
 

Institute for Economic Studies, Keio University 
 
 

Keio-IES Discussion Paper Series 
 

 

 

 
超低金利環境下における金融政策の有効性： 

日本のイールドカーブ変動による検証 

 

白塚重典 
 

2021 年 6 月 12 日 
DP2021-012 

https://ies.keio.ac.jp/publications/14153/ 
 
 
 
 

 
 
 
 

Institute for Economic Studies, Keio University 
2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan 

ies-office@adst.keio.ac.jp 
12 June, 2021 

 



 
超低金利環境下における金融政策の有効性：日本のイールドカーブ変動による検証 

白塚重典 

IES Keio DP2021-012 

2021 年 6 月 12 日 

JEL Classification: E43; E52; E58; G12 

キーワード: イールドカーブ; 動学的ネルソン＝シーゲル・モデル; ローディングパラメ

ータ; 非伝統的金融政策; 金融政策指標 

 
 

【要旨】 
本論文では、日本の超低金利環境下における金融政策の有効性について、イールドカーブ変動

を通じて検証する。そのために、動学的ネルソン・シーゲルモデルを用い、金融政策の緩和効

果を捕捉するための指標を構築する。超低金利環境でのイールドカーブ変動を捕捉するために

は、水準、傾き、曲率というイールドカーブの変動要因に加えて、長期水準への収束速度をコ

ントロールするローディングパラメータも時変化することが有効である。しかしながら、金融

政策の効果を評価する上では、水準とローディングパラメータの識別が重要となる。特に、量

的・質的金融緩和政策（QQE: Quantitative and Qualitative Monetary Easing）のもとでの金融緩和

効果は、10年以上の超長期ゾーンのイールドカーブをフラット化することで産み出されている

が、満期10年までのゾーンからの緩和効果はほぼ変化していない。この推計結果は、現在の超

低金利環境下においては、非伝統的な金融政策を本格的に実施したとしても、金融政策だけで

は、標準的なマクロ経済安定化政策の時間視野の中では十分な緩和効果を生み出すことを示し

ている。 
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Monetary Policy Effectiveness

under the Ultra-Low Interest Rate Environment:

Evidence from Yield Curve Dynamics in Japan *

Shigenori Shiratsuka†
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Abstract

In this paper, I examine the effectiveness of monetary policy under the ultra-low interest
rate environment in Japan through the lens of yield curve dynamics. To that end, I employ
the dynamic Nelson-Siegel model with time-varying parameters, thereby computing indi-
cators for tracing the easing effects of monetary policy. I show that the estimation perfor-
mance of the yield curve models is sufficiently improved even under the ultra-low interest
rate environment by extending the dynamic Nelson-Siegel model to allow a loading param-
eter to vary over time, in addition to three parameters of yield curve dynamics: level, slope,
and curvature. However, I also demonstrate that the identification of the level and loading
parameters is critical in assessing monetary policy effects based on the estimation results
for the yield curve dynamics. I reveal that monetary easing effects under the Quantitative
and Qualitative Monetary Easing (QQE) are produced by flattening the yield curve in the
ultra-long-term maturities over 10-year while easing effects from maturities shorter than
10-year remain almost unchanged. I argue that monetary policy fails to produce sufficient
easing effects within the time frame of the standard macroeconomic stabilization policy,
even with the full-fledged implementation of unconventional monetary policy measures
under the current ultra-low interest rate environment.
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1 Introduction

In this paper, I examine the effectiveness of monetary policy under the ultra-low interest rate

environment through the lens of yield curve dynamics in Japan.

Nelson and Siegel (1987) describe yield curve dynamics by three factors: level, slope, and

curvature, supported by empirical studies on yield curve dynamics. This model has sim-

ple, parsimonious functional forms but is flexible enough to capture the general property of

the yield curve for monetary policy purposes. Recently, following Diebold and Li (2006) and

Diebold, Rudebusch and Aruoba (2006), various empirical frameworks are proposed to extend

the Nelson-Siegel model into dynamic models. Diebold, Rudebusch and Aruoba (2006) formu-

late the Nelson-Siegel model as a state-space model by treating three factors, level, slope, and

curvature, as an unobserved vector-autoregressive process. Koopman, Mallee and Van der Wel

(2010) further extend the dynamic Nelson-Siegel model by introducing time-varying loading

parameters as well as time-varying volatility with the generalized autoregressive conditional

heteroscedasticity (GARCH) process.1

I apply the empirical framework of Koopman, Mallee and Van der Wel (2010) to the Japanese

yield curve data under the ultra-low interest rate environment. Based on that estimation re-

sults, I also construct monetary policy indicators by slightly modifying ones proposed in Okina

and Shiratsuka (2004) and Krippner (2015).

Looking back, the Bank of Japan (BOJ) reduced its policy interest rate, uncollateralized

overnight call rate, down to 0.5 percent in 1995. Since then, the Japanese economy has been

facing the effective lower bound (ELB) constraint of nominal interest rates for more than 25

years (see Table 1 for major Japan’s monetary policy events since the mid-1990s). The BOJ

continued to implement various unconventional monetary policy measures on a large scale

over that time.

There seems to be no consensus as to how to measure the effectiveness of unconventional

monetary policy, including large-scale asset purchases (LSAP), since no comprehensive pol-

icy indicators are readily available. That contrasts with the conventional monetary policy as-

sessment with short-term policy interest rates, which summarizes necessarily information, as

Taylor rule tells. Thus, it is important and useful to establish a framework to assess the ef-

fectiveness of unconventional monetary policy through the lens of the yield curve dynamics

comparable to conventional monetary policy assessment.2

To that end, it should be noted that an estimation of the yield curve model generally raises

1 Among the various specifications of the dynamic Nelson-Siegel model, Christensen, Diebold and Rudebusch
(2011) construct an empirical model with due consideration on the theoretical consistency by incorporating the
no-arbitrage condition. Christensen and Rudebusch (2015) and Krippner (2016) extend the dynamic Nelson-Siegel
model by incorporating the ELB constraint of nominal interest rates. Note that the dynamic Nelson-Siegel model
needs to assume the constant loading parameter over time to incorporate the no-arbitrage condition.

