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1. Introduction

The role of a strong relationship between a lender and a bor-
rower, the so-called relationship lending (or relationship banking),
is one of the most widely discussed issues in theoretical and em-
pirical studies of banking. Many empirical studies investigate the
economic impact of relationship lending on the terms of loans,
such as interest rates and the amount of funds lent, aiming to
test the theoretical implications that have been provided since the
early 1990s (Sharpe, 1990; Rajan, 1992; Elyasiani and Goldberg,
2004; Freixas and Rochet, 2008). In particular, relationship lend-
ing is considered to play an important role in providing liquid-
ity to borrowers facing credit constraints by reducing the extent
of information asymmetry between lenders and borrowers. On the
other hand, borrowers in relationship trades could be “locked-in”
by lenders due to their exclusive acquisition of private information,
leading to a hold-up problem (Petersen and Rajan, 1995; Von Thad-
den, 2004; Freixas and Rochet, 2008).

A large fraction of previous researches on relationship lending
study bilateral relationships between a bank and a non-financial
firm (Sette and Gobbi, 2015; Kysucky and Norden, 2015), while
other studies explored the role of relationship lending in the
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interbank market, where banks lend to and borrow from each
other (Furfine, 1999; Cocco et al., 2009; Affinito, 2012; Craig et al.,
2015; Hatzopoulos et al., 2015; Temizsoy et al., 2015; Brduning and
Fecht, 2017). For example, Cocco et al. (2009) showed that in the
Portuguese interbank market, bilateral trades made by banks with
stronger relationships tend to exhibit lower interest rates. In Italy,
Affinito (2012) found that relationship lenders played an essential
role as liquidity providers, especially in the midst of the global fi-
nancial crisis of 2007-2009. Temizsoy et al. (2015) obtain similar
implications by analyzing the Italian online interbank market (e-
MID). Brdauning and Fecht (2017) argued that during the financial
crisis, relationship lenders in Germany offered lower interest rates
to their close partners. Hatzopoulos et al. (2015) proposed a null
model based on a hypergeometric distribution for testing the sig-
nificance of edges in the e-MID market.

In the literature, measuring the influence of Lehman Brothers’
bankruptcy on the interbank market has been one of the central
interests. Afonso et al. (2011) argue that counter party risk became
more important than liquidity hoarding at the time of Lehman
Brothers’ collapse, showing that loan terms got more sensitive to
borrowers’ credit worthiness. Angelini et al. (2011) also show that
the risk of moral hazard due to “too-big-to-fail” increased during
the crisis compared to the period prior to August 2007.

The results of the previous analyses, however, are based on ad-
hoc and simple measures of relationship lending, and the simplic-
ity may cause a mismeasurement error especially when there is
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heterogeneity in banks’ activities. One naive measure of relation-
ship lending is the number of transactions between two banks
conducted during a certain period of time (Furfine, 1999; Brduning
and Fecht, 2017). Another widely used measure is the degree of
concentration in lending or borrowing (Cocco et al., 2009; Afonso
et al,, 2013), measured by the share of funds lent to (or borrowed
from) a particular counterparty. These two measures are expected
to straightforwardly capture the strength of a bilateral relationship
in the interbank market; a bank pair engaging in relationship lend-
ing would trade more frequently and devote a larger share of their
total trading volume to the trades between them than to trades
with other banks. However, these measures might misinterpret the
strength of lending relationships; first, the number of trades with
a particular counterparty may merely reflect a bank’s need to trade
in the interbank market. For instance, if two banks have strong
needs to provide and obtain overnight liquidity in the interbank
market, respectively, these banks are likely to trade by chance even
if they have no preferences for trading partners. Second, the degree
of concentration in lending or borrowing can be affected by the
difference in the balance-sheet size of counterparties. For exam-
ple, suppose that a large bank demands a greater amount of funds
than smaller banks do. If a small bank lends to the large bank, the
degree of concentration in lending may appear to be large, even
though the lending bank has no preference for partners. The share
of lending volume to a particular partner could correctly capture
relationship lending if all the counterparties had the same liquid-
ity demands. Given these limitations, we need a more carefully de-
signed measure of relationship lending that would allow us to con-
trol for these factors.

In this article, we propose the concept of a significant tie as a
statistically founded definition of relationship lending. Two banks
are said to be connected by a significant tie if the number of trades
between them is too large to be explained by random chance af-
ter controlling for their intrinsic activity levels. We control for the
activity of banks by employing a simple network-generative model
as the null model. The so-called fitness model, one of the standard
network-generative models in network science (Caldarelli et al.,
2002; De Masi et al., 2006; Musmeci et al., 2013), considers a situ-
ation in which the probability of two banks being matched is given
as a function of their activity parameters (i.e., fitnesses) indepen-
dently of the history of their transactions. This history-independent
property enables us to explicitly compute the theoretical distri-
bution of the number of bilateral trades under the null hypothe-
sis that there is no preference for partners, thus allowing for sta-
tistical tests. In this paper, we regard a bank pair connected by
a significant tie as engaging in relationship lending. This defini-
tion would eliminate the possible mismeasurement of relationship
lending due to differences in banks’ activity levels, which should
be reflecting their liquidity demands and balance-sheet sizes.

We apply the proposed identification framework to the data on
over one million interbank transactions conducted in the e-MID
market during 2000-2015. Over the past decade, the e-MID mar-
ket has been extensively studied from a point of view of complex
networks. lori et al. (2008), Finger et al. (2013) and Fricke and
Lux (2015) analyzed the topology of aggregated interbank net-
works, while Barucca and Lillo (2016) focused on the time-varying
nature of interbank networks. Kobayashi et al. (2018) find sev-
eral temporal patterns in bilateral transactions that are similar
to the ones observed in social communication patterns of hu-
mans (Cattuto et al., 2010). Examples of studies of other inter-
bank markets include Craig and Von Peter (2014) for Germany,
Giraitis et al. (2016) for the UK, Cont et al. (2013) for Brazil, and
Imakubo and Soejima (2010) for Japan.

Our statistical analyses reveal important facts about relationship
lending in the e-MID market, some of which can be summarized
as follows. First, throughout the data period, the percentage of re-

lationship lending among all bilateral transactions has been stable,
although the percentage slightly increased around the occurrence
of particular economic events (e.g., circulation of Euro started in
2002 and the Lehman collapse in 2008). Second, significant ties
tend to last for longer periods than non-significant ties do, which
is consistent with the conventional notion of relationship lending.
Interestingly, the duration of relationships has a decreasing haz-
ard rate (i.e., the probability of ending a relationship is decreas-
ing in duration). This implies that the value of relationships in
the interbank market increases in time, contrary to the finding of
Ongena and Smith (2001) on bank-firm relationships while con-
sistent with the finding of lori et al. (2015). Third, our regression
analyses show that the presence of relationship trading generally
has a positive impact on loan rates. This is consistent with the
hold-up theorem and turns out to be most evident at the time of
the global financial crisis. Fourth, the chance that a bank pair is
connected by a significant tie is affected little by the nationality of
the banks, suggesting the absence of home-country bias in build-
ing bilateral relationships.

The rest of the paper is organized as follows. In Section 2, we
describe the method for identifying relationship lending, and the
results are shown in Section 3. Section 4 provides a robustness
analysis and some extensions, and some regression analyses are
provided in Section 5 to compare with the previous measures of
relationship lending. Section 6 concludes.

