

Definition 6. A matching 𝜇 is strongly stable if it is feasible and individually rational, and if
there exists a pair (𝑖 , 𝑥) ∈ 𝑁 × 𝑋 such that

𝑥𝑃𝑖𝜇(𝑖) and
[∃𝑗 ∈ 𝜇−1(𝑥)(𝑖 ≻𝑥 𝑗) or |𝜇−1(𝑥)| < 𝑞𝑥

]
then it must be that

𝑔(𝑤(𝜇) + 𝑒𝑥 − 𝑒𝜇(𝑖)) = 0 and ∀𝑗 ∈ 𝜇−1(𝑥)(𝑗 ≻𝑥 𝑖)
where 𝑒𝑦 is the 𝑦th unit vector.

They showed that a strongly stable matching does not necessarily exist in their environment.
Neither does it exist within our restricted environment, however, an ESOSM exists in any case
(Theorem 1). Strong stability requires strict conditions, and would be regarded as a plausible
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concept if it did exist. However, it fails to be immune to group-wise deviation, even if it exists.
This is shown below.

Example 3. There are two students, 𝑖1, 𝑖2 and two departments, 𝑘1, 𝑘2 with two programs for
each 𝑋𝑘1 = {𝑥, 𝑦} and 𝑋𝑘2 = {𝑧, 𝑤}. The upper bound for each program is one, and the quotas
of the departments are (𝑞𝑘1 , 𝑞𝑘2) = (1, 1). The preferences and priorities are given as follows:

𝑖1 𝑖2
𝑤 𝑦

𝑥 𝑧

𝑎𝑛𝑦 𝑎𝑛𝑦

,

𝑘1 𝑘2

𝑥 𝑦 𝑧 𝑤

𝑖1 𝑖2 𝑖2 𝑖1
𝑖2 𝑖1 𝑖1 𝑖2

The possible quota distributions are𝑄 = {(0, 1, 0, 1), (1, 0, 1, 0)}. Thus, 𝑓 (𝑤) = 1 if 𝑤 ≤ 𝑞 for any
𝑞 ∈ 𝑄. Now, we consider the following matching.

𝜇 =

(
𝑖1 𝑖2
𝑥 𝑧

)
Clearly, 𝜇 is strongly stable because 𝑔(𝑤(𝜇)) = 𝑔((1, 0, 1, 0)) = 0 and if 𝑖1 wants to be better off,
then it requires 𝑖1 being matched with 𝑤 and such a move violates the feasibility constraint
𝑔(𝑤(𝜇) + 𝑒𝑤 − 𝑒𝑥) = 𝑔((0, 0, 1, 1)) = 1, and the symmetric argument is applied to 𝑖2. By contrast,
𝜇 is not ex-post student-optimal stable, because the following matching 𝜈

𝜈 =

(
𝑖1 𝑖2
𝑤 𝑦

)
is distribution-specific stable at 𝑞 = (0, 1, 0, 1) (thus it is feasible) and Pareto dominates 𝜇. 3

Therefore, there is no logical inclusion relation between ESOSM and strong stable matching.
Note that the matching 𝜈 above is also strongly stable. One may think of the stability notion as
the combination of both ex-post student-optimal stability and strong stability, while keeping in
mind that a strongly stable matching does not necessarily exist.

Kamada and Kojima (2017) also proposed a weaker notion called weak stability.

Definition 7. A matching 𝜇 is weakly stable if it is feasible and individually rational, and if there
exists a pair (𝑖 , 𝑥) ∈ 𝑁 × 𝑋 such that

𝑥𝑃𝑖𝜇(𝑖) and
[∃𝑗 ∈ 𝜇−1(𝑥)(𝑖 ≻𝑥 𝑗) or |𝜇−1(𝑥)| < 𝑞𝑥

]
then it must be that

𝑔(𝑤(𝜇) + 𝑒𝑥) = 0 and ∀𝑗 ∈ 𝜇−1(𝑥)(𝑗 ≻𝑥 𝑖).
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Note that strong stability implies weak stability because 𝑔(𝑤) ≥ 𝑔(𝑤′)when 𝑤 ≤ 𝑤′.
Claim 1. If a matching 𝜇 is an ESOSM, then it is weakly stable.

As an ESOSM exists for any problem and is immune to some group deviations, it can be seen
as a sharper notion than weak stability. Alternatively, we can say that the set of ESOSMs lay on
the Pareto frontier of the set of all weakly stable matchings. We end up with logical relations
among ex-post student-optimal stability, weak stability, and strong stability, as depicted in
Figure 3.

Weak stability
Strong stability
(may be empty)

Ex-post student
optimal stability

Figure 3: Logical relations among several stability notions

5.2 Affirmative action

Our model is related to matching models with affirmative action policies. In this model,
students are separated into types. There are upper and lower bounds for each type in each
school. If we translate a type into a program and a school as a department (each department
has the same number of programs as the types, and students’ preferences are defined not
over programs but over departments), such a model falls in our environment. This type of
model is not distinguished in terms of diversity. There are two distinct approaches that satisfy
type-specific constraints. Ehlers et al. (2014) consider this kind of matching problems with
an affirmative action policy. They developed a student exchange algorithm to ensure stability-
constrained efficient matching among those that satisfy their notion of stability and type-specific
constraints. Their algorithm works close to our QAP. The critical difference is that when we see
a department as a school that has type-specific quotas, their model allows all students to apply
to departments, but ours allows all students to apply to several programs within departments.
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For other models with an affirmative action policy, there are sometimes ideal type-specific
quota distributions. The goal of these situations is to find the matching close to the ideal quota
distribution, while preserving stability as defined in each study. For example, see Hafalir et al.
(2013), Echenique and Yenmez (2015), or Aygün and Turhan (2020). These studies do not treat
quota distributions equally; thus, our model does not apply to every study. However, it is
possible to incorporate an affirmative action policy into our model in such a way that each
program is subject to type-specific constraints, which would enrich the model. This may be an
interesting topic for future research.

5.3 Priorities with ties

Often, some students are ranked indifferently. In other words, priorities are allowed to include
ties. As noted earlier, there is a similar relationship between the matching problem with
quota adjustment and indifferences. Here, we discuss a unified model. As ESOSM is defined
on distribution-specific stable matchings and when a quota distribution is fixed, distribution-
specific student-optimal stable matching is equivalent to ESOSM. Our model incorporates ties
in straightforward manner. For each quota distribution, one can extend distribution-specific
student-optimal stable matching, as in Erdil and Ergin (2008). The QAP shares the idea of
stable improvement cycle (SIC) of Erdil and Ergin (2008) when a quota distribution is fixed,
and updates a quota distribution independent of SIC. Thus, with a small modification, QAP is
still valid for priorities with ties. Future research should incorporate to be able to solve more
realistic matching problems.