2 An application of shadow interest rates is another possibility to construct a monetary policy indicator to assess
unconventional monetary policy under the ELB of nominal interest rates, as shown in Krippner (2015) and Wu
and Xia (2016). That approach explicitly assumes the ELB constraint of nominal interest rates, thereby estimating
hypothetical policy interest rates without the ELB constraint. See also Ichiue and Ueno (2015), Ichiue and Ueno
(2018), and Ueno (2017) as applications to Japan.
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Table 1: Monetary Policy Events

Date Policy Events
Sep 8, 1995 Reduction of the official discount rate (ODR) (1.0%→0.5%)
Sep 9, 1998 Reduction of target of the overnight (O/N) rate (0.5%→0.25%)
Feb 12, 1999 Introduction of the Zero Interest Rate Policy (ZIRP)

Apr 13, 1999
Governor’s announcement of

the commitment to a zero interest rate
Aug 11, 2000 Termination of the ZIRP
Mar 19, 2001 Introduction of the Quantitive Monetary Easing (QE)
Aug 14, 2001 Raise in the target CAB (¥ 50 tril.→¥6 tril.)
Dec 19, 2001 Raise in the target CAB (above ¥ 6 tril.→¥ 10–15 tril.)
Oct 30, 2002 Raise in the target CAB (¥10–15 tril.→¥15–20 tril.)
Mar 25, 2003 Raise in the target CAB (¥15–20 tril.→¥17–22 tril.)
Apr 30, 2003 Raise in the target CAB (¥17–22 tril.→¥22–27 tril.)
May 20, 2003 Raise in the target CAB (¥22–27 tril.→¥27–30 tril.)

Oct 10, 2003
Increase in the ceiling of the target CAB (¥27–30 tril.→¥27–32 tril.)

Clarification of the commitment to maintaining the QE
Mar 9, 2006 Termination of the QE and setting target of O/N rate at zero
Jul 14, 2006 Rise of the target of O/N rate (0.0%→0.25%)
Feb 21, 2007 Raise in the target of O/N rate (0.25%→0.5%)
Oct 31, 2008 Reduction of target of O/N rate (0.5%→0.3%)
Dec 19, 2008 Reduction of target of O/N rate (0.3%→0.1%)
Oct 5, 2010 Introduction of Comprehensive Monetary Easing (CE)
Jan 22, 2013 Introduction of the Price Stability Target

Apr 4, 2013
Introduction of Quantitative and Qualitative Monetary Easing

(QQE)
Oct 31, 2014 Expansion of QQE
Jan 29, 2016 Introduction of QQE with Negative Interest Rates
Sep 21, 2016 Introduction of QQE with Yield Curve Control
Jul 31, 2018 Enhancing the sustainability of QQE with Yield Curve Control

March 16, 2020 Monetary easing response to the outbreak of COVID-19
March, 2021 Further effective and sustainable monetary easing

an issue on the trade-off between the estimation performance and the theoretical consistency.

The affine term structure models have a theoretical foundation based on the no-arbitrage condi-

tion, while they have limitations in their estimation performance. The Nelson-Siegel model, in

contrast, is a typical statistical model to focus on the cross-sectional dimension of yield curves,

thereby improving the goodness of fit. The dynamic Nelson-Siegel model is extended to de-

scribe the time-series dimension of the yield curve dynamics, in addition to the cross-sectional

dimension.

In quantitatively assessing the effectiveness of monetary policy under the ELB constraint of

nominal interest rates with the declined and flattened yield curve, it is critical to employ the

yield curve model with high estimation precision. That highlights the trade-off between the

estimation performance and the theoretical consistency in selecting yield curve models. I show

that the dynamic Nelson-Siegel model with a time-varying loading parameter is well suited for

2



a quantitative assessment of the effectiveness of monetary policy through yield curve dynamics

under the ultra-low interest rate environment.

More precisely, I show that the estimation results for the dynamic Nelson-Siegel model

reject a hypothesis of constant loading parameters over time, thus indicating the vulnerability

of the assumption of the no-arbitrage condition. That is because that the parameters for the

nonlinear functional form, defined as the Nelson-Siegel model, are difficult to estimate in a

robust manner, especially under the ultra-low interest rate environment. The estimates for the

level and loading parameters are contaminated, making it difficult to identify these parameters

precisely.3

I thus focus on the empirical model to estimate yield curve dynamics with high estimation

precision even under the ultra-low interest rate environment since such precise estimation re-

sults provide a more robust basis for examining the effectiveness of monetary policy. Based

on those estimation results, I compute monetary policy indicators to demonstrate that mone-

tary easing effects under Quantitative and Qualitative Monetary Easing (QQE) are produced by

flattening the yield curve in the ultra-long-term maturities over 10-year, while monetary easing

effects from maturities shorter than 10-year remain almost unchanged. I argue that monetary

policy fails to produce sufficient easing effects within the time frame of the standard macroe-

conomic stabilization policy, even with various and massive unconventional monetary policy

measures under the current ultra-low interest rate environment.

This paper is constructed as follows. Section 2 summarizes the original form of the Nelson-

Siegel model and examines challenges for its estimation under the ultra-low interest rate en-

vironment. It then introduces the dynamic Nelson-Siegel model with a time-vary loading

parameter to deal with challenges. Section 3 shows the estimation results for the dynamic

Nelson-Siegel model and carries out the robustness check on estimation performance against

the changes in the estimation periods. Section 4 constructs some monetary policy indicators

based on the estimation results in Section 3, thereby discussing their policy implications. Fi-

nally, Section 5 concludes the paper.

2 The Nelson-Siegel Model and its Dynamic Extensions

In this section, I briefly explain the basic specification of the Nelson-Siegel model, proposed

first by Nelson and Siegel (1987), which is widely used in yield curve analysis. I then discuss

the challenges for estimating the Nelson-Siegel model under an ultra-low interest rate envi-

ronment. I finally introduce the dynamic Nelson-Siegel model with a time-varying loading

parameter to address the estimation challenges.

3 The importance of the time-varying nature of the long-term interest rates, as an endpoint of the yield curve, is
emphasized in the projection of short-term interest rates over time, as in Kozicki and Tinsley (2001) and van Dijk
et al. (2014). However, the importance of the time-varying loading parameter seems to be paid less attention to in
the previous literature. Koeda and Sekine (2021) share a similar concern over yield curve models with the constant
loading parameter and empirically examine it with the Japanese data.
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2.1 The basic specification of the Nelson-Siegel model

As preparation for explaining the dynamic Nelson-Siegel model, I first briefly explain the basic

framework of the original and static Nelson-Siegel model. Nelson and Siegel (1987) describe

yield curve dynamics by three factors: level, slope, and curvature, supported by empirical

studies on yield curve dynamics. This model has simple, parsimonious functional forms but

flexible enough to capture the general property of the yield curve for monetary policy purposes.

