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Abstract. We consider the one-shot Prisoner’s Dilemma played by pro-
grams or machines, and show that the mutual cooperation is rather an or-
dinary event under the bounded rationality expressed by the computabil-
ity. The kin recognition player(KRP, for short) is a program with the
ability to recognize the opponent, and cooperate if and only if the op-
ponent iskin to itself. We prove the existence of the KRP, and also of
altruistic players which unilaterally self-sacrifice to the opponents that
are kin to a reference KRP. It turns out that while any KRP is evolution-
ary stable, the self-sacrificing altruistic player is not.
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1. Introduction

The possibility of cooperation in the Prisoner’s Dilemma has been well-
studied, and now seems to be well-understood. The classical folk theorem
describes rational cooperation in a repeated play under appropriate pun-
ishment mechanisms; and bounded rationality as modeled by automata or
machines with computational constraints can also induce cooperation be-
tween players. The bounded rationality approach can be found, for exam-
ple, in Rubinstein [11], Abreu and Rubinstein [1], Neyman [8], Megiddo
and Wigderson [7], and others. Howard [6] also presented machine players,
and argued even more drastically that cooperation is possible in the one-shot
Prisoner’s Dilemma. Tennenholtz [12] has considered the machine program
with essentially the same ability to that of Howard [6]. With imperfect in-
formation, Harrington [5] also showed that cooperation can be obtained in
the one-shot play.

Among others, the argument of Howard [6] is remarkable in that it is
based on the logical feasibility of recognizing the opponent players. The
self-recognition player(the SRP, for short) has the ability to recognize the
typeof the opponent, and cooperates if and only if the opponent is identical
to itself. Under the assumption that players are drawn from a program pool
and matched to play the Prisoner’s Dilemma, such an ability of the SRP
leads to mutual cooperation between the same SRPs in the one-shot play.
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Thesecret handshake mutantdue to Robson [10], too, has a similar ability
to recognize opponents through signaling.

As is also mentioned in Howard [6], however, a drawback of the SRP
would be that it cannot by definition cooperate with an opponent that is
different from itself yet behaves identically. In other words, the SRPcannot
cooperate with its kin, relatives, friends, or fellows, leaving considerable
inefficiency in the achievement of mutual cooperation.

In this paper, we shall first extend this ability of cooperation to a wider
class of players which might be interpreted as brothers and sisters, a family,
relatives and kin, thereby obtaining the cooperation as rather an ordinary
behavior in the one-shot Prisoner’s Dilemma. Howard [6] discusses several
extensions of the SRP, but here we present an extended model via the com-
putability approach. Two players will be calledkin to each other if they are
in a kin relation in the sense that they have anancestorin common. This
will turn out to be arecursive equivalence relation; that is, an equivalence
relation that can be decidable by a fixed algorithm in finite steps. We will
call the player with the ability to cooperate with its kinthe kin-recognition
player(KRP, for short).

One of the interesting consequences of considering in the computabil-
ity setting is the logical existence of a highly altruistic player associated
with a KRP. This player unilaterallysacrificesitself to any opponent that is
kin to the KRP, being certainly exploited by the opponent. Such a player,
though not a KRP, necessarily exists along with any KRP. Therefore, the
altruism may be attributed to the bounded rationality as expressed by the
computability.

We then discuss the stability of a KRP and other players in an evolution-
ary environment. It turns out that while any KRP is evolutionary stable,
the altruistic player is not: the unilateral altruism is hard to prevail in a
population. This is in accord with the fact that mutual cooperation is more
frequently observed compared to unilaterally altruistic behavior in real life
situations.

A crucial structure of the KRP is the self-reference thata KRP is a player
that recognizes the opponent as aKRP. Howard [6] presented the SRP by
directly constructing an algorithm, both in English and in a programming
language, dissolving the self-reference. We will prove the existence of a
KRP by arecursion theoremin computability theory, which enables us to
treat the self-referential property of a KRP.