2. Model and methods
2.1. Data

We use time-stamped data on interbank transactions conducted
in the Italian online interbank market (e-MID) between Septem-
ber 2000 and December 2015. As in the other interbank mar-
kets, e-MID plays a role as a marketplace in which banks in need
of short-term liquidity or having excess liquidities find counter-
parties by posting an order on the platform. Banks that post re-
quests are called quoters, and their counterparties are called ag-
gressors. The actual names of trading banks are not revealed in
the platform, but their proper IDs, including their nationality, are
made public (e.g., “IT0002”, where “IT” denotes Italy). The transac-
tions data contain the following information: date and time (e.g.,
“2000-09-04 09:12:40"), the IDs of banks, maturity, interest rates,
and trade amount (in million Euros). The e-MID data is commer-
cially available from e-MID SIM S.p.A based in Milan, Italy (http:
[[www.e-mid.it/).

In this article, we use the overnight transactions of unse-
cured Euro deposits labeled as “ON” (i.e.,, overnight) or “ONL”
(i.e., overnight large, namely overnight transactions no less than
100 million Euros), which comprise the great majority of transac-
tions (> 86%) in the e-MID market. An advantage of focusing on
overnight trades is that we can construct a sequence of snapshots
of daily interbank networks having banks as nodes and lending-
borrowing relationships as edges (Fig. 1). An edge is created when
a loan is executed. If there are multiple transactions between two
banks during a day, we represent the trading relationship as one
unweighted edge. As a result, the number of edges over the whole
data period totals 1,033,349.

From Fig. 1, it is evident that interbank networks constantly
change their size on a daily basis, and there is a common down-
ward trend in the numbers of active banks N and edges E. Here,
“active” banks in a daily network are defined as banks that had
transactions at least once between 9:00 and 18:00. Downward
spikes in N and E are mostly due to national holidays in Italy.!

T Weekends are not included since the market is closed.
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Fig. 1. Evolution of interbank networks. Solid and dotted denote the number of
active banks N (left axis) and the number of edges E (right axis) of a daily network,
respectively. The largest (November 23, 2000), a middle-sized (October 29, 2008)
and the smallest networks (August 15, 2013) are visualized.

Table 1

Summary statistics of the daily interbank networks. Symbol x denotes the average
of variable x over the corresponding period, and (k) is the daily average degree.
Subscripts “max” and “min” represent the maximum and minimum values, respec-
tively.

All 2000-2006 2007-2009 2010-2015

# days 3,922 1,618 767 1,537

N 95.80 130.40 101.67 56.45

Ninax 161 161 144 89

Niin 13 56 48 13

E 262.96 402.16 266.00 114.91
Emax 662 662 461 265

Emin 15 122 76 15

(ky 2.54 3.07 2.57 1.97

On the other hand, the presence of a long-term downward trend
could be attributed to multiple factors such as the onset of the
global financial crisis, the Greek sovereign debt crisis, and the in-
troduction of highly expansionary monetary policies of the Euro-
pean Central Bank (ECB) (and possibly other central banks). Sum-
mary statistics of the time series of daily interbank networks are
presented in Table 1.

2.2. Fitness model

As a baseline framework for the subsequent statistical analysis,
we introduce here a simple model of daily interbank networks that
describes how a lender and a borrower are matched. Our model
is a variant of the fitness model (Caldarelli et al., 2002; De Masi
et al., 2006). The fitness model has been frequently used in the
field of network science to explain the mechanism of dynamic net-
work formation, in which the probability that two agents are con-
nected depends on the fitness of the agents. In the context of inter-
bank markets, fitness corresponds to the intrinsic activity level of a
bank, such as the demand for short-term liquidity if the bank is a
possible borrower and the willingness to supply funds if the bank
is a possible lender. In spite of its simplicity, the fitness model has
been shown to explain many rich properties that emerge from the
evolution of interbank networks (De Masi et al., 2006; Kobayashi
et al., 2018).

In the baseline model, we regard daily interbank networks as
undirected (i.e., we ignore the direction of edges) because our
main focus is on identifying and analyzing the role of the bilat-
eral relationship between banks. We will extend the analysis to di-
rected networks in Section 4.4. We assume that the probability u
that bank i trades with bank j on a given day is expressed by the

product of their activity levels:
u(a;, a;) = gia;, (1)

where a; >0 represents the activity level (or fitness) of bank i.
The model nests a wide variety of well-known network generat-
ing models, depending on the specification of {a;}. For example,
if g; =aVi, then the model is equivalent to an Erd6s-Rényi ran-
dom graph with constant matching probability u = a2 (Erdés et al.,
1959). If a; = k;/~/2M, where k; and M are the degree of bank i and
the total number of edges in a daily network, respectively, then
the matching probability is given by u = kik;/(2M), resulting in the
configuration model (Newman, 2010).3

We first estimate the activity vector a = (ay, ..., ay), assuming
that every element of a is constant during an aggregate period
consisting of T consecutive business days. In other words, daily
networks in an aggregate period are regarded as independent re-
alizations from the fitness model with estimated a. In Section 4.3,
we will consider the case of time-varying activity parameters. In
short, we are extracting a N x 1 vector of bank activity levels from
the observed network structure containing N x (N — 1) elements of
information on bilateral trades (i.e., adjacency matrix). This dimen-
sionality reduction obviously discards the structural information of
a network. In return, the resultant estimates enable us to infer the
extent to which a random matching between banks can explain the
empirical network structure, avoiding an over-identification prob-
lem. Based on the estimates of a, we identify the existence of rela-
tionship lending by testing whether the observed number of trans-
actions between two banks is significantly larger than the value
expected by the null hypothesis (i.e., the fitness model).

2.3. Maximum likelihood estimation of activity levels

We split the daily data set into aggregate periods, each consist-
ing of T business days, and perform a maximum likelihood esti-
mation of a period by period. Aggregate periods are indexed by
t'=1,...,th. Where t/ .. = |tmax/T] and tmax denotes the total
number of business days in the data. For the sake of simplicity, we
omit subscript t’ in the rest of this section.

If trading pairs are independently matched each day according
to probability u(a, a’), then the number of trades between banks i
and j conducted over t business days follows a binomial distribu-
tion with parameters 7 and u(a;, g;). For a given activity vector a,
the joint probability function of the number of trades in an aggre-
gate period then leads to

T ” —m;;

p({my}la) = [] (m“>u(aisaj)m”(1 —u(a;, )", (2)

S ij
i,jii#]

where m;; < T denotes the number of trades (i.e., edges) between i

and j observed in an aggregate period. The log-likelihood function
is thus given by

L(a) = log p({my;}|a)
Z [mij log (a;a;) + (t — myj) log (1 — (aiaj))] + const.,
iLjiij

3)

where “const.” denotes the terms that are independent of a. Let N
denote the number of active banks that have at least one trans-
action during a given aggregate period. The maximum-likelihood

2 In Kobayashi et al. (2018), we used a matching function of the form u(a;, aj) =
(g;aj)*. In the current model, we can set @ = 1 without loss of generality because
the case of o #1 can be recovered by redefining the activity parameter as a®.

3 The configuration model is a network model that generates a random network
having a predefined degree sequence {k;}. See Newman (2010) for details.
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estimate of a is the solution for the following N equations:

Hi(a*) = Z

Jj#

i
1 - (a;ay)

m;; — T (ara*
it 1)=0,Vi=1,...,N, (4)

The first-order condition (4) is obtained by differentiating the
log-likelihood function Eq. (3) with respect to a;. The system of
nonlinear equations, H(a) =0, can be solved by using a standard
numerical algorithm.* Hereafter, the computed solution (i.e., the
maximum likelihood estimate) of a is denoted by a* = (aj, ..., ay).
By repeating this process period by period, we obtain the estimates

S * * *
of activity vectors {“r a,...a

ténax } ’

2.4. Statistical tests for relationship lending

Here we present two sorts of statistical tests; one is for iden-
tifying bank pairs engaging in relationship lending and the other
is for detecting relationship-dependent banks. In the same manner
as we estimate the activity levels of banks (Section 2.3), we split
the daily data set into t],,, aggregate periods and implement the
tests period by period.