5.4 Lower bounds

As QAP adjusts a quota distribution subject to the upper bounds, holding department quotas
constant, it may theoretically occur that under slack upper bounds, some programs lose all of
their quota. To avoid such a problem, it is possible to incorporate lower bounds into QAP as in
Fragiadakis et al. (2016) and Fragiadakis and Troyan (2017). The lower bounds work because
every program must have students at least equal to its lower bound. As a matching model with
lower bounds often faces the non-existence of distribution-specific stable matchings, we should
assume that all students prefer any program to the outside option, as in the literature on a
matching model with lower bounds. Then, we restrict QAP such that we exclude QASIC which
binds to the lower bounds. It is clear that this modification does not hinder QAP because the
process works and weakly improves student welfare compared to distribution-specific stable
matching in an original quota distribution. However, the improvement from introducing lower
bounds is less than the one without the lower bounds, because QAP finds an ESOSM via
exchanges following the QASIC, which is restricted by the lower bounds. However, regardless
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of the lower bounds, as long as quota distributions are variable, it is possible to weakly improve
students’ welfare using QAP.
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A Appendix: Proofs

A.1 Proof of Theorem 1

Proof. For a fixed 𝑞 ∈ 𝑄 and 𝑅 ∈ ℛ𝑁 , there is a unique student-optimal stable (SOS) matching.
As the set 𝑄 of quota distributions is finite, the set of distribution-specific SOS at all quota
distributions,

⋃
𝑞∈𝑄 𝑆𝑞(𝑅), is also finite. Here, 𝑆𝑞(𝑅) is the set of all distribution-specific stable

matchings at (𝑅, 𝑞). Hence, there is an ESOSM because it is a maximal element of the finite set
of

⋃
𝑞∈𝑄 𝑆𝑞(𝑅) in the partial order of Pareto domination.

25



A.2 Proof of Proposition 1

Proof. Let 𝜇 be an ESOSM and 𝑞 be the corresponding quota distribution. Suppose that at least
one of the three conditions does not hold true. If (1) fails, this violates the distribution-specific
stability of 𝜇 at 𝑞, which is a contradiction. If (2) fails, then

∑
𝑦∈𝑋𝑘(𝑥) |𝜇−1(𝑦)| < 𝑞̄𝑘(𝑥). Thus, there

is a vacant seat in some program 𝑦 ∈ 𝑋𝑘(𝑥). Then, choose the student, denoted by 𝑗, with the
highest priority among those who prefer 𝑥 to the matched program in 𝜇. Let a new matching 𝜈

be one in which only 𝑗’s position changes to 𝑥 from 𝜇. Let 𝑝 be a quota distribution, in which
𝑝𝑥 = 𝑞𝑥 + 1 and 𝑝𝑦 = 𝑞𝑦 − 1. Then, 𝜇 ∈ ℳ and is distribution-specific stable at 𝑝. Clearly, 𝜈
Pareto dominates 𝜇, which is a contradiction. If (3) fails, then new matching 𝜈 is stable and
Pareto dominates 𝜇, which is a contradiction.

A.3 Proof of Theorem 2

We use the following two propositions to prove Theorem 2.

Proposition 3. Suppose that a matching 𝜇 is distribution-specific stable at a quota distribution 𝑞. If
there is a QASIC for 𝜇, ⟨(𝑥ℓ , 𝜄ℓ )⟩𝑚ℓ=0, and construct a matching 𝜈 and quota distribution 𝑝 in a way that

𝜈(𝑗) =

𝑥ℓ if 𝑗 = 𝜄ℓ ,∀ℓ ∈ {0, · · · , 𝑚 − 1} and 𝜄ℓ is a student
∅ if 𝑗 = 𝜄ℓ ,∀ℓ ∈ {0, · · · , 𝑚 − 1} and 𝜄ℓ is a dummy student
𝜇(𝑗) otherwise

and
𝑝𝑥ℓ = 𝑞𝑥ℓ + 1, ∀ℓ ∈ {0, · · · , 𝑚 − 1}
𝑝𝜇(𝜄ℓ ) = 𝑞𝜇(𝜄ℓ ) − 1, ∀ℓ ∈ {0, · · · , 𝑚 − 1}
𝑝𝑥 = 𝑞𝑥 , otherwise

then 𝜈 is distribution-specific stable at 𝑝.

Proposition 4. Suppose that 𝜇 and 𝜈 are distribution-specific stable matchings at 𝑞 and 𝑝, respectively.
If 𝜈 Pareto dominates 𝜇, then there is a QASIC for 𝜇.

The propositions will be proved in the next subsections. Proposition 3 says that a QASIC
preserves stability. More important is Proposition 4 which is about whether we could always
reach an ESOSM. Note that Proposition 4 does not say that even if 𝜈 Pareto dominates𝜇, applying
a QASIC for 𝜇 results in 𝜈.

By applying the above propositions, we prove Theorem 2. Let 𝜇 be distribution-specific
stable at 𝑞.

(⇒) Suppose that there is a QASIC for 𝜇. Then it follows from Proposition 3 that the
constructed matching 𝜈 is distribution-specific stable at 𝑝, and it is obvious that 𝜈 Pareto
dominates 𝜇. Hence, 𝜇 is not an ESOSM.
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(⇐) Suppose that 𝜇 is not an ESOSM. Then there exist 𝑝 ∈ 𝑄 and a distribution-specific
stable matching 𝜈 ∈ ℳ(𝑝) at 𝑝 such that 𝜈 Pareto dominates 𝜇. Thus it follows from Proposition
4 that there exists a QASIC for 𝜇.

A.3.1 Proof of Proposition 3

By definition of QASICs, if 𝑞 is implementable, then 𝑝 is straightforwardly implementable. Thus
it suffices to show that 𝜈 is distribution-specific stable at 𝑝. Suppose by contradiction that 𝜈 is
not distribution-specific stable at 𝑝. Then there is a blocking pair (𝑗 , 𝑥) for 𝜈 at 𝑝, so 𝑥 𝑃𝑗 𝜈(𝑗).
Since 𝜈 Pareto dominates 𝜇, we have 𝑥 𝑃𝑗 𝜇(𝑗). Thus, since 𝜇 is distribution-specific stable at 𝑞,
we have |𝜇−1(𝑥)| = 𝑞𝑥 . Suppose that 𝑥 is involved in the QASIC. Then an increase, decrease, or
no change of 𝑞𝑥 is made in association with a transfer of a student, so |𝜈−1(𝑥)| = 𝑝𝑥 . Suppose
that 𝑥 is not involved in the QASIC. Then |𝜈−1(𝑥)| = |𝜇−1(𝑥)| = 𝑞𝑥 = 𝑝𝑥 . Hence, since (𝑗 , 𝑥) is a
blocking pair for 𝜈 at 𝑝, there is ℎ ∈ 𝜈−1(𝑥) such that 𝑗 ≻𝑥 ℎ. There are two cases.
(Case 1) 𝑥 is a program involved in the QASIC.

