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【要旨】 

本研究では，Generally Accepted Accounting Principles (GAAP)と呼ばれる会計基準が，なぜ

generally accepted であるかを分析するためのモデルを，複数の方法が認められている減価償却

に焦点を当て，協力ゲーム理論により構築した。世界中で広く使われている定額法は常にコア

に入る一方で，近年，国際会計基準審議会（IASB）で支持されている公正価値測定による投資

額の配分は，資産の時価がリース会社の事前の予測通りに実現し，企業（借手）がその情報を

得られる場合にコアに入ることが示された。さらに，シャープレイ値や仁によって与えられる

配分方法が定額法と一致する条件を明らかにした。これらの検討は，会計独自の解概念を模索

するための足掛かりになるであろう。 
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Abstract

This study develops a model that explains why accounting stan-
dards, known as Generally Accepted Accounting Principles, are ”gen-
erally accepted”. We focus on depreciation, for which multiple account-
ing procedures are permitted, and examine the reasons and conditions
for acceptance of these procedures with cooperative game theory. Cost
allocations given by the straight-line method, which is conventionally
used all over the world, are always in the core. On the other hand,
cost allocations given by the fair value measurement, which has been
recently supported by the International Accounting Standards Board
(IASB), are in the core if the market value of the asset predicted by the
lease company realizes and the firm (lessee) can obtain the informa-
tion of the realized value. Furthermore, we examined the relationship
between methods adopted in practice and solution concepts that give
unique solutions, such as the Shapley value and the nucleolus. Seeking
the original solution concept of accounting standards is our next step.
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1 Introduction

This paper proposes a model to explain why accounting rules have been
accepted by stakeholders of firms by using cooperative game theory. Ac-
counting rules, called Generally Accepted Accounting Principles (GAAP),
are originally based on social norms developed during transactions, accepted
as fair and useful, and gradually established as a common practice (Saito
2011 [18]). Stakeholders who make various decisions concerning firms use
the accounting information generated by the rules. In particular, earnings,
which are also called net income, are used as not only a signal of firms’ finan-
cial conditions but also as a proxy for the amount available for distribution
by firms to their stakeholders. In this paper, we focus on the latter role of
accounting information and extract the conditions that accounting rules are
accepted.

As a starting point, we deal with depreciation that has been used all
over the world for a long time. Depreciation is defined as the rational and
systematic allocation of the original cost of an asset over the expected useful
life of that asset (Hendriksen and Breda 2001 [12], p. 523). There are many
possible ways to allocate investment costs over time, but in practice, only
certain methods, such as the straight-line method or the declining-balance
method 1, are used.

Our goal is not to explain how these depreciation methods had come up
but to clarify why they have been accepted. Therefore, we adopt cooperative
game theory which assumes that players can talk to each other and make
agreements that are binding on later play (Heap and Varoufakis 2004 [11]).
Furthermore, cooperative game theory has many solution concepts, such
as the core, the Shapley value, the nucleolus, and so on. They can be
linked with norms, such as “benefit should be shared according to their
marginal contribution (the Shapley value) ” and “benefit is shared subjected
to minimize maximum excess (the nucleolus).” Therefore, we considered
that cooperative game theory was suitable for axiomatizing and analyzing
accounting rules.

The rest of this paper proceeds as follows: Section 2 reviews the previ-
ous research that uses cooperative game theory in accounting-related fields
and others. In Section 3, after we provide an overview of cooperative game
theory applied to cost-sharing problems, we develop our model, i.e. depre-
ciation game, and show the properties of its cost function. In Section 4,

1The decreasing method supposes that asset depreciation occurs quickly in the begin-
ning and then decreases over time
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we adopt the core, which offers a class of solutions that players accept, as a
solution concept, and discuss whether depreciation methods used in practice
can be explained by the core. Furthermore, in Section 5, we introduce the
Shapley value and the nucleolus to examine the condition that the depre-
ciation methods which are given by them are the same as the straight-line
method. Finally, we present our concluding remarks in Section 6.

2 Literature Review

In this section, we review prior research from three viewpoints: 1) analytical
research for depreciation in accounting, 2) related research using cooperative
game theory, and 3) research on depreciation using cooperative game theory.

In the field of accounting, there were many analytical discussions of ac-
counting rules in the 1960s. Of course, it was conducted on depreciation
methods as well. According to Wright (2006) [22] which summarizes the
discussion in the 1960s, it was ”the normative kind-arguments about what
accounting ought to be doing.” They discussed the ideal depreciation meth-
ods, which were different from the straight-line method traditionally used.
However, their methods have never been adopted, and certain methods such
as the straight-line method and the declining balance method are still used
2.

In the field of game theory, researchers often apply cooperative game
theory to analyze cost allocation of joint costs such as airport landing fees
(e.g., Littlechild and Owen 1973[14]) or division of an estate among creditors
(e.g., Aumann and Maschler 1985 [3]). Accounting researchers began fre-
quently applying cooperative game theory from the late 1970s to the early
1980s. Hamlen et al. (1977)[9] examined the allocation of joint costs using
core theory, and Callen (1978)[7], Roth and Verrecchia (1979)[17], Hamlen
et al. (1980) [10] and Balachandran and Ramakrishnan (1981)[5] discussed
allocation using the Shapley value. These studies focused on cross-sectional
cash flow allocation, that is, how to allocate joint costs among departments
within a firm.

On the other hand, some studies made normative judgments of depreci-
ation methods using cooperative game theory in other research areas. Ben-
Shahar and Sulganik (2009)[6] adopted the Shapley value as a solution con-
cept because allocation under the Shapley value reflects the pattern in which
firms consume their assets’ economic benefits. Aparicio and Sanchez-Soriano

2Since the 1970s, these normative studies have disappeared and accounting studies
have shifted to empirical studies that examine the usefulness of accounting information.
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(2008) [1] built an innovative ”depreciation game” in which players are fiscal
years of the asset’s useful life and indicated that payoff vectors given by the
conventional methods do not always belong to the core. They proposed a
new depreciation method that gives a payoff vector belonging to the core
and that reflects the asset’s market value.

