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Hierarchical Bayesian Hedonic Regression Analysis of

Japanese Rice Wine: Price is Right?
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Abstract

This research formulates a hedonic pricing model for Japanese rice wine, sake,
via hierarchical Bayesian modeling, estimating it with a Markov chain Monte Carlo
(MCMC) method. The data used in the estimation are obtained from Rakuten, the
largest online shopping site in Japan. Flavor indicators, premium categories, rice
breeds, and regional dummy variables are used as pricing factors. The Bayesian
estimation of the model employs an ancillarity-sufficiency interweaving strategy to
improve the sampling efficiency of MCMC. The estimation results indicate that
Japanese consumers value sweeter sake more and the price reflects the cost of pre-
processing rice only for the most luxurious category. No distinctive differences are

identified among rice breeds or regions in the hedonic pricing model.

Key words: sake, rice breed, hedonic pricing model, hierarchical Bayesian

modeling, Markov chain Monte Carlo.
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1 Introduction

The worldwide spread of the novel coronavirus COVID-19 since early 2020 inflicted
severe damage on the alcoholic beverage industry. Demand for alcoholic beverages such
as beer and wine sharply declined across the globe due to forced closures of bars and
restaurants and prohibitions on indoor dining. Japanese rice wine, sake, is no exception.
Since the first case of COVID-19 was reported in January 2020, to prevent the spread
of coronavirus nationwide, the Japanese government repeatedly declared a state of emer-
gency, shutting down bars and restaurants or ceasing the sale of alcoholic beverages.
Because bars and restaurants are major buyers of sake, the Japanese sake breweries suf-
fered the loss of a great portion of usual sales revenue. This decline in demand for sake
was further worsened by record-high bar and restaurant closures. According to a survey
conducted by the Ministry of Agriculture, Forestry and Fisheries (MAFF), this resulted
in domestic shipments of sake falling by 11% in 2020 from the previous year.

Under this unprecedented adverse business environment, Japanese sake breweries are
struggling to identify alternative channels for sake sale. One promising alternative is e-
commerce. Due to state-imposed restrictions on outside activities®, the frequency and the
volume of the online purchases of food and other necessities dramatically increased. For
instance, Rakuten, Japan’s largest e-commerce conglomerate, experienced solid growth in
their sales revenue from the first to the fourth quarter of 2020 and it is on track to post its
highest operating profit in the first quarter of 2021. Given the fact that consumers have
preferred to purchase goods and have them delivered rather than leaving their homes and
risking possible COVID-19infection, Japanese sake breweries may need to establish new
online sales channels and supply more products for home consumption to compensate for
the loss of bar and restaurant sales.

Although the shift to the e-commerce market seems to be a plausible strategy, its
successful execution is a different matter. The Japanese sake industry mainly consists of

family-owned small and medium-sized enterprises and their decision making continues to

1Unlike other countries, the Japanese government did not impose a strict lockdown upon the popu-
lation. Nonetheless, the Japanese people were encouraged to limit non-essential outside activities and

stay in their homes during the COVID-19 pandemic.



be based on experience and intuition. Most managers have limited expertise regarding
marketing strategy in general and proper product pricing in particular. Furthermore,
most sake breweries sell majority of their product through wholesalers and have insuffi-
cient experience in direct sale. Simply put, managers tend to follow the practices estab-
lished by their parents and maintain the same old long-term relationships with wholesalers
for decades. Given the prevalent old-fashioned management style in the Japanese sake
industry, data-driven pricing of sake is inconceivable.

This research endeavors to assist managers of sake breweries who venture into the
e-commerce market, proposing a hedonic pricing approach for sake. The application of
the hedonic pricing approach in the liquor market is not new, especially for the wine
market. For instance, seminal studies, such as Nerlove (1995) and Combris et al. (1997),
concluded that the rank of vintage, wine color, and the amount of sugar in wine had
significant effects on the price of wine. Costanigro (2006), Galizzi (2007), Corsi and Strom
(2013), and Brentari et al. (2014), among others, determined that grape production areas
had a significant impact on price. Corsi and Storm (2013) also found that consumers
tended to purchase wine at a higher price if it was manufactured using organic farming.
Notably, Galati et al. (2017) conducted a hedonic analysis of the Japanese wine market.
Nonetheless, in comparison to the wine market, virtually no hedonic analyses of the
Japanese sake market have been conducted as far as the authors knows.

As noted in Section 2, the sake brewing process differs from that of beer or wine,
which necessitates the identification of key factors that specifically determine the price of

sake. Possible candidates for explanatory variables in the hedonic pricing model include
o product categories: super premium, premium, or regular;
o breeds of rice used in the sake brewing process;
e brewing experts supervising the brewing process; and
 specific flavor characteristics of sake.