The original version of the Nelson-Siegel model (ONS, hereafter) specifies the instantaneous

forward rate (IFR) for time-to-settlement m at period t, denoted by rt(m), is given by

rt(m) = Lt + Ste−λtm + Ctλtme−λtm, (1)

where Lt, St, Ct, and λt are parameters to be estimated from the data. Lt and λt are expected to

be positive. 4

The IFR curve, generated by equation (1), includes three terms, Lt, St, and Ct, which cor-

respond to level, slope, and curvature factors, respectively. λt is the loading parameter, con-

trolling the converging speed toward a long-term level. The model has simple, parsimonious,

and smooth functional forms and is flexible enough to capture the general property of the yield

curve, ensuring sufficient precision and robustness for monetary policy analysis.

The Nelson-Siegel model has a property that the limits of forward rates when maturity ap-

proaches zero and infinity, respectively, are equal to Lt + St and Lt. In our estimation, I exploit

the first feature to improve the estimation precision in the shorter maturity of the yield curve

by restricting Lt + St to the overnight uncollateralized call rate. I also use the second feature

to compile monetary policy indicators since it corresponds to the restriction that forward rates

for settlements very far into the future be constant.5

The spot rate at maturity m, denoted by Rt(m), is derived by integrating equation (1) from

zero to m and dividing by m.

Rt (m) =
1
m

∫ m

s=0
rt (s) ds = Lt + St

(
1− e−λtm

λtm

)
+ Ct

[
1− e−λtm

λtm
− e−λtm

]
. (2)

I employ equation (2) to estimate the Nelson-Siegel model by using spot rates observed in

the Japanese Government Bond market, while I use the IFR curve, described as equation (1),

in analyzing the yield curve dynamics. The IFR curve reflects market expectations regarding

the future course of short-term interest rates, thus providing important information on market

views of future monetary policymaking.

4 SÃ¶derlind and Svensson (1997) extend the original version of the Nelson-Siegel model by considering an
additional curvature term, thereby enabling to flexibly approximate more complicated shape of yield curves.

5 As previous studies of applying the Nelson-Siegel model to Japan, Fujiki and Shiratsuka (2002) and Okina and
Shiratsuka (2004) employ the Nelson-Siegel model to analyze the policy commitment effects of monetary policy
under the ELB constraints of nominal interest rates in Japan.
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2.2 Issues on the parameter identifications under a low interest rate environment

When applying the Nelson-Siegel model to estimate the yield curve dynamics under an ex-

tremely low interest rate environment, it is deemed important to focus on an empirical issue in

identifying parameters for the nonlinear functional form.

To clarify the point mentioned above, Figure 1 plots hypothetical spot rate curves based on

the original version of the Nelson-Siegel model, defined as equation (1), with parameter sets

for Spec-1, 2, and 3. Spec-1 represents a standard spot rate curve with an overnight rate at zero

percent and a long-term forward rate at 2.5 percent. Spec-2 and 3 show the effects of declining

and flattening the yield curve by changing the parameter values for the loading parameter λ

and the level, slope, and curvature parameters L, S, and C, respectively. More precisely, Spec-2

stretches the spot rate curve rightward by delaying the convergence to the long-term forward

rate by lowering only λ (0.75→ 0.12) while keeping L, S, and C unchanged. Spec-3 pushes the

spot rate curve downward by lowering L (2.5 → 1.5) and C (−1.0 → −1.8) while keeping λ

unchanged.6

Figure 1: Parameter Identification

Notes: Shaded area corresponds to the maturity up to 30-year, which market data on spot rates are available.

Plotted spot rate curves based on the parameter sets of Spec-2 and 3 in the figure look very

similar for the maturities from zero to 20 years. However, the two parameter sets have very

different endpoints of the yield curve, resulting in very different implications for monetary

easing effects through the yield curve dynamics. Spec-2 pulls future monetary easing effect

forward on a large scale by flattening the short- to medium-term zone since the long-term

forward rate is kept high.7 In contrast, Spec-3 fails to pull future monetary easing effect forward

6 S automatically increases due to the parameter restriction of L = −S
7 See Eggertsson and Woodford (2003) and Jung, Teranishi and Watanabe (2005) for the theoretical foundations

of policy commitment effects under the ELB constraint of nominal interest rates. As discussed in Fujiki, Okina
and Shiratsuka (2001), the Bank of Japan first introduced a policy commitment mechanism under the ELB in 1999.
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because of the declined long-term forward rate.

To sum up, the parameters for the nonlinear functional form, defined as the Nelson-Siegel

model, are difficult to estimate in a robust manner, especially under an extremely low interest

rate environment. The estimates for level and loading parameters are contaminated with each

other, thus making it difficult to identify these parameters precisely. That suggests that the

dynamic extension of the Nelson-Siegel model needs to make the loading parameter vary over

time, in addition to the level, slope, and curvature parameters of yield curve dynamics. When

estimating the dynamic Nelson-Siegel model with constant loading parameter, the yield curve

flattening tends to be regarded just as the decline of the yield curve, potentially leading to the

worsening of estimation precision.

2.3 Dynamic Nelson-Siegel model

To deal with the identification issues for the level and loading parameters, I employ the dy-

namic Nelson-Siegel model with the time-varying loading parameter and the GARCH process

in the error term, following Koopman, Mallee and Van der Wel (2010).

The original version of Nelson-Siegel model (ONS) can be estimated by simple regression

model below using cross-sectional observations of spot rates Rt(mi) for a set of N maturities

m1 < m2 < · · · < mN at period t,

Rt (mi) = Lt + St

(
1− e−λtmi

λtmi

)
+ Ct

[
1− e−λtmi

λtmi
− e−λtmi

]
+ εt(mi). (3)

Similarly, with pooling cross-sectional observations of spot rates Rt(mi) over the estima-

tion period, the dynamic Nelson-Siegel model with the time-varying loading parameter is es-

timated by


Rt(m1)

Rt(m2)
...