Most of the studies (except for Auman and Maschler, 1985) surveyed here
are those that seek the ”best” way. However, our interest is not in clarifying
the best accounting method, but in clarifying why the rules currently in use
continue to be used.

Therefore, we modified Aparicio and Sanchez-Soriano model, hereinafter
referred to as AS model, to analyze existing accounting standards under
practical assumptions. We believe the modification is essential because there
is semantical insufficiency in their model. Their conclusions and those of us
are consistent in a limited domain, but the cost function they define has prac-
tical meaning only in that domain. In this paper, we restructure the model
by introducing a new concept of ”sequentiality” so that the cost function has
economic meaning in all domains, i.e., coalitions. Then we establish clear
connections between practical decision-making and the depreciation game
so that we can validate current depreciation methods. We thus contribute to
game theory research in the field of social system engineering and introduce
this new perspective to financial accounting research.

3 The Model

3.1 Overview of Cooperative Game Theory

We first provide an overview of the basic notions of cooperative game theory
as applied to the cost-sharing problem. A transferable utility cost game is
a pair (N, c), where N = {1, 2, . . . , n} is the set of players and c is the cost
function from 2N to R where c(∅) = 0. For any coalition S ∈ 2N\{∅}, c(S)
refers to the cost that players in S pay when they cooperate.

A payoff vector x = (xi)i∈N ∈ RN indicates the allocation to each player
for a given (N, c) and define x(S) =

∑
i∈S xi for each S ∈ 2N\{∅}.

Definition 1 Subadditivity
A cost function is subadditive if

c(S) + c(T ) ≥ c(S ∪ T ) for all S, T ∈ 2N\{∅} s.t.S ∩ T = ∅.
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Definition 2 Imputation
An imputation for a given cost game (N, c) is a vector x = (xi)i∈N satisfying

xi ≤ c({i}) ∀i ∈ N, (1)

x(N) = c(N). (2)

Let A denote the set of all imputations of the game.

The first condition (1) is individual rationality, meaning that no player
pays more than they can pay on their own. The second condition (2) is
called group rationality, meaning that an imputation is Pareto efficient.

Definition 3 Domination
We say an imputation vector x = (xi)i∈N is dominated by the imputation
vector y = (yi)i∈N with respect to coalition S if

yi < xi for all i ∈ S (3)

and
c(S) ≤ y(S) (4)

are satisfied. We express this as y �s x.

Condition (3) indicates that the imputation y brings lower a cost for
each element in S than the imputation x. Condition (4) indicates that the
elements in S can achieve imputation y; in other words, S can improve the
imputation, moving from x to y.

Definition 4 The core
The set of all undominated imputations for a game (N, c) is called the core,
which is denoted by Core(c).

Proposition 1 The core of a cost game
If c is subadditive, then Core(c) is

{x ∈ A : x(S) ≤ c(S), ∀S ∈ 2N\{∅}}. (5)

Proof 1 3. If x is an element of (5), then satisfies x(S) ≤ c(S). We assume
that yi < xi for all i ∈ S. This means that

y(S) < c(S),

3This proof is based on Owen (1995) [15]
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and it is not possible that y �s x because of (4). Therefore x ∈ Core(c).

Conversely, suppose that y ∈ A does not satisfy y(S) ≤ c(S) for ∃S.
This implies that

y(S) = c(S) + ϵ for ∃ϵ > 0.

Let

α =
∑

i∈N−S

c({i})− {c(N)− c(S)}.

By subadditivity,

c (N − S) + c(S) ≥ c(N)

↔ c(N − S) ≥ c(N)− c(S) (6)

and

∑
i∈N−S

c({i}) ≥ c(N − S). (7)

From (6) and (7), α ≥ 0. Then, let s be the number of elements in S.
Now define z by

zi =

{
yi − ϵ/s (i ∈ S)

c(i)− α/(n− s) (i /∈ S)

First,

zi ≤

{
yi ≤ c({i}) (i ∈ S) ∵ y is an imputation.

c(i)− α/(n− s) (i /∈ S)
(8)

Then, z satisfies (1).
Second,

z(N) = z(S) + z(N − S)

= y(S)− ϵ+
∑

i∈N−S

c({i})− α

= c(S) + c(N)− c(S)

= c(N)

Then, z satisfies (2). Therefore z is an imputation.

Form (8) and z(S) = c(S), z �s y. Hence y /∈ Core(c). □

6



3.2 Depreciation Game

In this section, we develop our model 4 to analyze the rationality of depre-
ciation methods.

We assume that a firm plans to use an asset whose useful life is n years
and its market value is decreasing from C to zero over n years. Our depre-
ciation game is denoted by (N, d): N is the set of players and d is the cost
function defined from 2N to R where d(∅) = 0. The set of players consists of
the fiscal years during the asset’s useful life. A player represents the firm’s
stakeholders in each fiscal year. A payoff vector x ∈ RN is a distribution of
cost among the players, which indicates the amount each player (fiscal year)
should pay for a given (N, d)5.

For any coalition S ∈ 2N\{∅}, d(S) is the cost that the players in S
should pay for use of the asset. Depreciation is an accounting procedure for
a purchased asset that corresponds to the asset gained by the grand coali-
tion in this game. We assume that other coalitions gain the asset through
leases because they use the asset during only a part of its economic use-
ful life. When no cooperation exists, the firm invests in the asset annually
through a one-year lease contract. We assume that players enter a coalition
to reduce investment costs. When a “sequential” coalition exists6, such as
S = {2, 3, 4}, the firm makes a multi-year lease contract (for this example, a
three-year contract). Therefore, d(S) could be represented by a combination
of lease payments. We discuss the definition of d(S) in detail below.

First, we introduce some concepts necessary for our discussion, i.e. se-
quentiality, length, market value function, and restricted cost function.

Definition 5 Sequentiality

Let N = {1, 2, . . . , n}. A coalition S ∈ 2N\{∅} is sequential if

(∀a, b ∈ S)(∀c ∈ N)(a < c < b → c ∈ S)

holds.

SeqN denotes the set of all sequential subsets of N .

4The cost function is partially the same as AS model. As we mentioned in the previous
section, we explain the background of a firm’s decision-making and define the cost function
for the non-restricted domain.