The influence of each variable on the quality of sake is examined in Section 2.
In the literature regarding the hedonic pricing approach, pricing models are often

supposed to be a linear regression of the log price. This convention is followed for this
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investigation of sake pricing. Although it is tempting to estimate such a linear regression
with the ordinary least squares (OLS) method, in our experience, OLS elicited unsta-
ble estimation results. This is mainly because the hedonic pricing model used in this
study contains numerous dummy variables related to product categories and producing
prefectures of sake. Therefore, rather than using OLS, the hedonic pricing model is
constructed via hierarchical Bayesian modeling to provide more stable estimates of the
coefficients in the model. Because hierarchical Bayesian modeling renders the hedonic
pricing model rather complicated, the Markov chain Monte Carlo (MCMC) method and
the ancillarity-sufficiency interweaving strategy (ASIS) are used for estimation.

The organization of this paper is as follows. Section 2 describes the basic information
regarding sake for those who are unfamiliar with this traditional Japanese liquor, outlin-
ing sake’s unique flavor characteristics. The data set used to estimate the hedonic pricing
model is also introduced. Section 3 presents the hierarchical Bayesian modeling of sake
prices and outlines the Bayesian MCMC estimation procedure, with more details regard-
ing this approach provided in appendices. Section 4 delineates the hypotheses tested and

interprets the estimation results. Finally, concluding remarks are shared in Section 5.

2 Flavor Determinants and Other Factors for Sake
Pricing

Prior to introducing the candidates for explanatory variables in the hedonic pricing
regression of sake, we will now describe the key aspects of the brewing process and the
determinants of the flavor. Sake is a traditional Japanese liquor brewed from rice. It is
slightly yellow-colored, which is similar to white wine, and contains 13 to 16% alcohol.
Sake is made from rice, koji, yeast, and water. Some breweries add brewed alcohol to
sake as a post-production flavor enhancement to lower production costs. This study does
not include this type of sake because such sake is a mass-produced cheap liquor that may
not be suitable for analyzing the relationship between price and the quality. As such,
this research focuses on sake without the post-production addition of alcohol, which is

known as junmai, which means “pure rice” in Japanese.
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Figure 1: Brewing Processes of Each Form of Liquor?

One of the key materials, koji, is a kind of mold that decomposes rice starch into
sugar. This process of sugar creation is called saccharification. The addition of yeast
produces alcohol from the sugar created by koji, in a process called fermentation. As
shown in Figure 1, saccharification and fermentation in the sake brewing process proceed
in parallel. This parallel fermentation generates a unique flavor known as umami, which
is created by a rich amount of amino acids. In contrast, in the beer brewing process,
malt is first saccharified into wort, and this wort is fermented into alcohol with the help
of yeast. This serial fermentation is illustrated in the center of Figure 1. Unlike sake or
beer, the wine brewing process does not require saccharification because the yeast can
use the grape sugar for fermentation, as shown in the bottom of Figure 1.

Figure 2 summarizes the four flavor components of sake, beer, and wine. In each
panel of Figure 2, the top bar is for wine, the middle bar is for beer ,and the bottom

bar is for sake. The upper-left panel shows the amount of alcohol by percentage, which

2The authors are grateful to the National Research Institute of Brewing for kindly providing Figure

1 and permission for its reprint.



is often referred to as alcohol by volume (ABV) in the Japanese sake industry, showing
that sake has the highest ABV. The upper-right panel with the title “Extract” presents a
bar chart regarding the amount of sugar by percentage. There is no distinctive difference
among three liquors, other than variation being highest for wine and the average level
being lower for beer. The bottom-left panel shows that sake contains more amino acids
than the other types of liquor, but the acidity of sake is lower than that of wine, as shown
in the bottom-right panel. Given these observations, the following indicators were chosen

as explanatory variables in the hedonic pricing regression?:

« ABV
+ sake meter value (SMV)
o acidity

SMV is related to the amount of sugar in sake and takes either a positive or negative
value. A higher SMV indicates a lower amount of sugar; thus sake with a higher (lower)
SMV tastes drier (sweeter).

At the beginning of the brewing process of sake, grains of rice are threshed and polished
so that only the inner part of a rice grain is used for saccharification and fermentation.
This is because the inner part contains more amount of starch than the peripheral part.
Polishing rice grains further makes sake taste smoother. The downside of this polishing
process is that it increases production cost by discarding a substantial portion of rice that
could otherwise be used. Thus, the portion of rice that is polished is a key factor that
determines both the flavor of sake and its production cost. This variable is measured
through a polishing rice ratio (PRR); for instance, 50% PRR indicates that the outer
half portion of the rice grain is discarded.