2.4.1. Edge-based test for relationship lending

If bank i has no preference for trading partners and thereby
finds a partner in a random manner as suggested in the fitness
model, then the number of bilateral transactions between banks i
and j during a given period, m;;, should obey the following bino-
mial distribution:

(mlaf a5) = (J,,)L'(a% a;)"™ (1 - uaj.ap)” "™,

Vi j=1,....N. (5)

In contrast, if bank i has a strong (i.e., non-random) partnership
with bank j, then the distribution of mj; will deviate from a bi-
nomial distribution. Let ml.‘j denote the c-th percentile (0 <c<100)

of g(myj|a, aj) (i.e., c/100 = G(mfjla;f, a;f)), where G is the cumula-

tive distribution function (CDF) of g(m;;|a;, a;f). If m;; > mfj forac
value close to 100, then the empirical number of transactions is too
large to be explained by random chance, indicating the presence
of relationship lending. We call this test the edge-based test since
this is a test for the significance of edges in interbank networks.

If m;; > mf] then we say that banks i and j are connected by a
significant tie and engaging in relationship lending. We set ¢ = 99
(i.e., 99% significance level) throughout the paper. A schematic of a
significant tie is presented in Fig. 2.

Importantly, the number of bilateral trades in a given period it-
self does not necessarily indicate the presence of a significant tie.
Under a random matching (the upper row of Fig. 2), bank i trades
twice with each of the two counterparties having the largest activ-
ity levels, which should be a natural consequence given the high
matching probabilities. By contrast, banks i and j trade three times
in the bottom row of Fig. 2, which is unexpected based on their
small activity levels. Therefore, bank i is considered to engage in
relationship lending with bank j but not with the other three.

4 We solved the problem by using the Matlab function fsolve, which is based
on a modified Newton method, called the trust-region-dogleg method. The initial
values of a are given by the configuration model, a; = 3= ;.;;(m;;/T)/\/2 ¥_;_j mij/ T,
where the numerator and the denominator represent the daily means of bank i's
degree and the doubled number of total edges, respectively. There are a few cases
in which the estimated activity values a; and g; indicate u(a;, a;)> 1. In such cases,
we assume u = 1.

Random matching

'bank i
'd + .

. ‘. ° ° D o
bank j .

Relationship lending

Fig. 2. Schematic of a significant tie. For illustrative purposes we set T = 3. The
size of circle represents the activity level of a bank. If banks are matched randomly
according to the fitness model, then banks with higher activity levels will receive
larger number of edges on average. If the number of trades between bank i and
bank j is too large to be explained by random chance, then the two banks are con-
sidered to be connected by a significant tie and engaging in relationship lending.

2.4.2. Node-based test for relationship-dependent banks

Since we have random matching probabilities u(a, a’) for any
pairs of banks, we can also test the extent to which a bank de-
pends on a limited number of partners. The probability function of
aggregate degree K; is given as

Uiy = Sy Tgurg(my = 0)' ™ (1 - g(my = 0))™ x 8(5; A5, i)

(=4 w ax))© A
= o) My (1 = (. ) ™ (1 (1 - u(ap. a))7)
x 8(X;A4.K),
(6)

where A; is the (i, j)-element of the aggregate adjacency matrix;
Ajj =1 if there is at least one transaction between banks i and
Jj during an aggregate period, and A;; =0 otherwise. §(x, y) de-
notes the Kronecker delta which equals one if x = y and zero other-
wise. Note that the second equality follows from relation g(m;; =
0)=(01- u(a;‘,a}f))f (Eq. (5)). In fact, Eq. (6) is equivalent to the
distribution of the sum of N —1 random variables drawn from a
Bernoulli distribution with parameter {1 — (1 — u(a?, a;‘.))f}j:#i, or
a Poisson binomial distribution. Here we would like to compute
the CDF of f(K;la*) to evaluate the significance of empirical K;.
However, exact calculation of the CDF of a Poisson binomial distri-
bution is notoriously difficult because one must compute (,’é) num-
ber of terms (Steele, 1994). Thus, we instead approximate the prob-
ability distribution of K; to a Poisson distribution (Le Cam, 1960):

*[G —AF -
fiilar) ~ T = F(Kila), 7
;!
where Af = Zj#,»[l - —u(a;‘,a;f))f]. An error bound for this
Poisson approximation is provided by an extended version of the
Le Cam’s theorem (Le Cam, 1960; Barbour and Eagleson, 1983;
Steele, 1994):

AKiei

> . 2(1-e™)
K;f(lﬂ-la)— R | <

Y P Vi, (8)

i Jui#

where p;jj=1-(1- u(a;‘,a}f))f.
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Fig. 3. Maximum-likelihood estimates of activity. Solid line represents median, and
lower and upper dotted lines respectively denote the 5th and 95th percentiles of
the estimated activity distribution in each aggregate period.

The Poisson approximation enables us to formally test the null
hypothesis that the empirical aggregate degree K; is explained by
random chance. Let Kf’ denote the ¢’-th percentile (0 <¢’ <100) of
f(l(,-|a*); In other words, ¢’/100 = f(K,v|a*), where F(K,-|a*) is the
CDF of f(K;|a*). If the data reveal that K; < Kl.‘—" for ¢’ close to zero,
then bank i has a significantly smaller number of trading partners
than random chance would suggest. If this is the case, it indicates a
significant dependence of bank i on relationship lending. Hereafter
we call this type of test the node-based test, and we set ¢’ = 1.

2.5. Selection of aggregate length t

Before applying the model and statistical tests described in the
previous sections to empirical data, we must determine parame-
ter 7, the length of an aggregate period. In fact, varying t would
cause trade-offs between approximation accuracy and the stability
of aggregated data. On the one hand, the choice of T would di-
rectly affect the accuracy of the Poisson approximation through its
influence on A} and pj; in Eq. (8). The average error bound (Eq. (8))
increases with 7 as lim; . pjj =1,V i, j (Fig. S1a in Supplemen-
tary Information). Taking into account this positive relationship be-
tween the error bound and 7, t should be set as small as pos-
sible. On the other hand, employing a smaller value of t would
also affect the stability of statistical results as the aggregate net-
works could become more unstable because the number of active
banks would change drastically period to period (see Fig. 1). This
necessarily reduces the stability of the data to be examined. Fig-
ure S1b illustrates that the average and the standard deviation of
the absolute changes in N, denoted by ANy =[Ny —Ny_¢| (' =
2,...,tha), take minimum values around 7 = 12. Judging from
these observations, we employ 7 = 10 as a benchmark value. We
will show that all the qualitative results shown in this paper are
quite robust and not sensitive to the choice of t.

3. Results
3.1. Estimation results: activity level

The distribution of the estimated activity levels, a*, is shown in
Fig. 3. The distribution has been relatively stable throughout the
data period. Based on these estimates, we can infer how many
transactions would be conducted under the null hypothesis in
which the matching probability is given by u(af, aj) Vi, j. The em-
pirical number of transactions in an aggregate period, denoted by

M, is given as

M = Zmij. (9)

i<j

The expected number of transactions under the null hypothesis M*
is given as

M* =1y u(a}. a). (10)
i<j
Fig. 4a illustrates the relationships between N and M in the em-
pirical data and the estimated model. The almost perfect fit be-
tween the estimated values of M* and the empirical data indi-
cates that the maximum likelihood estimation works fairly well;
the estimated activity accurately captures the actual bank activity
in terms of the total number of trades. In Kobayashi et al. (2018),
we showed that there is a clear superlinear relationship between
the numbers of banks and edges at the daily scale (i.e., T = 1) us-
ing the same data. Fig. 4a in fact reveals that a similar scaling re-
lation arises even at the aggregate level of t = 10 business days.
On the other hand, if we take the presence of relationship lend-
ing as a given, the empirical numbers of trading partners should be
smaller than the estimated values under the null hypothesis. To see
this, Fig. 4b shows the average of aggregate degree K, the number
of unique trading partners in an aggregate period:

1
K= N;Aij. (11)

Under the null hypothesis, the average aggregate degree is com-
puted as

K* = ’1’,21: [1 — (1 - u(a}.a; )’]. (12)

As shown in Fig. 4b, K* overestimates K, meaning that in the real
world banks tend to be more selective than a random matching
would suggest. In the next section, we identify the presence of
relationship lending by statistically testing the extent of deviation
from the null model.