If ℎ ∈ 𝜇−1(𝑥) ∩ 𝜈−1(𝑥), then it follows from the previous paragraph that 𝑥 𝑃𝑗 𝜇(𝑗) and
𝑗 ≻𝑥 ℎ, i.e., 𝜇 is not distribution-specific stable at 𝑞, a contradiction. On the other hand, if
ℎ ∉ 𝜇−1(𝑥) ∩ 𝜈−1(𝑥), then ℎ is a member of some unit chain (𝑥, ℎ) in the QASIC. Since 𝑥 𝑃𝑗 𝜇(𝑗)
by the previous paragraph, 𝑗 ∈ {𝑖 | 𝑥 𝑃𝑖 𝜇(𝑖)}, and thus ℎ ≻𝑥 𝑗, a contradiction.
(Case 2) 𝑥 is a program not involved in the QASIC.

Then 𝜈−1(𝑥) = 𝜇−1(𝑥) and 𝑝𝑥 = 𝑞𝑥 . Thus ℎ ∈ 𝜇−1(𝑥) and 𝑗 ≻𝑥 ℎ, which means that (𝑗, 𝑥) is a
blocking pair of 𝜇 at 𝑞. This contradicts the distribution-specific stability of 𝜇. □

A.3.2 Proof of Proposition 4

We begin to introduce the following notion to prove the proposition.

Definition 8. We say that a distribution-specific stable matching 𝜈 at 𝑝 ∈ 𝑄 minimally Pareto
dominates another distribution-specific stable matching 𝜇 at 𝑞 ∈ 𝑄 if 𝜈 Pareto dominates 𝜇 and
there is no distribution-specific stable matching 𝜂 at some 𝑞′ ∈ 𝑄 such that 𝜈 Pareto dominates
𝜂 and 𝜂 Pareto dominates 𝜇.

Let 𝜇 and 𝜈 be distribution-specific stable matchings at 𝑞 ∈ 𝑄 and 𝑝 ∈ 𝑄, respectively.
We assume, without loss of generality, that 𝜈 minimally Pareto dominates 𝜇. We then extend
matchings 𝜇 and 𝜈 to 𝜇̄ and 𝜈̄ to the following extended problem so that we add the set of
dummy students 𝐷 and treat ∅ as a real program.

The extended problem for 𝜇 is(
𝑁 ∪ 𝐷, 𝑋 ∪ {∅}, (𝑅𝜄)𝜄∈𝑁∪𝐷 , (≿𝜇

𝑥)𝑥∈𝑋∪{∅} , 𝑄 × {𝑞̄𝑘∅}, 𝐾 ∪ {𝑘∅}
)

where
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• 𝐷 is a set of dummy students and 𝐷 satisfies

|𝐷 | =
∑
𝑘∈𝐾

max

{∑
𝑥∈𝑘

(|𝜈−1(𝑥)| − |𝜇−1(𝑥)|) , 0} ,
• ∅ is treated as a real program and its quota satisfies 𝑞∅ = |𝜇−1(∅)|, and it belongs to

department 𝑘∅ with 𝑞̄𝑘∅ = 𝑞∅ which consists of only one program, that is, 𝑋𝑘∅ = {∅},
• for all 𝑥 ∈ 𝑋, ≿𝜇

𝑥 is a complete and transitive order over 𝑁 ∪ 𝐷 in which for all 𝑖 , 𝑗 ∈ 𝑁 ,

𝑖 ≻𝑥 𝑗 ⇒ 𝑖 ≻𝜇𝑥 𝑗 ,

for all 𝑖 ∈ 𝑁 and 𝑑 ∈ 𝐷,
𝑖 ≻𝜇𝑥 𝑑

for all 𝑑, 𝑑′ ∈ 𝐷,
𝑑 ∼𝜇𝑥 𝑑′

and ≿𝜇
∅ is a complete and transitive order over 𝑁 ∪𝐷 in which for all 𝑖 ∈ 𝑁 and all 𝑑 ∈ 𝐷,

𝑖 ≻𝜇∅ 𝑑, 11

and

• for all 𝑑 ∈ 𝐷, 𝑅𝑑 is complete and transitive preferences over 𝑋 ∪ {∅} in which for all
𝑥, 𝑦 ∈ 𝑋 ∪ {∅},

𝑥𝐼𝑑𝑦.12

In this problem, we extend 𝜇 and 𝜈 as follows:
𝜇̄: for all 𝑖 ∈ 𝑁 , 𝜇̄(𝑖) = 𝜇(𝑖) and each dummy student is arbitrarily matched with a program

in which |𝜈−1(𝑥)| ≠ |𝜇−1(𝑥)| among departments such that
∑
𝑥∈𝑋𝑘

(|𝜈−1(𝑥)| − |𝜇−1(𝑥)|) > 0.
𝜈̄: for all 𝑖 ∈ 𝑁 , 𝜈̄(𝑖) = 𝜈(𝑖) and each dummy student is arbitrarily matched with a program

in which |𝜈−1(𝑥)| ≠ |𝜇−1(𝑥)| among departments such that
∑
𝑥∈𝑋𝑘

(|𝜈−1(𝑥)| − |𝜇−1(𝑥)|) < 0 and
vacant seats of program ∅ if any.

Thus all students and dummy students are matched with some program and all seats
are fulfilled both in 𝜇̄ and 𝜈̄ at (𝑞, 𝑞∅) and (𝑝, 𝑞∅) respectively. Note that if for some 𝑘,∑
𝑥∈𝑋𝑘

(|𝜈−1(𝑥)| − |𝜇−1(𝑥)|) > 0, then since 𝑞𝑘 =
∑
𝑥∈𝑋𝑘 𝑞𝑥 =

∑
𝑥∈𝑋𝑘 𝑝𝑥 ≥

∑
𝑥∈𝑋𝑘 |𝜈−1(𝑥)| >∑

𝑥∈𝑋𝑘 |𝜇−1(𝑥)|, there must exist vacant seats at 𝜇. Note also that no dummy student is matched
with a program in the same department between 𝜈̄ and 𝜇̄.