Related to PRR, the MAFF of Japan prescribes three categories of sake, including
jummnai, junmai ginjo, and junmai dai ginjo. As previously noted, junmai is made from

rice without the addition of post-production alcohol. There is no specific requirement on

3 Although it is preferable to include the amount of amino acids in the hedonic pricing regression, this

consideration was excluded from the study due to limitations in data availability.
4The authors appreciate the National Research Institute of Brewing for kindly supplying Figure 2

and allowing its reprint.
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Figure 2: Liquor Flavor Comparison®

PRR to be classified as junmai; thus, it is regarded as a regular type of sake made purely
from rice. The next category junmai ginjo is destined for the premium sake market. Ginjo
literally means “premium brewing” in Japanese. To be categorized as junmai ginjo, the
sake must be junmai, i.e., without the addition of post-production alcohol, and the PRR
must be no more than 60%. The last junmai dai ginjo designation represents the super-
premium category. Dai means “great” in Japanese. To be classified as junmai dai ginjo,
the PRR must be no more than 50%. For convenience, the following abbreviations will

be used for these categories:
o junmai (JM)
o junmai ginjo (JG)
e junmai dai ginjo (DG)

Given the above categorization, DG is expected to be the most expensive luxury sake,

followed by JG, and JM to be the cheapest. To analyze how this categorization con-



Table 1: Classes of Pure Rice Sake
Class Junmai Dai Ginjo (DG)  Junmai Ginjo (JG)  Junmai (JM)

Maximum PRR 50% 60% None
Source: Akiyama (1994) pp. 4-7

tributes the price differentiation among JM, JG, and DG, dummy variables are used in
the hedonic pricing regression to represent these categories. Cross-product terms between
each category dummy and PRR are also added to the regression to assess differences in
sensitivity to PRR among categories.

Unlike mass-produced cheap sake, the ginjo-type premium sake (DG and JG) is
painstakingly crafted by a toji (brew master) who supervises the entire brewing pro-
cess. Since most sake breweries are family-owned small businesses, they cannot afford to
hire their own brew masters, so they outsource the task to freelance brew masters who
have traditionally formed independent guilds. According to the Japan Sake and Shochu
Makers Association (2021), there are 19 such guilds in Japan. In the past, knowledge
and skills in sake brewing were a tightly held secret from the public; thus, making it
necessary for breweries to hire brew masters from one of the existing guilds each season.
This tradition remains today, even after an Al-monitored brewing system and other in-
novations have made it possible to produce ginjo-type premium sake without the help
of traditional brew masters. Therefore, the quality of sake can differ region-to-region
because it is subject to the skills and the preferences of the brew masters who belong
to different regional guilds. Furthermore, some argue that regional climate differences
may also affect the quality of sake, though with the introduction of fully automated tem-
perature and humidity control in the brewing process, this may no longer be the case.
Regional dummy variables have been introduced into the hedonic pricing regression to
investigate these parameters.

Rice breeds are included as the final factor in the hedonic pricing regression of sake.
Of course, rice is the most important material of sake. Although some breeds of cooking
rice have been used for sake brewing, ginjo-type premium sake is almost exclusively made

from a sake-specific breed of rice, which is called sakamai (sake rice) in Japanese.



One of the most commonly used sakamai is Yamadanishiki, which is mainly grown in
the western Japan, whereas rice farmers in the eastern Japan mainly grow Gohyakuman-
goku. Omachi and Miyamanishiki are also popular breeds, though they are cropped in
smaller quantities than Yamadanishiki or Gohyakumangoku. Omachi is primarily culti-
vated in the western regions, while Miyamanishiki is mostly grown in the eastern regions.
Moreover, some locally grown breeds of sakamai are also used by local breweries in sake
brewing, but it is difficult for non-local breweries to purchase such breeds. Dummy vari-
ables for the four major breeds of sakamai are included as explanatory variables in the

hedonic pricing model:

Yamadanishiki (YM)

Gohyakumanngoku (GH)

Omachi (OM)

Miyamanishiki (MY)

When all four dummy variables equal zero, this means that the corresponding sake is
produced from a locally grown breed of sakamai.
In summary, the following explanatory variables are included in the hedonic pricing

regression model of sake in this study.
Flavor indicators:

« PRR
« ABV

« sake meter value (SMV)

acidity
Premium categories:

o junmai ginjo (JG) dummy
o junmai dai ginjo (DG) dummy

e JG dummy x PRR



e DG dummy x PRR
Rice breeds:

o Yamadanishiki (YM) dummy

o Gohyakumanngoku (GH) dummy
e Omachi (OM) dummy

o Miyamanishiki (MY) dummy

Regional effects:

o prefecture dummies for the following 29 prefectures:

Hokkaido  Aomori Miyagi Akita Yamagata Fukushima
Ibaragi Tochigi Gunma Saitama Chiba Niigata
Ishikawa Fukui Nagano Giifu Shizuoka Aichi
Mie Shiga Osaka Hyogo Nara Wakayama
Shimane  Okayama Hiroshima Yamaguchi Kochi

The data for the above variables, along with sake prices, was obtained on August

6, 2021, using an API provided by Rakuten and retrieving 403 observations. Note that

the data set used here only reflects only information on how online retailers who operate

on Rakuten’s online shopping site set the prices of their products. This is a notable

limitation. The descriptive statistics of sake prices, PRR, ABV, SMV, and acidity are

summarized in Table 2. As expected, DG is the most expensive and has the lowest PRR

and acidity; whereas, JM is the cheapest and has the highest PPR and acidity. JG is

somewhere in between. SMV is lower for DG and JG than JM. These observations suggest

that premium sake such as DG and JG tends to taste sweeter than less expensive JM.