3.2. Identification results: significant ties and relationship-dependent
banks

Figs. 5a and 5c, respectively, show the number and the frac-
tion of significant ties identified by the edge-based test. We also
checked the robustness of the results to different choices of 7 in
SI (Fig. S2). Overall, while the number of significant ties has been
decreasing along with the downward trend of E (see Fig. 1), the
percentage of significant ties among all ties is relatively constant
for a given level of statistical significance. However, we see that
the fraction of significant ties apparently went up at the beginning
of 2002, when the circulation of Italian lira officially ended, and
after the collapse of Lehman Brothers in October 2008.

Figs. 5b and 5d show the number and share of relationship-
dependent banks identified by the node-based tests, respectively.
As in the case of significant ties, the share of relationship-
dependent banks increased drastically at the beginning of 2002
and after the failure of Lehman Brothers. We note that the re-
sults of the node-based tests should be treated with care; the
fraction of relationship-dependent banks increases with t while
the fraction of significant ties is almost unaffected (Fig. S2). A
possible reason for this dependence on t is a deterioration in
the accuracy of the Poisson approximation (Eq. (8)) as described
in Section 2.5. Although the absolute values of the fraction of
relationship-dependent banks vary with 7, the relative trends over
the data period appear still similar.
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As we saw in Fig. 5, the proposed methods (Section 2.4) allow
us to statistically identify bank pairs engaging in relationship lend-
ing and relationship-dependent banks. It is worth noting that this
would not be possible without an appropriate null model, which
was missing in previous studies (see Section 5 for an evaluation of
the previous measures for the strength of relationship lending).

Information regarding banks’ country IDs enables us to investi-
gate the correlations between banks’ nationality and the existence
of a significant tie and between nationality and the chance of being
a relationship-dependent bank. Since Italian banks occupy a great
majority in the e-MID market, we split all ties into three combi-

nations of nationalities: Italian-Italian, Italian-foreign, and foreign-
foreign pairs.

As shown in Fig. 6, the fraction of Italian-Italian pairs among
all pairs was close to one in the early 2000s, yet it considerably
decreased toward the onset of the global financial crisis in 2007-
2008. At the same time, Italian-foreign and foreign-foreign pairs
started to increase their presence over the pre-crisis period. The

5 The list of all countries is as follows (the number of banks is in parenthesis):
Austria (2), Belgium (6), Switzerland (6), Germany (23), Denmark (1), Spain (7), Fin-
land (1), France (10), Great Britain (14), Greece (6), Ireland (5), Italy (213), Luxem-
bourg (4), Holland (4), Norway (1), Poland (1), and Portugal (4).
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fraction of Italian-Italian pairs began to increase again shortly af-
ter the financial crisis occurred, gradually returning to its pre-crisis
level. This seems to suggest that an Italian bank tends to trade
with other Italian banks when the market is under stress. How-
ever, the share of Italian-Italian significant ties among all signif-
icant ties moved in sync with the fraction of Italian-Italian pairs
among all pairs, suggesting the absence of home-country bias
in creating significant ties. Somewhat counterintuitively, Italian-
Italian pairs are less likely to form significant ties compared to
Italian-foreign and foreign-foreign pairs. When it comes to the
fraction of relationship-dependent banks (Fig. 6d), the trend over
the data period is similar to that of the fraction of Italian-Italian
pairs (Fig. 6a). In particular, the percentage of Italian banks among
all relationship-dependent banks is no less than 80% throughout
the data period. The deviation between the two lines in Fig. 6d
suggests that the probability of becoming a relationship-dependent
bank has been higher for Italian banks than for non-Italian banks
at least until around 2012.

Fig. 7 presents a visualization of networks observed in differ-
ent aggregate periods. In the early 2000s, there is no clear cut of
groups since most active banks are Italian and they are well con-
nected to each other. We observe a similar situation when we con-
struct a network of significant ties only. By contrast, in a period
shortly before the financial crisis, apparently there exist two tightly
connected groups of banks, one formed by Italian banks and the
other by foreign banks. This observation is explained by the re-
sult shown in Fig. 6; the fraction of foreign-foreign pairs reached
its peak in 2007 while the fraction of Italian-foreign ties began to
decrease in 2006. The two groups can be seen more clearly if we
leave significant ties only since just a few significant ties connect
Italian and foreign banks in this period. In 2014, the network looks

similar to that in 2001, but the numbers of active banks and edges
are much smaller in 2014 than in 2001. In addition, the share of
relationship-dependent foreign banks is relatively larger in the pe-
riod during the crisis than in the pre- and post-crisis periods, al-
though the vast majority of relationship-dependent banks are still
Italian banks.

3.3. Role of relationship lending

The previous sections confirmed the existence of significant ties
in the empirical data. In this section, we explore the difference
in the outcomes of significant and non-significant ties in terms of
their duration, trading conditions, and structural characteristics.

3.3.1. Duration and the value of partnership

If relationship lending is understood as a long-lasting relation-
ship between banks, the duration of significant ties should be
longer than that of non-significant ties. Here, the duration of a
(non-)significant tie between two banks is defined as the length
of consecutive periods in each of which these banks form a (non-
)significant tie between them. In fact, the duration distribution of
significant ties has a fatter tail than that of non-significant ties
(Fig. 8). The duration distribution of significant ties has a long tail
and follows a power law at least in the pre-crisis period (2000-
2006). This fat-tail behavior indicates that the longer the duration
length, the more likely the current partnership will continue (i.e.,
the hazard rate is decreasing). To see this, let P(d) =1 - (k/y)d™V
(k >0) be a continuous approximation of the CDF of duration
length d. The hazard rate A, or the probability that a bank pair
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Fig. 7. Visualization of aggregate networks. In the upper and middle rows, red and black circles represent Italian and foreign banks, respectively. In the bottom row,
relationship-dependent banks are denoted by blue circles. The visualization is done by igraph package for Python (http://igraph.org/python/), using the Kamada-
Kawai algorithm (Kamada and Kawai, 1989). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

terminates their d—period relationship, leads to
p(d) Y

T-pd) _d
where p(d) is the probability density function of d. It follows that
during the pre-crisis period, the hazard rate at duration length d is
given by A(d) ~2.17d.

The decreasing hazard contrasts with the previous result for
bank-firm relationships shown by Ongena and Smith (2001). They
found that the probability of terminating a relationship increases
in duration, arguing that the value of relationships decreases over
time. Our result indicates that the opposite holds true for the in-
terbank market; the value of interbank relationships may increase
over time. This is consistent with the traditional theory of rela-
tionship lending that supports the benefit of a long-term relation-
ship (Freixas and Rochet, 2008), suggesting that the longer the du-
ration of a partnership, the greater the extent of private informa-
tion owned by a lender (Sharpe, 1990).

One might argue that the long duration of significant ties sim-
ply comes from the fact that relationship pairs tend to trade more
frequently than non-relationship pairs do. However, Fig. 8d-f re-
veals that the number of periods in which non-relationship pairs
trade is larger than that of relationship pairs. Thus, the long dura-
tion of a significant tie is not attributed to the high frequency of
the pair’s trades.

