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a b s t r a c t 

Relationship lending is broadly interpreted as a strong partnership between a lender and a borrower. 

Nevertheless, we still lack consensus regarding how to quantify the strength of a lending relationship, 

while simple statistics such as the frequency and volume of loans have been used as proxies in previous 

studies. Here, we propose statistical tests to identify relationship lending as a significant tie between 

banks. Application of the proposed method to the Italian interbank networks reveals that the fraction of 

relationship lending among all bilateral trades has been quite stable and that the relationship lenders 

tend to impose high interest rates at the time of financial distress. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 
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1. Introduction 

The role of a strong relationship between a lender and a bor-

rower, the so-called relationship lending (or relationship banking),

is one of the most widely discussed issues in theoretical and em-

pirical studies of banking. Many empirical studies investigate the

economic impact of relationship lending on the terms of loans,

such as interest rates and the amount of funds lent, aiming to

test the theoretical implications that have been provided since the

early 1990s ( Sharpe, 1990; Rajan, 1992; Elyasiani and Goldberg,

2004; Freixas and Rochet, 2008 ). In particular, relationship lend-

ing is considered to play an important role in providing liquid-

ity to borrowers facing credit constraints by reducing the extent

of information asymmetry between lenders and borrowers. On the

other hand, borrowers in relationship trades could be “locked-in”

by lenders due to their exclusive acquisition of private information,

leading to a hold-up problem ( Petersen and Rajan, 1995; Von Thad-

den, 2004; Freixas and Rochet, 2008 ). 

A large fraction of previous researches on relationship lending

study bilateral relationships between a bank and a non-financial

firm ( Sette and Gobbi, 2015; Kysucky and Norden, 2015 ), while

other studies explored the role of relationship lending in the
∗ Corresponding author. 
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nterbank market, where banks lend to and borrow from each

ther ( Furfine, 1999; Cocco et al., 2009; Affinito, 2012; Craig et al.,

015; Hatzopoulos et al., 2015; Temizsoy et al., 2015; Bräuning and

echt, 2017 ). For example, Cocco et al. (2009) showed that in the

ortuguese interbank market, bilateral trades made by banks with

tronger relationships tend to exhibit lower interest rates. In Italy,

ffinito (2012) found that relationship lenders played an essential

ole as liquidity providers, especially in the midst of the global fi-

ancial crisis of 20 07–20 09. Temizsoy et al. (2015) obtain similar

mplications by analyzing the Italian online interbank market (e-

ID). Bräuning and Fecht (2017) argued that during the financial

risis, relationship lenders in Germany offered lower interest rates

o their close partners. Hatzopoulos et al. (2015) proposed a null

odel based on a hypergeometric distribution for testing the sig-

ificance of edges in the e-MID market. 

In the literature, measuring the influence of Lehman Brothers’

ankruptcy on the interbank market has been one of the central

nterests. Afonso et al. (2011) argue that counter party risk became

ore important than liquidity hoarding at the time of Lehman

rothers’ collapse, showing that loan terms got more sensitive to

orrowers’ credit worthiness. Angelini et al. (2011) also show that

he risk of moral hazard due to “too-big-to-fail” increased during

he crisis compared to the period prior to August 2007. 

The results of the previous analyses, however, are based on ad-

oc and simple measures of relationship lending, and the simplic-

ty may cause a mismeasurement error especially when there is
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1 Weekends are not included since the market is closed. 
eterogeneity in banks’ activities. One naive measure of relation-