5AS model does not consider such background of a firm’s decisions.
6Sequetiality is precisely defined below.
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Definition 6 Length of S ∈ SeqN

Given N , we define the length of S ∈ SeqN to be the cardinality of S. We
adopt the natural notation lS ∈ {0, 1, 2, . . . , n} for the value.
Note that for S and T ∈ SeqN such that S ∪ T ∈ SeqN , we have that
T ∪ S ∈ SeqN and lS∪T = lT∪S.

For example, when S = {4, 5, 6} ∈ SeqN , lS = 3.

Definition 7 Market value function
We define f , which denotes the market value of the asset, as follows:

f : {0, 1, . . . , n} → R s.t. C = f(0) > f(1) > f(2) > · · · > f(n) = 0 (9)

Consider a leasing company that leases the asset to the firm. Assume
that the leasing company has access to the second-hand market while the
firm does not. The leasing company can predict its market value f(k) on the
secondhand market, which indicates the value of the asset used for k-years.
We also assume that the leasing company can recover the fall in its market
value (= C−f(k)) during the lease term by lease payments. Then we define
the lease payment function as follows:

Definition 8 Restricted cost function (Lease payment function)
We define d∗ : SeqN → R as

d∗ : S 7→ C − f(lS) ∀S ∈ SeqN . (10)

d∗ indicates the amount of lease payments, i.e. cost, for members in
SeqN , therefore it is termed a restricted cost function. For example, when
S = {2, 3, 4}, d∗(S) = C − f(3).

In this function, we do not count the interest costs included in actual
lease payments because we also exclude the interest costs when the asset
purchase is accompanied by debt.

In reality, a multi-year lease contract is more cost-saving than a combi-
nation of short-term lease contracts because continuous lease contracts can
reduce transaction costs. For a firm that uses an asset for k+ t (k and t are
integers.) years, it is rational to choose one lease contract for k + t years
rather than the combination of lease contracts for k years and t years. From
this property of lease contracts, we then induce the following condition of
our market value function.

8



The condition of the market value function
Given N , we choose coalitions S, T ∈ SeqN such that S∩T = ∅ and S∪T ∈
SeqN . When a firm engages in a lease transaction, the following inequality
holds:

d∗(S) + d∗(T ) ≥ d∗(S ∪ T )

⇌ C − f(lS) + C − f(lT ) ≥ C − f(lS∪T )

⇌ C − f(lS) ≥ f(lT )− f(lT∪S)

⇌ C(= f(l0))− f(lS) ≥ f(lT )− f(lT + lS). (11)

We can rewrite (11) more simply as below:

C − f(t) ≥ f(k)− f(k + t) (12)

where k and t are integers from 1 to n and 2 ≤ k + t ≤ n 7.
From (11) and (12) we can see that a firm engages in a multi-year lease
contract if the asset value declines rapidly in the early times.

In general, coalitions are not always sequential. To generalize, we intro-
duce a “maximally sequential coalition.”

Definition 9 Maximally sequential coalition
Given N , let us choose a coalition S ∈ 2N\{∅}. A sequential subset S′ ⊆ S
is called a maximally sequential coalition in S if,

for any a ∈ N,

if S′ ∪ {a}is sequential,

then S′ ∪ {a} = S′ or S′ ∪ {a} 6⊆ S.

Definition 10 Set of maximally sequential coalitions
Let S ∈ 2N\{∅} be given, the set (S)m of maximally sequential coalitions of
S is defined as follows:

(S)m =def {Sj ⊆ S|Sj is maximally sequential inS.}.

7When its equality holds, the choice between purchasing and leasing is indifferent and
then the essentiality of this cost function does not hold. In a real situation, however, there
could be such a case, we consider the equality in (11) and (12).
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When S = {2, 3, 6, 7, 8}, the coalition S consists of two subsets of maximally
sequential coalitions, (S)m = {{2, 3}, {6, 7, 8}}. |X| denotes the cardinality
for a given set X.

Finally, we define the cost function.

Definition 11 Cost function

d : 2N\{∅} → R s.t. d(S) =
∑

Sj∈(S)m
d∗(Sj)

From Definition 10, the coalition S is divided into sequential subsets. During
one of the sequential subsets, the firm uses a continuous multi-year lease
contract. When S consists of several sequential subsets, the cost function
is the sum of the cost of multiple lease contracts. For example, when S =
{2, 3, 6, 7, 8}, we determine the cost function as follows:

d({2, 3, 6, 7, 8}) = d∗({2, 3}) + d∗({6, 7, 8})
= (C − f(l{2,3})) + (C − f(l{6,7,8}) = 2C − f(2)− f(3)

In case of a grand coalition, that is, the firm purchases the asset, the cost
function is

d(N) = d∗(N) = C − f(l{N}) = C − f(n) = C.

The cost function d is well-defined.

Proposition 2
d|SeqN = d∗.

Proof 2 It is trivial. □

3.3 Properties of our cost function

Our cost function has the following properties:

Proposition 3 Given a cost game (N, d), if S and T (∈ SeqN ) are disjoint,
then

d∗(S) + d∗(T ) ≥ d(S ∪ T ) (13)
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always holds.

Proof 3 (case 1) S ∪ T ∈ SeqN :

d(S ∪ T ) = d∗(S ∪ T ) = C − f(lS∪T );

therefore,

d∗(S) + d∗(T )− d(S ∪ T ) = 2C − (f(lS) + f(lT ))− (C − f(lS∪T ))

= C − (f(lS) + f(lT )− f(lS∪T ))

= C − (f(lS) + f(lT )− f(lT + lS)) · · · (a)

From (11),

C − f(lS) ≥ f(lT )− f(lT + lS) ⇌ C − (f(lS) + f(lT )− f(lT + lS)) ≥ 0,

hence
(a) ≥ 0.

Then, case 1’s proof is complete.

(case 2) S ∪ T 6∈ SeqN :

d(S ∪ T ) = d∗(S) + d∗(T ),

which completes the proof of the statement. □

Lemma 1 The cost function d is subadditive. That is,

d(S) + d(T ) ≥ d(S ∪ T ) ∀S, T ∈ 2N\{∅} such that S ∩ T = ∅. (14)

Proof 4 By induction with respect to |(S)m| + |(T )m|. Let S and T ∈
2N\{∅} be non-empty.
(Base:) |(S)m|+ |(T )m| = 2, in which case that S and T ∈ SeqN ,

d(S) + d(T ) = d∗(S) + d∗(T ),

and Proposition 3 ensures the required result.

