MUTUAL COOPERATION AND UNILATERAL ALTRUISM IN A
ONE-SHOT PRISONER’S DILEMMA
- A COMPUTABILITY APPROACH -

MIKIO NAKAYAMA

AsstracT. We consider the one-shot Prisoner’s Dilemma played by pro-
grams or machines, and show that the mutual cooperation is rather an or-
dinary event under the bounded rationality expressed by the computabil-
ity. The kin recognition playeiKRP, for short) is a program with the
ability to recognize the opponent, and cooperate if and only if the op-
ponent iskin to itself. We prove the existence of the KRP, and also of
altruistic players which unilaterally self-sacrifice to the opponents that
are kin to a reference KRP. It turns out that while any KRP is evolution-
ary stable, the self-sacrificing altruistic player is not.

Keywords: Prisoner’s dilemma, computability, self-recognition, kin relation, altruism,
self-sacrifice

1. INTRODUCTION

The possibility of cooperation in the Prisoner’s Dilemma has been well-
studied, and now seems to be well-understood. The classical folk theorem
describes rational cooperation in a repeated play under appropriate pun-
ishment mechanisms; and bounded rationality as modeled by automata or
machines with computational constraints can also induce cooperation be-
tween players. The bounded rationality approach can be found, for exam-
ple, in Rubinstein [11], Abreu and Rubinstein [1], Neyman [8], Megiddo
and Wigderson [7], and others. Howard [6] also presented machine players,
and argued even more drastically that cooperation is possible in the one-shot
Prisoner’s Dilemma. Tennenholtz [12] has considered the machine program
with essentially the same ability to that of Howard [6]. With imperfect in-
formation, Harrington [5] also showed that cooperation can be obtained in
the one-shot play.

Among others, the argument of Howard [6] is remarkable in that it is
based on the logical feasibility of recognizing the opponent players. The
self-recognition playe(the SRP, for short) has the ability to recognize the
typeof the opponent, and cooperates if and only if the opponent is identical
to itself. Under the assumption that players are drawn from a program pool
and matched to play the Prisoner’s Dilemma, such an ability of the SRP
leads to mutual cooperation between the same SRPs in the one-shot play.
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The secret handshake mutadiie to Robson [10], too, has a similar ability
to recognize opponents through signaling.

As is also mentioned in Howard [6], however, a drawback of the SRP
would be that it cannot by definition cooperate with an opponent that is
different from itself yet behaves identically. In other words, the 8&ot
cooperate with its kin, relatives, friends, or fellows, leaving considerable
inefficiency in the achievement of mutual cooperation.

In this paper, we shall first extend this ability of cooperation to a wider
class of players which might be interpreted as brothers and sisters, a family,
relatives and kin, thereby obtaining the cooperation as rather an ordinary
behavior in the one-shot Prisoner’s Dilemma. Howard [6] discusses several
extensions of the SRP, but here we present an extended model via the com-
putability approach. Two players will be call&th to each other if they are
in akin relationin the sense that they have ancestorin common. This
will turn out to be arecursive equivalence relatipthat is, an equivalence
relation that can be decidable by a fixed algorithm in finite steps. We will
call the player with the ability to cooperate with its Kime kin-recognition
player (KRP, for short).

One of the interesting consequences of considering in the computabil-
ity setting is the logical existence of a highly altruistic player associated
with a KRP. This player unilaterallgacrificegtself to any opponent that is
kin to the KRP, being certainly exploited by the opponent. Such a player,
though not a KRP, necessarily exists along with any KRP. Therefore, the
altruism may be attributed to the bounded rationality as expressed by the
computability.

We then discuss the stability of a KRP and other players in an evolution-
ary environment. It turns out that while any KRP is evolutionary stable,
the altruistic player is not: the unilateral altruism is hard to prevail in a
population. This is in accord with the fact that mutual cooperation is more
frequently observed compared to unilaterally altruistic behavior in real life
situations.

A crucial structure of the KRP is the self-reference thEKRPis a player
that recognizes the opponent aK&P. Howard [6] presented the SRP by
directly constructing an algorithm, both in English and in a programming
language, dissolving the self-reference. We will prove the existence of a
KRP by arecursion theorenin computability theory, which enables us to
treat the self-referential property of a KRP.

Finally, we conclude with some remarks.