As for ABV, no significant differences are noted among the three categories.
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Table 2: Descriptive Statistics

Pricee PRR ABV SMV Acidity Price PRR ABV SMV Acidity
Total DG

Mean 2394 0.53 15.8 2.36 1.56 3860 043 159 1.25 1.44
ASD 1924 0.09 09 5.12 0.31 2788  0.07 0.77 4.74 0.23
A Max 22000 0.8 19 27 3.6 22000 0.5 18 13 2.5
A Min 1034 0.18 11 -36 1 1365 0.18 14 -36 1
JG JM

Mean 1782 0.55 159 1.98 1.6 1500  0.61 155 4.18 1.66
A SD 283 003 084 5.1 0.32 235  0.05 1.056 5.14 0.35
A Max 2992 0.6 18 20 3.6 2536 0.8 19 27 3.5
A Min 1078  0.45 13 -21 1 1034 0.5 11 -20 1.1

3 Hierarchical Bayesian Modeling of the Hedonic Pric-
ing Regression

This section will first introduce the hierarchical Bayesian modeling of the hedonic
pricing regression of sake developed for this research. Suppose y; is the log price of sake

brand i € {1,..., N} and a dummy variable is defined as d\”), = € {R, B},

*j

0 1, if {(R)egion, (B)reed} of sake brand i is j;

*j
0, otherwise,

where “Region” refers to the prefecture where sake brand i is produced and “Breed”
represents the rice breed from which the sake brand is made. As for the regional dummy
variable dé%j, all dummy variables for 29 prefectures are included. For this reason, the
constant term from the regression is excluded to avoid multicollinearity. As for the breed
dummy variable diBj, any local rice breeds are treated as the base breed; that is, dij =0
for all j if sake brand i is made from a local rice breed. Further, suppose {x;;}X | are

explanatory variables, including flavor indicators (PRR, ABV, SMV, and acidity), dummy

11



variables for premium categories (DG dummy and JG dummy), and the cross-product
terms (DG dummyxPRR and JG dummyxPRR). The hedonic pricing regression model

is formulated as

NR NB K
yi=_ dgor;+ Y dgas+ ) wabi e a~N(0,07), (1)
j=1 j=1 k=1

where Nr = 29 (the number of prefectures analyzed), Np = 4 (the number of rice breeds),
and K = 8 (the number of other explanatory variables) in the study. By introducing the

following notations:

dy - dy, 01
D*: ) o, = ) *E{RvB}J

dy) - dy) .,

Y1 i1 o ik b €1

y = ) X = ) ﬁ = ) €= Y
YN IN1 " INK Br EN
the regression model (1) is rewritten as
y:DRaR+DBaB+Xﬂ+e, 6NN(0N,O'E2IN), (2)

where Oy is the N x1 zero vector and I y is the N x N identity matrix. Similar expressions

will be used for zero vectors and identity matrices with different shapes. Furthermore,

by defining
apR
Z = |Dr Dg X], 0= |ag|;
B
we have
y=2Zd+e, €~N(0y,02InT). (3)

Following previous studies, we initially tried to estimate (3) using the OLS method,

but in our experience, this conventional method did not elicit stable estimation results.
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Instead, this study estimates (3) via hierarchical Bayesian modeling. For the above model

(3), the likelihood of unknown parameters (8, 0.) is given by

1Z.6.0) o (07) ¥ exp |~ — 267y — 20)] (@)
x (02)¥ exp [—ZT] , )

where e; = y; — Zjvjl d%am — Z;V:f’l dg}agj — Zszl ik Two different forms of the
likelihood, (4) and (5), will be used to derive the conditional posterior distribution of
each parameter.

The prior distribution of § and o, is assumed to be:

RN, orl Ny
S~ N(S), p=|upply,|, Z= opIn, ) (6)
s s
oe ~ CH(0, s), (7)

where C*(0, s) stands for the half-Cauchy distribution:

25,
p(oclse) = ( i o.>0, s.>0, (8)
T

02+ s2)
and s, takes a preset value as a hyper-parameter. Note that the prior distribution (6) is

equivalent to

i ~ Ny, 02), ie€{l,...,N,}, *€{R,B}, 9)

We further assume the prior distribution of p, and o, in (6) are
e ~ Ny, 72), 00 ~CH(0,s,), *€{R,B}, (11)

where (., 7, and s,) are also hyper-parameters, which are fixed at preset values. Gel-
man (2006) suggests that the half-Cauchy distribution (8) is more suitable as the prior
distribution for the variance parameter in a hierarchical model such as o, in (11). Finally,

prior distributions (6), (7), (9) — (11) are summarized into the joint prior distribution of

13



0 = (57 HR,OR, UB, 0B, 06>:

p(e) :p(6|uR70—RaﬂBaaB7y’/525) (12)

x p(prlor, TR)P(OR|SR)P(1Bl @B, TB)D(0B|5E)P(0C S¢)-
For brevity in mathematical expressions, dependency on the hyper-parameters was ig-
nored in the prior distribution (12) as p(0). By applying Bayes’ theorem to the likelihood
(4) and prior distribution (12), the posterior distribution of @ is:

p(6|D) x p(y|Z,d,0)p(0), D =(y,2). (13)

