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Hierarchical Bayesian Hedonic Regression Analysis of

Japanese Rice Wine: Price is Right?
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Abstract

This research formulates a hedonic pricing model for Japanese rice wine, sake,

via hierarchical Bayesian modeling, estimating it with a Markov chain Monte Carlo

(MCMC) method. The data used in the estimation are obtained from Rakuten, the

largest online shopping site in Japan. Flavor indicators, premium categories, rice

breeds, and regional dummy variables are used as pricing factors. The Bayesian

estimation of the model employs an ancillarity-sufficiency interweaving strategy to

improve the sampling efficiency of MCMC. The estimation results indicate that

Japanese consumers value sweeter sake more and the price reflects the cost of pre-

processing rice only for the most luxurious category. No distinctive differences are

identified among rice breeds or regions in the hedonic pricing model.

Key words: sake, rice breed, hedonic pricing model, hierarchical Bayesian

modeling, Markov chain Monte Carlo.
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1 Introduction

The worldwide spread of the novel coronavirus COVID-19 since early 2020 inflicted

severe damage on the alcoholic beverage industry. Demand for alcoholic beverages such

as beer and wine sharply declined across the globe due to forced closures of bars and

restaurants and prohibitions on indoor dining. Japanese rice wine, sake, is no exception.

Since the first case of COVID-19 was reported in January 2020, to prevent the spread

of coronavirus nationwide, the Japanese government repeatedly declared a state of emer-

gency, shutting down bars and restaurants or ceasing the sale of alcoholic beverages.

Because bars and restaurants are major buyers of sake, the Japanese sake breweries suf-

fered the loss of a great portion of usual sales revenue. This decline in demand for sake

was further worsened by record-high bar and restaurant closures. According to a survey

conducted by the Ministry of Agriculture, Forestry and Fisheries (MAFF), this resulted

in domestic shipments of sake falling by 11% in 2020 from the previous year.

Under this unprecedented adverse business environment, Japanese sake breweries are

struggling to identify alternative channels for sake sale. One promising alternative is e-

commerce. Due to state-imposed restrictions on outside activities1, the frequency and the

volume of the online purchases of food and other necessities dramatically increased. For

instance, Rakuten, Japan’s largest e-commerce conglomerate, experienced solid growth in

their sales revenue from the first to the fourth quarter of 2020 and it is on track to post its

highest operating profit in the first quarter of 2021. Given the fact that consumers have

preferred to purchase goods and have them delivered rather than leaving their homes and

risking possible COVID-19infection, Japanese sake breweries may need to establish new

online sales channels and supply more products for home consumption to compensate for

the loss of bar and restaurant sales.

Although the shift to the e-commerce market seems to be a plausible strategy, its

successful execution is a different matter. The Japanese sake industry mainly consists of

family-owned small and medium-sized enterprises and their decision making continues to
1Unlike other countries, the Japanese government did not impose a strict lockdown upon the popu-

lation. Nonetheless, the Japanese people were encouraged to limit non-essential outside activities and

stay in their homes during the COVID-19 pandemic.
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be based on experience and intuition. Most managers have limited expertise regarding

marketing strategy in general and proper product pricing in particular. Furthermore,

most sake breweries sell majority of their product through wholesalers and have insuffi-

cient experience in direct sale. Simply put, managers tend to follow the practices estab-

lished by their parents and maintain the same old long-term relationships with wholesalers

for decades. Given the prevalent old-fashioned management style in the Japanese sake

industry, data-driven pricing of sake is inconceivable.

This research endeavors to assist managers of sake breweries who venture into the

e-commerce market, proposing a hedonic pricing approach for sake. The application of

the hedonic pricing approach in the liquor market is not new, especially for the wine

market. For instance, seminal studies, such as Nerlove (1995) and Combris et al. (1997),

concluded that the rank of vintage, wine color, and the amount of sugar in wine had

significant effects on the price of wine. Costanigro (2006), Galizzi (2007), Corsi and Strom

(2013), and Brentari et al. (2014), among others, determined that grape production areas

had a significant impact on price. Corsi and Storm (2013) also found that consumers

tended to purchase wine at a higher price if it was manufactured using organic farming.

Notably, Galati et al. (2017) conducted a hedonic analysis of the Japanese wine market.

Nonetheless, in comparison to the wine market, virtually no hedonic analyses of the

Japanese sake market have been conducted as far as the authors knows.

As noted in Section 2, the sake brewing process differs from that of beer or wine,

which necessitates the identification of key factors that specifically determine the price of

sake. Possible candidates for explanatory variables in the hedonic pricing model include

• product categories: super premium, premium, or regular;

• breeds of rice used in the sake brewing process;

• brewing experts supervising the brewing process; and

• specific flavor characteristics of sake.

The influence of each variable on the quality of sake is examined in Section 2.

In the literature regarding the hedonic pricing approach, pricing models are often

supposed to be a linear regression of the log price. This convention is followed for this
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investigation of sake pricing. Although it is tempting to estimate such a linear regression

with the ordinary least squares (OLS) method, in our experience, OLS elicited unsta-

ble estimation results. This is mainly because the hedonic pricing model used in this

study contains numerous dummy variables related to product categories and producing

prefectures of sake. Therefore, rather than using OLS, the hedonic pricing model is

constructed via hierarchical Bayesian modeling to provide more stable estimates of the

coefficients in the model. Because hierarchical Bayesian modeling renders the hedonic

pricing model rather complicated, the Markov chain Monte Carlo (MCMC) method and

the ancillarity-sufficiency interweaving strategy (ASIS) are used for estimation.

The organization of this paper is as follows. Section 2 describes the basic information

regarding sake for those who are unfamiliar with this traditional Japanese liquor, outlin-

ing sake’s unique flavor characteristics. The data set used to estimate the hedonic pricing

model is also introduced. Section 3 presents the hierarchical Bayesian modeling of sake

prices and outlines the Bayesian MCMC estimation procedure, with more details regard-

ing this approach provided in appendices. Section 4 delineates the hypotheses tested and

interprets the estimation results. Finally, concluding remarks are shared in Section 5.