Ald) = (13)

3.3.2. Terms of trades and the substitutability of trading partners
In this section, we analyze the impact that the presence of a
significant tie has on trade conditions (i.e., interest rates and the

amount of loans). To control for the influences of shifts in the
policy rate and variations in the trading volume, we define the
weighted average of detrended interest rates on bilateral transac-
tions between banks i and j as

Yeen,, (1Y = (re))wej

T i = . (14)
ol > ten, Weij
where
R SCLRY VS
() = M7 (15)

Dicj Weij
and ¥ is the raw interest rate. wy j; is the total volume of funds

traded between banks i and j on day t. Set D, represents the set
of dates t that belong to aggregate period t’. The average amount
of loans per trade between banks i and j is defined as

_ Wy s
W[’,ij = Z U N (16)

teD, ’

where my ;; denotes the total number of trades between banks i
and j during period t'.

Fig. 9 shows the differences in ry ;; and Wt/.,-j between signif-
icant ties and non-significant ties, calculated by subtracting the
values for non-significant ties from those for significant ties. The
weighted interest rates are higher for relationship trades than for
transactional trades by around three to six basis points during
the global financial crisis. This fact implies the presence of im-
perfect substitutability of trading partners and that relationship
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lending played an important role in the management of liquid-
ity (Affinito, 2012).5 In interbank markets, it is occasionally ob-
served that banks trying to meet urgent liquidity needs accept high
interest rates to avoid stigma even if they can borrow from the
central bank at lower rates (Ashcraft et al., 2011; Ennis and Wein-
berg, 2013). The result shown in Fig. 9a implies that those banks
that played a role as “lenders of last resort” were connected with
their borrowers by significant ties.

The upward spike in the difference in interest rates observed
around January 2012 is considered to be caused by a “longer-term

6 A price discrimination could occur if the maturity structures were different be-
tween relationship and transactional trades, but we focus only on overnight trans-
actions.

refinancing operation (LTRO)” introduced by the ECB. As pointed
out by Barucca and Lillo (2016), the introduction of LTRO suddenly
reduced the number of active banks and the volume of loans in the
e-MID market. The decrease in the number of active banks might
have undermined the substitutability of trading partners by limit-
ing the number of potential partners, leading to an increase in the
price of loans for relationship-dependent banks.

3.4. Extension

Here, we provide two extended analyses of significant ties. One
is the analysis of a trading relationship among multiple banks.
Since we can identify the significance of relationships between any
combination of two banks, it is possible to investigate how likely a
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structure of direct transactions involving multiple banks connected
by significant ties, such as a triangle, will emerge. Another exten-
sion considered here is the application of the identification of sig-
nificant and non-significant ties to characterize the intraday behav-
ior of banks.

3.4.1. Relationship among multiple banks

In the literature of social network analysis, it has been widely
recognized that there is a tendency that “friends of friends are
friends” (Wasserman and Faust, 1994). This is called a triadic clo-
sure since the two individuals having a friend in common often
close the triangle (Easley and Kleinberg, 2010). Many studies have
revealed that triadic closure plays an important role in achieving
social cooperation (Hanaki et al., 2007), determining the spread of
a behavior across ties (Centola, 2010), and understanding the long-
term evolution of network structure (Lewis et al., 2012), to name
a few. Analogously, the purpose of this section is to see whether
triadic closures are also ubiquitous in the “friendship” network
of banks. To be more precise, the question we address here is
whether a significant tie is more likely to close a triangle of trad-
ing relationships (i.e., trilateral relationship) than a non-significant
tie, provided that the triangle has at least two significant ties. This
question is motivated by the well-known fact that triangles in so-
cial networks are mostly made of three strong ties (Granovetter,
1973; Onnela et al,, 2007; Easley and Kleinberg, 2010). If a signifi-
cant tie is more likely to close a triangle, it would indicate a pre-
viously unknown similarity between financial and social networks.
In contrast, if a non-significant tie is more likely to close a trian-
gle, then it would shed light on a unique characteristic of financial
networks.

To answer this question, we first need to count the numbers
of triangles in the aggregate networks having different numbers
of significant ties (see Appendix for the procedure of calculation).
Let T, denote the number of triangles having ¢ significant ties (¢ =
0,1,2,3) in an aggregate network. The quantity we want to com-
pute is schematically visualized in Fig. 10a; if Pyopsig = T/ (T + T3)
is significantly larger than the fraction of non-significant ties in the
whole network (i.e., the probability of placing a non-significant tie
by chance), then the closing tie of a trilateral relationship is more
likely to be a non-significant tie than random chance would sug-
gest. Since the percentage of significant ties is roughly 20%-30%
throughout the data period (Fig. 5), the fraction of non-significant
ties, denoted by Syonsig = llnonsigl/ Zi < jAjj, Where Igngg is the set of
non-significant ties, turns out to be around 0.7 — 0.8, which be-
comes the baseline for evaluating Pyqpsig-

Fig. 10b shows that Ppgpg is always above 0.9 except for a few
aggregate periods, meaning that a trilateral relationship having at
least two significant ties tends to have a non-significant tie as the

closing tie. This observation is statistically verified by the t-test for
the null hypothesis that the means of Pqpsig and Spopgig are equal,
which is rejected with p-value <0.001. Fig. 10b also illustrates the
time series of {T;},_q 1 5 3 normalized by T, the total number of tri-
angles in each period. The order Ty > T; > T, > T3 consistently holds
true throughout the data period. In addition, we see some trends
in their relative shares; the share of Tp and T; roughly move in
opposite directions while the shares of T, and T3 remain stable.

The result suggests that the local dynamics of tie formation in
financial networks is quite different from that in social networks.
While triangles of three strong ties are ubiquitous in networks
formed by human interactions, interbank networks do not exhibit
such a property.

3.4.2. Intraday analysis

In the previous sections, we observed that bank pairs connected
by significant ties exhibit different behaviors than other transac-
tional pairs at a t-day aggregate scale. In this section, we explore
intraday trading patterns to see if the existence of a significant tie
has any impact on trades at higher frequencies.

In Fig. 11, we observe subtle differences in the timing of intra-
day trading. A bank pair engaging in relationship lending tends to
conduct a larger fraction of trades at early hours (9:00-11:00) and
a smaller fraction of trades after 15:00 than a bank pair engag-
ing in transactional trading (Fig. 11a). This difference in the timing
of trades does not seem to have a considerable impact on interest
rates, but late-hour relationship trades resulted in slightly higher
interest rates than those of transactional trades until the crisis pe-
riod (Fig. 11b).” Nevertheless, we still see a downward sloping term
structure of intraday interest rates, which has been reported previ-
ously (Baglioni and Monticini, 2010, 2008; Abbassi et al., 2017).

It is evident from Fig. 11c that the positive difference in the
trade amount between relationship and transactional lending tends
to get larger as the market-closing time approaches. These gaps in
the interest rate and amount of trades may reflect the fact that
those banks that must obtain or release liquidity at the end of the
market tend to rely on their partners to which they are connected
by significant ties.

3.5. Policy implication

Our finding that there are significant ties in the interbank mar-
ket can have some policy implications for daily market interven-
tion conducted by central banks. First, the fact that the probabil-

7 The interest rate on the trade between banks i and j at time 6 on day ¢ is
defined as 1y j; = 1}, — (1), where the superscript “raw” denotes the raw interest
rate (before detrending) and (r) is defined in Eq. (15).
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ity of terminating relationship lending decreases in the duration of
relationship (Fig. 8) would allow the central bank to predict which
banks are likely to trade with whom. Monitoring banks’ funding
behavior is an important task for central banks to maintain the
health of the financial markets, and this becomes particularly im-
portant when the markets are under stress. Our statistical tests in-
dicate that at the time of financial distress, a bank in need of lig-
uidity tends to rely on a limited number of lending banks (see,
Section 4.4), which could further exacerbate the fear of liquidity
shortage. In a situation in which some banks are vulnerable to
liquidity shortage, the central banks should pay attention partic-
ularly to the behavior of relationship-dependent banks to promote
smooth liquidity funding.