11



(Step:) Suppose d(S) + d(T ) ≥ d(S ∪ T ), where |(S)m|+ |(T )m| = k. Let T ′

be T ∪V , where V ∈ SeqN , V ∩S = ∅ and Tj ∪V 6∈ SeqN for all Tj ∈ (T )m.
In this case, |(S)m|+ |(T ′)m| = k + 1. There are three possible cases:

(Case 1) |(S ∪ T ′)m| = |(S ∪ T )m|+ 1. In this case, Sj ∪ V 6∈ SeqN for all
Sj ∈ (S)m. Therefore, using the definition of d∗,

d(S) + d(T ′)− d(S ∪ T ′) = d(S) + d(T ) + d∗(V )− (d(S ∪ T ) + d∗(V ))

= d(S) + d(T )− d(S ∪ T )

≥ 0 (because of the induction hypothesis)

(Case 2) |(S ∪ T ′)m| = |(S ∪ T )m|, if there is only one Sj ∈ (S)m such that
Sj ∪ V ∈ SeqN . Also we use S− to denote S\Sj. Then,

d(S) + d(T ′)− d(S ∪ T ′) = d(S) + d(T ) + d∗(V )− (d(S− ∪ T ) + d∗(V ∪ Sj))

≥ d(S ∪ T ) + d∗(V )− (d(S− ∪ T ) + d∗(V ∪ Sj))

(because of the induction hypothesis)

= d((S− ∪ T ) ∪ Sj)− d(S− ∪ T ) + (d∗(V )− d∗(V ∪ Sj))

= d∗(Sj) + d∗(V )− d∗(V ∪ Sj)

(because of the assumption of Sj)

≥ 0

(because of the induction hypothesis)

(Case 3) In case of |(S ∪ T ′)m| = |(S ∪ T )m| − 1 : there are some Sj1, Sj2 ∈
(S)m with the condition Sj1∪Sj2∪V ∈ SeqN . Let us use the same notation
of case 2) : S̃ to denote S\(Sj1 ∪ Sj2). The calculation is almost the same
as the case 2, but let us describe it below.

d(S) + d(T ′)− d(S ∪ T ′) = d(S) + d(T ) + d∗(V )− (d(S̃ ∪ T ) + d∗(V ∪ (Sj1 ∪ Sj2))

≥ d(S ∪ T ) + d∗(V )− (d(S̃ ∪ T ) + d∗(V ∪ (Sj1 ∪ Sj2))

= d(S ∪ T )− d(S̃ ∪ T ) + (d∗(V )− d∗(V ∪ (Sj1 ∪ Sj2))

= d((S̃ ∪ T ) ∪ (Sj1 ∪ Sj2))− d(S̃ ∪ T ) + (d∗(V )− d∗(V ∪ Sj1 ∪ Sj2))

= (d∗(Sj1) + d∗(Sj2) + d∗(V ))− d∗(V ∪ Sj1 ∪ Sj2)

≥ 0.

Just in case : the last inequality ≥ is jusified (using Proposition 3) as :

d∗(Sj1) + d∗(Sj2) ≥ d(Sj1 ∪ Sj2)

d∗(Sj1) + d∗(Sj2) + d∗(V ) ≥ d(Sj1 ∪ Sj2) + d∗(V ) = d∗(V ∪ Sj1 ∪ Sj2).
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Definition 12 Diminishing
The market value function is said to be diminishing when

f(k)− f(k + u) ≥ f(t)− f(t+ u) (15)

holds, where k, t and u are integers from 1 to n, k < t, and 2 ≤ k+u, u+t ≤
n.

Proposition 4 The cost function d(S) is concave if the market value func-
tion is decreasing and diminishing with respect to time.

Proof 5 The cost function is said to be concave 8 if

d(S) + d(T ) ≥ d(S ∪ T ) + d(S ∩ T ) ∀S, T ∈ 2N\{∅}. (16)

We use the induction along with |(S)m| and |(T )m| .
(base:) |(S)m| = |(T )m| = 1 .

(case1) S ∩ T = ∅ . Lemma 1 ensures

d(S) + d(T ) = d(S ∪ T ) (17)

and from our assumption S ∩T = ∅ , d(S ∩T ) = 0 is the fact and completes
the proof of this case.

(case 2)S∩T 6= ∅ . If S ⊆ T (or T ⊆ S), then this case is trivial. Suppose
S 6⊆ T , T 6⊆ S and also first element of S is smaller than that of T . Then,

d(S) + d(T ) = d∗(S) + d∗(T ) = C − f(lS) + C − f(lT )

= 2C − f(lS)− f(lT ) (18)

d(S ∪ T ) + d(S ∩ T ) = 2C − f(lS∪T )− f(lS∩T ) (19)

(because S ∪ T and S ∩ T ∈ SeqN )

To show(18)− (19) ≥ 0, first we immediately have that if U = T − S,

8Driessen (1992), [8]
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f(lS)− f(lS∪U ) ≤ f(lT−U )− f(l(T−U)∪U ), (20)

because of the assumption of f to be diminishing. Then,

(20) ⇔f(lS) + f(lT ) ≤ f(lS∪T ) + f(lS∩T )

(notice that T − U = S ∩ T and (T − U) ∪ U = T )

⇔2C − (f(lS) + f(lT ))− (2C − (f(lS∪T ) + f(lS∩T ))) ≥ 0, (21)

which is the result we wanted.
(Step:)

Let us assume : (S)m = {S1, · · · , Sm}, (T )m = {T1, · · · , Tn}, R ∈ SeqN

and Sj ∩R = ∅ for all j = 1, · · · ,m. If R∩ T = ∅, the statement is trivially
true. Assume R ∩ T 6= ∅. Note that |(T ∪ R)m| does not increase in this
case. Then from the induction hypothesis :

d(S) + d(T ∪R) ≥ d(S ∪ T ∪R) + d(S ∩ (T ∪R))

⇔ d(S) + d(T ∪R) ≥ d(S ∪ T ∪R) + d((S ∩ T ) ∪ (S ∩R))

⇔ d(S) + d(T ∪R) ≥ d(S ∪ T ∪R) + d((S ∩ T )) ( because S ∩R = ∅ ).