2 Flavor Determinants and Other Factors for Sake

Pricing

Prior to introducing the candidates for explanatory variables in the hedonic pricing

regression of sake, we will now describe the key aspects of the brewing process and the

determinants of the flavor. Sake is a traditional Japanese liquor brewed from rice. It is

slightly yellow-colored, which is similar to white wine, and contains 13 to 16% alcohol.

Sake is made from rice, koji, yeast, and water. Some breweries add brewed alcohol to

sake as a post-production flavor enhancement to lower production costs. This study does

not include this type of sake because such sake is a mass-produced cheap liquor that may

not be suitable for analyzing the relationship between price and the quality. As such,

this research focuses on sake without the post-production addition of alcohol, which is

known as junmai, which means “pure rice” in Japanese.
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Figure 1: Brewing Processes of Each Form of Liquor2

One of the key materials, koji, is a kind of mold that decomposes rice starch into

sugar. This process of sugar creation is called saccharification. The addition of yeast

produces alcohol from the sugar created by koji, in a process called fermentation. As

shown in Figure 1, saccharification and fermentation in the sake brewing process proceed

in parallel. This parallel fermentation generates a unique flavor known as umami, which

is created by a rich amount of amino acids. In contrast, in the beer brewing process,

malt is first saccharified into wort, and this wort is fermented into alcohol with the help

of yeast. This serial fermentation is illustrated in the center of Figure 1. Unlike sake or

beer, the wine brewing process does not require saccharification because the yeast can

use the grape sugar for fermentation, as shown in the bottom of Figure 1.

Figure 2 summarizes the four flavor components of sake, beer, and wine. In each

panel of Figure 2, the top bar is for wine, the middle bar is for beer ,and the bottom

bar is for sake. The upper-left panel shows the amount of alcohol by percentage, which
2The authors are grateful to the National Research Institute of Brewing for kindly providing Figure

1 and permission for its reprint.
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is often referred to as alcohol by volume (ABV) in the Japanese sake industry, showing

that sake has the highest ABV. The upper-right panel with the title “Extract” presents a

bar chart regarding the amount of sugar by percentage. There is no distinctive difference

among three liquors, other than variation being highest for wine and the average level

being lower for beer. The bottom-left panel shows that sake contains more amino acids

than the other types of liquor, but the acidity of sake is lower than that of wine, as shown

in the bottom-right panel. Given these observations, the following indicators were chosen

as explanatory variables in the hedonic pricing regression3:

• ABV

• sake meter value (SMV)

• acidity

SMV is related to the amount of sugar in sake and takes either a positive or negative

value. A higher SMV indicates a lower amount of sugar; thus sake with a higher (lower)

SMV tastes drier (sweeter).

At the beginning of the brewing process of sake, grains of rice are threshed and polished

so that only the inner part of a rice grain is used for saccharification and fermentation.

This is because the inner part contains more amount of starch than the peripheral part.

Polishing rice grains further makes sake taste smoother. The downside of this polishing

process is that it increases production cost by discarding a substantial portion of rice that

could otherwise be used. Thus, the portion of rice that is polished is a key factor that

determines both the flavor of sake and its production cost. This variable is measured

through a polishing rice ratio (PRR); for instance, 50% PRR indicates that the outer

half portion of the rice grain is discarded.

Related to PRR, the MAFF of Japan prescribes three categories of sake, including

jumnai, junmai ginjo, and junmai dai ginjo. As previously noted, junmai is made from

rice without the addition of post-production alcohol. There is no specific requirement on
3Although it is preferable to include the amount of amino acids in the hedonic pricing regression, this

consideration was excluded from the study due to limitations in data availability.
4The authors appreciate the National Research Institute of Brewing for kindly supplying Figure 2

and allowing its reprint.
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Figure 2: Liquor Flavor Comparison4

PRR to be classified as junmai; thus, it is regarded as a regular type of sake made purely

from rice. The next category junmai ginjo is destined for the premium sake market. Ginjo

literally means “premium brewing” in Japanese. To be categorized as junmai ginjo, the

sake must be junmai, i.e., without the addition of post-production alcohol, and the PRR

must be no more than 60%. The last junmai dai ginjo designation represents the super-

premium category. Dai means “great” in Japanese. To be classified as junmai dai ginjo,

the PRR must be no more than 50%. For convenience, the following abbreviations will

be used for these categories:

• junmai (JM)

• junmai ginjo (JG)

• junmai dai ginjo (DG)

Given the above categorization, DG is expected to be the most expensive luxury sake,

followed by JG, and JM to be the cheapest. To analyze how this categorization con-
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Table 1: Classes of Pure Rice Sake
Class Junmai Dai Ginjo (DG) Junmai Ginjo (JG) Junmai (JM)

Maximum PRR 50% 60% None

Source: Akiyama (1994) pp. 4–7

tributes the price differentiation among JM, JG, and DG, dummy variables are used in

the hedonic pricing regression to represent these categories. Cross-product terms between

each category dummy and PRR are also added to the regression to assess differences in

sensitivity to PRR among categories.

Unlike mass-produced cheap sake, the ginjo-type premium sake (DG and JG) is

painstakingly crafted by a toji (brew master) who supervises the entire brewing pro-

cess. Since most sake breweries are family-owned small businesses, they cannot afford to

hire their own brew masters, so they outsource the task to freelance brew masters who

have traditionally formed independent guilds. According to the Japan Sake and Shochu

Makers Association (2021), there are 19 such guilds in Japan. In the past, knowledge

and skills in sake brewing were a tightly held secret from the public; thus, making it

necessary for breweries to hire brew masters from one of the existing guilds each season.