Finally, we conclude with some remarks.
In Appendix, some of the elements of computability theory necessary for

our results is summarized.

2. The Self-Recognition Player

Let us consider the following Prisoner’s Dilemma withc denoting coop-
eration, andd, defection.
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c d
c 3,3 0, 4
d 4,0 1, 1

A Nash equilibrium is a pair of strategies, each of which is a best reply to
the other. Thus, (d,d) is the only Nash equilibrium in this game.

Theself-recognition player(SRP) introduced by Howard [6] is a strategy
that may be interpreted to have acquired, in the evolutionary process, the
ability to recognize the opponent and cooperate if and only if the opponent
is identical to itself. Thesecret handshake mutant(Robson [10]) would
be an example of such players acting to the same effect through mutually
recognizable signaling.

Denoting SRP bys, the Prisoner’s Dilemma is augmented as follows.

c d s
c 3,3 0,4 0,4
d 4,0 1,1 1,1
s 4,0 1,1 3,3

There are now two Nash equilibria, (d, d) and (s, s). In the evolutionary
interpretation, however, only the latter equilibrium can survive the evolu-
tionary process. To see this, let us recall the definition of theevolutionary
stable strategy(ESS, for short): a strategyx is said to be an ESS if (x, x)
is a Nash equilibrium, and ify is also a best reply tox then x is a better
reply toy thany is to itself. Thus, the strategys is the only ESS, and mutual
cooperation will prevail in the population.

3. The Kin-Recognition Player

In order to discuss the extension of SRP and its general existence, let us
treat SRP in a more rigorous framework.

In this paper, a program is a finite algorithm that computes a unarypartial
function f from N = {0,1, 2, ... } to N, i.e., a functionf : D( f ) ⊆ N → N,
whereD( f ) = {x | f (x) is defined} is the domain off (see Appendix (1)).
Such a functionf is calledcomputable. Any such program can be coded
into a natural number by a fixed coding system, so thatN is also the set of
the code numbers orindicesof all such programs, and that there are only
countable numbers of computable functions (Appendix (2)).

Let x be now the index of a program computing the functionϕx. Program
x is then a player of the Prisoner’s Dilemma if the range of the functionϕx

is {c,d} ( N, where the numbersc andd (c , d) represent cooperation and
defection, respectively.

We will assume thatevery program is fed as an input a natural num-
ber, the index of the opponent program. Or, as Binmore [3] metaphorically
suggested, every program may have its index labeled on its ‘forehead’ and
have the ability each other to read it. Other abilities such as lying or cheating
(e.g., the ‘sucker punch mutant’ due to Robson [10]) could also be treated in
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the computability setting, but here we confine ourselves to ‘honest players’
only.

Programx follows the procedure according to its own instructions: it may
decode the input and simulate the behavior of the opponent to determine its
output, or may simply ignore it and produce an output, or may produce
nothing. Since the functionϕx is partial,ϕx may be undefined for some
inputs. The ability of recognition in the Prisoner’s Dilemma, however, re-
quires a player to compute atotal function, i.e., a function with domainN
as defined below.

Let us now consider, for eachx ∈ N andy ∈ N, a binary relationK(x, y).
We will later define a binary relation thatx and y are kin to each other.
For this purpose, let us introduce a basic property ofK(x, y). The relation
K(x, y) is said to berecursiveif there exists a computable functionf (x, y)
satisfying

f (x, y) =

1 i f K (x, y),

0 i f ¬K(x, y).

Thus, if K(x, y) is recursive, whether or notx and y are in this relation
is decidableby a finite algorithm (see Appendix (6) and (3)). Then, the
following lemma is basic to our results.

Lemma 1. Let K(x, y) be a recursive relation. Then, there exists a program
x such that for all y∈ N,

ϕx(y) =

c i f K(x, y)

d i f ¬K(x, y).