11We write 𝑖 ≻𝜇𝑥 𝑗 if 𝑖 ≿𝜇
𝑥 𝑗 and not 𝑗 ≿𝜇

𝑥 𝑖, and 𝑖 ∼𝜇𝑥 𝑗 if 𝑖 ≿𝜇
𝑥 𝑗 and 𝑗 ≿𝜇

𝑥 𝑖, respectively.
12We write 𝑥𝐼𝑑𝑦 if 𝑥𝑅𝑑𝑦 and 𝑦𝑅𝑑𝑥.
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Lemma 1. 𝜇̄ and 𝜈̄ are distribution-specific stable at (𝑞, 𝑞∅) and (𝑝, 𝑞∅), respectively. Furthermore, 𝜈̄
minimally Pareto dominates 𝜇̄.13

Proof. As noted above, 𝜇̄ is feasible at (𝑞, 𝑞∅). Since no student 𝑖 ∈ 𝑁 prefers ∅ to 𝜇(𝑖) by
individual rationality of 𝜇, no pair of 𝑖 ∈ 𝑁 and 𝑥 ∈ 𝑋 ∪ {∅} blocks 𝜇̄ for 𝑅 at (𝑞, 𝑞∅). For all
𝑑 ∈ 𝐷, 𝑑 finds any program indifferent. Thus 𝜇̄ is distribution-specific stable at (𝑞, 𝑞∅). Similar
discussion applies to 𝜈̄ at (𝑝, 𝑞∅).

By construction of the preferences of dummy students, each of them finds her assignment at
𝜇̄ indifferent to that at 𝜈̄. Furthermore, for all 𝑥 ∈ 𝑋, 𝑞𝑥 and 𝑝𝑥 are unchanged in the extended
problem from the original problem, and no student 𝑖 prefers ∅ to 𝜇(𝑖) (thus 𝜈(𝑖)). From these
facts, since 𝜈 minimally Pareto dominates 𝜇, 𝜈̄ minimally Pareto dominates 𝜇̄.

Let 𝑁′ = {𝑖 ∈ 𝑁 |𝜇̄(𝑖) ≠ 𝜈̄(𝑖)}.14 Denote a pair of programs at 𝜈̄ and 𝜇̄ of student 𝑖 ∈ 𝑁′ by

(𝜈̄(𝑖), 𝜇̄(𝑖))

and a pair of programs at 𝜈̄ and 𝜇̄ of dummy student 𝑑 ∈ 𝐷 by

(𝜈̄(𝑑), 𝜇̄(𝑑)).

Consider a directed graph (𝑉, 𝐸)where a set of vertices𝑉 = 𝐾∪{𝑘∅} and a set of directed edges

𝐸 = {(𝑘′, 𝑘′′) ∈ [𝐾 ∪ {𝑘∅] × [𝐾 ∪ {𝑘∅] | 𝑘(𝜈̄(𝜄)) = 𝑘′ and 𝑘(𝜇̄(𝜄)) = 𝑘′′, for some 𝜄 ∈ 𝑁′ ∪ 𝐷}.

That is, for all 𝜄 ∈ 𝑁′ ∪ 𝐷, and for all pairs (𝜈̄(𝜄), 𝜇̄(𝜄)) such that 𝑘(𝜈̄(𝜄)) = 𝑘′ and 𝑘(𝜇̄(𝜄)) = 𝑘′′,
we write a directed edge 𝑘′′ to 𝑘′. We say that an ordered set of pairs ⟨(𝜈̄(𝜄𝑠), 𝜇̄(𝜄𝑠))⟩𝑡𝑠=0 (𝑡 ≥ 1)
constitutes a cycle if 𝜄0 = 𝜄𝑡 and 𝑘(𝜇̄(𝜄𝑠)) = 𝑘(𝜈̄(𝜄𝑠+1)) for all 𝑠 ∈ {0, 1, . . . , 𝑡 − 1}. We denote a
cycle by 𝐶 which is formed visually as follows:

𝐶 : 𝜈̄(𝜄0) ← 𝜇̄(𝜄0), 𝜈̄(𝜄1)︸      ︷︷      ︸
𝑘

← 𝜇̄(𝜄1), 𝜈̄(𝜄2)︸      ︷︷      ︸
𝑘′

← . . .← 𝜇̄(𝜄𝑡−1), 𝜈̄(𝜄𝑡)︸         ︷︷         ︸
𝑘′′

← 𝜇̄(𝜄𝑡), 𝜈̄(𝜄0)︸      ︷︷      ︸
𝑘′′′

← 𝜇̄(𝜄0).

Since we add dummy students in a way that the total numbers of matched students and dummy
students at each 𝑘 are constant across 𝜇̄ and 𝜈̄, it is obvious by this construction that each 𝑘 ∈ 𝐾
and 𝑘∅ have the same numbers of incoming and outgoing edges (possibly none). Hence there
must exist cycles {𝐶𝑚},𝑚 ∈ {1, 2, . . . , 𝑛} in which for each 𝜄 ∈ 𝑁′∪𝐷, 𝜄 is involved in the exactly
one cycle.

Note that there may be multiple cycles at this stage, but it is important that all students and

13We adopt the definition of distribution-specific stability in the extended problem as before.
14Since 𝜈̄ Pareto dominates 𝜇̄, this set is equivalent to {𝑖 ∈ 𝑁 |𝜈̄(𝑖)𝑃𝑖𝜇̄(𝑖)}.
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dummy students are involved in the exactly one cycle. For the sake of exposition, for each 𝐶𝑚 ,
the set of programs which are involved in 𝜈̄ and 𝜇̄ are denoted by 𝐶𝑚← and 𝐶𝑚→, respectively.

There are potentially multiple ways to construct such cycles, but the following lemma tells
that we can find cycles in which if 𝜇̄(𝜄𝑠) ≠ 𝜈̄(𝜄𝑠+1) then 𝜇̄−1(𝜈̄(𝜄𝑠+1)) < 𝑞̄𝜈̄(𝜄𝑠+1). Note that no cycle
is constituted only of dummy students since in each 𝑘 if there are outgoing edges by dummy
students then there are no incoming edges by dummy students, and vice versa.

Lemma 2. Among the sets of cycles constructed above, there must exist the set of cycles {𝐶𝑚}, 𝑚 ∈
{1, 2, . . . , 𝑛} such that if 𝜇̄(𝜄𝑠) ≠ 𝜈̄(𝜄𝑠+1) then 𝜇̄−1(𝜈̄(𝜄𝑠+1)) < 𝑞̄𝜈̄(𝜄𝑠+1).