This tradition remains today, even after an AI-monitored brewing system and other in-

novations have made it possible to produce ginjo-type premium sake without the help

of traditional brew masters. Therefore, the quality of sake can differ region-to-region

because it is subject to the skills and the preferences of the brew masters who belong

to different regional guilds. Furthermore, some argue that regional climate differences

may also affect the quality of sake, though with the introduction of fully automated tem-

perature and humidity control in the brewing process, this may no longer be the case.

Regional dummy variables have been introduced into the hedonic pricing regression to

investigate these parameters.

Rice breeds are included as the final factor in the hedonic pricing regression of sake.

Of course, rice is the most important material of sake. Although some breeds of cooking

rice have been used for sake brewing, ginjo-type premium sake is almost exclusively made

from a sake-specific breed of rice, which is called sakamai (sake rice) in Japanese.
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One of the most commonly used sakamai is Yamadanishiki, which is mainly grown in

the western Japan, whereas rice farmers in the eastern Japan mainly grow Gohyakuman-

goku. Omachi and Miyamanishiki are also popular breeds, though they are cropped in

smaller quantities than Yamadanishiki or Gohyakumangoku. Omachi is primarily culti-

vated in the western regions, while Miyamanishiki is mostly grown in the eastern regions.

Moreover, some locally grown breeds of sakamai are also used by local breweries in sake

brewing, but it is difficult for non-local breweries to purchase such breeds. Dummy vari-

ables for the four major breeds of sakamai are included as explanatory variables in the

hedonic pricing model:

• Yamadanishiki (YM)

• Gohyakumanngoku (GH)

• Omachi (OM)

• Miyamanishiki (MY)

When all four dummy variables equal zero, this means that the corresponding sake is

produced from a locally grown breed of sakamai.

In summary, the following explanatory variables are included in the hedonic pricing

regression model of sake in this study.

Flavor indicators:

• PRR

• ABV

• sake meter value (SMV)

• acidity

Premium categories:

• junmai ginjo (JG) dummy

• junmai dai ginjo (DG) dummy

• JG dummy × PRR
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• DG dummy × PRR

Rice breeds:

• Yamadanishiki (YM) dummy

• Gohyakumanngoku (GH) dummy

• Omachi (OM) dummy

• Miyamanishiki (MY) dummy

Regional effects:

• prefecture dummies for the following 29 prefectures:
Hokkaido Aomori Miyagi Akita Yamagata Fukushima

Ibaragi Tochigi Gunma Saitama Chiba Niigata

Ishikawa Fukui Nagano Gifu Shizuoka Aichi

Mie Shiga Osaka Hyogo Nara Wakayama

Shimane Okayama Hiroshima Yamaguchi Kochi

The data for the above variables, along with sake prices, was obtained on August

6, 2021, using an API provided by Rakuten and retrieving 403 observations. Note that

the data set used here only reflects only information on how online retailers who operate

on Rakuten’s online shopping site set the prices of their products. This is a notable

limitation. The descriptive statistics of sake prices, PRR, ABV, SMV, and acidity are

summarized in Table 2. As expected, DG is the most expensive and has the lowest PRR

and acidity; whereas, JM is the cheapest and has the highest PPR and acidity. JG is

somewhere in between. SMV is lower for DG and JG than JM. These observations suggest

that premium sake such as DG and JG tends to taste sweeter than less expensive JM.

As for ABV, no significant differences are noted among the three categories.
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Table 2: Descriptive Statistics

Price PRR ABV SMV Acidity Price PRR ABV SMV Acidity

Total DG

Mean 2394 0.53 15.8 2.36 1.56 3860 0.43 15.9 1.25 1.44

Â SD 1924 0.09 0.9 5.12 0.31 2788 0.07 0.77 4.74 0.23

Â Max 22000 0.8 19 27 3.6 22000 0.5 18 13 2.5

Â Min 1034 0.18 11 -36 1 1365 0.18 14 -36 1

JG JM

Mean 1782 0.55 15.9 1.98 1.6 1500 0.61 15.5 4.18 1.66

Â SD 283 0.03 0.84 5.1 0.32 235 0.05 1.05 5.14 0.35

Â Max 2992 0.6 18 20 3.6 2536 0.8 19 27 3.5

Â Min 1078 0.45 13 -21 1 1034 0.5 11 -20 1.1

3 Hierarchical Bayesian Modeling of the Hedonic Pric-

ing Regression

This section will first introduce the hierarchical Bayesian modeling of the hedonic

pricing regression of sake developed for this research. Suppose yi is the log price of sake

brand i ∈ {1, . . . , N} and a dummy variable is defined as d
(i)
⋆j , ⋆ ∈ {R,B},

d
(i)
⋆j =

1, if {(R)egion, (B)reed} of sake brand i is j;

0, otherwise,

where “Region” refers to the prefecture where sake brand i is produced and “Breed”

represents the rice breed from which the sake brand is made. As for the regional dummy

variable diRj, all dummy variables for 29 prefectures are included. For this reason, the

constant term from the regression is excluded to avoid multicollinearity. As for the breed

dummy variable diBj, any local rice breeds are treated as the base breed; that is, di⋆j = 0

for all j if sake brand i is made from a local rice breed. Further, suppose {xki}Kk=1 are

explanatory variables, including flavor indicators (PRR, ABV, SMV, and acidity), dummy
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variables for premium categories (DG dummy and JG dummy), and the cross-product

terms (DG dummy×PRR and JG dummy×PRR). The hedonic pricing regression model

is formulated as

yi =

NR∑
j=1

d
(i)
RjαRj +

NB∑
j=1

d
(i)
BjαBj +

K∑
k=1

xikβk + ϵi, ϵi ∼ N (0, σ2
ϵ ), (1)

where NR = 29 (the number of prefectures analyzed), NB = 4 (the number of rice breeds),

and K = 8 (the number of other explanatory variables) in the study. By introducing the

following notations:

D⋆ =


d
(1)
⋆1 · · · d

(1)
⋆N⋆

... . . . ...

d
(N)
⋆1 · · · d

(N)
⋆N⋆

 , α⋆ =


α⋆1

...