Proof. Since the relationK(x, y) is recursive by assumption, the function h
defined by

h(x, y) =

c f(x, y) i f K (x, y)

d + f (x, y) i f ¬K(x, y)

is computable. Thesecond recursion theoremthen guarantees the existence
of afixed point, i.e., an indexx such that

ϕx(y) = h(x, y).

(Appendix (8)). Hence, there exists an indexx such that

ϕx(y) =

c i f K(x, y)

d i f ¬K(x, y).

�

The recursive relation assures the existence of a playerx that cooperates
if and only if the opponenty is in the relationK(x, y). Further, the recursive-
ness ofK(x, y) alone provides potentially a wide domain of cooperation in
the one-shot Prisoner’s Dilemma. Since there are infinitely many recursive
relations, the cooperating playerx will not be an exception in the environ-
ment of machine players. However, the cooperation may not be mutual;
and, the opponenty of x with K(x, y) may not be a player of the Prisoner’s
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Dilemma. To obtain mutual cooperation, therefore, the recursive relation
should have an appropriate structure.

By the way, theself-recognition player xis one that is given by the fol-
lowing:

Definition 1. Program x is said to be a self-recognition player(SRP)if for
all y ∈ N,

ϕx(y) =

c i f y = x

d i f y , x.

The existence of SRPs is a direct consequence of the above lemma, since
the equality relation is recursive.

Proposition 1. There exists a self-recognition player.

4. The Kin Relation with A Common Ancestor

For eache ∈ N, let us consider the setIe = {z | ϕz = ϕe}. This is the set of
indices of all programs that compute the same functionϕe, that is, programs
that output the same action. Then, it is clear that the relationy ∈ Ix is an
equivalence relation. But, the setIx is not recursive due toRice’s Theorem
(Appendix (9)). Intuitively, this can be seen by observing thaty ∈ Ix iff
ϕy = ϕx and that the latter relation is not decidable because the equality of
functions cannot be assured in any finite number of steps.

The non-recursiveness ofIe makes it impossible for any memberx ∈ Ie to
decide whether the opponenty is also a member ofIe or not, i.e., whether to
cooperate or not. Therefore, it is at least necessary to have a set of ‘fellow’
programs as a recursive set.

For eache ∈ N, therefore, consider the subsetI ∗e of Ie; namely,

e ∈ I ∗e ( Ie.

The setI ∗e is intended to mean a set of alldescendantsof eby the following
assumptions.

Assumption 1: I ∗e is a recursive set.
Assumption 2: x ∈ I ∗e impliese≤ x.
Assumption 3: I ∗x ∩ I ∗y , ∅ implies I ∗x ⊆ I ∗y or I ∗y ⊆ I ∗x.

An immediate example ofI ∗e satisfying the assumptions 1,2 and 3 would
be obtained if the members ofI ∗e are programs generated by adding toe
any finite number of redundant instructions in a recursive way. Consider,
for example, the simple case in which there are two different redundant
instructions. Then, the same function is computed by 2n different programs
with n redundant instructions added toe allowing repetitions. LettingI ∗e be
the set of all such programs forn = 1,2, . . ., the setI ∗e can be made recursive
by thePadding Lemma(e.g., Proposition II.1.6 in Odifreddi [9]).

Or, we may resort to a biological analogy that descendants as living
organisms generally have acquired more complexity than the ancestor in
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the evolutionary process. The greater program-sizes of descendants might,
therefore, be viewed as reflecting such complexity of subroutines which are
irrelevant tothe main part playing the Prisoner’s Dilemma.

In this way, we may call the members ofI ∗e the descendants ofe, which
is also justified by the following remark.

Remark 1. For any x,e ∈ N, x∈ I ∗e iff I ∗x ⊆ I ∗e. That is, x is a descendant of
e iff the descendants of x are also the descendants of e.