⇔ d(S)− d(S ∩ T ) ≥ d(S ∪ T ∪R)− d(T ∪R) (22)

Also, the induction hypothesis yields :

d(R) + d(T ) ≥ d(R ∪ T ) + d(R ∩ T )

⇔ d(R ∩ T ) ≤ d(T ) + d(R)− d(R ∪ T ) (23)

Let S′ = S ∪R. (Note that |(S′)m| = |(S)m|+ 1 and d(S′) = d(S) + d(R).)
Our goal is :

d(S′) + d(T ) ≥ d(S′ ∪ T ) + d(S′ ∩ T )

⇔ d(S) + d(R) + d(T ) ≥ d(S ∪ T ∪R) + d((S ∪R) ∩ T )

⇔ d(S) + d(R) + d(T ) ≥ d(S ∪ T ∪R) + d((S ∩ T ) ∪ (R ∩ T ))

⇔ d(S) + d(R) + d(T ) ≥ d(S ∪ T ∪R) + d(S ∩ T ) + d(R ∩ T ) (because R ∩ S = ∅ )

⇔ d(S)− d(S ∩ T ) ≥ d(S ∪ T ∪R)− (d(T ) + d(R)− d(R ∩ T )) (24)

Now (24) is ensured from (22) and (23), and proof is done. 2

Basically, as shown above, concavity is ensured only if property of “diminis-
shing” is supposed, which seems to be quite essential.
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4 The core of the depreciation game

4.1 The core

In section 3.1, we formulated conditions of the core for a cost game. Here,
we identify the core of our depreciation game (N, d).

Definition 13 Imputation of the depreciation game
For depreciation game (N, d), the imputation (denoted by A) is the sub-

space of Rn satisfying:

xi ≤ d({i}) ∀i ∈ N, (25)

x(N) = d(N). (26)

From Proposition 1 and Lemma 1, the core is defined as follows:

Definition 14 The core of depreciation game (N, d)
Given depreciation game (N, d), Core(d) is defined as:

Core(d) = {x ∈ A | x(S) ≤ d(S) ∀S ∈ 2N\{∅}} (27)

Definition 15 Straight-line method
The payoff vector given by the straight-line method is

SL = (C/n,C/n, · · · , C/n).

Proposition 5 SL is an element of A.

Proof 6 From the condition of the market value function (12),

C − f(1) ≥ C − f(1)

C − f(1) ≥ f(1)− f(2)

C − f(1) ≥ f(2)− f(3)

...

C − f(1) ≥ f(n− 1)− f(n)

Summing all observations, we obtain n(C − f(1)) ≥ C − f(n) = C. (25) is
satisfied because d({i}) = C − f(1) and xi = C/n for SL. Furthermore,

SL(N) = nC/n = C.

Thefore SL also satisfies (26). □
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Theorem 1 The payoff vector SL is an element of Core(d).

Proof 7 For an arbitrary S ∈ 2N\{∅}, let |S| = k,

SL(S)(=
∑
i∈S

SLi) = kC/n;

Therefore, we must derive

kC

n
≤ d(S) · · · (b).

We use induction with respect to |S|.
(base:) When |S| = 1,

Proposition 5 indicates that

d({i}) = d∗({i}) = C − f(1) ≥ C

n
,

which is the result.
(steps:) There are three cases, and we demonstrate only the following case:
for some i ∈ N ,

S =
∪

Sj∈(S)m
Sj s.t. |S| = k,

S1, S2 ∈ (S)m and S1 ∪ {i} ∪ S2 ∈ SeqN .

Suppose (b) holds for all cases of |S| ≤ k. Let S′ = S ∪ {i}, then

d(S′) = d(S ∪ {i}) = d(S̃) + d∗(S1 ∪ {i} ∪ S2),

where S̃ ∪ S1 ∪ S2 = S. Then the induction hypothesis gives:

d(S̃)− k̃

n
C ≥ 0 and d(S1 ∪ {i} ∪ S2)−

k1,2,i

n
C ≥ 0 · · · (c),

(here, we assume k̃ = |S̃| and k1,2,i = |S1 ∪ {i} ∪ S2|.) Note that

d∗(S1 ∪ {i} ∪ S2) = d(S1 ∪ {i} ∪ S2) and k̃ + k1,2,i = k + 1.

We add each side of the two inequalities of (c) to obtain

d(S̃) + d∗(S1 ∪ {i} ∪ S2)−

(
k̃

n
C +

k1,2,i

n
C

)
≥ 0

⇔ d(S′)− k + 1

n
C ≥ 0,

to reach our conclusion. □
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4.2 Implications for practice

In this section, we discuss the practical implications of the core for our
depreciation game. To make the discussion easier, we consider only a sub-
set N = {{1}, {1, 2}, · · · , {1, 2, · · · , n − 1}, {N}} of SeqN as domain of the
restricted cost function d∗(S). In the situation where all players are partici-
pating in the game, that is, where it is supposed to use an asset for n years,
it is not necessary to assume the investment by non-sequential years (e.g.
S = {1, 2, 5}). The following provides a conceptualization of the core for
practical situations. We can rewrite the three conditions in which the payoff
vector belongs to the core as below and make implications for practice.

Group rationality x(N) = d∗(N) = C (28)

Individual rationality xi ≤ d∗({i}) (29)

Coalitional rationality x(S) ≤ d∗(S) for all S ∈ 2N\{∅} (30)

Because depreciation is defined as the systematic allocation of the origi-
nal cost of an asset (C) over the expected useful life of it (n years), a payoff
vector given by depreciation always satisfies group rationality (28). Individ-
ual rationality (29) means that the depreciation amount in each year should
be equal to or less than the amount of the lease payments in a one-year con-
tract. Coalitional rationality (30) means that the amount of accumulated
depreciation for ls years, x(S) = d∗(S), should be equal to or less than the
amount of lease payments in an s-year contract, that is, C − f(lS). As we
are discussing only S ∈ N , the length of a lease contract is equal to the
cardinality of S. Then from here, we denote it just as s instead of lS .