α⋆N⋆

 , ⋆ ∈ {R,B},

y =


y1
...

yN

 , X =


x11 · · · x1K

... . . . ...

xN1 · · · xNK

 , β =


β1

...

βK

 , ϵ =


ϵ1
...

ϵN

 ,

the regression model (1) is rewritten as

y = DRαR +DBαB +Xβ + ϵ, ϵ ∼ N
(
0N , σ

2
ϵIN

)
, (2)

where 0N is the N×1 zero vector and IN is the N×N identity matrix. Similar expressions

will be used for zero vectors and identity matrices with different shapes. Furthermore,

by defining

Z =
[
DR DB X

]
, δ =


αR

αB

β

 ,

we have

y = Zδ + ϵ, ϵ ∼ N
(
0N , σ

2
ϵINT

)
. (3)

Following previous studies, we initially tried to estimate (3) using the OLS method,

but in our experience, this conventional method did not elicit stable estimation results.
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Instead, this study estimates (3) via hierarchical Bayesian modeling. For the above model

(3), the likelihood of unknown parameters (δ, σϵ) is given by

p(y|Z, δ, σϵ) ∝ (σ2
ϵ )

−N
2 exp

[
− 1

2σ2
ϵ

(y −Zδ)⊺(y −Zδ)

]
(4)

∝ (σ2
ϵ )

−N
2 exp

[
−
∑N

i=1 e
2
i

2σ2
ϵ

]
, (5)

where ei = yi −
∑NR

j=1 d
(i)
RjαRj −

∑NB

j=1 d
(i)
BjαBj −

∑K
k=1 xikβk. Two different forms of the

likelihood, (4) and (5), will be used to derive the conditional posterior distribution of

each parameter.

The prior distribution of δ and σϵ is assumed to be:

δ ∼ N (µ,Σ) , µ =


µR1NR

µB1NB

µβ

 , Σ =


σ2
RINR

σ2
BINB

Σβ

 , (6)

σϵ ∼ C+(0, sϵ), (7)

where C+(0, sϵ) stands for the half-Cauchy distribution:

p(σϵ|sϵ) =
2sϵ

π(σ2
ϵ + s2ϵ)

, σϵ > 0, sϵ > 0, (8)

and sϵ takes a preset value as a hyper-parameter. Note that the prior distribution (6) is

equivalent to

α⋆i ∼ N (µ⋆, σ
2
⋆), i ∈ {1, . . . , N⋆}, ⋆ ∈ {R,B}, (9)

β ∼ N (µβ,Σβ), j ∈ {1, . . . , K}. (10)

We further assume the prior distribution of µ⋆ and σ⋆ in (6) are

µ⋆ ∼ N (φ⋆, τ
2
⋆ ), σ⋆ ∼ C+(0, s⋆), ⋆ ∈ {R,B}, (11)

where (φ⋆, τ⋆, and s⋆) are also hyper-parameters, which are fixed at preset values. Gel-

man (2006) suggests that the half-Cauchy distribution (8) is more suitable as the prior

distribution for the variance parameter in a hierarchical model such as σ⋆ in (11). Finally,

prior distributions (6), (7), (9) – (11) are summarized into the joint prior distribution of
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θ = (δ, µR, σR, µB, σB, σϵ):

p(θ) = p(δ|µR, σR, µB, σB,µβΣβ)

× p(µR|φR, τR)p(σR|sR)p(µB|φB, τB)p(σB|sB)p(σϵ|sϵ).
(12)

For brevity in mathematical expressions, dependency on the hyper-parameters was ig-

nored in the prior distribution (12) as p(θ). By applying Bayes’ theorem to the likelihood

(4) and prior distribution (12), the posterior distribution of θ is:

p(θ|D) ∝ p(y|Z, δ, σϵ)p(θ), D = (y,Z). (13)

Unfortunately, the posterior distribution (13) and the posterior statistics of θ cannot

be analytically evaluated as moments and intervals. Instead, they are evaluated using

the MCMC method. The results indicate that the conditional posterior distributions

of all parameters are readily available; thus, a Gibbs sampler algorithm method can be

adopted to generate pseudo-random numbers of θ from the posterior distribution (13)

for applying the Monte Carlo integration to evaluate the posterior statistics, including

the posterior mean, the posterior standard deviation, and the interval estimation. In the

Gibbs sampler, (δ, µR, σR, µB, σB, and σϵ) are generated one by one in Steps 1 – 6.
Gibbs sampler for the hierarchical Bayesian regression model� �

Step 1. Draw δ from the conditional posterior distribution p(δ|D,θ−δ).

Step 2. Draw µR from the conditional posterior distribution p(µR|D,θ−µR
).

Step 3. Draw σR from the conditional posterior distribution p(σR|D,θ−σR
).

Step 4. Draw µB from the conditional posterior distribution p(µB|D,θ−µB
).

Step 5. Draw σB from the conditional posterior distribution p(σB|D,θ−σB
).

Step 6. Draw σϵ from the conditional posterior distribution p(σϵ|D,θ−σϵ).� �
Note that θ−x indicates that a parameter x is excluded from θ. Each step generates a new

value of the parameter from the conditional posterior distribution, replacing the current

value with the new one before moving on to the next step. The loop of Steps 1-6 is started

from an arbitrary initial point of θ and repeated until the generated sample paths of the
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parameters are stabilized. This initial sampling is known as “burn-in” in the literature.