Unfortunately, the posterior distribution (13) and the posterior statistics of @ cannot
be analytically evaluated as moments and intervals. Instead, they are evaluated using
the MCMC method. The results indicate that the conditional posterior distributions
of all parameters are readily available; thus, a Gibbs sampler algorithm method can be
adopted to generate pseudo-random numbers of € from the posterior distribution (13)
for applying the Monte Carlo integration to evaluate the posterior statistics, including
the posterior mean, the posterior standard deviation, and the interval estimation. In the
Gibbs sampler, (8, ug,or, 5,05, and o.) are generated one by one in Steps 1 — 6.

) — Gibbs sampler for the hierarchical Bayesian regression model —

Step 1. Draw d from the conditional posterior distribution p(§|D, 0_s).

Step 2. Draw up from the conditional posterior distribution p(ug|D,0_,,,).
Step 3. Draw op from the conditional posterior distribution p(og|D,0_,,).
Step 4. Draw pp from the conditional posterior distribution p(ug|D,0_,,).

Step 5. Draw op from the conditional posterior distribution p(og|D,0_,,).

Step 6. Draw o, from the conditional posterior distribution p(o|D,0_,,).
N J

Note that 8_, indicates that a parameter x is excluded from 8. Each step generates a new
value of the parameter from the conditional posterior distribution, replacing the current
value with the new one before moving on to the next step. The loop of Steps 1-6 is started

from an arbitrary initial point of @ and repeated until the generated sample paths of the

14



parameters are stabilized. This initial sampling is known as “burn-in” in the literature.
In our experience, the plain vanilla Gibbs sampler tends to generate highly correlated
unstable sample paths, which may be caused by the fact that the hedonic pricing regres-
sion (3) includes many dummy variables. Therefore, to improve the efficiency of random
number generation in the Gibbs sampler, the ASIS proposed by Yu and Meng (2011) is
applied so that the sample paths of the parameters generated will be stabilized faster.
See the Appendix for more information on the derivation of each conditional posterior

parameters and the ASIS method.

4 Results

To establish hypotheses for statistical inference on the relationship between the price
of sake and the potential candidates for determinants of the quality presented in Section
2, we interviewed Professor Tsutomu Fujii®, who is currently affiliated with Faculty of
Food and Agricultural Sciences, Fukushima University, and was the supervisor of the
Department of Quality and Evaluation Research Division in the National Research In-
stitute of Brewing. In his former career, he evaluated the quality of various kinds of
sake as a judge for the Annual Japan Sake Awards, which is the most traditional and
prestigious sake competition. Based on his knowledge and experience, Professor Fujii
suggested the following “conventional wisdom” in the sake industry related to the signs

of the coefficients in the hedonic pricing regression:
Flavor indicators:

H1 The coefficient for PRR will be negative because lowering PRR costs more.

H2 The coefficient for ABV will be positive because a higher ABV is an essential
factor for the fragrance of DG and JG.

H3 The coefficient for SMV will be negative because lower SMV leads to higher
quality for junmai.

H4 The coefficient for the acidity will be negative. If the acidity is higher than

1.7, such sake is no longer classified in DG or JG.

®Details on his academic achievements are available at https://researchmap.jp/read0005781
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Premium categories:

H5 The coefficient for JG dummy should be positive because of the PRR cap (it

must be no more than 60%), as noted in Section 2.

H6 The coefficient for DG dummy should also be positive for the same reason as

H5.

H7 For both the JG dummy x PRR and the DG dummy x PRR, the coefficient

will be negative for the same reason as H5 and H6.
Rice breeds:

H8 The Yamadanishiki (YM) dummy should be positive and have the highest

impact because YM is the most suitable sakamai for brewing DG and JG.
H9 The Gohyakumanngoku (GH) dummy will not have a high impact.
H10 The Omachi (OM) dummy will have a high positive impact next to YM.

H11 The Miyamanishiki (MY) dummy will not have a significant impact.
Regional effects:

H12 There will be no clear difference among prefectures regarding regional ef-
fects because contemporary brewing technologies are almost universally used

throughout Japan, as noted in Section 2.

In the Gibbs sampler, the hyper-parameters in the prior distributions (7), (9) — (11)

were set as
g =0g, 35=100Ig, s.=1,
0, =0 72=100, s,=1, x€{R,B}.
The number of the initial burn-in iterations for the Gibbs sampler was 5,000, and then
we generated 50,000 sets of parameters from the posterior distribution (13).
Table 3 presents the estimation results via hierarchical Bayesian modeling. This table

includes the names of variables, point estimates (posterior mean) of the coefficients, the

posterior standard deviations of the coefficients as “SD”, and the 90% intervals® as “90%"”.