Proof. Since all of 𝑁′ ∪ 𝐷 are involved in the exactly one cycle, if all 𝜄 ∈ 𝑁′ ∪ 𝐷 exchange their
matched programs at 𝜇̄ along with (𝜈̄(𝜄), 𝜇̄(𝜄)) then we obtain 𝜈̄. The fact that 𝜈̄ is feasible at
(𝑝, 𝑞∅) implies that the desired cycles exist.

We then claim that the set of cycles satisfying the above condition consists of the exactly one
cycle.

Lemma 3. The set of cycles found in Lemma 2 is constituted of the exactly one cycle.

Proof. Suppose not. If there are more than one distinct cycles, then we construct new matchings
for each of cycles as follows: for each 𝑚 ∈ {1, 2, . . . , 𝑛},

𝜂𝐶
𝑚 (𝜄) =

{
𝜈̄(𝜄) 𝜄 ∈ 𝐶𝑚
𝜇̄(𝜄) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑝𝑚
𝜈(𝜄) = 𝑞𝜈(𝜄) + 1 𝜄 ∈ 𝐶𝑚
𝑝𝑚
𝜇(𝜄) = 𝑞𝜇(𝜄) − 1 𝜄 ∈ 𝐶𝑚
𝑝𝑚𝑥 = 𝑞𝑥 (𝑥 ∈ 𝑋 ∪ {∅}) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Since exchanges along with the all cycles at 𝜇̄ preserve feasibility and those cycles are distinct,
{𝜂𝐶𝑚 } are all feasible at (𝑝𝑚 , 𝑞∅), respectively. If there exists some𝑚 such that 𝜂𝐶𝑚 is distribution-
specific stable at (𝑝𝑚 , 𝑞∅), then it contradicts to the fact that 𝜈̄ minimally Pareto dominates
𝜇̄. Thus we assume that all {𝜂𝐶𝑚 } are not distribution-specific stable. That is, since 𝜂𝐶

𝑚 is
individually rational, for each 𝜂𝐶

𝑚 there exists a pair of 𝑗𝑚 and 𝑦𝑚 that blocks 𝜂𝐶
𝑚 . Since 𝜇̄ is

distribution-specific stable at (𝑞, 𝑞∅), 𝑦𝑚 ∈ 𝐶𝑚←.
For all 𝑦𝑚 ∈ 𝐶𝑚←, let 𝑗𝑦𝑚 be of the highest priority among those who desire 𝑦𝑚 at 𝜇̄ if such

student exists, and be a dummy student involved in (𝑦𝑚 = 𝜈̄(𝑑), 𝜇̄(𝑑)) if there is no student
who desires 𝑦𝑚 at 𝜇̄. Denote them by { 𝑗𝑦𝑚0 , . . . , 𝑗𝑦𝑚𝑡−1}, possibly 𝑗𝑦

𝑚
𝑠 = 𝑗𝑦

𝑚
𝑠′ for some 𝑠, 𝑠′ with

𝑠 ≠ 𝑠′. For any 𝐶𝑚 , if 𝑗𝑦𝑚 is not a dummy student, then 𝑗𝑦
𝑚 ∈ 𝑁′, for otherwise 𝑗𝑦𝑚 ∈ 𝑁 \ 𝑁′

whose matched program does not change among 𝜇̄, 𝜂𝐶1
, . . . , 𝜂𝐶

𝑛 , and 𝜈̄, which contradicts to
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distribution-specific stability of 𝜈̄. Since 𝜈̄ is distribution-specific stable, for all 𝑚,

𝜈̄(𝑗𝑚)𝑅 𝑗𝑚 𝑦𝑚𝑃𝑗𝑚 𝜇̄(𝑗𝑚).

For each 𝑚, if 𝑗𝑦𝑚0 , . . . , 𝑗𝑦𝑚𝑡−1 are all involved in 𝐶𝑚 , we find a shorter cycle in a way that we
add (𝑦𝑚𝑠 , 𝜇̄(𝑗𝑦𝑚𝑠 )) and replace the original (𝑦𝑚𝑠 , 𝜇̄(𝜄)) by (𝑦𝑚𝑠 , 𝜇̄(𝑗𝑦𝑚𝑠 )) in a sequential manner. That
is,

• we begin with 𝑦𝑚𝑠 , and replace (𝑦𝑚𝑠 , 𝜇̄(𝜄)) by (𝑦𝑚𝑠 , 𝜇̄(𝑗𝑦𝑚𝑠 )).
• Then we consider pair (𝑦𝑚𝑠′ = 𝜈(𝜄′), 𝜇(𝜄′)) next to pair (𝜈̄(𝑗𝑦𝑚𝑠 ), 𝜇̄(𝑗𝑦𝑚𝑠 )) in 𝐶𝑚 .

– If 𝜄′ is a dummy student or is of the highest priority among those who desire 𝜈(𝜄′) at
𝜇̄, namely 𝜄′ = 𝑗𝑦

𝑚
𝑠′ , then we go to the pair next to (𝜈̄(𝜄′), 𝜇̄(𝜄′)). Note that 𝜄′ ≠ 𝑗𝑦

𝑚
𝑠 .

– Otherwise 𝜄′ ≠ 𝑗𝑦
𝑚
𝑠′ then we replace (𝑦𝑚𝑠′ , 𝜇(𝜄′)) by (𝑦𝑚𝑠′ , 𝜇̄(𝑗𝑦

𝑚
𝑠′ )). Note that 𝑗𝑦

𝑚
𝑠′ ≠ 𝑗𝑦

𝑚
𝑠 .

• Then we consider pair (𝑦𝑚𝑠′′ = 𝜈(𝜄′′), 𝜇(𝜄′′)) next to pair (𝜈̄(𝑗𝑦𝑚𝑠′ ), 𝜇̄(𝑗𝑦𝑚𝑠′ )) in 𝐶𝑚 .

– If 𝜄′′ is a dummy student or is of the highest priority among those who desire 𝜈(𝜄′′) at
𝜇̄, namely 𝜄′′ = 𝑗𝑦

𝑚
𝑠′′ , then we go to the pair next to (𝜈̄(𝜄′′), 𝜇̄(𝜄′′)). Note that 𝜄′′ ≠ 𝑗𝑦

𝑚
𝑠′′ .

– If 𝜄′′ ≠ 𝑗𝑦
𝑚
𝑠′′ and 𝑗𝑦

𝑚
𝑠′′ = 𝑗𝑦

𝑚
𝑠 , then we find a shorter cycle such that

𝑦𝑚𝑠′ ← 𝜇̄(𝑗𝑦𝑚𝑠′ ), 𝑦𝑚𝑠′′︸      ︷︷      ︸
𝑘′

← 𝜇̄(𝑗𝑦𝑚𝑠 ), 𝑦𝑚𝑠′︸      ︷︷      ︸
𝑘′′

← 𝜇̄(𝑗𝑦𝑚𝑠′ ).