hip lending is the number of transactions between two banks

onducted during a certain period of time ( Furfine, 1999; Bräuning

nd Fecht, 2017 ). Another widely used measure is the degree of

oncentration in lending or borrowing ( Cocco et al., 2009; Afonso

t al., 2013 ), measured by the share of funds lent to (or borrowed

rom) a particular counterparty. These two measures are expected

o straightforwardly capture the strength of a bilateral relationship

n the interbank market; a bank pair engaging in relationship lend-

ng would trade more frequently and devote a larger share of their

otal trading volume to the trades between them than to trades

ith other banks. However, these measures might misinterpret the

trength of lending relationships; first, the number of trades with

 particular counterparty may merely reflect a bank’s need to trade

n the interbank market. For instance, if two banks have strong

eeds to provide and obtain overnight liquidity in the interbank

arket, respectively, these banks are likely to trade by chance even

f they have no preferences for trading partners. Second, the degree

f concentration in lending or borrowing can be affected by the

ifference in the balance-sheet size of counterparties. For exam-

le, suppose that a large bank demands a greater amount of funds

han smaller banks do. If a small bank lends to the large bank, the

egree of concentration in lending may appear to be large, even

hough the lending bank has no preference for partners. The share

f lending volume to a particular partner could correctly capture

elationship lending if all the counterparties had the same liquid-

ty demands. Given these limitations, we need a more carefully de-

igned measure of relationship lending that would allow us to con-

rol for these factors. 

In this article, we propose the concept of a significant tie as a

tatistically founded definition of relationship lending. Two banks

re said to be connected by a significant tie if the number of trades

etween them is too large to be explained by random chance af-

er controlling for their intrinsic activity levels. We control for the

ctivity of banks by employing a simple network-generative model

s the null model. The so-called fitness model , one of the standard

etwork-generative models in network science ( Caldarelli et al.,

002; De Masi et al., 2006; Musmeci et al., 2013 ), considers a situ-

tion in which the probability of two banks being matched is given

s a function of their activity parameters (i.e., fitnesses ) indepen-

ently of the history of their transactions. This history-independent

roperty enables us to explicitly compute the theoretical distri-

ution of the number of bilateral trades under the null hypothe-

is that there is no preference for partners, thus allowing for sta-

istical tests. In this paper, we regard a bank pair connected by

 significant tie as engaging in relationship lending. This defini-

ion would eliminate the possible mismeasurement of relationship

ending due to differences in banks’ activity levels, which should

e reflecting their liquidity demands and balance-sheet sizes. 

We apply the proposed identification framework to the data on

ver one million interbank transactions conducted in the e-MID

arket during 20 0 0–2015. Over the past decade, the e-MID mar-

et has been extensively studied from a point of view of complex

etworks. Iori et al. (2008) , Finger et al. (2013) and Fricke and

ux (2015) analyzed the topology of aggregated interbank net-

orks, while Barucca and Lillo (2016) focused on the time-varying

ature of interbank networks. Kobayashi et al. (2018) find sev-

ral temporal patterns in bilateral transactions that are similar

o the ones observed in social communication patterns of hu-

ans ( Cattuto et al., 2010 ). Examples of studies of other inter-

ank markets include Craig and Von Peter (2014) for Germany,

iraitis et al. (2016) for the UK, Cont et al. (2013) for Brazil, and

makubo and Soejima (2010) for Japan. 

Our statistical analyses reveal important facts about relationship

ending in the e-MID market, some of which can be summarized

s follows. First, throughout the data period, the percentage of re-
ationship lending among all bilateral transactions has been stable,

lthough the percentage slightly increased around the occurrence

f particular economic events (e.g., circulation of Euro started in

002 and the Lehman collapse in 2008). Second, significant ties

end to last for longer periods than non-significant ties do, which

s consistent with the conventional notion of relationship lending.

nterestingly, the duration of relationships has a decreasing haz-

rd rate (i.e., the probability of ending a relationship is decreas-

ng in duration). This implies that the value of relationships in

he interbank market increases in time, contrary to the finding of

ngena and Smith (2001) on bank–firm relationships while con-

istent with the finding of Iori et al. (2015) . Third, our regression

nalyses show that the presence of relationship trading generally

as a positive impact on loan rates. This is consistent with the

old-up theorem and turns out to be most evident at the time of

he global financial crisis. Fourth, the chance that a bank pair is

onnected by a significant tie is affected little by the nationality of

he banks, suggesting the absence of home-country bias in build-

ng bilateral relationships. 