6We use the highest posterior density interval for interval estimation.
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Table 3: Estimation Results

Variables  Coefficients SD  90% Interval ~ Variables  Coefficients SD  90% Interval
PRR 0.355 0502 [1.195,0.457]  Saitama 7.206 0417 [6.533,7.905]
ABV 0.021 0.016  [-0.007,0.047] Chiba 7.230 0.411 [6.553,7.905]
SMV -0.006 0.003 [-0.011,-0.001] Niigata 7.284 0.407 [6.607,7.944]

Acidity 0.011 0.049  [-0.068,0.091] Ishikawa 7.287 0.413 [6.601,7.954]
JG 0.180 0.465  [-0.568,0.962] Fukui 7.183 0.412  [6.496,7.849]
DG 2.484 0.346  [1.906,3.047] Nagano 7.160 0.411 [6.485,7.837]

JGxPRR -0.097 0.808 [-1.443,1.212] Gifu 7.171 0.406  [6.506,7.840]

DGxPRR -4.128 0.614 [-5.155,-3.136]  Shizuoka 7.248 0.410 [6.561,7.910]

YM 0.024 0.033  [-0.025,0.082] Aichi 7.178 0.411 [6.492,7.843]
GH -0.014 0.037  [-0.077,0.044] Mie 7.216 0.411 [6.534,7.885]
OM 0.022 0.044  [-0.046,0.098] Shiga 7.210 0.411 [6.536,7.888]
MY -0.039 0.044  [-0.111,0.027] Osaka 7.235 0.414  [6.565,7.925]

Hokkaido 7.261 0.402  [6.594,7.916] Hyogo 7.259 0.411 [6.594,7.948]

Aomori 7.216 0.411  [6.560,7.911] Nara 7.223 0.413  [6.548,7.906]
Miyagi 7.204 0.407  [6.526,7.864]  Wakayama 7.200 0.408 [6.514,7.859]
Akita 7.203 0.410 [6.534,7.883] Shimane 7.214 0.413  [6.531,7.891]
Yamagata 7.097 0.407 [6.434,7.774]  Okayama 7.172 0.413 [6.498,7.857]
Fukushima 7.183 0.408 [6.511,7.855]  Hiroshima 7.223 0.412 [6.560,7.913]
Ibaragi 7.205 0.409  [6.529,7.878]  Yamaguchi 7.142 0.412 [6.459,7.814]
Tochigi 7.239 0.41  [6.562,7.907] Kochi 7.230 0.407 [6.553,7.890]
Gunma 7156 0.413  [6.488,7.845]
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As the confidence interval in OLS estimation, the sign of the coefficient is inferred to be
inconclusive if the corresponding 90% interval includes zero. Conversely, if the entire
90% interval is on the positive (negative) region, we conclude that the corresponding
coefficient is positive (negative).

First, the hypotheses regarding flavor indicators (H1 — H4) are tested. The point
estimate of PRR is negative, while that of ABV is positive. Although these estimates
are consistent with H1 and H2, their signs are inconclusive because the 90% interval
includes zero for both cases. The coefficient for SMV is conclusively negative, supporting
H3. The coefficient for acidity is negative, but it is inconclusive because the 90% interval
includes zero, which means that H4 is not supported. These results imply that lower
SMV (sweeter sake) is more valued in the online market but other flavor indicators have
negligible impact on price.

Next, H5 — H7, which are related to the influence of premium categories on the
price, are examined. In Table 3, the sign of the JG dummy coefficient is ambiguous, but
that of DG dummy is positive and substantial, so H6 is supported, but H5 is not. As
for H7, the sign of the coefficient of the cross-term JGXxPRR is inconclusive but that
of DGXPRR is conclusively negative. Therefore, as “super premium” sake, DG seems
to have a distinctive PRR-price profile, in which the intercept is positive (DG is more
expensive than JM and JG), and the slope is negative (lower PRR leads to a higher
price).

As for rice breeds, none of the four dummy variables, YM, GH, OM, and MY, elicited
a conclusively positive or negative coefficient; thus, H8 and H10 are not supported, while
H9 and H11 are somewhat consistent with the data.

Finally, regional effects from Hokkaido to Kochi are compared in Table 3. All estimates
are positive and range from 7.0 to 7.3, but no statistically noticeable differences are found
among them; hence, H12 is supported.

In summary, the estimation results in Table 3 suggest the following findings.

1. Lower SMV leads to a higher price in general, which may indicate that Japanese

consumers prefer sweeter sake.

2. As it is categorized as DG, “super premium” sake has a strongly positive impact
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on the price.

3. DG with lower PRR tends to be priced higher, which may reflect the cost of the

polishing process in addition to flavor improvement.

4. Both rice breed and producing prefecture have negligible impact on price.

5 Conclusions

This research estimated a hedonic pricing model for Japanese rice wine, sake, with
data obtained from Rakuten’s online shopping site. Flavor indicators, premium cate-
gories, rice breed, and regional dummies were used as explanatory variables in the he-
donic pricing regression as possible determinants of sake prices. To obtain more stable
estimation results, the hedonic pricing model was constructed via hierarchical Bayesian
modeling, and the model was estimated using the MCMC method. ASIS was used to
enhance the efficiency of the sampling algorithm.