– Otherwise 𝜄′′ ≠ 𝑗𝑦
𝑚
𝑠′′ and 𝜄′′ ≠ 𝑗𝑦

𝑚
𝑠 then we replace (𝑦𝑚𝑠′′ , 𝜇(𝜄′′)) by (𝑦𝑚𝑠′′ , 𝜇̄(𝑗𝑦

𝑚
𝑠′′ )). Note

that 𝑗𝑦
𝑚
𝑠′′ ≠ 𝑗𝑦

𝑚
𝑠′ .

Since all of 𝑗𝑦𝑚1 , . . . , 𝑗𝑦𝑚𝑡 are involved in 𝐶𝑚 and 𝐶𝑚← is finite, this process finds a shorter cycle
than 𝐶𝑚 . Then a matching induced by exchanging programs at 𝜇̄ along with the above shorter
cycle is feasible, distribution-specific stable and Pareto dominates 𝜇̄, which contradicts to the
fact that 𝜈̄ minimally Pareto dominates 𝜇̄. Hence, for each 𝑚, there exists 𝑦𝑚𝑠 ∈ 𝐶𝑚← and 𝑗𝑦

𝑚
𝑠 who

desires 𝑦𝑚𝑠 at 𝜇̄, is of the highest priority among those desire 𝑦𝑚𝑠 at 𝜇̄ and is not involved in 𝐶𝑚 .
Now we consider 𝑦𝑚𝑠 ∈ 𝐶𝑚← for all 𝑚, 𝑠. As above for all 𝑚 there must exist 𝑗𝑚𝑠 involving in

𝐶𝑚 who is of the highest priority among those who desire 𝑦𝑚′𝑠′ ∈ 𝐶𝑚
′
← for some 𝑚′ ≠ 𝑚. Then

we find a new cycle such that students who are of the highest priority at 𝜇̄ and are involved in
different cycles. By construction, exchanges along with this new cycle induces a matching which
is not equal to 𝜈̄, feasible, distribution-specific stable, and Pareto dominates 𝜇̄, which violates
the fact that 𝜈̄ minimally Pareto dominates 𝜇̄. Therefore, the set of cycles found in Lemma 2 is
constituted of the exactly one cycle.
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From the above lemmata, we denote 𝐶 by the cycle found above.

Lemma 4. No 𝑥 ∈ 𝐶← ∩ 𝑋 appears more than once.

Proof. Let 𝐶 be ⟨(𝜈̄(𝜄𝑠), 𝜇̄(𝜄𝑠))⟩𝑡𝑠=0. Suppose that there exists 𝑥 ∈ 𝑋 which appears more than once
in the cycle. That is, there are at least two distinct students 𝜄𝑠′ and 𝜄𝑠′′ (we assume without loss
of generality that 𝑠′ < 𝑠′′). We know by Lemma 2 that 𝐶 satisfies that 𝑘(𝜇̄(𝜄𝑠)) = 𝑘(𝜈̄(𝜄𝑠+1)), ∀𝑠 ∈
{0, 1, . . . , 𝑡 − 1} and if 𝜇̄(𝜄𝑠) ≠ 𝜈̄(𝜄𝑠+1) then 𝜇̄−1(𝜈̄(𝜄𝑠+1)) < 𝑞̄𝜈̄(𝜄𝑠+1).

Then we decompose 𝐶 into two cycles 𝐶1 and 𝐶2 as follows,

𝐶1 : 𝑥 = 𝜈̄(𝜄𝑠′) ← 𝜇̄(𝜄𝑠′), 𝜈̄(𝜄𝑠′+1)︸           ︷︷           ︸← 𝜇̄(𝜄𝑠′+1), · · · , 𝜈̄(𝜄𝑠′′−1) ← 𝜇̄(𝜄𝑠′′−1), 𝑥 = 𝜈̄(𝜄𝑠′)︸                 ︷︷                 ︸
𝑘′

← 𝜇̄(𝜄𝑠′)

and

𝐶2 : 𝜈̄(𝜄0) ← 𝜇̄(𝜄0), · · · , 𝜈̄(𝜄𝑠′−1) ← 𝜇̄(𝜄𝑠′−1), 𝑥 = 𝜈̄(𝜄𝑠′′)︸                 ︷︷                 ︸
𝑘′

← 𝜇̄(𝜄𝑠′′)), · · · , 𝜈̄(𝜄0) ← 𝜇̄(𝜄0)

Then since the above two cycles 𝐶1 and 𝐶2 satisfy that 𝑘(𝜇̄(𝜄𝑠′′−1)) = 𝑘(𝜈̄(𝜄𝑠′′)) = 𝑘(𝑥) = 𝑘(𝜈̄(𝜄𝑠′))
and 𝑘(𝜇̄(𝜄𝑠′−1)) = 𝑘(𝜈̄(𝜄𝑠′)) = 𝑘(𝑥) = 𝑘(𝜈̄(𝜄𝑠′′)), respectively, 𝐶1 and 𝐶2 are the set of cycles found
in Lemma 2, which contradicts to Lemma 3. Therefore, 𝑥 ∈ 𝐶← ∩ 𝑋 appears just once.

Lemmata 3 and 4 tell us that there exists the unique cycle and all programs in 𝐶← but ∅ are
distinct. We further see the students’ priority in 𝑁′.

Lemma 5. For each 𝑥 = 𝜈̄(𝑖𝑠) ∈ 𝜈(𝑁′), 𝑖𝑠 ≿𝜇
𝑥 𝑗, ∀𝑗 ∈ { 𝑗 ∈ 𝑁 |𝑥𝑃𝑗𝜇̄(𝑗)}

Proof. As before, all students in 𝑁′ are involved in 𝐶, that is 𝜈̄(𝑁′) = 𝐶←. Suppose not, then
there exists 𝑥 ∈ 𝐶← and 𝑗 such that 𝑗 ≿𝜇

𝑥 𝑖𝑠 . Obviously, 𝑗 ∉ 𝐷. We know that 𝑗 ∉ 𝑁 \ 𝑁′,
otherwise violating distribution-specific stability of 𝜈̄. Thus 𝑗 ∈ 𝑁′. We then find a shorter cycle
similar to the process in Lemma 3, and exchanges along with the shorter cycle at 𝜇̄ induce a
matching which is not equal to 𝜈̄, feasible, distribution-specific stable and Pareto dominates 𝜇̄,
which contradicts the fact that 𝜈̄ minimally Pareto dominates 𝜇̄.