In Appendix, some of the elements of computability theory necessary for
our results is summarized.

2. THE SELF-RECOGNITION PLAYER

Let us consider the following Prisoner’s Dilemma witllenoting coop-
eration, and, defection.
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A Nash equilibrium is a pair of strategies, each of which is a best reply to
the other. Thus,d; d) is the only Nash equilibrium in this game.
Theself-recognition playe(SRP) introduced by Howard [6] is a strategy
that may be interpreted to have acquired, in the evolutionary process, the
ability to recognize the opponent and cooperate if and only if the opponent
is identical to itself. Thesecret handshake mutaRobson [10]) would
be an example of such players acting to the saffexethrough mutually
recognizable signaling.
Denoting SRP by, the Prisoner’'s Dilemma is augmented as follows.
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There are now two Nash equilibriagd,d) and @, s). In the evolutionary
interpretation, however, only the latter equilibrium can survive the evolu-
tionary process. To see this, let us recall the definition ofeti@utionary
stable strategfESS, for short): a strategyis said to be an ESS ifx(x)

is a Nash equilibrium, and ¥ is also a best reply ta thenx is a better
reply toy thany is to itself. Thus, the strateggis the only ESS, and mutual
cooperation will prevail in the population.

3. THeE KiN-RECOGNITION PLAYER

In order to discuss the extension of SRP and its general existence, let us
treat SRP in a more rigorous framework.

In this paper, a program is a finite algorithm that computes a yreatal
function f from N = {0,1,2,... } to N, i.e., a functionf : D(f) € N — N,
whereD(f) = {x | f(X) is defined is the domain off (see Appendix (1)).
Such a functionf is calledcomputable Any such program can be coded
into a natural number by a fixed coding system, so Mh& also the set of
the code numbers ondicesof all such programs, and that there are only
countable numbers of computable functions (Appendix (2)).

Let x be now the index of a program computing the functignProgram
x is then a player of the Prisoner’s Dilemma if the range of the fungtion
is {c,d} ¢ N, where the numbersandd (c # d) represent cooperation and
defection, respectively.

We will assume thaevery program is fed as an input a natural num-
ber, the index of the opponent prografr, as Binmore [3] metaphorically
suggested, every program may have its index labeled on its ‘forehead’ and
have the ability each other to read it. Other abilities such as lying or cheating
(e.g., the ‘sucker punch mutant’ due to Robson [10]) could also be treated in
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the computability setting, but here we confine ourselves to ‘honest players’
only.

Progranx follows the procedure according to its own instructions: it may
decode the input and simulate the behavior of the opponent to determine its
output, or may simply ignore it and produce an output, or may produce
nothing. Since the functiop, is partial, ¢, may be undefined for some
inputs. The ability of recognition in the Prisoner’s Dilemma, however, re-
quires a player to computetatal function, i.e., a function with domaiN
as defined below.

Let us now consider, for eache N andy € N, a binary relatiorK(x, y).
We will later define a binary relation that and y are kin to each other
For this purpose, let us introduce a basic propertiKf, y). The relation
K(x,y) is said to berecursiveif there exists a computable functidrfx, y)
satisfying

ey = {; i K(xy),
if =K(x,y).

Thus, if K(x,y) is recursive, whether or not andy are in this relation
is decidableby a finite algorithm (see Appendix (6) and (3)). Then, the
following lemma is basic to our results.

Lemma 1. Let K(x, y) be a recursive relation. Then, there exists a program
x such that for all ye N,

d if =K(xy).

Proof. Since the relatiofK (X, y) is recursive by assumption, the function h
defined by

cf(x, if K(x,
hix.y) = 1CTOY) TTKEY)
d+ f(xy) if =K(xy)
is computable. Theecond recursion theorethen guarantees the existence
of afixed pointi.e., an indexx such that
ex(y) = h(xy).
(Appendix (8)). Hence, there exists an indesuch that

c if K(xy)

exy) = {d if ~K(XY).

O

The recursive relation assures the existence of a pbatieat cooperates
if and only if the opponenyis in the relatiorK(x, y). Further, the recursive-
ness ofK(x,y) alone provides potentially a wide domain of cooperation in
the one-shot Prisoner’s Dilemma. Since there are infinitely many recursive
relations, the cooperating playemwill not be an exception in the environ-
ment of machine players. However, the cooperation may not be mutual;
and, the opponentof x with K(x,y) may not be a player of the Prisoner’s
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Dilemma. To obtain mutual cooperation, therefore, the recursive relation
should have an appropriate structure.