In the estimated hedonic pricing model, the amount of sugar, which is negatively
related to SMV, had a positive impact on price; thus it can be inferred that Japanese
consumers prefer sweeter sake. PRR has a negative impact on the price only if the sake
is categorized as junmai dai ginjo (DG) “super premium” sake. This may imply that the
costly polishing process is justified only for the most luxury category. DG was also found
to be priced higher than other less luxury sake. Although some flavor indicators seem to
influence sake prices, rice breeds and producing prefectures appear to have little to do
with them.

COVID-19 still threatens the sake brewing industry in Japan. The Japanese gov-
ernment adheres to “lockdown” measures and vaccination requirements to suppress the
spread of the virus, and as a result, bar and restaurant revenues have not yet recovered
to pre-pandemic levels. We believe that a shift to concentrate on the e-commerce market
is vital, and a proper pricing strategy is essential for the sake brewing industry. We hope

that our research findings will be of some help for the industry.
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Appendix: Conditional Posterior Distributions and

ASIS Algorithm

In this appendix, we first derive the conditional posterior distributions of the param-
eters in (13) and then describe the algorithm of ASIS.

The conditional posterior distribution of § is derived by applying Bayes’ theorem to
the likelihood (4) and the prior distribution of d (6) as follows:

p(8|D,0_5) x p(y|Z, 6, 0c)p(d|p, X)

coxp |5 (- 26)7(u — 28))] x exp | 56 — w5 - )]

€

—oxp |5 {0y - 20w - 20)+ G- w0 -} |. ()

By completing the square in (14), we have

0 (Y —Z8) (y—Z8)+ (6 — )= (6 — p)
=9T (O'G_QZTZ + E’l) 6—2 (UQQZTy + E’lp,)T d + const
—(0-(02272+37) " (0.22'y + B7')) (02272 + =)

X (5 —(6°Z27Z + Eil)_l (c°Z7y + Zflu)) + const,

where ”const” indicates that the term is independent of 4. Then, by dropping ”const”,

we rearrange the conditional posterior distribution of (14) as
p(8|D,0_5) x exp [—% <5 — (O’;ZZTZ + 2_1)71 (U;2ZTy + 2_1u)> (U;ZZTZ + 2_1)
< (06— (02272 +27)  (0227y + 2—1,1,))1 . (15)
(15) is rewritten as
OD.0 5~ N ((0:2272+57)  (0.22y +57'p) (02272 + 7)), (16)

which is the conditional posterior distribution p(d|D,0_s) used in the Gibbs sampler.
Next, we derive the conditional posterior distributions of ju,, x€{R, B}. By applying

23



Bayes’ theorem to (9) and (11), we have

p(ﬂ*|D7 0*/1*) 8 p(a*|/1l*7 U*)p<,u*|90*7'*)

_ N,
i (i = )® (e — )

R 202 B 272

- . N,
ocexp | —5 {(0*_2]\7* + T*_Q) [ — 2 (U:Q Z O + ’7'*_2g0*> u*}]

| i=1

| 1 o ZN* o 7720 ?

) ) * i=1 QXxi T T " Px
xexp [|—= (0, "N, + 7, — . 17
p 2 ( ) <,LL O_*—QN* + 7_*—2 > ( )

Therefore the conditional posterior distribution p(u.|D,0_,,) is derived as

—2 Ny —2
1 *1 * * 1
M*|D’ e_u* ~ N <0—* ZZ:]_ « + T, 90 > . (18)

—3 2 -, 3
Ox N*"’T* (o N*+T*

In order to derive the conditional posterior distributions of 02, x€{ R, B} and ¢2, we
utilize the property that a half Cauchy random variate U ~ C*(0,s) is expressed in a

mixture form:

11 11
W NIG | =, — ~IG | =, = 1
e ~26 (50 ) VAT (55), (19)
where ZG(a, b) stands for the inverse gamma distribution:
p(z|a,b) = L gt es (20)
T '

See Wand, Ormerod, Padoan, and Frithwirth (2011) and Makalic and Schmidt (2016) for
more details. By introducing a latent variable &,, the half Cauchy distribution in (11) is

9 11 11
0,6 ~1G (57 g) , &~ 1G (57 3_§> . (21)

Given &,, we can derive the conditional posterior distribution of o2 from (9) and (21) as

rearranged as

P(o{ID, 002, &) o plew i, o)p(071Ex)

x (03)7F exp [—E&W‘W] <o o (- L)

202 £02

1 N 0 .
2~ (5 41) o [_ LYY (o — ) 4 &7

2
oy
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that is,

N +1 v —e)? 1
afm,e_g*,ngg( SEPHEL LY +§—>. (23)

2

Given oZ, on the other hand, the conditional posterior distribution of &, is derived as

p(&lo%) oc p(o7[€)p(Es]sT)

g (o) B exp (‘5 10—) e e (_5152)