In our experience, the plain vanilla Gibbs sampler tends to generate highly correlated

unstable sample paths, which may be caused by the fact that the hedonic pricing regres-

sion (3) includes many dummy variables. Therefore, to improve the efficiency of random

number generation in the Gibbs sampler, the ASIS proposed by Yu and Meng (2011) is

applied so that the sample paths of the parameters generated will be stabilized faster.

See the Appendix for more information on the derivation of each conditional posterior

parameters and the ASIS method.

4 Results

To establish hypotheses for statistical inference on the relationship between the price

of sake and the potential candidates for determinants of the quality presented in Section

2, we interviewed Professor Tsutomu Fujii5, who is currently affiliated with Faculty of

Food and Agricultural Sciences, Fukushima University, and was the supervisor of the

Department of Quality and Evaluation Research Division in the National Research In-

stitute of Brewing. In his former career, he evaluated the quality of various kinds of

sake as a judge for the Annual Japan Sake Awards, which is the most traditional and

prestigious sake competition. Based on his knowledge and experience, Professor Fujii

suggested the following “conventional wisdom” in the sake industry related to the signs

of the coefficients in the hedonic pricing regression:

Flavor indicators:

H1 The coefficient for PRR will be negative because lowering PRR costs more.

H2 The coefficient for ABV will be positive because a higher ABV is an essential

factor for the fragrance of DG and JG.

H3 The coefficient for SMV will be negative because lower SMV leads to higher

quality for junmai.

H4 The coefficient for the acidity will be negative. If the acidity is higher than

1.7, such sake is no longer classified in DG or JG.
5Details on his academic achievements are available at https://researchmap.jp/read0005781
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Premium categories:

H5 The coefficient for JG dummy should be positive because of the PRR cap (it

must be no more than 60%), as noted in Section 2.

H6 The coefficient for DG dummy should also be positive for the same reason as

H5.

H7 For both the JG dummy × PRR and the DG dummy × PRR, the coefficient

will be negative for the same reason as H5 and H6.

Rice breeds:

H8 The Yamadanishiki (YM) dummy should be positive and have the highest

impact because YM is the most suitable sakamai for brewing DG and JG.

H9 The Gohyakumanngoku (GH) dummy will not have a high impact.

H10 The Omachi (OM) dummy will have a high positive impact next to YM.

H11 The Miyamanishiki (MY) dummy will not have a significant impact.

Regional effects:

H12 There will be no clear difference among prefectures regarding regional ef-

fects because contemporary brewing technologies are almost universally used

throughout Japan, as noted in Section 2.

In the Gibbs sampler, the hyper-parameters in the prior distributions (7), (9) – (11)

were set as

µβ = 0K , Σβ = 100IK , sϵ = 1,

φ⋆ = 0, τ 2⋆ = 100, s⋆ = 1, ⋆ ∈ {R,B}.

The number of the initial burn-in iterations for the Gibbs sampler was 5,000, and then

we generated 50,000 sets of parameters from the posterior distribution (13).

Table 3 presents the estimation results via hierarchical Bayesian modeling. This table

includes the names of variables, point estimates (posterior mean) of the coefficients, the

posterior standard deviations of the coefficients as “SD”, and the 90% intervals6 as “90%”.
6We use the highest posterior density interval for interval estimation.
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Table 3: Estimation Results

Variables Coefficients SD 90% Interval Variables Coefficients SD 90% Interval

PRR -0.355 0.502 [-1.195,0.457] Saitama 7.206 0.417 [6.533,7.905]

ABV 0.021 0.016 [-0.007,0.047] Chiba 7.230 0.411 [6.553,7.905]

SMV -0.006 0.003 [-0.011,-0.001] Niigata 7.284 0.407 [6.607,7.944]

Acidity 0.011 0.049 [-0.068,0.091] Ishikawa 7.287 0.413 [6.601,7.954]

JG 0.180 0.465 [-0.568,0.962] Fukui 7.183 0.412 [6.496,7.849]

DG 2.484 0.346 [1.906,3.047] Nagano 7.160 0.411 [6.485,7.837]

JG×PRR -0.097 0.808 [-1.443,1.212] Gifu 7.171 0.406 [6.506,7.840]

DG×PRR -4.128 0.614 [-5.155,-3.136] Shizuoka 7.248 0.410 [6.561,7.910]

YM 0.024 0.033 [-0.025,0.082] Aichi 7.178 0.411 [6.492,7.843]

GH -0.014 0.037 [-0.077,0.044] Mie 7.216 0.411 [6.534,7.885]

OM 0.022 0.044 [-0.046,0.098] Shiga 7.210 0.411 [6.536,7.888]

MY -0.039 0.044 [-0.111,0.027] Osaka 7.235 0.414 [6.565,7.925]

Hokkaido 7.261 0.402 [6.594,7.916] Hyogo 7.259 0.411 [6.594,7.948]

Aomori 7.216 0.411 [6.560,7.911] Nara 7.223 0.413 [6.548,7.906]

Miyagi 7.204 0.407 [6.526,7.864] Wakayama 7.200 0.408 [6.514,7.859]

Akita 7.203 0.410 [6.534,7.883] Shimane 7.214 0.413 [6.531,7.891]

Yamagata 7.097 0.407 [6.434,7.774] Okayama 7.172 0.413 [6.498,7.857]

Fukushima 7.183 0.408 [6.511,7.855] Hiroshima 7.223 0.412 [6.560,7.913]

Ibaragi 7.205 0.409 [6.529,7.878] Yamaguchi 7.142 0.412 [6.459,7.814]

Tochigi 7.239 0.41 [6.562,7.907] Kochi 7.230 0.407 [6.553,7.890]

Gunma 7.156 0.413 [6.488,7.845]
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As the confidence interval in OLS estimation, the sign of the coefficient is inferred to be

inconclusive if the corresponding 90% interval includes zero. Conversely, if the entire

90% interval is on the positive (negative) region, we conclude that the corresponding

coefficient is positive (negative).