This is so because by Assumption 2 we have that¬(I ∗e ( I ∗x), sinceI ∗e ( I ∗x
would lead to the contradiction thatx < e; and then, Assumption 3 implies
that I ∗x ⊆ I ∗e. The converse is clear byx ∈ I ∗x. Thus, due to the recursively
nested structure, the setI ∗e can be represented as atree.

The singleton set{e} is a degenerate example ofI ∗e. Here, we allow a
slight abuse of the use of the word: any program is a descendant and an
ancestor of itself.

We can now define thekin relation K∗(x, y) as follows : For allx andy,

K∗(x, y)⇔ ∃w ≥ 0 such that x∈ I ∗w ∧ y ∈ I ∗w .

The kin relationK∗(x, y) can be read as stating thatx andy arekin to each
other if and only if they have anancestorin common.

Remark 2. If we take I∗e = {e} for each e∈ N, then the relation K∗(x, y)
reduces to the equality relation x= y.

The relationK∗(x, y) has the desired property as shown below.

Lemma 2. The kin relation K∗(x, y) is a recursive equivalence relation.

Proof. First, we show that it is an equivalence relation. It will be enough to
check the transitivity. Assume thatK∗(x, y) andK∗(y, z). Then, there arew
andv such that

x ∈ I ∗w ∧ y ∈ I ∗w andy ∈ I ∗v ∧ z ∈ I ∗v.

Hence,y ∈ I ∗w ∩ I ∗v , ∅, so that by Assumption 3,I ∗w ⊆ I ∗v or I ∗v ⊆ I ∗w.
Then,w andv have a common ancestoro; that is, there exists ano such that
I ∗w ⊆ I ∗v ⊆ I ∗o, or I ∗v ⊆ I ∗w ⊆ I ∗o. Hence,

x ∈ I ∗o ∧ z ∈ I ∗o,

which shows thatK∗(x, z), i.e., the transitivity.
To show thatK∗(x, y) is recursive, first note thatK∗(x, y) has abounded

search for a numberw, that is,

K∗(x, y) ⇔ ∃w ≤ z s.t. x ∈ I ∗w ∧ y ∈ I ∗w,

wherez= min{x, y}. This must be so, because by Assumption 2, 0≤ w ≤ x
and 0≤ w ≤ y whenever the common ancestorw of x andy exists. By As-
sumption 1, the two relationsx ∈ I ∗w andy ∈ I ∗w are recursive. Conjunction
of two recursive relations is recursive, and a bounded search for a number
satisfying a recursive relation again defines a recursive relation (Appendix
(5) and (6)). Hence,K∗(x, y) is recursive. �
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We are now ready to define thekin recognition player.

Definition 2. Let K∗(x, y) be the kin relation. Then, program x is said to be
a kin-recognition player(KRP) if for all y ∈ N,

ϕx(y) =

c i f K∗(x, y)

d i f ¬K∗(x, y).

The kin-recognition player is thus a program that cooperates if and only
if the opponent is kin to itself.

Proposition 2. Under assumptions 1, 2 and 3:
(1) There exists aKRP.
(2) If x is a KRPand K∗(x, y), then y is also aKRP.

Proof. Existence follows from lemmas 2 and 1. Result 2 follows by the fact
thatK∗(x, y) is an equivalence relation. �

If x is a KRP, the members of{y | K∗(x, y)}, the equivalence class ofx,
are all KRPs cooperating with each other. Since{y | K∗(x, y)} is generally
an infinite set, the domain of mutual cooperation is much broader than that
of the SRP.

5. Unilateral Altruism

The fact that any KRPx cooperates withy if and only if K∗(x, y), i.e.,
y is kin to x just implies thatx regards the opponentz with ¬K∗(x, z) as
a stranger. This is so even if the strangerz computes the same function
ϕz = ϕx. In the pool of programs that are strangers to KRPx, there are
players of Prisoner’s Dilemma that behave in fact strangely. We show that
there exists a program sacrificing itself unilaterally to all players kin tox.

Givenx, let us defineD(x) := {y | ϕy(x) = d}. This is the set of programs
not cooperating withx.