We have already confirmed mathematically that SL is an element of the
core. Figure 1 summarizes some practical implications of the result. In
Figure 1, the horizontal axis represents year t and the vertical axis repre-
sents the asset’s value. Now, we assume that our market value function is
continuous, and simply denoted as

V = f(t). (31)

We draw this as curve A in Figure 1. When t = 0, that is, at the time
of acquisition, the asset’s market value is equal to the acquisition cost C.
Curve A represents changes in the asset’s market value as it ages.

We call a line that connects (0, C) and (n, 0) as a depreciation line and
any depreciation line satisfies group rationality. If the slope of a depreciation
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Figure 1: Straight line method

line is gentler than that of curve A in the first year, individual rationality
is satisfied. From the condition of the market value function (12), we can
confirm that the slope of the straight-line method is always gentler than
that of curve A in the first year. We can also visually verify the coalitional
rationality of the straight-line method. From Figure 1, we can confirm that
the amount of accumulated depreciation by the straight-line method for s-
years, that is, x(S) = C

n s, is less than the total lease payment for s-years,
or d∗(S) = C − f(s).

Next, we draw the core of the game for N . While coalitional rationality
gives us an upper limit of accumulated depreciation amounts, a lower limit
could exist.

Proposition 6 When the payoff vector satisfies the three conditions, it also
satisfies the inequation:

x(S) ≥ f(n− s)

Proof 8 From group rationality,

x1 + x2 + · · ·+ xn = C · · · (d)

18



From coalitional rationality,

x2 + x3 + · · ·+ xn ≤ C − f(n− 1) · · · (e)

From (d) and (e), we derive

x1 ≥ C − {C − f(n− 1)} = f(n− 1) = f(n− 1)− f(n),

because we have f(n) = 0.

Next, when x1 = f(n− 1), group rationality indicates

x2 + x3 + · · ·+ xn = C − f(n− 1) · · · (f)

and coalitional rationality indicates

x3 + x4 + · · ·+ xn ≤ C − f(n− 2) · · · (g)

From (f) and (g), we derive

x2 ≥ C − f(n− 1)− {C − f(n− 2)} = f(n− 2)− f(n− 1)

and so on. We can generalize the lower limit of each year as

xi ≥ f(n− i)− f(n− i+ 1)

We calculate the sum payoff of coalition S.

x(S) ≥ f(n− s) □

Then, we introduce curve B, which represents the function

V = C − f(n− t). (32)

Figure 2 illustrates the core of the game for SeqN . Curve B represents
the lower limit of accumulated depreciation amounts. When a depreciation
line is inside the shape of the lens surrounded by curve A and curve B,
the method’s payoff is an element of the core. We can then determine that
stakeholders accept the firm’s method. We have hints that the payoff vectors
given by the declining-balance (decreasing) and sinking-fund (increasing)
methods are also elements of the core on the condition that the depreciation
line is inside the lens in Figure 2.

Given the factors discussed previously, how can players accept a fair value
measurement in this game? International Accounting Standards Board also
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Figure 2: The core of the depreciation game

permits revaluations of tangible fixed assets at fair value, which is a broad
concept that includes the market value (IASB 2013 [13]). Here, we define fair
value as market value. Then we need to reform the restricted cost function,
i.e. lease payment function for solving this problem.

We defined the lease payment function as restricted cost function in (10).
Under real k-year lease contract, the leasing company predicts market value
after k years, and the value of assets in the future is conservatively estimated
to determine lease payments. Then we re-write the restricted function as
follows:

d∗(S) = C − (1− ak)g(k) s.t. 0 < a1 < a2 < · · · < an−1 < 1. (33)

where k is an integer from 1 to n, g(k) denotes the leasing company’s pre-
dicted market value after k years, ak is the risk premium which increases
over time.

Then, we define the payoff vector of the fair value measurement below.

Definition 16 Fair value measurement
The payoff vector of the fair value measurement is

FV = (g(0)− g(1), g(1)− g(2), ..., g(n− 1)− g(n)).
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Figure 3: Fair value measurement

Recall that f(k) = (1 − ak)g(k), and g(k) denotes the lease company’s
prediction of market value of the asset after k years of use and ak is the
risk premium. If the lease company’s prediction comes true and the lessee
can know the current market value, the payoff vector of the fair value mea-
surement also belongs to the core because C − (1− as)g(s) ≥ C − g(s) (See
Figure 3).

However, the fair value measurement is accepted only if a firm can reli-
ably obtain the market value of an asset; otherwise, the payoff vectors are
not guaranteed to belong to the core.

5 Other solutions of this game

5.1 The Shapley value

In this section, we use the original Shapley value[20] as a solution concept
and examine its properties.

Definition 17 The Shapley value
(N, v) is a game in characteristic function form with transferable utility.
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The Shapley value of this game is as follows. For all i ∈ N ,

ϕi(v) =
∑

S⊂N i/∈S

(s− 1)!(n− s)!

n!
{v(S)− v(S − {i})},

where s is the cardinality of a coalition S and n is the cardinality of N .

As our depreciation game is a cost game, we convert the cost function
into a characteristic function.

v(S) =
∑
i∈S

d∗(i)− d(S) = sd∗(1)− d(S). (34)

After we obtain the set of the Shapley value, we re-convert it into that
of cost burden.

xi = d∗(1)− ϕi(v). (35)

[Example 1] When N = {1, 2, 3} and f(0) = 150 > f(1) = 60 > f(2) =
20 > f(3) = 0, we obtain the Shapley values and the amount of cost burden
vectors given by them as shown in Table 19.

Table 1: The Shapley values and cost allocation when n = 3.
Player 1 Player 2 Player 3

ϕi(v) 95/3 170/3 95/3

Cost burden 175/3 100/3 175/3

Shapley(1971) [21] shows the theorem that the core of every concave
cost function is nonempty and contains the Shapley value. We showed a
sufficient condition for the concavity of our cost function in Section 3.

Proposition 7 In the case of |N | = 3, the Shapley value of this game is
equal to the payoff vector given by the SL method if and only if f(0)−f(1) =
f(1)− f(2) holds.