The next lemma allows us to consider at most one dummy student at each 𝑘 ∈ 𝐾.

Lemma 6. For each 𝑘 involved in 𝐶, there is at most one 𝑑 in 𝑋𝑘 at 𝜇̄

Proof. Suppose that there are more than one dummy students who are matched with some
program at 𝑘 in 𝐶, namely,

(𝜈̄(𝑑), 𝜇̄(𝑑)), . . . , (𝜈̄(𝑑′), 𝜇̄(𝑑′)).
Since 𝜇̄(𝑑), 𝜇̄(𝑑′) ∈ 𝑘, we have the shorter cycle which replaces pairs between (𝜈(𝑑), 𝜇(𝑑)) and
(𝜈(𝑑′), 𝜇(𝑑′)) in 𝐶 by (𝜈(𝑑), 𝜇(𝑑′)).
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Since there is only one cycle which involved with distinct programs and each student 𝑖
involving (𝜈̄(𝑖), 𝜇̄(𝑖)) is of the highest priority among those who desire 𝜈̄(𝑖) at 𝜇̄ by Lemma 5,
a matching obtained by exchanges along with the shorter cycle above preserves feasibility and
distribution-specific stability, and Pareto dominates 𝜇̄, which violates the fact that 𝜈̄ minimally
Pareto dominates 𝜇̄.

Eventually, we obtain cycle ⟨(𝜈̄(𝜄𝑠), 𝜇̄(𝜄𝑠))⟩𝑡𝑠=0 such that

• 𝜄0, · · · , 𝜄𝑡 are distinct, and at least one 𝜄𝑠 is a student,

• 𝜄𝑠 ∈ 𝑁′⇒ 𝜄𝑠 ≿𝜇
𝜈̄(𝜄𝑠) 𝑗 , ∀𝑗 ∈ { 𝑗 ∈ 𝑁 |𝜈̄(𝜄𝑠)𝑃𝑗𝜇̄(𝑗)},

• 𝜇̄(𝜄𝑠−1) ≠ ∅⇒ 𝜇̄(𝜄𝑠−1) ∈ 𝑋𝑘(𝜈̄(𝜄𝑠)) and 𝜇̄(𝜄𝑠−1) = ∅⇒ 𝜇̄(𝜄𝑠−1) = 𝜈̄(𝜄𝑠),
for the latter part, since 𝑋𝑘∅ = {∅} and 𝜇̄(𝜄𝑠−1) ∈ 𝑋𝑘(𝜈̄(𝜄𝑠)), 𝜇̄(𝜄𝑠−1) = 𝜈̄(𝜄𝑠).

• 𝜇̄(𝜄𝑠−1) ≠ 𝜈̄(𝜄𝑠) implies 𝑞𝜈̄(𝜄𝑠) < 𝑞̄𝜈̄(𝜄𝑠).

Now we would like to show that the cycle above is indeed QASIC. For the original problem, the
cycle we obtain can be represented as ⟨(𝑥𝑠 , 𝜄𝑠)⟩𝑡𝑠=0 in which 𝑥𝑠 = 𝜈̄(𝜄𝑠):

(𝑥0, 𝜄0) ← (𝑥1, 𝜄1) ← · · · ← (𝑥𝑡 , 𝜄𝑡) ← (𝑥0, 𝜄0)

such that

• students and dummy students involved are distinct, and at least one student is involved,

• if 𝜄𝑠 ∈ 𝑁 , then 𝑥𝑠𝑃𝑖𝑠𝜇(𝑖𝑠) and 𝑖𝑠 ≻𝑥𝑠 𝑗 for all 𝑗 ∈ { 𝑗 ∈ 𝑁\{𝑖𝑠}|𝑥𝑃𝑗𝜇(𝑗)},
• if 𝜄𝑠 ∉ 𝑁 , then (𝑥𝑠 , 𝜄𝑠) is a unit chain by a dummy student,

• for all 𝑠, 𝜇̄(𝜄𝑠−1) ≠ ∅⇒ 𝜇̄(𝜄𝑠−1) ∈ 𝑋𝑘(𝑥𝑠) and 𝜇̄(𝜄𝑠−1) = ∅⇒ 𝜇̄(𝜄𝑠−1) = 𝑥𝑠 ,

• 𝜇̄(𝜄𝑠−1) ≠ 𝑥𝑠 implies 𝑞𝑥𝑠 < 𝑞̄𝑥𝑠 ,

as is desired. □

A.4 Proof of Proposition 2

Proof. Let 𝑓 and 𝑔 be the QAP mechanisms under 𝑄 and 𝑄′, respectively. Note that the QAP
starts from the DA matchings in both distributions. If there is a matching 𝜇 ∈ 𝑓 (𝑅) such that
𝜇 Pareto dominates 𝜈 for some 𝜈 ∈ 𝑔(𝑅). Let the corresponding quota distribution of 𝜇 be 𝑝.
As 𝑝 ∈ 𝑄 and 𝑄 ⊂ 𝑄′, 𝜇 is either an ESOSM or Pareto dominated by some 𝜂 ∈ 𝑔(𝑅) under 𝑄′.
The former implies 𝜇 ∈ 𝑔(𝑅), and the latter implies that 𝜂 Pareto dominates 𝜈. Thus, in both
cases, 𝜈 ∉ 𝑔(𝑅), a contradiction. Therefore, all the students’ welfare unanimously improves as
flexibility increases.
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A.5 Proof of Theorem 3

Proof. Let 𝑓 be the QAP correspondence for the initial distribution 𝑞0. Suppose not. Then there
exists 𝑖 ∈ 𝑁 , 𝑅, 𝑅𝑖 , 𝜈 ∈ 𝑓 (𝑅′𝑖 , 𝑅−𝑖) such that

𝜈(𝑖)𝑃𝑖𝜇(𝑖),∀𝜇 ∈ 𝑓 (𝑅).

Let the corresponding quota distributions for 𝜇 and 𝜈 be 𝑞 and 𝑝, respectively. Since QAP begins
with the DA matching, we know that for all 𝑖 ∈ 𝑁 ,

𝐷𝐴𝑞
0

𝑖 (𝑅) 𝑅𝑖 𝐷𝐴𝑞
0

𝑖 (𝑅′𝑖 , 𝑅−𝑖).

If 𝑝 = 𝑞, then 𝜇 = 𝐷𝐴𝑞(𝑅) and 𝜈 = 𝐷𝐴𝑞(𝑅′𝑖 , 𝑅−𝑖). Since DA mechanism is strategy-proof, we
have

𝜇(𝑖) = 𝐷𝐴𝑞𝑖 (𝑅) 𝑅𝑖 𝐷𝐴𝑞𝑖 (𝑅′𝑖 , 𝑅−𝑖) = 𝜈(𝑖),
a contradiction.