The rest of the paper is organized as follows. In Section 2 , we

escribe the method for identifying relationship lending, and the

esults are shown in Section 3 . Section 4 provides a robustness

nalysis and some extensions, and some regression analyses are

rovided in Section 5 to compare with the previous measures of

elationship lending. Section 6 concludes. 

. Model and methods 

.1. Data 

We use time-stamped data on interbank transactions conducted

n the Italian online interbank market (e-MID) between Septem-

er 20 0 0 and December 2015. As in the other interbank mar-

ets, e-MID plays a role as a marketplace in which banks in need

f short-term liquidity or having excess liquidities find counter-

arties by posting an order on the platform. Banks that post re-

uests are called quoters , and their counterparties are called ag-

ressors . The actual names of trading banks are not revealed in

he platform, but their proper IDs, including their nationality, are

ade public (e.g., “IT0 0 02”, where “IT” denotes Italy). The transac-

ions data contain the following information: date and time (e.g.,

20 0 0-09-04 09:12:40”), the IDs of banks, maturity, interest rates,

nd trade amount (in million Euros). The e-MID data is commer-

ially available from e-MID SIM S.p.A based in Milan, Italy ( http:

/www.e-mid.it/ ). 

In this article, we use the overnight transactions of unse-

ured Euro deposits labeled as “ON” (i.e., overnight) or “ONL”

i.e., overnight large, namely overnight transactions no less than

00 million Euros), which comprise the great majority of transac-

ions ( > 86%) in the e-MID market. An advantage of focusing on

vernight trades is that we can construct a sequence of snapshots

f daily interbank networks having banks as nodes and lending-

orrowing relationships as edges ( Fig. 1 ). An edge is created when

 loan is executed. If there are multiple transactions between two

anks during a day, we represent the trading relationship as one

nweighted edge. As a result, the number of edges over the whole

ata period totals 1,033,349. 

From Fig. 1 , it is evident that interbank networks constantly

hange their size on a daily basis, and there is a common down-

ard trend in the numbers of active banks N and edges E . Here,

active” banks in a daily network are defined as banks that had

ransactions at least once between 9:00 and 18:00. Downward

pikes in N and E are mostly due to national holidays in Italy. 1 

http://www.e-mid.it/
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Fig. 1. Evolution of interbank networks. Solid and dotted denote the number of 

active banks N (left axis) and the number of edges E (right axis) of a daily network, 

respectively. The largest (November 23, 20 0 0), a middle-sized (October 29, 2008) 

and the smallest networks (August 15, 2013) are visualized. 

Table 1 

Summary statistics of the daily interbank networks. Symbol x denotes the average 

of variable x over the corresponding period, and 〈 k 〉 is the daily average degree. 

Subscripts “max” and “min” represent the maximum and minimum values, respec- 

tively. 

All 20 0 0–20 06 20 07–20 09 2010–2015 

# days 3,922 1,618 767 1,537 

N 95.80 130.40 101.67 56.45 

N max 161 161 144 89 

N min 13 56 48 13 

E 262.96 402.16 266.00 114.91 

E max 662 662 461 265 

E min 15 122 76 15 

〈 k 〉 2.54 3.07 2.57 1.97 
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2 In Kobayashi et al. (2018) , we used a matching function of the form u (a i , a j ) = 

(a i a j ) 
α . In the current model, we can set α = 1 without loss of generality because 

the case of α � = 1 can be recovered by redefining the activity parameter as a α . 
3 The configuration model is a network model that generates a random network 

having a predefined degree sequence { k i }. See Newman (2010) for details. 
On the other hand, the presence of a long-term downward trend

could be attributed to multiple factors such as the onset of the

global financial crisis, the Greek sovereign debt crisis, and the in-

troduction of highly expansionary monetary policies of the Euro-

pean Central Bank (ECB) (and possibly other central banks). Sum-

mary statistics of the time series of daily interbank networks are

presented in Table 1 . 