9See Appendix more details.
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Proof 9 If the payoff vector given by the Shapley value is equal to the payoff
vector of the SL method, every element is the same amount. Therefore,

(4d∗(1) + d∗(2)− 2d∗(3))/6 = (10d∗(1)− 2d∗(2)− 2d∗(3))/6

⇐⇒ 4(f(0)− f(1)) + (f(0)− f(2))− 2(f(0)− f(3))

= 10(f(0)− f(1))− 2(f(0)− f(2))− 2(f(0)− f(3))

⇐⇒ 3f(0)− 4f(1)− f(2) + 2f(3) = 6f(0)− 10f(1) + 2f(2) + 2f(3)

⇐⇒ 3f(0)− 6f(1) + 3f(2) = 0

⇐⇒ f(0) + f(2) = 2f(1)

⇐⇒ f(0)− f(1) = f(1)− f(2).□

For the N = {1, 2, 3} game, we have the idea that x1 = x3 ≥ x2, from
(12). Intuitively, we can predict that the burden of player 2 is less than the
burdens of players 1 and 3 because player 2 can make coalitions with both
player 1 and player 3.

5.2 The nucleolus

Next, we use the nucleolus[19] as a solution concept and examine its prop-
erties. Although our game is a cost game, we consider the characteristic
function shown in (34).

Definition 18 The excess of S with respect to x
We define the excess of S with respect to x as e(S,x) = v(S)−x(S), S ⊂ N
and S 6= ∅, N .

Definition 19 The vector of the excess
Let θ(x) be a vector in R2n−2. The elements of θ(x) are the numbers v(S)−
x(S), arranged according to their magnitude. We call this as the vector of
the excess.

Definition 20 The lexicographical order
When we are given two vectors x = (x1, ..., xq) and y = (y1, ..., yq), we
say that x is lexicographically smaller than y if there is some integer k,
1 ≤ k ≤ q, such that

xl = yl for 1 ≤ l ≤ k,

xk < yk.

We denote this relation as x <L y.
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Definition 21 Acceptance
If θ(x) <L θ(y) , we say that x is more acceptable than y.

Definition 22 Nucleolus
The nucleolus of the characteristic game (N, v) is the set of imputations that
satisfies:

N (v) = {x ∈ A|θ(x) ≤L θ(y), ∀y ∈ A} (36)

[Example 2] We use the same case as Example 1, N = {1, 2, 3} and f(0) =
150 > f(1) = 60 > f(2) = 20 > f(3) = 0. We seek an imputation that
minimizes the maximum excess of all S except for ∅ and N . Then, we
obtain y∗ = (35, 50, 35) that is the nucleolus and the set of cost burden
(55, 40, 55)10. In this case, the payoff vector given by the nucleolus is a
menber of the core.

Proposition 8 Under the condition |N | = 3, if f(1) − f(2) ≥ C/3 holds,
the payoff vector given by nucleolus is equal to that given by the SL method.
If f(1) − f(2) < C/3 holds, on the other hand, the payoff vector given by
nucleolus is not equal to that given by the SL method.

Proof 10 In general when |N | = 3, the market value function is f(0) =
C > f(1) > f(2) > f(3) = 0 and it satisfies (12). Then we can re-write the
characteristic function in general when |N | = 3 as follows:

v({1}) = v({2}) = v({3}) = d∗(1)− d∗(1) = 0;

v({1, 2}) = v({2, 3}) = 2d∗(1)− d∗(2)

= 2(f(0)− f(1))− (f(0)− f(2)) = C − 2f(1) + f(2);

v({1, 3}) = 0;

v({1, 2, 3}) = 3d∗(1)− d∗(3) = 3(f(0)− f(1))− (f(0)− f(3)) = 2C − 3f(1).

Therefore, we can also re-write the excess of y for S ∈ 2N except for ∅ is as

10See Appendix for more details.
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follows:

e({1},y) = −y1;

e({2},y) = −y2;

e({3},y) = −y3;

e({1, 2},y) = v({1, 2})− (y1 + y2) = C − 2f(1) + f(2)− (v({1, 2, 3})− y3)

= C − 2f(1) + f(2)− (2C − 3f(1)− y3) = −C + f(1) + f(2) + y3;

e({1, 3},y) = v({1, 3})− (y1 + y3) = 0− (v({1, 2, 3})− y2) = −2C + 3f(1) + y2;

e({2, 3},y) = v({2, 3})− (y2 + y3) = C − 2f(1) + f(2)− (v({1, 2, 3})− y1)

= C − 2f(1) + f(2)− (2C − 3f(1)− y1) = −C + f(1) + f(2) + y1.

First, we make the lexicographical order of the payoff vector given by SL
method, i.e. y1 = y2 = y3 =

2C−3f(1)
3 (= v({1,2,3})

3 ).

e({i},y) = −2

3
C + f(1)

e({1, 2},y) = e({2, 3},y) = −C + f(1) + f(2) +
2

3
C − f(1) = −1

3
C + f(2);

e({1, 3},y) = −2C + 3f(1) +
2

3
C − f(1) = −4

3
C + 2f(1);

Because SL ∈ Core(d), we can induce e(S,y) ≤ 0, ∀S. Then we make
the lexicographical order of the excess.
(case 1) When f(1)− f(2) ≥ C/3,

e({i},y) > e({1, 2},y) > e({1, 3},y). (37)

(case 2) When f(1)− f(2) < C/3,

e({1, 2},y) > e({i},y) > e({1, 3},y). (38)

If the payoff vector given by SL is not the nucleolus, there is some ϵ > 0
which satisfies y1 = y3 = 2C−3f(1)

3 − 1
2ϵ, y2 = 2C−3f(1)

3 + ϵ and make the
highest excesses smaller 11. Then we make the lexicographical order of the
new payoff vector as follows:

11We can assume that the nucleolus for |N | = 3 satisfies anonymity and player 1 and 3
are anonymous players. cf. Potters (1991)[16].
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e({1},y′) = e({3},y′) = −2

3
C + f(1) +

1

2
ϵ

e({2},y′) = −2

3
C + f(1)− ϵ

e({1, 2},y′) = e({2, 3},y′) = −1

3
C + f(1)− 1

2
ϵ;

e({1, 3},y′) = −4

3
C + 2f(1) + ϵ;

(case 1) When f(1)− f(2) ≥ C/3,

e({1},y′) = e({3},y′) > e({i},y)

always holds. This means that there is no ϵ that make the highest excesses
with (37) smaller, i.e., the payoff vector given by SL is the nucleolus.