Rt(mN)

 =


1 1−e−λtm1

λtm1

1−e−λtm1
λtm1

− e−λtm1

1 1−e−λtm2
λtm2

1−e−λtm2
λtm2

− e−λtm2

...
...

...

1 1−e−λtmN
λtmN

1−e−λtmN
λtmN

− e−λtmN




Lt

St

Ct

+


εt(m1)

εt(m2)
...

εt(mN)

 . (4)

In addition, I also assume the two types of the dynamic processes for parameter transitions:

vector-autoregressive (VAR) process and random walk (RW) process.8 In the dynamic Nelson-

Siegel model with VAR process, denoted by DNS-VAR, parameter dynamics is given by

The policy mechanism was called “policy duration effect” at that time, while such mechanism is called “forward
guidance” after the Global Financial Crises in 2008.

8 Koopman, Mallee and Van der Wel (2010) employ the VAR process for the parameter dynamics, while they
point out the possibility of dynamic process es, including the RW process. van Dijk et al. (2014) and Buitenhuis
(2017) propose the introduction of the time-varying constant term in the state equation for the dynamic Nelson-
Siegel model based on the VAR(1) process assumption for the time-varying parameters. However, I do not employ
that specification since such an extension of the dynamic Nelson-Siegel model does not improve the estimation
performance using Japanese data.
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βt+1 = (I4 − F) µ + Fβt + ηt, (5)

βt =


Lt

St

Ct

λt

 , F =


ϕ11 ϕ12 ϕ13 ϕ14

ϕ21 ϕ22 ϕ23 ϕ24

ϕ31 ϕ32 ϕ33 ϕ34

ϕ41 ϕ42 ϕ43 ϕ44

 , µ =


µ1

µ2

µ3

µ4

 , ηt =


η1

t

η2
t

η3
t

η4
t

 ,

[
ηt

εt

]
∼ NID

[(
0

0

)
,

(
Σ′ηΣη 0

0 Σ′εΣε

)]
,

Σ′εΣε =


δ2

1 · · · 0
...

. . .
...

0 · · · δ2
N

 , Σ′η =


σ11 0 0

σ21 σ22 0

σ31 σ32 σ33

 ,

where Σ′εΣε and Σ′η are diagonal matrix and lower triangular matrix, respectively.

In the dynamic Nelson-Siegel model with RW process, denoted by DNS-RW, the parameter

dynamics is also given by

βt+1 = βt + ηt, (6)

βt =


Lt

St

Ct

λt

 , ηt =


η1

t

η2
t

η3
t

η4
t

 ,

[
ηt

εt

]
∼ NID

[(
0

0

)
,

(
Σ′ηΣη 0

0 Σ′εΣε

)]
,

Σ′εΣε =


δ2

1 · · · 0
...

. . .
...

0 · · · δ2
N

 , Σ′µ =


σ11 0 0

0 σ22 0

0 0 σ33

 ,

where Σ′εΣε and Σ′ηare diagonal matrixes.9

In both DNS-VAR and DNS-RW, the error terms are assumed below.

εt = Γεε
∗
t + ε+t . (7)

9 The RW model is frequently employed in the time-varying parameter regression model, as shown in Kim and
Nelson (1999), and the time-varying parameter vector autoregression (TVP-VAR) model. The RW model in this
paper assumes that factors in the observation equation follow a random walk process. That assumption does not
imply that factors follow the random walk process regardless of economic fundamentals but that the observation
equation swiftly incorporates all incoming information, such as unexpected policy changes and external shocks.
Thus, the adjustment speed of factors is much faster in the RW model than in the VAR model.
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where Γε and ε+t are (Nx1) vectors. ε∗t is scalar and a common error term for all maturities.

Γε denotes the sensitivity parameters for each maturity. It is assumed that ε+t and ε∗t follow

NID(0, Σ+′
ε Σ+

ε ) and NID(0, ht), respectively, and variance for ε∗t follows the GARCH(1,1) pro-

cess below:

ht = γ0 + γ1(ε
∗
t−1)

2 + γ2ht−1, (8)

where γ0 > 0, 0 < γ1 < 1, 0 < γ2 < 1, and h1 = γ0(1− γ1 − γ2)−1. Since the variance of ε∗t ,

denoted by ht, follows GARCH(1,1) process, the variance and covariance matrix for εt, denoted

by Σ′εΣε, also becomes time-varying.10

The estimation of the original version of Nelson-Siegel model requires at least ten observa-

tions from different maturities since just cross-sectional information for a specific period in time

is employed. On the contrary, the estimation of the dynamic Nelson-Siegel model needs fewer

cross-sectional observations since both cross-sectional and time-series information are used at

the same time. As a result, the dynamic Nelson-Siegel model reduces the risk for overfitting,

even though the Nelson-Siegel model is less vulnerable to the overfitting problem. 11In estimat-

ing DNS-VAR and DNS-RW, the extended Kalman filter is applied to the nonlinear formulation

of equation (4). 12

3 Estimation Results and Their Robustness Check

In this section, I estimate two specifications of the dynamic Nelson-Siegel model, DNS-VAR

and DNS-RW, and compare their estimation performance with the original version of the static

Nelson-Siegel model (ONS) as a benchmark.13 I also examine the robustness of the empirical

performance regarding the changes in the estimation periods.

In estimating the dynamic Nelson-Siegel models, I use data on zero-coupon yield rates for

nine maturities: 3- and 6-month, and 1-, 2-, 3-, 5-, 7- 10-, and 30-year, computed by Bloomberg.

However, in estimating the static Nelson-Siegel model, used as a benchmark, I use data on

zero-coupon yield rates for 16 maturities: overnight, 3- and 6-month, and 1-, 2-, 3-, 4-, 5-, 6-,

7-, 8-, 9-, 10-, 15-, 20-, and 30-year. The sample period is from January 1995 to June 2020 and

common to all the specifications.

10 In estimation, I follow the proposal in Koopman, Mallee and Van der Wel (2010) for fixing γ0 at a very small
value of 0.0001, instead of normalizing by Γ′ε Γε = 1.

11 I impose the parameter restriction of “Lt + St = overnight interest rate” to minimize the overfitting problem in
estimating the static Nelson-Siegel model.