By the way, theself-recognition player ¥ one that is given by the fol-
lowing:

Definition 1. Program x is said to be a self-recognition play&RP)if for
ally e N,
c ify=x

oY) = {d ify# x

The existence of SRPs is a direct consequence of the above lemma, since
the equality relation is recursive.

Proposition 1. There exists a self-recognition player.

4. Tue Kiv ReLatioN witH A CoMMON ANCESTOR

For eache € N, let us consider the s&t = {z| ¢, = e}. This is the set of
indices of all programs that compute the same funggigrthat is, programs
that output the same action. Then, it is clear that the relatianl, is an
equivalence relation. But, the dgtis not recursive due tRice’s Theorem
(Appendix (9)). Intuitively, this can be seen by observing that |, iff
¢y = px and that the latter relation is not decidable because the equality of
functions cannot be assured in any finite number of steps.

The non-recursiveness hfmakes it impossible for any membeke I to
decide whether the opponegnis also a member dt or not, i.e., whether to
cooperate or not. Therefore, it is at least necessary to have a set of ‘fellow’
programs as a recursive set.

For eache € N, therefore, consider the subsgof I.; namely,

ecl; Cle

The set; is intended to mean a set of déscendantsf e by the following
assumptions.

Assumption 1: I} is a recursive set.
Assumption 2: x € I impliese < x.
Assumption 3: 13 N Iy # @ impliesl; C 1 or 1y C 1.

An immediate example df; satisfying the assumptions 1,2 and 3 would
be obtained if the members &f are programs generated by addingeto
any finite number of redundant instructions in a recursive way. Consider,
for example, the simple case in which there are twidedent redundant
instructions. Then, the same function is computed 'bgliferent programs
with n redundant instructions addedeallowing repetitions. Lettind; be
the set of all such programs for= 1, 2, .. ., the set; can be made recursive
by thePadding Lemmée.g., Proposition 11.1.6 in Odifreddi [9]).

Or, we may resort to a biological analogy that descendants as living
organisms generally have acquired more complexity than the ancestor in
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the evolutionary process. The greater program-sizes of descendants might,
therefore, be viewed as reflecting such complexity of subroutines which are
irrelevant tothe main part playing the Prisoner’s Dilemma.

In this way, we may call the members idfthe descendants ef which
is also justified by the following remark.

Remark 1. Forany xee N, xe I iffI; € I;. Thatis, x is a descendant of

X = 'e

e iff the descendants of x are also the descendants of e.

This is so because by Assumption 2 we have #{gf C 1), sincel; C I
would lead to the contradiction that< e; and then, Assumption 3 implies
thatl; c 1. The converse is clear by e I;. Thus, due to the recursively
nested structure, the sétcan be represented asree

The singleton sete} is a degenerate example f Here, we allow a
slight abuse of the use of the word: any program is a descendant and an
ancestor of itself.

We can now define thiein relation K*(x, y) as follows : For allx andy,
K*(x,y) © 3w > 0 suchthat x I, Ay e |, .

The kin relationK*(x,y) can be read as stating thhandy arekin to each
other if and only if they have aancestolin common.

Remark 2. If we take [ = {e} for each ee N, then the relation K(x,y)
reduces to the equality relation=xy.

The relationK*(x, y) has the desired property as shown below.
Lemma 2. The kin relation K(x,y) is a recursive equivalence relation.

Proof. First, we show that it is an equivalence relation. It will be enough to
check the transitivity. Assume th#t(x,y) andK*(y, 2). Then, there argv
andv such that

xel,Anyel,andyel; Azel,.
Hence,y € I, nI; # 0, so that by Assumption 3,;, C I or Iy C I.
Then,w andv have a common ancestoythat is, there exists amsuch that
Iy €1y Clg, orly C 1y, € 15, Hence,

XelgAnzel],

which shows thaK*(x, 2), i.e., the transitivity.
To show thatk*(x,y) is recursive, first note thd{*(x,y) has abounded
search for a numbew, that is,