Second, along with the identification of significant ties that will
help central banks predict future bilateral transactions, the pres-
ence of patterns in the formation of triangles may further rein-
force predictability. Our analysis of triadic closure suggests that
the probability that a triangle is formed by three significant ties
is smaller than expected by random chance. This trilateral prop-
erty would benefit the central bank’s market-monitoring ability by
adding additional dimension of trading-relationship structures.

Over the past decades, the network property of interbank mar-
kets and its implication for systemic risk have been extensively
studied (Boss et al., 2004; Nier et al., 2007; lori et al., 2008; Gai
and Kapadia, 2010; Caccioli et al., 2018). However, the vast major-
ity of the previous studies focused on static networks, which are
created by aggregating daily interbank networks, while we provide
a novel way of analyzing the statistical property of edge dynam-
ics. The dynamical aspect of real interbank networks is still an un-
explored area®, but exploiting the temporal patterns of interbank
transactions would become an important tool for monitoring and
controlling systemic risk.

8 Exceptions are Afonso and Lagos (2012) and Kobayashi et al. (2018).

4. Robustness check

In this section, the robustness of the baseline framework is in-
vestigated. We first examine the power of the proposed test on
synthetic core-periphery networks. We also perform edge- and
node-based tests in a more general setting where bank activity is
time-varying and/or edges are directed.

4.1. Monte Carlo analysis with core-periphery structure

We check the power of the proposed test by numerical simula-
tion. To generate a sequence of synthetic daily networks on which
significance tests are based, we employ a core-periphery structure
since it has been shown to be a plausible network structure in
various interbank markets (Imakubo and Soejima, 2010; Craig and
Von Peter, 2014; Fricke and Lux, 2015).

The procedure of the Monte Carlo analysis is as follows:

1. Initially there are N isolated banks. Fraction f. of the banks
are designated as core banks and fraction 1 — f. as periph-
eral banks.

2. On day t, any two core banks are connected with probability
Pce, @ core bank and a peripheral bank are connected with
Pcp, and there is no edge between two peripheral banks. We
generate a sequence of T snapshots of daily interbank net-
works, A(t), At + 1), ... A(t + 7).

3. Among the pairs that had at least one transaction within 7
days, choose a fraction f, of pairs at random as relationship
pairs. For a relationship pair (i, j), assume that the proba-
bility that an additional trade is not imposed at t, denoted
by p?]@rel(t), depends on the number of consecutive trading
days up to t — 1. The hazard rate is given by

bo

norel _
pij (t) B b] + sz,‘j(f — 1) ’ (17)
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Fig. 12. Edge test on synthetic networks with core-periphery structure. The true fraction of significant ties is set at 0.2. « denotes the significance level.

where D;;(t — 1) denotes the number of consecutive trans-
actions between i and j up to t — 1, and by, b; and b, are
non-negative parameters.

. If A;j(t) =0, add a relationship edge (i, j) with probability
1- p?j‘"el (t) for all relationship pairs (i, j), i #j. This gives us
the sequence of adjacency matrices with relationship edges,
{Arel (t)} —

5. Estimate bank activity {a;} using {A.(t)} in the same way

as described in Section 2.3 and implement the edge-based
tests.

It should be noted that if there is no relationship edge in
the synthetic networks (i.e., networks {;\\(t)}), then the number
of transactions between two banks follows a binomial distribution
since in each day a bilateral edge (i, j) is created with a constant
probability u(a; ;). By contrast, if two banks are matched in a
non-random manner, then the number of connections no longer
obeys a binomial distribution. In the latter case, the presence of
non-random edges should be detected by the proposed tests.

We run simulations 5000 times with the length of simulation
periods 3,000. For significance tests, only the last t periods are
used and the initial (3000 — 7) periods are discarded. The pa-
rameter values are set as follows: f. = 0.5, ppp = 0.06, pep = 0.03,
bp =1 and f, = 0.2. We check different values of b; and b,.

Fig. 12 illustrates the density functions of the fraction of de-
tected significant ties. Fig. 12a corresponds to the case of no re-
lationship lending (i.e., b = 0), in which the number of transac-
tions between two banks follows a binomial distribution. We see
type-l errors in Fig. 12a because multiple tests are implemented,
but the tests with Bonferroni correction alleviates the problem.
Fig. 12b and c introduce relationship lending into the otherwise

random network with a core-periphery structure. It turns out that
the proposed tests are able to detect significant ties quite accu-
rately as long as there is a certain extent of non-random relation-
ship. Fig. 12d shows that increasing the length of time window, t,
may improve the accuracy of the tests on synthetic networks.

4.2. Different time windows

In the baseline framework, we split the whole data period
into non-overlapping t/,,, = |tmax/T ] time windows, each of which
consisting of T business days. To check the sensitivity of the results
to the way we split the data, we implement significance tests by
using rolling time windows for different values of t.

Fig. S2 presents the results for t = {5, 10, 20}, in which we pro-
gressively slide the start date of a T-day time window by one day
increments. We see that introducing rolling time windows does
not have a quantitative impact on the fractions of significant ties
and relationship-dependent nodes. The figure also indicates that
time windows of T =5 may be too narrow to capture banks’ re-
lationship dependency since it gives us much lower fractions of
relationship-dependent banks compared to the cases of 7 = 10 and
20. On the other hand, the results for 7 = 10 and 20 are quite sim-
ilar, which suggests that the choice of T = 10 would be appropriate
given the fact that an increase in 7 also has negative effects on the
accuracy of the Poisson approximation while improving the consis-
tency of maximume-likelihood estimates (Fig. 12).

4.3. Time-varying bank activity

In the baseline null model, we assumed that activity level a is
constant within a time interval. Here, we relax this assumption by
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Fig. 13. Fractions of significant ties and relationship-dependent banks detected by a null model with variable activity.

allowing a to fluctuate at the daily scale. The matching probability
between banks i and j is given by

u(a;(t), a;(t)) = ai(t)a;(t), Vi, jt, (18)
where a;(t) denotes the activity of bank i on day t. Thus, we need
to estimate N x T activity parameters, (a(1),...,a(t)).

4.3.1. Edge-based test
The procedure for the edge-based test based on variable activi-
ties is as follows:

1. By imposing 7 =1 in Eq. (4), we obtain the estimates of ac-
tivities on day t, denoted by a(t), by solving the following N
equations:

. B Ajj(t) — a;(t)d;(t) _ .
Ai(ac)) _]%i EXGING 0, Vi=1,...,N, (19
where Ay(t) denotes the (i, j)th element of a binary adja-
cency matrix of day t° Under the null, the total number
of transactions between banks i and j in a given time in-
terval, denoted by my, obeys a Poisson binomial distribu-
tion with mean X,»j =Y (_u(d(t),d;(t)) and variance &;; =
i (1= u(@;(6), d;(6))u(@(t), a;(t)).

2. Approximate the Poisson binomial distribution of m; by a Pois-
son distribution:

2 Mij i

f(myl{am)y) ~ ;nﬁ = f(myl{a)y}). (20)

where the error bound is given by the Le Cam’s theorem:

0 . R;nij —hij 2(1 — e_iii>
mUZ=O f(mil{a®)}) - | T
S (@), ;). Vi, j. (21)
t=1

3. Implement the edge-based tests by using Eq. (20) as a null dis-
tribution.

Fig. 13a shows that the qualitative result does not change even
after introducing variable activity parameters while the detected
fraction of significant ties is slightly lower than before.