If 𝑝 ≠ 𝑞, then there exists 𝐷𝐴𝑝(𝑅) such that,

𝐷𝐴𝑝𝑖 (𝑅) 𝑅𝑖 𝐷𝐴𝑝𝑖 (𝑅′𝑖 , 𝑅−𝑖) = 𝜈(𝑖).

Since 𝑝 ∈ 𝑄 and any ESOSMs which Pareto dominates𝐷𝐴𝑞
0

𝑖 (𝑅) are reached by QAP (Proposition
4), there exists 𝜉 ∈ 𝑓 (𝑅) such that 𝜉(𝑖) 𝑅𝑖 𝐷𝐴𝑝𝑖 (𝑅).15 Then we have

𝜉(𝑖) 𝑅𝑖 𝐷𝐴𝑝𝑖 (𝑅) 𝑅𝑖 𝜈(𝑖),

a contradiction.

A.6 Proof of Theorem 4

Proof. By counterexample. Suppose that 𝑁 = {𝑖1, 𝑖2, 𝑖3, 𝑖4}, 𝑋 = {𝑥1, 𝑥2, 𝑥3}, and (𝑞̄𝑥1 , 𝑞̄𝑥2 , 𝑞̄𝑥3) =
(2, 2, 1). Moreover, 𝐾 = {𝑘, 𝑘′} such that 𝑘(𝑥1) = 𝑘(𝑥2) = 𝑘, 𝑘(𝑥3) = 𝑘′, (𝑞̄𝑘 , 𝑞̄𝑘′) = (3, 1), such that
𝑄 = {(1, 2, 1), (2, 1, 1)}. Preferences 𝑅 and priorities ≻ are as follows:

𝑅𝑖1 𝑅𝑖2 𝑅𝑖3 𝑅𝑖4 ≻𝑥1 ≻𝑥2 ≻𝑥3

𝑥2 𝑥1 𝑥1 𝑥2 𝑖1 𝑖3
𝑥1 𝑥3 𝑥2 𝑥3 𝑖4 𝑖2 any

𝑖2 𝑖4
𝑖3 𝑖1

15Without Proposition 4, we do not guarantee 𝜉 in the outcomes of QAP.
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𝐷𝐴(1,2,1)(𝑅) =
(
𝑖1 𝑖2 𝑖3 𝑖4
𝑥1 𝑥3 𝑥2 𝑥2

)
, 𝐷𝐴(2,1,1)(𝑅) =

(
𝑖1 𝑖2 𝑖3 𝑖4
𝑥1 𝑥1 𝑥2 𝑥3

)
are ESOSMs. Let 𝑓 be an ex-post student-optimal stable and strategy-proof mechanism. Suppose
the mechanism selects 𝐷𝐴(2,1,1)(𝑅) for 𝑅. If 𝑖4 declares

𝑅′𝑖4 : 𝑥2 𝑥1 𝑥3,

the DA matchings for that preference profile and two quota distributions are

𝐷𝐴(1,2,1)(𝑅′𝑖4 , 𝑅−𝑖4) =
(
𝑖1 𝑖2 𝑖3 𝑖4
𝑥1 𝑥3 𝑥2 𝑥2

)
, 𝐷𝐴(2,1,1)(𝑅′𝑖4 , 𝑅−𝑖4) =

(
𝑖1 𝑖2 𝑖3 𝑖4
𝑥1 𝑥3 𝑥2 𝑥1

)
respectively. As 𝐷𝐴(2,1,1)(𝑅′𝑖4 , 𝑅−𝑖4) is Pareto dominated by 𝐷𝐴(1,2,1)(𝑅′𝑖4 , 𝑅−𝑖4) at (𝑅′𝑖4 , 𝑅−𝑖4),
𝐷𝐴(1,2,1)(𝑅′𝑖4 , 𝑅−𝑖4) is an ESOSM at (𝑅′𝑖4 , 𝑅−𝑖4). Then, the mechanism must select

𝑓 (𝑅′𝑖4 , 𝑅−𝑖4) = 𝐷𝐴(1,2,1)(𝑅′𝑖4 , 𝑅−𝑖4)

Obviously, 𝑖4 has an incentive to misstate his/her preference, because

𝑥2 = 𝑓𝑖4(𝑅′𝑖4 , 𝑅−𝑖4) 𝑃𝑖4 𝑓𝑖4(𝑅) = 𝑥3

As 𝑖2 and 𝑖4 play a symmetric role, if 𝑓 (𝑅) is 𝐷𝐴(1,2,1)(𝑅) then 𝑖2 has an incentive to misreport
his/her preferences. Therefore, no single-valued function is ex-post student-optimal stable and
strategy-proof.

A.7 Proof of Claim 1

Proof. Let 𝜇 be the ESOSM and 𝑞 be the corresponding quota distribution. Suppose that it is
not weakly stable. Then, because 𝜇 is feasible and individually rational, and if 𝑦𝑃𝑗𝜇(𝑗), then for
all ℓ ∈ 𝜇−1(𝑦)with ℓ ≻𝑦 𝑗, there exists a pair (𝑖, 𝑥) such that 𝑥𝑃𝑖𝜇(𝑖) and 𝑔(𝑤(𝜇) + 𝑒𝑥) = 1.

As 𝑔(𝑤(𝜇) + 𝑒𝑥) = 1,
∑
𝑦∈𝑘(𝑥) |𝜇−1(𝑦)| < 𝑞𝑘 , it implies that there is a vacant seat in some

programs in department 𝑘(𝑥). Let the program be 𝑧. Then, quota distribution 𝑞′ such that
𝑞′𝑥 = 𝑞𝑥 + 1 and 𝑞′𝑧 = 𝑞𝑧 − 1 while holding the other quotas unchanged, is also feasible (𝑞′ ∈ 𝑄).

Thus, it is clear that a QASIC must exist. As 𝑖 prefers 𝑥 to 𝜇(𝑖), at least one student wants
𝑥. No matter who is of the highest priority at 𝑥 among students who prefer 𝑥 to their matched
program at 𝜇, because 𝑧 has a vacant seat, we can find a QASIC. That is, starting from the
unit chain (𝑥, 𝑗), if there are unit chains involving students connected to (𝑥, 𝑗), we are done.
Otherwise a dummy student who is assigned 𝑧 connects to (𝑥, 𝑗). This result contradicts the fact
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that 𝜇 is an ESOSM.
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