First, the hypotheses regarding flavor indicators (H1 – H4) are tested. The point

estimate of PRR is negative, while that of ABV is positive. Although these estimates

are consistent with H1 and H2, their signs are inconclusive because the 90% interval

includes zero for both cases. The coefficient for SMV is conclusively negative, supporting

H3. The coefficient for acidity is negative, but it is inconclusive because the 90% interval

includes zero, which means that H4 is not supported. These results imply that lower

SMV (sweeter sake) is more valued in the online market but other flavor indicators have

negligible impact on price.

Next, H5 – H7, which are related to the influence of premium categories on the

price, are examined. In Table 3, the sign of the JG dummy coefficient is ambiguous, but

that of DG dummy is positive and substantial, so H6 is supported, but H5 is not. As

for H7, the sign of the coefficient of the cross-term JG×PRR is inconclusive but that

of DG×PRR is conclusively negative. Therefore, as “super premium” sake, DG seems

to have a distinctive PRR-price profile, in which the intercept is positive (DG is more

expensive than JM and JG), and the slope is negative (lower PRR leads to a higher

price).

As for rice breeds, none of the four dummy variables, YM, GH, OM, and MY, elicited

a conclusively positive or negative coefficient; thus, H8 and H10 are not supported, while

H9 and H11 are somewhat consistent with the data.

Finally, regional effects from Hokkaido to Kochi are compared in Table 3. All estimates

are positive and range from 7.0 to 7.3, but no statistically noticeable differences are found

among them; hence, H12 is supported.

In summary, the estimation results in Table 3 suggest the following findings.

1. Lower SMV leads to a higher price in general, which may indicate that Japanese

consumers prefer sweeter sake.

2. As it is categorized as DG, “super premium” sake has a strongly positive impact
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on the price.

3. DG with lower PRR tends to be priced higher, which may reflect the cost of the

polishing process in addition to flavor improvement.

4. Both rice breed and producing prefecture have negligible impact on price.

5 Conclusions

This research estimated a hedonic pricing model for Japanese rice wine, sake, with

data obtained from Rakuten’s online shopping site. Flavor indicators, premium cate-

gories, rice breed, and regional dummies were used as explanatory variables in the he-

donic pricing regression as possible determinants of sake prices. To obtain more stable

estimation results, the hedonic pricing model was constructed via hierarchical Bayesian

modeling, and the model was estimated using the MCMC method. ASIS was used to

enhance the efficiency of the sampling algorithm.

In the estimated hedonic pricing model, the amount of sugar, which is negatively

related to SMV, had a positive impact on price; thus it can be inferred that Japanese

consumers prefer sweeter sake. PRR has a negative impact on the price only if the sake

is categorized as junmai dai ginjo (DG) “super premium” sake. This may imply that the

costly polishing process is justified only for the most luxury category. DG was also found

to be priced higher than other less luxury sake. Although some flavor indicators seem to

influence sake prices, rice breeds and producing prefectures appear to have little to do

with them.

COVID-19 still threatens the sake brewing industry in Japan. The Japanese gov-

ernment adheres to “lockdown” measures and vaccination requirements to suppress the

spread of the virus, and as a result, bar and restaurant revenues have not yet recovered

to pre-pandemic levels. We believe that a shift to concentrate on the e-commerce market

is vital, and a proper pricing strategy is essential for the sake brewing industry. We hope

that our research findings will be of some help for the industry.
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Appendix: Conditional Posterior Distributions and

ASIS Algorithm

In this appendix, we first derive the conditional posterior distributions of the param-

eters in (13) and then describe the algorithm of ASIS.

The conditional posterior distribution of δ is derived by applying Bayes’ theorem to

the likelihood (4) and the prior distribution of δ (6) as follows:

p(δ|D,θ−δ) ∝ p(y|Z, δ, σϵ)p(δ|µ,Σ)

∝ exp

[
− 1

2σ2
ϵ

{(y −Zδ)⊺(y −Zδ)}
]
× exp

[
−1

2
(δ − µ)⊺Σ−1(δ − µ)

]
= exp

[
−1

2

{
σ−2
ϵ (y −Zδ)⊺(y −Zδ) + (δ − µ)⊺Σ−1(δ − µ)

}]
. (14)

By completing the square in (14), we have

σ−2
ϵ (y −Zδ)⊺(y −Zδ) + (δ − µ)⊺Σ−1(δ − µ)

= δ⊺ (σ−2
ϵ Z⊺Z +Σ−1

)
δ − 2

(
σ−2
ϵ Z⊺y +Σ−1µ

)⊺
δ + const

=
(
δ −

(
σ−2
ϵ Z⊺Z +Σ−1

)−1 (
σ−2
ϵ Z⊺y +Σ−1µ

)) (
σ−2
ϵ Z⊺Z +Σ−1

)
×
(
δ −

(
σ−2
ϵ Z⊺Z +Σ−1

)−1 (
σ−2
ϵ Z⊺y +Σ−1µ

))
+ const,

where ”const” indicates that the term is independent of δ. Then, by dropping ”const”,

we rearrange the conditional posterior distribution of (14) as

p(δ|D,θ−δ) ∝ exp

[
−1

2

(
δ −

(
σ−2
ϵ Z⊺Z +Σ−1

)−1 (
σ−2
ϵ Z⊺y +Σ−1µ

)) (
σ−2
ϵ Z⊺Z +Σ−1

)
×
(
δ −

(
σ−2
ϵ Z⊺Z +Σ−1

)−1 (
σ−2
ϵ Z⊺y +Σ−1µ

))]
. (15)

(15) is rewritten as

δ|D,θ−δ ∼ N
((

σ−2
ϵ Z⊺Z +Σ−1

)−1 (
σ−2
ϵ Z⊺y +Σ−1µ

)
,
(
σ−2
ϵ Z⊺Z +Σ−1

)−1
)
, (16)

which is the conditional posterior distribution p(δ|D,θ−δ) used in the Gibbs sampler.