12Following Buitenhuis (2017), loading parameter λt is log-transformed so as to prevent λt from taking negative
values.

13 I estimate the ONS model without restricting “Lt + St = overnight interest rate” after introducing negative
interest rates in January 2016 since the overnight call rate constantly deviates from the target level.
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3.1 Estimation results

The estimation results of the two specifications of the dynamic Nelson-Siegel models are sum-

marized in Table 2. Comparing the estimation performance of the two models with the infor-

mation criteria of AIC (Akaike’s information criterion) and BIC (Bayesian information crite-

rion), the estimation performance is slightly higher for DNS-VAR than DNS-RW. 14

Table 2: Estimation Results

DNS-VAR DNS-RW DNS-VAR DNS-RW
Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Likelihood 16,557.2 15,776.1 σ21 -0.0018 0.00014 0.0000
AIC/BIC -107.9 /-107.3 -103.0 / -102.7 σ31 -0.0022 0.00035 0.0000

ϕ11 1.0078 0.1932 1.0000 σ32 0.0003 0.00023 0.0000
ϕ12 0.0046 0.0259 0.0000 σ41 -0.0001 0.01383 0.0000
ϕ13 0.0457 0.0376 0.0000 σ42 -0.0203 0.00965 0.0000
ϕ14 -0.0003 0.0082 0.0000 σ43 0.0230 0.01143 0.0000
ϕ21 -0.0584 0.0737 0.0000 δ1 3.07E-04 2.47E-05 3.13E-04 2.26E-05

ϕ22 0.8707 0.0366 1.0000 δ2 1.69E-04 2.77E-05 1.36E-04 3.04E-05

ϕ23 0.0013 0.0199 0.0000 δ3 4.37E-04 2.19E-05 4.70E-04 2.21E-05

ϕ24 0.0003 0.0029 0.0000 δ4 2.63E-04 2.60E-05 3.27E-04 1.66E-05

ϕ31 0.0813 0.0473 0.0000 δ5 2.86E-04 3.66E-05 4.92E-04 2.20E-05

ϕ32 0.0723 0.2080 0.0000 δ6 3.05E-04 2.47E-05 4.62E-10 2.18E-05

ϕ33 0.9311 0.0486 1.0000 δ7 6.94E-12 3.96E-05 5.72E-04 2.33E-05

ϕ34 -0.0002 0.0042 0.0000 δ8 8.58E-04 3.58E-05 8.25E-11 2.81E-05

ϕ41 -0.4745 0.0960 0.0000 δ9 2.12E-10 9.04E-05 7.51E-04 5.27E-05

ϕ42 0.2061 0.6477 0.0000 γ1 0.497 0.126 0.389 0.049
ϕ43 0.9701 0.0386 0.0000 γ2 0.499 0.127 0.610 0.050
ϕ44 0.9993 0.0323 1.0000 Γ1 0.0019 0.0016 0.0040 0.0026
µ1 0.0576 0.00368 0.0000 Γ2 0.0015 0.0018 0.0039 0.0026
µ2 -0.0374 0.00361 0.0000 Γ3 0.0007 0.0021 0.0030 0.0023
µ3 -0.0125 0.00754 0.0000 Γ4 0.0005 0.0030 0.0016 0.0020
µ4 0.0020 0.01236 0.0000 Γ5 0.0000 0.0036 0.0004 0.0018
σ11 0.0019 0.00013 0.0029 0.00013 Γ6 0.0068 0.0051 0.0000 0.0017
σ22 0.0006 0.00004 0.0023 0.00011 Γ7 0.0150 0.0071 0.0020 0.0022
σ33 0.0036 0.00029 0.0034 0.00018 Γ8 0.0107 0.0060 0.0060 0.0035
σ44 0.0685 0.00791 0.1040 0.00959 Γ9 0.0000 0.0030 0.0019 0.0020

I next compute the spot rates based on the estimation results in Table 2 since it is difficult

to assess and interpret the estimation results with estimated parameters alone. When plotting

14 By comparing the estimation results for various specifications of the dynamic Nelson-Siegel model, it is con-
firmed that the estimation performance is improved significantly by introducing the time-varying loading parame-
ter rather than the GARCH process in the error terms.

Specifications
Dynamic Process VAR RW

Time-varying L, S, C yes yes yes yes yes yes
Time-varying λ no yes yes no yes yes

GARCH in error term no no yes no no yes
AIC -101.4 -106.0 -107.9 -91.0 -102.0 -103.0
BIC -101.1 -105.5 -107.3 -90.9 -101.8 -102.7
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the time-series data of the estimated spot rates and the observed spot rates for the maturity of

30-year in Figure 2, the estimated rates follow almost exactly the observed rates.15

Figure 2: Estimated Spot Rates at 30-year Maturity

Notes: Abbreviations in the figures correspond to the monetary policy regime below:
ZIRP: Zero Interest Rate Policy (February 1999-August 2000); QE: Quantitative Monetary Easing Policy (March
2001-March 2006); CE: Comprehensive Monetary Easing Policy (October 2010-March 2013); QQE: Quantitative and
Qualitative Monetary Easing Policy (April 2013-January 2006); QQE w/ NI: QQE with Negative Interest Rates
(January 2016-September 2016); QQE w/ YCC: QQE with Yield Curve Control (September 2016-present).

Table 3 computes the root mean squared error (RMSE) of the estimated spot rates and the

observed rates for all maturities used in estimating DNS-VAR and DNS-RW. The table shows

that the RMSE is relatively small, suggesting high goodness of fit in both specifications. That

result confirms that the dynamic Nelson-Siegel model with time-varying loading parameter

produces good estimation performance. Comparing with the evaluation based on the infor-

mation criterion, the difference in the assumptions of the dynamic process of the parameters

does not make a big difference in RMSE. DNS-VAR shows significantly smaller RMSE for the

maturity of 30-year, while DNS-RW for the 5- and 10-year.

Table 3: Root Mean Squared Errors between Estimates and Observed Data

Maturity 3M 6M 1Y 2Y 3Y 5Y 7Y 10Y 30Y Average

DNS-VAR 0.0259 0.0134 0.0436 0.0226 0.0263 0.0307 0.0080 0.0860 0.0066 0.0292
DNS-RW 0.0285 0.0090 0.0451 0.0340 0.0513 0.0094 0.0582 0.0077 0.0549 0.0331

ONS 0.0763 0.0605 0.0565 0.0398 0.0435 0.0402 0.0538 0.0513 0.0962 0.0576

Note: Average is the average of RMSE for all maturities shown in the table, which correspond to the maturities
used in the estimation of DNS-VAR and DNS-RW.