2.2. Fitness model 

As a baseline framework for the subsequent statistical analysis,

we introduce here a simple model of daily interbank networks that

describes how a lender and a borrower are matched. Our model

is a variant of the fitness model ( Caldarelli et al., 2002; De Masi

et al., 2006 ). The fitness model has been frequently used in the

field of network science to explain the mechanism of dynamic net-

work formation, in which the probability that two agents are con-

nected depends on the fitness of the agents. In the context of inter-

bank markets, fitness corresponds to the intrinsic activity level of a

bank, such as the demand for short-term liquidity if the bank is a

possible borrower and the willingness to supply funds if the bank

is a possible lender. In spite of its simplicity, the fitness model has

been shown to explain many rich properties that emerge from the

evolution of interbank networks ( De Masi et al., 2006; Kobayashi

et al., 2018 ). 

In the baseline model, we regard daily interbank networks as

undirected (i.e., we ignore the direction of edges) because our

main focus is on identifying and analyzing the role of the bilat-

eral relationship between banks. We will extend the analysis to di-

rected networks in Section 4.4 . We assume that the probability u

that bank i trades with bank j on a given day is expressed by the
roduct of their activity levels: 

 (a i , a j ) ≡ a i a j , (1)

here a i > 0 represents the activity level (or fitness) of bank i . 2 

he model nests a wide variety of well-known network generat-

ng models, depending on the specification of { a i }. For example,

f a i = a ∀ i, then the model is equivalent to an Erd ̋os-Rényi ran-

om graph with constant matching probability u = a 2 ( Erd ̋os et al.,

959 ). If a i = k i / 
√ 

2 M , where k i and M are the degree of bank i and

he total number of edges in a daily network, respectively, then

he matching probability is given by u = k i k j / (2 M) , resulting in the

onfiguration model ( Newman, 2010 ). 3 

We first estimate the activity vector a ≡ (a 1 , . . . , a N ) , assuming

hat every element of a is constant during an aggregate period

onsisting of τ consecutive business days. In other words, daily

etworks in an aggregate period are regarded as independent re-

lizations from the fitness model with estimated a . In Section 4.3 ,

e will consider the case of time-varying activity parameters. In

hort, we are extracting a N × 1 vector of bank activity levels from

he observed network structure containing N × (N − 1) elements of

nformation on bilateral trades (i.e., adjacency matrix). This dimen-

ionality reduction obviously discards the structural information of

 network. In return, the resultant estimates enable us to infer the

xtent to which a random matching between banks can explain the

mpirical network structure, avoiding an over-identification prob-

em. Based on the estimates of a , we identify the existence of rela-

ionship lending by testing whether the observed number of trans-

ctions between two banks is significantly larger than the value

xpected by the null hypothesis (i.e., the fitness model). 

.3. Maximum likelihood estimation of activity levels 

We split the daily data set into aggregate periods, each consist-

ng of τ business days, and perform a maximum likelihood esti-

ation of a period by period. Aggregate periods are indexed by

 

′ = 1 , . . . , t ′ max , where t ′ max ≡ 	 t max /τ
 and t max denotes the total

umber of business days in the data. For the sake of simplicity, we

mit subscript t ′ in the rest of this section. 