Next, we derive the conditional posterior distributions of µ⋆, ⋆∈{R,B}. By applying
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Bayes’ theorem to (9) and (11), we have

p(µ⋆|D,θ−µ⋆) ∝ p(α⋆|µ⋆, σ⋆)p(µ⋆|φ⋆τ⋆)

∝ exp

[
−
∑N⋆

i=1(α⋆i − µ⋆)
2

2σ2
⋆

− (µ⋆ − φ⋆)
2

2τ 2⋆

]

∝ exp

[
−1

2

{(
σ−2
⋆ N⋆ + τ−2

⋆

)
µ2
⋆ − 2

(
σ−2
⋆

N⋆∑
i=1

α⋆i + τ−2
⋆ φ⋆

)
µ⋆

}]

∝ exp

−1

2

(
σ−2
⋆ N⋆ + τ−2

⋆

)(
µ⋆ −

σ−2
⋆

∑N⋆

i=1 α⋆i + τ−2
⋆ φ⋆

σ−2
⋆ N⋆ + τ−2

⋆

)2
 . (17)

Therefore the conditional posterior distribution p(µ⋆|D,θ−µ⋆) is derived as

µ⋆|D,θ−µ⋆ ∼ N

(
σ−2
⋆

∑N⋆

i=1 α⋆i + τ−2
⋆ φ⋆

σ−2
⋆ N⋆ + τ−2

⋆

,
1

σ−2
⋆ N⋆ + τ−2

⋆

)
. (18)

In order to derive the conditional posterior distributions of σ2
⋆, ⋆∈{R,B} and σ2

ϵ , we

utilize the property that a half Cauchy random variate U ∼ C+(0, s) is expressed in a

mixture form:

U2|V ∼ IG
(
1

2
,
1

V

)
, V ∼ IG

(
1

2
,
1

s2

)
, (19)

where IG(a, b) stands for the inverse gamma distribution:

p(x|a, b) = ba

Γ(a)
x−(a+1)e−

b
x . (20)

See Wand, Ormerod, Padoan, and Frühwirth (2011) and Makalic and Schmidt (2016) for

more details. By introducing a latent variable ξ⋆, the half Cauchy distribution in (11) is

rearranged as

σ2
⋆|ξ⋆ ∼ IG

(
1

2
,
1

ξ⋆

)
, ξ⋆ ∼ IG

(
1

2
,
1

s2⋆

)
. (21)

Given ξ⋆, we can derive the conditional posterior distribution of σ2
⋆ from (9) and (21) as

p(σ2
⋆|D,θ−σ2

⋆
, ξ⋆) ∝ p(α⋆|µ⋆, σ

2
⋆)p(σ

2
⋆|ξ⋆)

∝ (σ2
⋆)

−N⋆
2 exp

[
−
∑N⋆

i=1(α⋆i − µ⋆)
2

2σ2
⋆

]
× (σ2

⋆)
−( 1

2
+1) exp

(
− 1

ξ⋆σ2
⋆

)

∝ (σ2
⋆)

−(N⋆+1
2

+1) exp

[
−

1
2

∑N⋆

i=1(α⋆i − µ⋆)
2 + ξ−1

⋆

σ2
⋆

]
, (22)
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that is,

σ2
⋆|D,θ−σ⋆ , ξ⋆ ∼ IG

(
N⋆ + 1

2
,

∑N⋆

i=1(α⋆i − µ⋆)
2

2
+

1

ξ⋆

)
. (23)

Given σ2
⋆, on the other hand, the conditional posterior distribution of ξ⋆ is derived as

p(ξ⋆|σ2
⋆) ∝ p(σ2

⋆|ξ⋆)p(ξ⋆|s2⋆)

∝ ξ
− 1

2
⋆ (σ2

⋆)
−( 1

2
+1) exp

(
− 1

ξ⋆σ2
⋆

)
× ξ

−( 1
2
+1)

⋆ exp

(
− 1

ξ⋆s2⋆

)
∝ ξ−(1+1)

⋆ exp

(
−σ−2

⋆ + s−2
⋆

ξ⋆

)
, (24)

which is the inverse gamma distribution:

ξ⋆|σ2
⋆ ∼ IG

(
1,

1

σ2
⋆

+
1

s2⋆

)
. (25)

Finally, we derive the conditional posterior distribution of σ2
ϵ and ξϵ. With the mixture

form of a half Cauchy distribution (19), we can rearrange (7) as

σ2
ϵ |ξϵ ∼ IG

(
1

2
,
1

ξϵ

)
, ξϵ ∼ IG

(
1

2
,
1

s2ϵ

)
, (26)

where ξϵ is a latent variable. In the same manner as (23), we can derive the conditional

posterior distribution of σ2
ϵ from (5) and (26) as

p(σ2
ϵ |D,θ−σ2

ϵ
) ∝ p(y|Z, δ, σ2

ϵ )p(σ
2
ϵ |ξϵ)

∝ (σ2
ϵ )

−N
2 exp

(
−
∑N

i=1 e
2
i

2σ2
ϵ

)
× (σ2

ϵ )
−( 1

2
+1) exp

(
− 1

ξϵσ2
ϵ

)

∝ (σ2
ϵ )

−(N+1
2

+1) exp

(
−

1
2

∑N
i=1 e

2
i + ξ−1

ϵ

σ2
ϵ

)
, (27)

which is the inverse gamma distribution:

σ2
ϵ |D,θ−σϵ , ξϵ ∼ IG

(
N + 1

2
,

∑N
i=1 e

2
i

2
+

1

ξϵ

)
. (28)

By replacing σ2
⋆, ξ⋆ and s2⋆ with respectively σ2

ϵ , ξϵ and s2ϵ in the derivation of (25), we

obtain the conditional posterior distribution of ξϵ as

ξϵ|σ2
ϵ ∼ IG

(
1,

1

σ2
ϵ

+
1

s2ϵ

)
. (29)
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Since all conditional posterior distributions (16), (18), (23), (24), (28) and (29) are

standard ones, it is straightforward to set up the Gibbs sampler for generating θ from the

posterior distribution (13). However, it turns out that the plain vanilla Gibbs sampler

tends to produce highly correlated sample paths which lead to inefficient estimation of

parameters. In order to improve the efficiency of random number generation in the Gibbs

sampler, we apply an ancillarity-sufficiency interweaving strategy (ASIS) by Yu and Meng

(2011).