The estimation results suggest that the dynamic Nelson-Siegel model with the time-varying

loading parameter shows good estimation precisions even under the ultra-low nominal interest

15 Contrastingly, the estimated spot rates based on the dynamic Nelson-Siegel model with the fixed loading pa-
rameter show significant downward deviations from observed spot rates, especially after the Global Financial Cri-
sis. That is because the estimated loading parameters are fixed at a higher level in the second half of the estimation
period, and thus the estimated long-term forward rates are biased downward.
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rate environment. That indicates that the time-varying loading parameter enables more robust

identification for the level and loading parameters.

3.2 Estimated parameters over time

Next, I compare the time-series movements of the estimated parameters for the two specifica-

tions of the dynamic Nelson-Siegel model, DNS-VAR and DNS-RW, and the benchmark static

Nelson-Siegel model, ONS. Figure 3 plots the estimates for ONS with their 95% confidence in-

tervals and the estimates for DNS-VAR and DNS-RW for level, slope, curvature, and loading

parameters: L, S, C, and λ, respectively.

The figure shows that estimated parameters for DNS-VAR and DNS-RW are close to ONS

until the early 2010s and generally stay within the 95% confidence intervals for ONS. DNS-

RW appears to deviate first from the ONS in the early 2010s, while it becomes closer to ONS

again in the mid-2010s, especially after introducing negative interest rates in the early-2016. In

contrast, DNS-VAR shows continued and large deviations from ONS from early-2016.

DNS-VAR seems to succeed in producing relatively stable estimates over time by assuming

a VAR process for the parameter dynamics, while DNS-RW strongly reflects the influence of

the more recent data and is thus able to replicate ONS, which estimates using data only for that

day, by assuming a random walk process for the parameter dynamics.

Focusing on the level and loading parameters, DNS-VAR and DNS-RW produce construct-

ing results after introducing negative interest rates in early-2016. DNS-VAR estimates the level

parameter at a relatively high level in a stable manner, around 3 percent, and the loading pa-

rameter with a declining trend even at a very low level. DNS-RW estimates the level and

loading parameters to follow ONS estimates: the level parameter declines rapidly soon after

introducing negative interest rates in early-2016, rebounds to the level before introducing neg-

ative interest rates toward the end of 2017, but declines again after that to around 1 percent.

The loading parameter does not respond so much when introducing negative interest rates but

starts increasing from the end of 2017, in line with the decline in the level parameter.

The above contrasting estimation results of DNS-VAR and DNS-RW on the level parame-

ters indicate very different implications on the effectiveness of monetary policy. A higher level

parameter implies larger room for additional monetary easing. However, it is difficult to deter-

mine which estimation results are more appropriate. Especially, there remains a concern about

the robustness of the estimation results for the dynamic Nelson-Siegel model with the time-

varying loading parameters over time. I thus conduct a more in-depth study below through

estimations by changing the estimation periods. 16

16 As pointed out in footnote 14, the estimates for the level parameter L with the fixed loading parameter tend
to be biased downward, as the estimates for the fixed loading parameter deviate from the time-varying estimates.
In particular, focusing on the estimation results from 2016, when negative interest rates were introduced, the level
L stays very close to zero, and the slope S and curvature C converge to near zero. That implies that the dynamic
Nelson-Siegel models with the fixed loading parameter identify the yield curve as perfectly flattened at zero. The
dynamic Nelson-Siegel model with the fixed loading parameter is unable to grasp the shape of the yield curve with
a slightly positive slope beyond the maturity of 10-year.
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Figure 3: Estimated Parameters over Time
(1) Level parameter L

(2) Slope parameter S

(3) Curvature parameter C

(4) Loading parameter λ

Notes: Light blue dotted lines are 95% confidence intervals for ONS estimates.
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3.3 Robustness on changes in sample periods

I carry out robustness checks on DNS-VAR and DNS-RW against the changes in estimation pe-

riods after introducing negative interest rates in early-2016. The level and loading parameters

for DNS-VAR and DNS-RW are repeatedly estimated by extending the end of the estimation

period from January 2012 by one month and compare the estimates with full-sample period

estimates.

Figure 4 plots the estimation results: the estimates for the end of the subsample periods

with their 95-percent confidence intervals (circles and blue dotted lines), along with the esti-

mates for the full sample period with their 95-percent confidence intervals (red bold line and

blue shaded area). The estimated level and loading parameters for DNS-VAR and DNS-RW

generally move parallel with the estimates for full sample periods. However, DNS-RW tends

to produce a jump in the parameters when extending the estimation period by just one month.

As mentioned above, it seems consistent with the interpretation that by assuming a random

walk as the dynamic process of the parameters, DNS-RW strongly reflects the influence of the

more recent data and thus is able to replicate ONS estimates using data only for that day.
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Figure 4: Inch-warm Estimation Results

(1-a) Level parameters for DNS-VAR

(1-b) Loading parameters for DNS-VAR

(2-a) Level parameters for DNS-RW

(2-b) Loading parameters for DNS-RW

Notes: Red bold line and light blue shaded area are estimates and their 95-percent confidence intervals based on
the full-sample estimation, respectively. Circles and blue dashed lines are estimates and their 95-percent confidence
intervals based on the subsample estimations ending at each month on the horizontal axis, respectively.

I also compute the root mean squared error (RMSE) of the estimated spot rates and the

observed rates for the selected maturities, same as Table 3, for subsample periods before and
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after the introduction of negative interest rates in January 2016, in Table 4. DNS-VAR and

DNS-RW generally produce smaller RMSEs than ONS. Moreover, DNS-VAR produces smaller

RMSEs than DNS-RW in the ultra-long-term maturity of 30-year, while DNS-RW produces

smaller RMSEs in medium to long-term maturities of 5- and 10-year.