2, -2
o &7 D exp <—%> , (24)

which is the inverse gamma distribution:
1 1
2
Finally, we derive the conditional posterior distribution of ¢ and £.. With the mixture

form of a half Cauchy distribution (19), we can rearrange (7) as

2 11 1ol L
o'e’geNIg (27§€>7 66 76 (27$g>7 (26)

where &, is a latent variable. In the same manner as (23), we can derive the conditional

posterior distribution of o2 from (5) and (26) as

p(0?|D,6_,2) < p(y|Z,8,07)p( 2Ife

évexp< 5012 ) x (02)~ (1) exp( 522)
+1)

( ) +1 ex ( Zz 1€l+£e_)7 (27)

2
O¢

which is the inverse gamma distribution:

N+1 S8 e 1
052|D70—Uea€eNIg< il 721:161 +_) (28)

2 2 €e
By replacing o2, &, and s? with respectively o2, & and s? in the derivation of (25), wi
obtain the conditional posterior distribution of &, as

lo? ~76 (1 2+ ) (29

€ €
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Since all conditional posterior distributions (16), (18), (23), (24), (28) and (29) are
standard ones, it is straightforward to set up the Gibbs sampler for generating 8 from the
posterior distribution (13). However, it turns out that the plain vanilla Gibbs sampler
tends to produce highly correlated sample paths which lead to inefficient estimation of
parameters. In order to improve the efficiency of random number generation in the Gibbs
sampler, we apply an ancillarity-sufficiency interweaving strategy (ASIS) by Yu and Meng
(2011).

For this purpose, we treat {a,;}2*, x € {R, B}, as latent variables and introduce the

following transformation:

dﬂ':OZ*i—,U*, iG{l,...,N},

> 400 SV (30)
=2 diyln; = 3 di;d;
=1 =1
Then we can rewrite the regression model (1) as
Np K
Yi ZMR—FMBZCZ%;*-Z%M@—F%, eir ~ N(0,02), (31)
j=1 k=1

because ZNR dR] = 1 holds for any ¢ € {1,..., N}. Note that ZNB dBJ = 0 if product
¢ is the base brand; otherwise ZNB ng = 1. The basic idea behind ASIS is that the
efficiency of the Gibbs sampler depends on which specification (1) or (31) we use but it
is not clear which one is better in practice. Yu and Meng (2011) proposed to combine
two equivalent Gibbs samplers to improve the efficiency of the sampling algorithm.

In order to construct the ASIS algorithm, let us derive the conditional posterior

distributions of the parameters in (31). By defining

i 1 ZNBd 1R
g=|:| D=l . Z=|D X|. = |usl.
N 1 ZNBd s
we have
y=Zé+e, e~N(Oy,0lly) (32)

26



From (9) and (11), we obtain the prior distribution of & as

3NN(I~L;2), p=|pp|, = T : (33)
s s

In the same manner as (14), we can derive the conditional posterior distribution of o

from likelihood (4) and the prior distribution (33) as

p(8|D,6_5) o< p(§1Z,6,0)p(8]i1, %)
X exp |—
By completing the square, (34) is rewritten as
< 1/z 25T 5 =—1\ ! 25T ~ ~ 25T 5 <L
p(8D, 6 ;) x exp —§<5— (aE Z'Z+% ) (ae ATED> u)) (06 Z+3% )
- N - .
x (5 - (ag2sz > 1) (U;QZTQ > 1,1))

From (35), we derive the conditional posterior distribution of b as

5D.0 5~ N ((a;2ZTZ +57) 02275+ 570 (02272 + z)> - (36)

Note that, except for 8, the conditional posterior distributions for the rest of the

parameters are the same as in (1). Thus the ASIS algorithm is given as follows.
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-~ ASIS for the hierarchical Bayes regression model ~

Suppose 8 is the r-th draw of 8 in the ASIS algorithm.

Step 1 Given 08, draw (,ugwﬁ),Ug+0'5),pg+0'5),0g+0'5),,3(7"+0'5),aér+0'5)) via the
Gibbs sampler with the conditional posterior distributions (16), (18), (23), (24),
(28) and (29), and compute

G0 _ o405 405 e N}, e {R,B),

*4 *4 — My )

and obtain @09

Step 2 Given 87199 draw (ugﬂ), agﬂ),ugﬂ), agH),ﬁ(TH), UETH)) via the Gibbs
sampler with the conditional posterior distributions (23), (24), (28), (29) and

(36), and compute

a(rJrl)

*1

— d(f+0'5) _‘_M(T‘H)’ 1 € {1, ce ,N}, * € {RvB}v

*1 *

and obtain @Y.
J

Step 1 is the Gibbs sampler based on (1) while Step 2 is the alternative sampler based
on (31). The above ASIS algorithm uses two equivalent samplers in tandem so that the

efficiency of random number generation will be improved.

28



	DP(jp)_7692_20210916060802
	sake_workingpaperR
	Introduction
	Flavor Determinants and Other Factors for Sake Pricing
	Hierarchical Bayesian Modeling of the Hedonic Pricing Regression
	Results
	Conclusions