For this purpose, we treat {α⋆i}N⋆
i=1, ⋆ ∈ {R,B}, as latent variables and introduce the

following transformation:

α̃⋆i = α⋆i − µ⋆, i ∈ {1, . . . , N},

ỹi = yi −
NR∑
j=1

d
(i)
Rjα̃Rj −

NB∑
j=1

d
(i)
Bjα̃Bj.

(30)

Then we can rewrite the regression model (1) as

ỹi = µR + µB

NB∑
j=1

d
(i)
Bj +

K∑
k=1

xikβk + ϵit, ϵit ∼ N (0, σ2
ϵ ), (31)

because
∑NR

j=1 d
(i)
Rj = 1 holds for any i ∈ {1, . . . , N}. Note that

∑NB

j=1 d
(i)
Bj = 0 if product

i is the base brand; otherwise
∑NB

j=1 d
(i)
Bj = 1. The basic idea behind ASIS is that the

efficiency of the Gibbs sampler depends on which specification (1) or (31) we use but it

is not clear which one is better in practice. Yu and Meng (2011) proposed to combine

two equivalent Gibbs samplers to improve the efficiency of the sampling algorithm.

In order to construct the ASIS algorithm, let us derive the conditional posterior

distributions of the parameters in (31). By defining

ỹ =


ỹ1
...

ỹN

 , D̃ =


1
∑NB

j=1 d
(1)
Bj

... ...

1
∑NB

j=1 d
(N)
Bj

 , Z̃ =
[
D̃ X

]
, δ̃ =


µR

µB

β

 ,

we have

ỹ = Z̃δ̃ + ϵ, ϵ ∼ N (0N , σ
2
ϵIN). (32)
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From (9) and (11), we obtain the prior distribution of δ̃ as

δ̃ ∼ N
(
µ̃, Σ̃

)
, µ̃ =


φR

φB

µβ

 , Σ̃ =


τ 2R

τ 2B

Σβ

 . (33)

In the same manner as (14), we can derive the conditional posterior distribution of δ̃

from likelihood (4) and the prior distribution (33) as

p(δ̃|D,θ−δ̃) ∝ p(ỹ|Z̃, δ̃, σϵ)p(δ̃|µ̃, Σ̃)

∝ exp

[
−1

2

{
σ−2
ϵ (ỹ − Z̃δ̃)⊺(ỹ − Z̃δ) + (δ̃ − µ̃)⊺Σ̃

−1
(δ̃ − µ̃)

}]
. (34)

By completing the square, (34) is rewritten as

p(δ̃|D,θ−δ̃) ∝ exp

[
−1

2

(
δ̃ −

(
σ−2
ϵ Z̃

⊺
Z̃ + Σ̃

−1
)−1 (

σ−2
ϵ Z̃

⊺
ỹ + Σ̃

−1
µ̃
))(

σ−2
ϵ Z̃

⊺
Z̃ + Σ̃

−1
)

×
(
δ̃ −

(
σ−2
ϵ Z̃

⊺
Z̃ + Σ̃

−1
)−1 (

σ−2
ϵ Z̃

⊺
ỹ + Σ̃

−1
µ̃
))]

. (35)

From (35), we derive the conditional posterior distribution of δ̃ as

δ̃|D,θ−δ ∼ N
((

σ−2
ϵ Z̃

⊺
Z̃ + Σ̃

−1
)−1 (

σ−2
ϵ Z̃

⊺
ỹ + Σ̃

−1
µ̃
)
,
(
σ−2
ϵ Z̃

⊺
Z̃ + Σ̃

−1
)−1
)
. (36)

Note that, except for δ̃, the conditional posterior distributions for the rest of the

parameters are the same as in (1). Thus the ASIS algorithm is given as follows.
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ASIS for the hierarchical Bayes regression model� �
Suppose θ(r) is the r-th draw of θ in the ASIS algorithm.

Step 1 Given θ(r), draw (µ
(r+0.5)
R , σ

(r+0.5)
R , µ

(r+0.5)
B , σ

(r+0.5)
B ,β(r+0.5), σ

(r+0.5)
ϵ ) via the

Gibbs sampler with the conditional posterior distributions (16), (18), (23), (24),

(28) and (29), and compute

α̃
(r+0.5)
⋆i = α

(r+0.5)
⋆i − µ(r+0.5)

⋆ , i ∈ {1, . . . , N}, ⋆ ∈ {R,B},

and obtain θ(r+0.5).

Step 2 Given θ(r+0.5), draw (µ
(r+1)
R , σ

(r+1)
R , µ

(r+1)
B , σ

(r+1)
B ,β(r+1), σ

(r+1)
ϵ ) via the Gibbs

sampler with the conditional posterior distributions (23), (24), (28), (29) and

(36), and compute

α
(r+1)
⋆i = α̃

(r+0.5)
⋆i + µ(r+1)

⋆ , i ∈ {1, . . . , N}, ⋆ ∈ {R,B},

and obtain θ(r+1).� �
Step 1 is the Gibbs sampler based on (1) while Step 2 is the alternative sampler based

on (31). The above ASIS algorithm uses two equivalent samplers in tandem so that the

efficiency of random number generation will be improved.
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