K'(x,y) & dw<z st. xel,Ayel,,

wherez = min{x, y}. This must be so, because by Assumption 2,0 < x

and 0< w < y whenever the common ancestoof x andy exists. By As-
sumption 1, the two relations € |}, andy € I, are recursive. Conjunction

of two recursive relations is recursive, and a bounded search for a number
satisfying a recursive relation again defines a recursive relation (Appendix
(5) and (6)). HenceK*(x, y) is recursive. O
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We are now ready to define thkeén recognition player

Definition 2. Let K*(X,y) be the kin relation. Then, program x is said to be
a kin-recognition playe(KRP)if for ally € N,

_jc it KH(xy)
Q"X(y)‘{d i —K*(x,Y).

The kin-recognition player is thus a program that cooperates if and only
if the opponent is kin to itself.

Proposition 2. Under assumptions 1, 2 and 3:

(1) There exists &RP.
(2) If xisaKRP and K'(x,y), then y is also &RP.

Proof. Existence follows from lemmas 2 and 1. Result 2 follows by the fact
thatK*(x,y) is an equivalence relation. m|

If xis a KRP, the members ¢y | K*(x,y)}, the equivalence class af
are all KRPs cooperating with each other. Sifigé K*(x,y)} is generally
an infinite set, the domain of mutual cooperation is much broader than that
of the SRP.

5. UNILATERAL ALTRUISM

The fact that any KR cooperates witly if and only if K*(x,y), i.e.,
y is kin to x just implies thatx regards the opponemtwith =K*(x, 2) as
a stranger. This is so even if the strangezomputes the same function
¢; = @x. In the pool of programs that are strangers to KRRhere are
players of Prisoner’'s Dilemma that behave in fact strangely. We show that
there exists a program sacrificing itself unilaterally to all players kix to
Givenx, let us defineD(x) := {y | ¢y(X) = d}. This is the set of programs
not cooperating witkx.

Definition 3. Program z is said to be a self-sacrificing player if there is a
recursive set D¢ D(2) such thatp,(y) = cVy € D*

The self-sacrificing player is a player who cooperates in spite of being
certainlyexploited.

Proposition 3. Let x be aKRP. Then, there exists a self-sacrificing player
z such that-K*(z x) and

e if Ky, x)
SOZ(y) - {d |f —IK*(y, X)

with D* = {y | K*(y, X)}.

Proof. Take a KRPx, and consider the sgt | K*(y, X)}. Then, by construc-
tion, we havely | K*(y, X)}< Ix. The inclusion is proper, sindg | K*(y, X)}
is a recursive set, wherebsis not. Then, there existssuch that

ze L\ {y | K*(y, ¥)}.

7



Hence,p, = ¢x and-K*(z x). Moreover,py(2) = d for all y with K*(y, X),
since—-K*(z x) is equivalent to-K*(z y) wheneverK*(y, X). Hence,z is
self-sacrificing withD* = {y | K*(y, X)}. m|

The self-sacrificing playez might be called &in-to-x-altruisticplayer,
and anx-altruistic player in the special case where the KRP is just an SRP.
The playerz self-sacrifices just for any opponewntthat is kin tox, but
defects otherwise even when the opponent is identical to itself. The altruism
is never reciprocal, since by definition the opponent players that are kin-to-
will not cooperate with the playex

It is somewhat surprising that the very existence of a KRP should entail
the existence of such a self-sacrificing, altruistic player. If the rationality of
players wergerfectso that{y | yis kin to x} = I, then such an altruistic
player could not exist at all. In this sense, the altruistic behavior can be
ascribed to the bounded rationality as embodied by the computability.

6. EVOLUTIONARY STABILITY

A legitimate question to be posed then would be whether or not such
cooperation and the unilateral altruism can prevail in a population. Since
any SRP is an ESS, any KRP can be expected to prevail as well, which is in
fact the case as shown below.

Let J ¢ N be a nonempty subset of players of the Prisoner’s Dilemma.
We sayJ is homogeneous there is a number such that for allx,y € J,
the pair &, y) generates the unique identical p&yoto each. Now, let the
Prisoner’s Dilemma be played by aryy € N drawn from the population.

Definition 4. Let JC N. Then, any member of J is said to be a collectively
evolutionarily stable strategfCESS)if

(1) J is homogeneous.

(2) Forany xy € J, (X, Y) is a Nash equilibrium.