(case 2) When f(1)− f(2) < C/3, we can find some ϵ > 0 which satisfies

e({1, 2},y) > e({1, 2},y′).

This means that there is an ϵ that makes the highest excesses with (38)
smaller, i.e., the payoff vector given by SL is not the nucleolus. □

Theorem 2 In the case of |N | = 3 and f(0) − f(1) = f(1) − f(2), the
depreciation methods which are given by the Shapley value and the nucleolus
are the same with the SL method.

Proof 11 When f(0) − f(1) = f(1) − f(2), inequation f(1) − f(2) ≥ C/3
in Proposition 8 is satisfied. Then, it is obvious from Proposition 7 and 8.
□

6 Conclusion

In this study, we develop the model by corporate game theory to analyze
why stakeholders accept conventional depreciation methods. First, we con-
sidered the core concept as the solution to our game because it provides
the scope of acceptable payoffs for the players. If a payoff vector of a cer-
tain accounting rule is an element of the core, we determine that the firm’s

26



stakeholders accept the rule. Depreciation methods given by the core sug-
gest that stakeholders accept them because they reflect the cost savings of
purchase compared to leases. We found that (1) the SL method is always
accepted, (2) stakeholders’ acceptance of the declining-balance method and
sinking-fund method depends on the degree of decline in the fair value of
the asset, and (3) stakeholders accept the fair value measurement when the
firm can reliably measure the fair value of the asset.

Second, we examined the condition that the depreciation methods which
are given by the Shapley value and the nucleolus are the same with the
SL method. This finding shows the specialty of our game. This study’s
results can help accounting standards setters establish policies, especially
the IASB, the body responsible for developing internationally accepted ac-
counting standards. However, this area requires further study. As only a
few alternatives have been used in real business, the core is too wide and
the Shapley value and the nucleolus are too narrow for an explanation of
depreciation.

In this paper, we borrow the existing solution concepts to analyze the
accounting conventions. This acts as a stepping stone to seeking for original
solution concept of accounting rules, which is a more narrow concept than
the core.
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Appendix

Here is the details for examples.
[Example 1] When N = {1, 2, 3} and f(0) = 150 > f(1) = 60 > f(2) =
20 > f(3) = 0, the characteristic function is as follows:

v({1}) = v({2}) = v({3}) = d∗(1)− d∗(1) = 0;

v({1, 2}) = v({2, 3}) = 2d∗(1)− d∗(2) = 50;

v({1, 3}) = 0;

v({1, 2, 3}) = 3d∗(1)− d∗(3) = 120.

The marginal contribution and the Shapley value of this case are shown
in Table 2.

[Example 2] Then, we seek the payoff vector given by the nucleolus
for our depreciation game. We use the same case with subsection 5.1,
N = {1, 2, 3} and f(0) = 150 > f(1) = 60 > f(2) = 20 > f(3) = 0.

The characteristic function of our depreciation game was as follows:

v({1}) = v({2}) = v({3}) = d∗(1)− d∗(1) = 0;

v({1, 2}) = v({2, 3}) = 2d∗(1)− d∗(2) = 50;

v({1, 3}) = 0;

v({1, 2, 3}) = 3d∗(1)− d∗(3) = 120.
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Table 2: The Shapley values and cost allocation when n = 3.
Order Player 1 Player 2 Player 3

(1,2,3) 0 2d∗(1) − d∗(2) =
50

d∗(1) + d∗(2) −
d∗(3) = 70

(1,3,2) 0 3d∗(1) − d∗(3) =
120

0

(2,1,3) 2d∗(1) − d∗(2) =
50

0 d∗(1) + d∗(2) −
d∗(3) = 70

(2,3,1) d∗(1) + d∗(2) −
d∗(3) = 70

0 2d∗(1) − d∗(2) =
50

(3,1,2) 0 3d∗(1) − d∗(3) =
120

0

(3,2,1) d∗(1) + d∗(2) −
d∗(3) = 70

2d∗(1) − d∗(2) =
50

0

ϕi(v) 95/3 170/3 95/3

Cost burden 175/3 100/3 175/3

Here, we consider a benefit-based payoff vector y = (yi)i∈N not a cost-
based one. Consider y ∈ A. The excess of y for S ∈ 2N except for ∅
and N is as follows:

e({1},y) = v({1})− y1 = −y1

e({2},y) = v({2})− y2 = −y2

e({3},y) = v({3})− y3 = −y3

e({1, 2},y) = v({1, 2})− (y1 + y2) = 50− (y1 + y2)

e({1, 3},y) = v({1, 3})− (y1 + y3) = −(y1 + y3)

e({2, 3},y) = v({2, 3})− (y2 + y3) = 50− (y2 + y3)

y is imputation, therefore y1 + y2 + y3 = v({1, 2, 3}) = 120. Then we
rewrite the former three inequalities.

e({1, 2},y) = y3 − 70

e({1, 3},y) = y2 − 120

e({2, 3},y) = y1 − 70
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According to Definition 22, an imputation in the nucleolus minimizes
the maximum excess of all S except for ∅ and N . Therefore, we can
solve the linear programming problem as follows:

minimize ϵ

subject to − y1 ≤ ϵ, −y2 ≤ ϵ, −y3 ≤ ϵ,

y3 − 70 ≤ ϵ, y2 − 120 ≤ ϵ, y1 − 70 ≤ ϵ

The minimum value of ϵ of this problem is 35, then, y∗ = (35, 50, 35)
is the nucleolus.

As is the case with the Shapley value, we need to re-convert the payoff
vector given by the nucleolus into the allocation.

x∗i = d∗(1)− y∗i (39)

where x∗i is a payoff for i given by the nucleolus.

According to (39), we obtain the vector (55, 40, 55) as the solution,
which is a member of the core.
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