Definition 3. Program z is said to be a self-sacrificing player if there is a
recursive set D∗ ( D(z) such thatϕz(y) = c ∀y ∈ D∗

The self-sacrificing player is a player who cooperates in spite of being
certainlyexploited.

Proposition 3. Let x be aKRP. Then, there exists a self-sacrificing player
z such that¬K∗(z, x) and

ϕz(y) =

c i f K∗(y, x)

d i f ¬K∗(y, x)

with D∗ = {y | K∗(y, x)}.
Proof. Take a KRPx, and consider the set{y | K∗(y, x)}. Then, by construc-
tion, we have{y | K∗(y, x)}( Ix. The inclusion is proper, since{y | K∗(y, x)}
is a recursive set, whereasIx is not. Then, there existsz such that

z ∈ Ix \ {y | K∗(y, x)}.
7



Hence,ϕz = ϕx and¬K∗(z, x). Moreover,ϕy(z) = d for all y with K∗(y, x),
since¬K∗(z, x) is equivalent to¬K∗(z, y) wheneverK∗(y, x). Hence,z is
self-sacrificing withD∗ = {y | K∗(y, x)}. �

The self-sacrificing playerz might be called akin-to-x-altruisticplayer,
and anx-altruistic player in the special case where the KRP is just an SRP.
The playerz self-sacrifices just for any opponenty that is kin to x, but
defects otherwise even when the opponent is identical to itself. The altruism
is never reciprocal, since by definition the opponent players that are kin-to-x
will not cooperate with the playerz.

It is somewhat surprising that the very existence of a KRP should entail
the existence of such a self-sacrificing, altruistic player. If the rationality of
players wereperfectso that{y | y is kin to x} = Ix, then such an altruistic
player could not exist at all. In this sense, the altruistic behavior can be
ascribed to the bounded rationality as embodied by the computability.

6. Evolutionary Stability

A legitimate question to be posed then would be whether or not such
cooperation and the unilateral altruism can prevail in a population. Since
any SRP is an ESS, any KRP can be expected to prevail as well, which is in
fact the case as shown below.

Let J ( N be a nonempty subset of players of the Prisoner’s Dilemma.
We sayJ is homogeneousif there is a numberν such that for allx, y ∈ J,
the pair (x, y) generates the unique identical payoff ν to each. Now, let the
Prisoner’s Dilemma be played by anyx, y ∈ N drawn from the population.

Definition 4. Let J( N. Then, any member of J is said to be a collectively
evolutionarily stable strategy(CESS)if

(1) J is homogeneous.
(2) For any x, y ∈ J, (x, y) is a Nash equilibrium.
(3) For any x∈ J, if there exists z< J such that z is also a best reply to

x, then x is a better reply to z than z is to itself.

The setJ satisfying conditions (1), (2) and (3) is a special case of the
evolutionarily stable setdefined by Thomas [13], and is a straightforward
extension of the ESS to a set of strategies yielding a unique identical payoff

against any member of the set. The set of kin tox∗ for any given KRPx∗ is
a set of CESSs as can be seen from the following result.

Proposition 4. Let K∗(x, y) be the kin relation, and let x∈ Jx∗ = {y |
K∗(x∗, y)} for some KRP x∗. Then x is aCESS.

Proof. It will be sufficient to check condition 3 in the definition of CESS.
Let z < Jx∗. Since every member ofJx∗ defects againstz, the payoff to z is
at most 1. Hence,z cannot be a best reply to anyx ∈ Jx∗, and condition 3 is
vacuously satisfied. �
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As for the stability of the unilaterally altruistic player, the situation is
opposite: it will not become dominant, for the altruistic behavior would
become more and more hard to take because the matching would tend more
and more to be the one defecting each other. In fact, any such kin-to-x-
altruistic playerz cannot survive the evolutionary process as indicated in
the payoffmatrix below.

c d x z
c 3,3 0,4 0,4 0,4
d 4,0 1,1 1,1 1,1
x 4,0 1,1 3,3 4,0
z 4,0 1,1 0,4 1,1

The KRPx is the only ESS in this game, and the kin-to-x-altruistic playerz
is not an ESS as long as a KRP is in the population.