(3) For any xe J, if there exists # J such that z is also a best reply to
X, then x is a better reply to z than z is to itself.

The setJ satisfying conditions (1), (2) and (3) is a special case of the
evolutionarily stable setlefined by Thomas [13], and is a straightforward
extension of the ESS to a set of strategies yielding a unique identicaffpayo
against any member of the set. The set of kixx'téor any given KRPx* is
a set of CESSs as can be seen from the following result.

Proposition 4. Let K*(x,y) be the kin relation, and let x Jx = {y |
K*(x*,y)} for some KRP %X Then x is &CESS

Proof. It will be sufficient to check condition 3 in the definition of CESS.
Letz ¢ Jy.. Since every member ok defects agains, the paydr to zis

at most 1. Henceg cannot be a best reply to amye J,., and condition 3 is
vacuously satisfied. |



As for the stability of the unilaterally altruistic player, the situation is
opposite: it will not become dominant, for the altruistic behavior would
become more and more hard to take because the matching would tend more
and more to be the one defecting each other. In fact, any such kin-to-
altruistic playerz cannot survive the evolutionary process as indicated in
the paydt matrix below.

| c d x z
cl!33 04 04 04
d 40 11 11 11
x40 11 33 40
z!40 11 04 11

The KRPxis the only ESS in this game, and the kinxaltruistic playerz
is not an ESS as long as a KRP is in the population.

Thus, while cooperation among a family, relatives and kin can evolve in
the population, the altruism would become extinct, which would explain
why such a self-sacrificing, unilateral altruism is not so widely observed in
real life situations.

7. CONCLUDING REMARKS

Assuming players of Prisoner’s Dilemma as programs (finite algorithms),
we have shown that the self-recognition player (SRP) can be extended to the
kin-recognition player (KRP) cooperating with much larger class of oppo-
nent players. The kin relation is defined as having an ancestor in common,
which led to a recursive equivalence relation guaranteeing the existence of
KRPs.

It was shown that a KRP entails the existence of an altruistic player co-
operating with any opponent in spite of being certainly exploited. The exis-
tence of such a player turned out intrincically dependent upon the bounded
rationality in terms of computability as applied in this paper. In the evolu-
tionary interpretation, such an altruism is to be extinct, whereas KRP was
shown to be evolutionary stable, which would not contradict the theory of
kin selection in evolutionary biology.

Due to the property that the kin relation is an equivalence relation, any
KRP does not cooperate acroselient equivalence classes of KRPs. Since
we are concerned with cooperation based on the kin relation, this would be
a natural consequence rather than a limitation of KRP: real players not in
thesamekin relation may not necessarily cooperate with each other.

But, can we have any general relation that admits a broader domain of
cooperation acrossfiierent equivalence classes of KRPs? Consider the set

c if K*(xY) }

= {XE N |7y eN. o) = {d if =K*(x,Y)
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| is the set of all KRPs; namely, any membee | cooperates if and only
if the opponent is in the Kin relation witk. If this set were recursive, we
could obtain a program such that

c ifxelayel

‘”X(y):{d ifxglvyel.

That is, any membex € | cooperates witlany member ofl, i.e., with any
player inany equivalence class of KRPs. But, here again, Rice’s Theorem
stands in the wayt is a set of indices of programs computing unary func-
tions which constitute aonempty proper subsef all unary computable
functions. Hence, the relatione | is undecidable.

Rice’s Theorem is indeed a source of many negative results in com-
putability theory, though we do not regard the above property as a defect
of KRP. Rather, we may conclude that KRP is one of logicalgximal as
well as behaviorally reasonable extensions of SRP in achieving cooperation
in the one-shot Prisoner’s Dilemma.

Appendix

Here, some of the elements of computability theory is summarized. For formal treat-
ments, the reader may refer to Cutland [4] , or Odifreddi [9].