Table 4: Root Mean Squared Errors between Estimates and Observed Data

Maturity 3M 6M 1Y 2Y 3Y 5Y 7Y 10Y 30Y Average

From January 1995 to December 2015

DNS-VAR 0.0245 0.0142 0.0478 0.0243 0.0285 0.0335 0.0088 0.0928 0.0067 0.0312
DNS-RW 0.0274 0.0094 0.0494 0.0364 0.0560 0.0104 0.0636 0.0084 0.0531 0.0349

ONS 0.0764 0.0642 0.0614 0.0431 0.0465 0.0436 0.0589 0.0556 0.1056 0.0617

From January 2016 to June 2020

DNS-VAR 0.0315 0.0084 0.0085 0.0121 0.0106 0.0090 0.0023 0.0416 0.0060 0.0145
DNS-RW 0.0332 0.0064 0.0122 0.0199 0.0160 0.0023 0.0182 0.0028 0.0626 0.0193

ONS 0.0760 0.0383 0.0215 0.0179 0.0246 0.0162 0.0148 0.0186 0.0209 0.0276

Full sample

DNS-VAR 0.0259 0.0134 0.0436 0.0226 0.0263 0.0307 0.0080 0.0860 0.0066 0.0292
DNS-RW 0.0285 0.0090 0.0451 0.0340 0.0513 0.0094 0.0582 0.0077 0.0549 0.0331

ONS 0.0763 0.0605 0.0565 0.0398 0.0435 0.0402 0.0538 0.0513 0.0962 0.0576

Note: Figures for the full sample are identical to ones in Table 3.

Based on the estimation results so far, it is difficult to reach clear conclusions on which as-

sumption of the parameter dynamics for the dynamic Nelson-Siegel model is more reliable,

DNS-VAR or DNS-RW. Both DNS-VAR and DNS-RW show a relatively high estimation pre-

cision for the unprecedentedly declined and flattened yield curve after introducing negative

interest rates.17 Nevertheless, DNS-VAR and DNS-RW produce very contrasting estimates for

the level and loading parameters. That observation implies that the identification of the level

and loading parameters becomes extraordinarily difficult in a robust manner under the ultra-

low interest rate environment. That, in turn, casts doubt on the information content of the

yield curve for monetary policy, especially the long-term forward rate or the long-run equilib-

rium level of the yield curve, considering the massive monetary policy intervention to the JGB

market.

4 Monetary Policy Indicators and Their Policy Implications

Based on estimates for the Nelson-Siegel models, I next compute monetary policy indicators,

thereby examining how assessments on monetary policy effects differ depending on the speci-

fications.
17 Comparing likelihood values of DNS-VAR and DNS-RW over subsample periods, they smoothly converge to

likelihood values for the full sample period, and the relationship between the size of likelihood values is also stable.
That observation indicates that the general estimation performances of DNS-VAR and DNS-RW are fairly robust
against the changes in the sample periods, even though estimates sometimes show jumps a little bit.
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4.1 Formulation of monetary policy indicators

I define three monetary policy indicators with reference to those proposed by Okina and Shi-

ratsuka (2004) and Krippner (2015).

The first indicator is the long-term forward rate, or LFR (same unit as interest rates), corre-

sponding to estimated parameter Lt.

LFRt = Lt (9)

LFR measures the steady-state nominal interest rates, implying the convergence level of the

yield curve in the long run. Using Fisher’s equation, LFR is decomposed into a steady-state

real interest rate, a steady-state inflation rate, and a term premium. That is deemed to reflect

market expectations for long-term economic performance.

The second indicator is policy duration, or PD, computed as the inverse of the loading

parameter (unit is years). 18

PDt = 1/λt (10)

PD corresponds to the maturity that minimizes the third term in equation (1), implying the

maximum point in the yield curve with the largest downward effects from the curvature factor.

PD expresses the converging speed of the yield curve toward the long-term equilibrium level

of LFR, reflecting market expectations regarding how long easy monetary conditions persist

into the future.

The third indicator is effective monetary stimulus, or EMS (same unit as interest rates), a

slightly revised indicator proposed in Krippner (2015).

EMSt (τ) = LFRt − Rt(τ) = −
1
τ

∫ τ

m=0
(St + Ctλtm)e−λtmdm. (11)

EMS quantitatively shows how much the yield curve is lowered from the long-term equilib-

rium level of LFR up to the maturity on average.

Following Krippner (2015), I set the parameter τ at 30 years, while making two revisions.

First, I include the negative region of the yield curve for the integral interval in equation (11). I

need to assess the downward effects of the yield curve by including the negative interest rate

regions since the ELB constraints become slightly negative after introducing the negative inter-

est rate policy. Second, I divide the area between LFR and the estimated IFR curve by maturity,

thereby converting the indicator into a spot rate equivalent unit to makes the quantitative im-

plication clearer.19

18 It should be noted that confidence intervals expand significantly after introducing the QQE since the policy
duration is defined as the inverse of the loading parameter.

19 Krippner (2015) employs the specification of the crude are size between LFR and IFR curve without dividing
by maturity. I revise to normalize EMS by dividing with maturity, thereby enabling to decompose EMS into the
contributions across maturities.
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4.2 Estimates for monetary policy indicators

Now let me compare the time-series fluctuations of monetary policy indicators based on the

estimation results of DNS-VAR and DNS-RW. Figure 5 plots ONS estimates with their 95%

confidence intervals and estimates for the two dynamic Nelson-Siegel models.

Figure 5: Monetary Policy Indicators
(1) Long-term forward rate (LFR)

(2) Policy duration (PD)

(3) Effective monetary stimulus (EMS)

Notes: Light blue dotted lines are the 95-percent confidence intervals for ONS estimates. Estimates for LFR are
replication of level parameter in Figure 3 by definition of equation (9).

Focusing on the period after introducing the negative interest rate policy, monetary policy

indicators for ONS and DNS-RW, and DNS-VAR show the different movements, producing

contrasting monetary policy implications. Based on ONS and DNS-RW, the decline in EMS

indicates the weakened downward effects on the entire yield curve since both LFR and PD
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decline, implying the declined yield curve and the shortened expectations about the duration

of the ultra-low interest rate environment. In contrast, based on DNS-VAR, EMS remains rel-

atively high since LFR remains at a level close to that before introducing the negative interest

rate policy, and PD follows an upward trend. It is still difficult to judge which estimation re-

sult is more appropriate in tracing the yield curve dynamics under the ultra-low interest rate

environment. 20

In any event, the above results clearly show that the estimates for LFR, which correspond

to the long-run equilibrium level of the yield curve, play a critical role in assessing monetary

easing effects through yield curve dynamics. In fact, the forward guidance of keeping inter-

est rates at a low level is expected to produce a greater easing effect as the level of LFR, the

converging level of the yield curve in the long run, becomes higher.