Thus, while cooperation among a family, relatives and kin can evolve in
the population, the altruism would become extinct, which would explain
why such a self-sacrificing, unilateral altruism is not so widely observed in
real life situations.

7. Concluding Remarks

Assuming players of Prisoner’s Dilemma as programs (finite algorithms),
we have shown that the self-recognition player (SRP) can be extended to the
kin-recognition player (KRP) cooperating with much larger class of oppo-
nent players. The kin relation is defined as having an ancestor in common,
which led to a recursive equivalence relation guaranteeing the existence of
KRPs.

It was shown that a KRP entails the existence of an altruistic player co-
operating with any opponent in spite of being certainly exploited. The exis-
tence of such a player turned out intrincically dependent upon the bounded
rationality in terms of computability as applied in this paper. In the evolu-
tionary interpretation, such an altruism is to be extinct, whereas KRP was
shown to be evolutionary stable, which would not contradict the theory of
kin selection in evolutionary biology.

Due to the property that the kin relation is an equivalence relation, any
KRP does not cooperate across different equivalence classes of KRPs. Since
we are concerned with cooperation based on the kin relation, this would be
a natural consequence rather than a limitation of KRP: real players not in
thesamekin relation may not necessarily cooperate with each other.

But, can we have any general relation that admits a broader domain of
cooperation across different equivalence classes of KRPs? Consider the set

I :=

{
x ∈ N

∣∣∣∣ ∀y ∈ N, ϕx(y) =

c i f K∗(x, y)

d i f ¬K∗(x, y)

}
.
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I is the set of all KRPs; namely, any memberx ∈ I cooperates if and only
if the opponent is in the Kin relation withx. If this set were recursive, we
could obtain a programx such that

ϕx(y) =

c i f x ∈ I ∧ y ∈ I

d i f x < I ∨ y < I .

That is, any memberx ∈ I cooperates withanymember ofI , i.e., with any
player inanyequivalence class of KRPs. But, here again, Rice’s Theorem
stands in the way:I is a set of indices of programs computing unary func-
tions which constitute anonempty proper subsetof all unary computable
functions. Hence, the relationx ∈ I is undecidable.

Rice’s Theorem is indeed a source of many negative results in com-
putability theory, though we do not regard the above property as a defect
of KRP. Rather, we may conclude that KRP is one of logicallymaximal, as
well as behaviorally reasonable extensions of SRP in achieving cooperation
in the one-shot Prisoner’s Dilemma.

Appendix
Here, some of the elements of computability theory is summarized. For formal treat-

ments, the reader may refer to Cutland [4] , or Odifreddi [9].

(1). Intuitively, a partial functionf from N = {0,1, 2, ...} to N is said to becomputableif
there exists a finite algorithm such as aTuring machineor a unlimited register machine
to computef . The definition is similar for n-ary functions. There are several formaliza-
tions of the intuitive concept ofeffective computability, all of which have turned out to
be equivalent to theTuring-machine computability, giving rise to the well-defined class
of all partial recursive functions. Thus, the partial recursive functions are considered as
the formalization of the functions which are effectively computable in the intuitive sense
(Church’s thesis).

(2). Any algorithm or program computing a unary function is a finite sequence of well-
defined instructions. LetP be a set of all such programs. Then a bijectionγ : P → G ⊂ N
can be defined and is called acodingor Gödel numberingif γ andγ−1 are both computable
in the following sense:

a: Given a particular programP ∈ P, we can effectively find the code number
γ(P) ∈ G;

b: Given a numbern ∈ G, we can effectively find the programP = γ−1(n).