(). Intuitively, a partial functionf from N = {0,1,2,...} to N is said to becomputabldf
there exists a finite algorithm such agaring machineor a unlimited register machine

to computef. The definition is similar for n-ary functions. There are several formaliza-
tions of the intuitive concept offfective computabilityall of which have turned out to
be equivalent to th&@uring-machine computabilitygiving rise to the well-defined class
of all partial recursive functions Thus, the partial recursive functions are considered as
the formalization of the functions which ar&ectively computable in the intuitive sense
(Church’s thesik

(2). Any algorithm or program computing a unary function is a finite sequence of well-
defined instructions. Le® be a set of all such programs. Then a bijectior® - G c N
can be defined and is calledtadingor Godel numberingf y andy~* are both computable
in the following sense:

a: Given a particular progran® € #, we can €ectively find the code number

¥(P) € G;

b: Given a numben € G, we can &ectively find the progran® = y~1(n).
There are several established ways to code finite objects. Fixing on one coding, every
computable (unary) function appears in the enumeration:

®o, ¥1, ¢2, 3, ...

where, for eacly,, the numbee is theindex(code number) of a program computing the
functionge. Thus, a natural number can be identified with the program with that number
as its index.

(3). An n-aryrelationor predicate Kxg, ..., X,) is said to balecidable recursiveor com-
putableif its characteristic function g(x,, ..., X,) is computable, i.e., if the total function

1 ifR(Xg,..., %)

CR(Xt, - s X)) = .
R(x ) {O if =R(Xe, . . ., Xn)
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is computable.

(4). We say that an n-ary relatidd(x, . . ., X,) is partially decidableif its partial charac-
teristic function 1x, ..., X,) is computable, i.e., if the partial function

1 if Q(X,...,X%n),
undefined  if=Q(Xg, ..., Xn)

f(Xg,..., %) ={
is computable.

(5). It can be shown that an n-ary relatiQ(x, . . ., Xn) is partially decidableff there is a
decidable r1-ary relationR(xy, ..., X, ¥) such that

Q(Xa, ..., %n) Iff AYR(X, ..., Xn,Y).

The relation in the right-hand side involves ti@bounded seardior a numbely satisfying
the decidable relatioR(x, . . ., Xn, y). Checking successively fgr= 0,1, 2, ... whether or
noty satisfies the relatioR, the search procedure stops if it finds sugh atherwise the
search goes on for ever.

If the above search procedurebisundedi.e.,

Q(Xg,..., X)) iff Ay <zRXy,...,%n,Y),

then the relatior(x, . . ., X,) is said to be decidable, for only a finite number of checking
is needed to decide whether or iRy, . . ., X, ).

(6) . A subsetA of N is said to beecursiveif the membership relatior € A is decidable.
The set of primes, the set of odd numbers, theNsethe empty set and finite sets are
immediate examples of recursive sets. A finite union of recursive sets are also recursive.

(7). A subsetA of N is calledrecursively enumerablé.e. for short) if the membership
relationx € A is partially decidable. Recursive sets are recursively enumerable, since the
partial characteristic function for the relatione A, where A is recursive, can be always
obtained by having the computation of the characteristic function for the relatoi

enter a loop whenever¢ A.

An important r.e. set that iaot recursiveis {x | ¢x(X) is defined. The setl (K*)
appeared in Concluding Remarks is not recursively enumerable due to the theorem of Rice
and Shapiro (see, Cutland [4, Theorem 7-2.16, p.130]); and the complé&fKe)ttin N is
also not recursively enumerable (Cutland [4, Theorem 7-3.4, p.135]). Hence, the decision
problem whether or natis a KRP is not just undecidable in the same sense as the problem
whether or not(x) is defined, but far more flicult than this problem.

(8) The Second Recursion Theorem

Let f be a 2-ary computable function. Then, there exists an integer

such thatpe(X) ~ f(e, X).
Here, the symbok means that respective values of both sides are either undefined or
defined with the same value. The numleeis called afixed point When f is a total
function, there are infinitely many fixed points (see e.g., Odifreddi [9]). A fixed pisit
the index of a program that computes the functiefined by using e itseltherefore, it is
widely useful in showing the existence of programs definedsal&referentialay.

This theorem is true fox = (Xg, ..., Xn) and (n+1)-ary computable functiof.

(9) Rice’s Theorem.

Suppose thaB is a nonempty proper subset of all unary computable
functions. Then the problegy € B is undecidable.

That is, wheher or not a given functi@has a certain non-trivial property is generally un-
decidable. This theorem is a source of many impossibility results in computability theory.
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For example, the sdt = {z | ¢, = @e} iS NOt recursive, since the sgt; | z € lg} is a
nonempty proper subset of all unary computable functions.
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