If trading pairs are independently matched each day according

o probability u ( a, a ′ ), then the number of trades between banks i

nd j conducted over τ business days follows a binomial distribu-

ion with parameters τ and u ( a i , a j ). For a given activity vector a ,

he joint probability function of the number of trades in an aggre-

ate period then leads to 

p 
({ m i j }| a 

)
= 

∏ 

i, j: i � = j 

(
τ

m i j 

)
u (a i , a j ) 

m i j 

(
1 − u (a i , a j ) 

)τ−m i j 
, (2)

here m ij ≤ τ denotes the number of trades (i.e., edges) between i

nd j observed in an aggregate period. The log-likelihood function

s thus given by 

 ( a ) = log p 
({ m i j }| a 

)
= 

∑ 

i, j: i � = j 

[
m i j log (a i a j ) + (τ − m i j ) log (1 − (a i a j )) 

]
+ const. , 

(3)

here “const.” denotes the terms that are independent of a . Let N

enote the number of active banks that have at least one trans-

ction during a given aggregate period. The maximum-likelihood
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Fig. 2. Schematic of a significant tie. For illustrative purposes we set τ = 3 . The 

size of circle represents the activity level of a bank. If banks are matched randomly 

according to the fitness model, then banks with higher activity levels will receive 

larger number of edges on average. If the number of trades between bank i and 

bank j is too large to be explained by random chance, then the two banks are con- 

sidered to be connected by a significant tie and engaging in relationship lending. 
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stimate of a is the solution for the following N equations: 

 i ( a 

∗) ≡
∑ 

j : j � = i 

m i j − τ (a ∗
i 
a ∗

j 
) 

1 − (a ∗
i 
a ∗

j 
) 

= 0 , ∀ i = 1 , . . . , N, (4) 

The first-order condition (4) is obtained by differentiating the

og-likelihood function Eq. (3) with respect to a i . The system of

onlinear equations, H( a ) = 0 , can be solved by using a standard

umerical algorithm. 4 Hereafter, the computed solution (i.e., the

aximum likelihood estimate) of a is denoted by a 

∗ ≡ (a ∗
1 
, . . . , a ∗

N 
) .

y repeating this process period by period, we obtain the estimates

f activity vectors 

{ 

a 

∗
1 
, a 

∗
2 
, . . . , a 

∗
t ′ max 

} 

. 

.4. Statistical tests for relationship lending 

Here we present two sorts of statistical tests; one is for iden-

ifying bank pairs engaging in relationship lending and the other

s for detecting relationship-dependent banks. In the same manner

s we estimate the activity levels of banks ( Section 2.3 ), we split

he daily data set into t ′ max aggregate periods and implement the

ests period by period. 

.4.1. Edge-based test for relationship lending 

If bank i has no preference for trading partners and thereby

nds a partner in a random manner as suggested in the fitness

odel, then the number of bilateral transactions between banks i

nd j during a given period, m ij , should obey the following bino-

ial distribution: 

 

(
m i j | a ∗i , a ∗j 

)
= 

(
τ

m i j 

)
u 

(
a ∗i , a 

∗
j 

)m i j 
(
1 − u (a ∗i , a 

∗
j ) 
)τ−m i j 

, 

∀ i, j = 1 , . . . , N. (5) 

In contrast, if bank i has a strong (i.e., non-random) partnership

ith bank j , then the distribution of m ij will deviate from a bi-

omial distribution. Let m 

c 
i j 

denote the c -th percentile (0 ≤ c ≤ 100)

f g(m i j | a ∗i , a ∗j ) (i.e., c/ 100 = G (m 

c 
i j 
| a ∗

i 
, a ∗

j 
) ), where G is the cumula-

ive distribution function (CDF) of g(m i j | a ∗i , a ∗j ) . If m i j > m 

c 
i j 

for a c

alue close to 100, then the empirical number of transactions is too

arge to be explained by random chance, indicating the presence

f relationship lending. We call this test the edge-based test since

his is a test for the significance of edges in interbank networks.

f m i j > m 

c 
i j 
, then we say that banks i and j are connected by a

ignificant tie and engaging in relationship lending. We set c = 99

i.e., 99% significance level) throughout the paper. A schematic of a

ignificant tie is presented in Fig. 2 . 