4.3 Discussion on monetary policy implications

I decompose the estimated EMS by maturity in Figure 6. The maturity is divided into three

ranges: 0- to 3-year, 3- to 10-year, and 10- to 30-year.

Figure 6: Maturity Decomposition of EMS
(1) DNS-VAR

(2) DNS-RW

20 As observed by the upward trend of PD at least before introducing QQE, the yield curve tends to converge
more slowly toward the long-run level. That suggests that the time scale in the financial markets becomes longer
under the ultra-low interest rate environment. PD seems to be a good indicator for understanding the financial
cycle time, as discussed in Filardo, Lombardi and Raczko (2018).
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Looking at the figure, the overall downward pressure on the yield curve measured by EMS

up to the maturity of 30-year shows a contrasting movement for the estimation result of DNS-

VAR and DNS-RW after introducing negative interest rates. Such differences, however, become

much smaller when focusing on the estimates for the maturity of 0- to 3-year, which is consid-

ered as strongly influencing the effective aggregate demand. The contributions to EMS from

the maturity of 0- to 3-year remain almost unchanged around 0.3 to 0.5 percentage points over

the entire estimation period. Monetary easing effects of additional policy actions are realized

by lowering the yield curve with the maturity of 3- to 10-year from ZIRP, QE to CE, but after

introducing QQE, they mainly come from the decline in the yield curve at longer maturity of

10- to 30-year. After introducing negative interest rates, it can be confirmed that the evaluation

of this part is in contrast with the estimation results for DNS-VAR and DNS-RW. DNS-VAR in-

dicates that EMS continues to expand in the maturity of 10- to 30-year with the relatively high

estimates of LFR. DNS-RW shows that EMS peaks around the end-2017 then starts declining

due to the decline in LFR.

Figure 7 compares the estimates for EMS and LFR of DNS-VAR and DNS-RW. Although the

EMS estimates move differently in DNS-VAR and DNS-RW after introducing negative interest

rates, EMS comes close to LFR in both estimation results. By definition, the estimates for EMS

have an upper bound at LFR, as shown in equation (11). Thus, it should be noted that smaller

spreads between LFR and EMS imply that monetary policy now has very limited room for

producing further easing effects through yield curve dynamics, even considering the ultra-long

maturity zone of 0- to 30-year.

To sum up, the evaluation of additional monetary easing effects solely depends on the nu-

anced parameter identification of the dynamic Nelson-Siegel model under the ultra-low inter-

est rate environment. The unprecedentedly declined and flattened yield curve in the ultra-long

maturity zone of 10- to 30-year is estimated as the decline in the convergence speed toward

the long-run equilibrium level of nominal interest rates or the decline in the long-run equilib-

rium level itself. However, regardless of the estimated level of the long-run equilibrium level,

monetary policy produces relatively limited and relatively constant easing effects within a time

frame of standard macroeconomic stabilization policy of 0- to 3-year over the last two decades.

In addition, monetary policy now has very limited room for further easing effects even con-

sidering the yield curve dynamics for ultra-long-term maturity zone of 10- to 30-year. Based

on the estimation results in this paper, under the financial condition with ultra-low interest

rates, even full-fledged employment of unconventional monetary policy measures fails to de-

liver sufficient easing effects to escape from the ELB constraint, thus just entrenching market

expectations about the continued ultra-low interest rate environment. 21

21 Okina and Shiratsuka (2004) point out that the policy commitment to keeping the policy interest rate low for
an extended period into the future is unable to produce sufficient easing effects since LFR in Japan already stays
low. They argue that the policy commitment results in containing the policy interest rates at the ELB constraint.
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Figure 7: Spreads between EMS and LFR
(1) DNS-VAR

(2) DNS-RW

5 Conclusions

In this paper, I employed the dynamic Nelson-Siegel model with the time-varying loading

parameter to estimate the yield curve dynamics under the ultra-low interest rate environment

using Japanese data from the mid-1990s. Based on the estimation results, I then constructed

monetary policy indicators to examine the effectiveness of monetary policy.

In estimating the Nelson-Siegel model under the ultra-low interest rate environment, pa-

rameters for the nonlinear functional form, especially the level and loading parameters, are

difficult to identify in a robust manner. In that context, it is shown that the introduction of the

time-varying loading parameter for controlling the convergence speed toward the long-run

level of the yield curve is very effective in improving the estimation precision even under the

ultra-low interest rate environment.

At the same time, however, contrasting estimates for the level and loading parameters are

produced depending on the assumption of the dynamic process for time-varying parameters,

vector autoregressive (VAR) process or random walk (RW) process after introducing negative

interest rates. The level and loading parameters are estimated at a relatively high level in the

VAR process, while they decline significantly in the RW process.

The contrasting estimates for the level and loading parameters play a critical role in assess-
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ing monetary policy effects after introducing negative interest rates. The estimated monetary

policy indicators exhibited contrasting movements, reflecting the difference in the estimated

level parameters from different assumptions of the dynamic process of time-varying parame-

ters for the dynamic Nelson-Siegel model: maintained relatively high level of easing effects in

the VAR process, while significant decline in the RW process.

After introducing Quantitative and Qualitative Monetary Easing (QQE) in April 2013, mon-

etary policy produces easing effects by lowering the yield curve in the ultra-long-term maturity

zone of 10- to 30-year. That implies that monetary policy is unable to enhance easing effects

within the time frame of standard macroeconomic stabilization policy, regardless of the as-

sumption of the dynamic process of the time-varying parameters. The estimated monetary

policy indicators show that easing effects from shorter maturity than 10-year remain almost

unchanged over the last two decades. I argue that monetary policy fails to produce sufficient

easing effects within the time frame of the standard macroeconomic stabilization policy, even

with various and massive unconventional monetary policy measures under the current ultra-

low interest rate environment. Even full-fledged employment of unconventional monetary

policy measures fails to deliver sufficient easing effects to escape from the ELB constraint, thus

entrenching market expectations about the continued ultra-low interest rate environment.
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