9 As is shown in Fig. S3, the estimated daily activities fluctuate around the con-
stant activity levels.

4.3.2. Node-based test

The only modification for the node-based test is that we now
take into account the fact that the probability of matching be-
tween two nodes can change over time. Here, the probability
that bank i has at least one transaction with bank j in a given
period is given by 1—T]/_;(1—u(d(t),d;(t))). Accordingly, ag-
gregate degree K; (ie, the number of bank i’s unique trading
partners) follows a Poisson binomial distribution with mean A; =
Yjejei [1 = TlEz1 (1 = u(@(t), 4;(t)))]. The distribution of K; is then
approximated by a Poisson distribution:

R if"e*;\i

f(Kila) ~ K1

Fig. 13b indicates that again the introduction of variable activ-
ities does not change the time-series behavior of the fraction of
relationship-dependent banks.

= f(K:la). (22)

4.4. Directed edges

Our statistical tests can also incorporate the directionality of
edges. Here, we need to consider two sorts of bank activities: in-
activity and out-activity. The random probability that bank i lends
to bank j is now given by
uij(a, @) = a™a, (23)
where @ and a°“t denote in- and out-activity, respectively. The
maximum-likelihood estimates of in- and out-activity are the so-
lution for the following 2N equations:

L out 4in
m,J ‘L’Cll. aj

Z _ aputaip = 0’ (24)
Jij# r

mj; — Tatqin
Z L N ) (25)
—~ 1 —qa%tqgn
Jij# J o

for i=1,...,N. Using the matching probability Eq. (23) as a pa-
rameter, we can test the significance of a directed edge in the same
way as explained in Section 2.4.1. The dependency of a node on
particular creditors (i.e., borrowing dependency) or borrowers (i.e.,
lending dependency) can also be tested by implementing a directed
version of the node-based test.

It is also straightforward to introduce a daily variations of activ-
ity (see Section 4.3) into the directed version of significance tests.
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Fig. 14. Edge- and node-based tests for directed networks. Upper panels (i.e., a-c) represent the fraction of edges or banks that passed the tests for directed networks based
on constant bank activity (see Section 4.4). Lower panels (i.e., d-f) show the corresponding results for the tests based on variable bank activity (see Section 4.3).

The daily in- and out-activity on day t are estimated by solving the
following 2N equations:

Ajj(t) — a (H)a (t)

- =0, 26
jéi 1- a?”t(t)a;“(t) (26)
3 Aji(t) = a* (O)aP (t) (27)

1-a(nar(c)

Juj#
fori=1,...,N. Then we estimate 2N x T parameters for each time
window.

The directed edge test in fact yields essentially the same result
as the one we obtained in the undirected model (Fig. 14a and d).
A reason for this is that there are few pairs that have bidirectional
edges (Kobayashi et al., 2018).

On the other hand, we see an interesting property for the di-
rected node-based tests. For a sufficiently high level of statisti-
cal significance, the fraction of borrowing-dependent banks spiked
around the global crisis (Fig. 14c and f) while the fraction of
lending-dependent banks did not (Fig. 14b and e). This strongly
suggests that the rise of relationship-dependent banks in the midst
of the global financial crisis, as indicated by the undirected node
test, could be attributed to the increased fraction of borrowing
banks that relied on a limited number of creditors.

5. Comparison with previous measures

In this section, we first assess the previously proposed mea-
sures of relationship lending by computing the extent to which
they are able to detect significant ties. Then, we implement some
regression analyses to examine how the introduction of a new rela-
tionship measure would affect the estimated impact that the pres-
ence of relationship lending has on lending rates.

5.1. Naive measures

A naive measure of lending relationship is the frequency of in-
teractions between two banks defined by (Furfine, 1999; Kysucky
and Norden, 2015; Brduning and Fecht, 2017):

RLt’,ij = log(l + mt/,ij), (28)

which denotes the logarithm of the number of transactions be-
tween banks i and j conducted in aggregate period t'.

The second and more widely used measures are a borrower
preference index (BPI) and a lender preference index (LPI) (Cocco

et al., 2009; Affinito, 2012; Craig et al., 2015; Brauning and Fecht,
2017):
W .
BPI, j; = EREE TR (29)
Disizj 2oted, Weij
Z , w i
LPl jj = 2 (30)

Djijsi 2otep, Weij
where BPI (LPI) captures the degree of concentration of borrow-
ing from (lending to) a particular partner. If the fraction of funds
borrowed from (lent to) a particular partner is high, then it would
indicate the existence of relationship lending.

Now let us assess the accuracy of RL, BPI and LPI in terms of
their detectability of significant ties. Let I, denote the set of sig-
nificant ties identified by our directed edge-based test, which is
treated as the “ground truth.” The fraction of significant ties among
all ties in a given period is represented as 551g7|151g|/2,<1A For
each x = RL, BPI, LPI, let Iy be the set of bank pairs whose score
of x is ranked top S,% in the corresponding period. If measure x
correctly reflects the strength of a bilateral relationship, then the
following Jaccard index will take a value close to one:

|Imesig|
|IxUIsig|,

Fig. 15 reveals that, somewhat surprisingly, RL outperforms BPI
and LPI, although the definitions of BPI and LPI (i.e., degree of con-
centration) seem more sophisticated than that of RL as a measure
of a lending relationship. This may be due to the fact that the
degree of concentration of borrowing from or lending to a par-
ticular bank does not necessarily relate to the number of trades,
whereas our definition of significant ties generally favors a bank
pair conducting a large number of trades, given activity levels. RL
just reflects the number of bilateral trades regardless of their vol-
ume, but it is in fact closer to our idea of significant ties than
BPI and LPI are. Of course, just counting the number of trades is
not enough because one must take into account the difference in
banks’ activity levels. An observation of repeated trades between

J= x = RL, BPL, LPL (31)
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Table 2
Regression results of Eq. (32).
Data period  BPI LPI R? #period  #observation
All 0.013** 0.004** 0.031 392 425,386
(14.396)  (5.051)
0.008**  —0.001* 0.007**  0.032
(8.407) (-1.814) (19.694)
2000-2006  0.010%** 0.005** 0.012 161 274,524
(11.007)  (5.628)
0.008**  0.003** 0.002**  0.012
(8.770) (3.328) (5.962)
2007-2009 0.022*+  0.016"* 0.045 77 81,499
(9.974) (8.350)
0.008**  0.003 0.018*** 0.049
(3.516) (1.496) (18.256)
2010-2015 0.011*** —0.010%* 0.030 154 69,363
(5.020) (-5.230)
0.004* —0.017**  0.011** 0.031
(1.860) (=7.935) (8.735)

t-values in parentheses.

* Significance at 10% level.
** Significance at 5% level.
= Significance at 1% level.

Table 3
Regression results of Eq. (33), panel data.