There are several established ways to code finite objects. Fixing on one coding, every
computable (unary) function appears in the enumeration:

ϕ0, ϕ1, ϕ2, ϕ3, . . .

where, for eachϕe, the numbere is theindex(code number) of a program computing the
functionϕe. Thus, a natural number can be identified with the program with that number
as its index.

(3). An n-aryrelationor predicate K(x1, . . . , xn) is said to bedecidable, recursiveor com-
putableif its characteristic function cR(x1, . . . , xn) is computable, i.e., if the total function

cR(x1, . . . , xn) =

1 if R(x1, . . . , xn)

0 if ¬R(x1, . . . , xn)
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is computable.

(4). We say that an n-ary relationQ(x1, . . . , xn) is partially decidableif its partial charac-
teristic function f(x1, . . . , xn) is computable, i.e., if the partial function

f (x1, . . . , xn) =

1 if Q(x1, . . . , xn),

undefined if¬Q(x1, . . . , xn)

is computable.

(5). It can be shown that an n-ary relationQ(x1, . . . , xn) is partially decidable iff there is a
decidable n+1-ary relationR(x1, . . . , xn, y) such that

Q(x1, . . . , xn) iff ∃yR(x1, . . . , xn, y).

The relation in the right-hand side involves theunbounded searchfor a numbery satisfying
the decidable relationR(x1, . . . , xn, y). Checking successively fory = 0,1,2, . . . whether or
not y satisfies the relationR, the search procedure stops if it finds such ay; otherwise the
search goes on for ever.

If the above search procedure isbounded, i.e.,

Q(x1, . . . , xn) iff ∃y ≤ zR(x1, . . . , xn, y),

then the relationQ(x1, . . . , xn) is said to be decidable, for only a finite number of checking
is needed to decide whether or notR(x1, . . . , xn, y).

(6) . A subsetA of N is said to berecursiveif the membership relationx ∈ A is decidable.
The set of primes, the set of odd numbers, the setN, the empty set and finite sets are
immediate examples of recursive sets. A finite union of recursive sets are also recursive.

(7). A subsetA of N is calledrecursively enumerable(r.e. for short) if the membership
relationx ∈ A is partially decidable. Recursive sets are recursively enumerable, since the
partial characteristic function for the relationx ∈ A, where A is recursive, can be always
obtained by having the computation of the characteristic function for the relationx ∈ A
enter a loop wheneverx < A.

An important r.e. set that isnot recursiveis {x | ϕx(x) is defined}. The setI (K∗)
appeared in Concluding Remarks is not recursively enumerable due to the theorem of Rice
and Shapiro (see, Cutland [4, Theorem 7-2.16, p.130]); and the complementI (K∗)c in N is
also not recursively enumerable (Cutland [4, Theorem 7-3.4, p.135]). Hence, the decision
problem whether or noty is a KRP is not just undecidable in the same sense as the problem
whether or notϕx(x) is defined, but far more difficult than this problem.

(8) The Second Recursion Theorem.
Let f be a 2-ary computable function. Then, there exists an integere
such thatϕe(x) ' f (e, x).

Here, the symbol' means that respective values of both sides are either undefined or
defined with the same value. The numbere is called afixed point. When f is a total
function, there are infinitely many fixed points (see e.g., Odifreddi [9]). A fixed pointe is
the index of a program that computes the functiondefined by using e itself; therefore, it is
widely useful in showing the existence of programs defined in aself-referentialway.

This theorem is true forx = (x1, ..., xn) and (n+1)-ary computable functionf .

(9) Rice’s Theorem.

Suppose thatB is a nonempty proper subset of all unary computable
functions. Then the problemϕe ∈ B is undecidable.

That is, wheher or not a given functionehas a certain non-trivial property is generally un-

decidable. This theorem is a source of many impossibility results in computability theory.
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For example, the setIe = {z | ϕz = ϕe} is not recursive, since the set{ϕz | z ∈ Ie} is a

nonempty proper subset of all unary computable functions.
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