Fixed effects

Random effects

Data period  BPI LPI STD BPI LPI STD R?
All 0.015**  0.007* 0.001 0.015"*  0.005"* 0.001
(18.76)  (9.45) (18.82)  (732)
0.011**  0.003**  0.006**  0.002 0.011**  0.001 0.006**  0.002
(13.01)  (3.36) (17.31) (1275)  (113) (17.54)
2000-2006  0.010**  0.007** 0.001 0.010"*  0.005** 0.001
(11.24)  (8.39) (1144)  (6.34)
0.008**  0.005**  0.002**  0.001 0.008*  0.003** 0.002=*  0.001
(9.22) (6.06) (5.66) (9.06) (3.86) (635)
2007-2009  0.024**  0.021** 0.003 0.022%*  0.013** 0.002
(1038)  (1017) (9.55) (6.63)
0.010"*  0.008* 0018  0.006 0.008**  -0.000 0.018**  0.006
(4.29) (3.71) (17.86) (317) (-0.04) (18.04)
2010-2015  0.015**  —0.005* 0.001 0.015*  —0.005** 0.001
(6.87) (~2.30) (6.87) (-2.70)
0007+  —0.012*  0.013**  0.002 0007+  —0.013**  0.013**  0.002
(3.22) (~5.68) (10.77) (311) (-6.20) (10.84)

t-values and z-statistics in parentheses for fixed and random effects, respectively.
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Fig. 15. Comparison with the conventional measures of relationship lending. Black
solid, blue dotted and red dashed lines respectively represent the “accuracy” of RL,
BPI and LPI defined by the Jaccard index (Eq. (31)). RL, BPI and LPI are given by
Eqs. (28), (29) and (30), respectively. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

two banks does not necessarily lead to the presence of a signifi-
cant tie because such repetitive trades may be explained by ran-
dom chance if the two banks exhibit high activity levels. Never-
theless, Fig. 15 shows that RL appears more appropriate than BPI

or LPI as a measure of relationship lending, although Jg; ~ 0.4 does
not mean that RL is very accurate.

5.2. Regression analysis

In the literature of relationship lending in the interbank mar-
ket, many studies examined the role of relationship lending based
on regression analysis. Here, we also provide some regression anal-
yses to quantify the impact of relationship lending on the observed
differences in interest rates'’.

We first consider the following regression equation (c.f,
Cocco et al. (2009)):

Ty ij = ,30 + ﬂ] BP][/,,']' + ,BZLPIt/,ij + ﬂ?,STDtrv,‘j + )’Dt, + Uy ij, (32)

where D' denotes the vector of time dummies in which only the
t'th element takes one while other elements are zeros. uy ;; is
the residual. STD, ;; denotes a dummy variable that takes one if
banks i and j are connected by a significant tie in period t' and
zero otherwise!!. It should be noted that regression models de-
veloped in previous studies employ different time resolutions such

10 We would like to thank the referee and the editor for suggesting this line of
analysis.
11 We use a directed-network model, in which the significance level is set at 0.01.
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as daily (Brdauning and Fecht, 2017), quarterly (Cocco et al., 2009)
and the frequency corresponding to the reserve maintenance pe-
riods (Temizsoy et al., 2015). In this article, we treat the baseline
length of an aggregate period (i.e., T = 10 days) as one period.

The estimation results with and without STD are shown in
Table 2. In all the sub-peiods, the coefficient on STD is positive
and significant. The coefficient on STD takes a larger value than
the other coefficients during and after the financial crisis'2.

Next, we estimate the following panel-data regression model:

Teij = Bo + mij + B1BPly jj + BoLPly jj + B3STDy i + &4, (33)

where p;; represents a bank-pair specific effect. We estimate both
fixed- and random-effect models. In both fixed- and random-effect
models, the coefficients on STD takes positive values and are sig-
nificant. Again, the coefficients on STD are larger in absolute value
than the coefficients on BPI and LPI during and after the crisis.
Overall, our regression results are consistent with the previous
studies in that relationship lending played an important role in the
determination of interest rates. It should be noted that our method
does not exploit the information about trading volumes, while the
previous measures are based on the trading volume in quantifying
the strength of a lending relationship. In this sense, the presence
of significant ties adds one more dimension in the list of possible
determinants of interest rates, which will improve our understand-
ing of the economic role of strong relationships between banks.

6. Conclusion and discussion

This study proposed a statistical test for identifying bank pairs
that are engaging in relationship lending by introducing the con-
cept of a significant tie. The proposed identification tests were ap-
plied to the Italian interbank networks formed by daily overnight
transactions. The point of our identification method is that we test
whether or not the number of trades between two banks can be
explained by random chance after controlling for the intrinsic ac-
tivity levels of those banks. If the number of trades is statisti-
cally significant (i.e., cannot be explained by random chance), then
we say that the two banks are connected by a significant tie. We
showed that the percentage of significant ties among all ties has
been quite stable over the past years, while the number of signif-
icant ties itself has been declining along with the total number of
trades in the interbank market.

We found several important properties that distinguish rela-
tionship lending from other transactional lending. First, the du-
ration of a significant tie is, on average, longer than that of a
non-significant tie. This property indicates that the value of con-
tinuing a relationship increases in duration, as suggested by many
theoretical studies (Freixas and Rochet, 2008). Second, in the midst
of financial distress, banks in need of liquidity relied on banks to
which they are connected by significant ties even at the cost of
high interest rates. This may be evidence that relationship lenders
played a role as the “lender of last resort” during financial turmoil.
Third, there is no home-country bias in creating significant ties.

While we apply the proposed identification method to the Ital-
ian interbank market due simply to data availability, in principle
it would also be possible to implement it on various time-varying
networks. Our method is quite general and thereby not limited to
the use of identification of relationship lending in interbank mar-
kets. For example, it could also be applied to trading networks in
the corporate bond market (Maggio et al., 2017) and the municipal
bond market (Li and Schurhoff, 2014) in search of a hidden struc-
ture of significant ties between market traders.

We also provide a temporal-network analysis of the interbank
market, which is still scarce in the field of network science and in

12 Recall that BPI and LPI are defined to take values between 0 and 1.

economics, with a few exceptions (Kobayashi et al., 2018; Barucca
and Lillo, 2016). Understanding the dynamic formation of interbank
networks is quite important because the network structure formed
by overnight bilateral transactions drastically changes day to day,
meaning that the risk of financial contagion varies on a daily basis.
While most of the studies on financial systemic risk are based on
static networks (Gai and Kapadia, 2010; Cont et al., 2013; Brum-
mitt and Kobayashi, 2015), in the real world the risk of financial
contagion emerges on networks with time-varying structures. We
hope that our study will advance our knowledge about the mecha-
nism of temporal financial networks, which could contribute to the
real-time management of financial stability.
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Appendix: Counting the number of triangles

In Section 3.4.1, we counted the number of triangles in an ag-
gregate network to investigate the role of significant ties in a tri-
lateral relationship. Computing the number of triangles having k
significant ties, Ty, is straightforward if we exploit the power of
adjacency matrix. First, the total number of triangles in the whole
network is given by T = Y3_, Ty = tr(A3)/6, where tr(-) denotes
trace. This equality is based on the fact that the (i, j) element of
A" represents the number of paths from i to j that can be reached
at exactly n steps. Therefore, the diagonal elements of A3 contain
the numbers of triangles. Second, the number of triangles formed
by three significant ties is given as T3 = tr(Afig)/G, where Agg is
an adjacency matrix of the network consisting only of significant
ties. Third, the number of triangles formed only by non-signifiant
ties leads to Ty = tr((A —Asig)3)/6. Fourth, the number of triangles
having exactly one and two significant ties, T; and T, are obtained
as follows:

1. Create a ‘“signed” adjacency matrix Aggneq, Where
(Asignea)ij = 1 if i and j are connected by a significant tie,
—1 if connected by a non-significant tie, and 0 otherwise.

2. Compute Tigneq = tr(A_gigne 4)/6. This is equal to the differ-

ence between the number of triangles having an odd num-
ber of significant ties and the number of triangles having
an even number of significant ties (i.e., Tsigneq = (T1 +B3) —
(To + 1))

3. Derive T; and T, by substituting T, Ty, and T3 into equations
T =Y oTi and Tiigneq = (T + T3) — (To + T).

This procedure gives us T for k=0, 1,2, 3.
Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.jbankfin.2018.09.018
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