Importantly, the number of bilateral trades in a given period it-

elf does not necessarily indicate the presence of a significant tie.

nder a random matching (the upper row of Fig. 2 ), bank i trades

wice with each of the two counterparties having the largest activ-

ty levels, which should be a natural consequence given the high

atching probabilities. By contrast, banks i and j trade three times

n the bottom row of Fig. 2 , which is unexpected based on their

mall activity levels. Therefore, bank i is considered to engage in

elationship lending with bank j but not with the other three. 
4 We solved the problem by using the Matlab function fsolve, which is based 

n a modified Newton method, called the trust-region-dogleg method. The initial 

alues of a are given by the configuration model, a i = 

∑ 

j: j � = i (m i j /τ ) / 
√ 

2 
∑ 

i< j m i j /τ , 

here the numerator and the denominator represent the daily means of bank i ’s 

egree and the doubled number of total edges, respectively. There are a few cases 

n which the estimated activity values a i and a j indicate u ( a i , a j ) > 1. In such cases, 

e assume u = 1. 

P  

L  

S

K

w

.4.2. Node-based test for relationship-dependent banks 
Since we have random matching probabilities u ( a, a ′ ) for any

airs of banks, we can also test the extent to which a bank de-
ends on a limited number of partners. The probability function of
ggregate degree K i is given as 

f ( K i | a ∗) = 

∑ 

{ A ij } 
∏ 

j : j � = i g 
(
m ij = 0 

)1 −A ij 
(
1 − g 

(
m ij = 0 

))A ij × δ
(∑ 

j A ij , K i 
)

= 

∑ 

{ A ij } 
∏ 

j : j � = i 
(
1 − u 

(
a ∗

i 
, a ∗

j 

))τ ( 1 −A ij ) 
(

1 −
(
1 − u 

(
a ∗

i 
, a ∗

j 

))τ
)A ij 

× δ
(∑ 

j A ij , K i 
)
, 

(6) 

here A ij is the ( i, j )-element of the aggregate adjacency matrix;

 i j = 1 if there is at least one transaction between banks i and

 during an aggregate period, and A i j = 0 otherwise. δ( x, y ) de-

otes the Kronecker delta which equals one if x = y and zero other-

ise. Note that the second equality follows from relation g(m i j =
) = (1 − u (a ∗

i 
, a ∗

j 
)) τ ( Eq. (5) ). In fact, Eq. (6) is equivalent to the

istribution of the sum of N − 1 random variables drawn from a

ernoulli distribution with parameter { 1 − (1 − u (a ∗
i 
, a ∗

j 
)) τ } j : j � = i , or

 Poisson binomial distribution. Here we would like to compute

he CDF of f (K i | a 

∗) to evaluate the significance of empirical K i .

owever, exact calculation of the CDF of a Poisson binomial distri-

ution is notoriously difficult because one must compute 
(

N 
K i 

)
num-

er of terms ( Steele, 1994 ). Thus, we instead approximate the prob-

bility distribution of K i to a Poisson distribution ( Le Cam, 1960 ): 

f ( K i | a 

∗) ≈ λ∗K i 
i 

e −λ∗
i 

K i ! 
≡ ˜ f ( K i | a 

∗) , (7) 

here λ∗
i 

≡ ∑ 

j : j � = i [1 − (1 − u (a ∗
i 
, a ∗

j 
)) τ ] . An error bound for this

oisson approximation is provided by an extended version of the

e Cam’s theorem ( Le Cam, 1960; Barbour and Eagleson, 1983;

teele, 1994 ): 

∞ ∑ 

 i =0 

∣∣∣∣ f ( K i | a 

∗) − λ∗K i 
i 

e −λ∗
i 

K i ! 

∣∣∣∣ < 

2 

(
1 − e −λ∗

i 

)
λ∗

i 

∑ 

j : j � = i 
p 2 i j , ∀ i, j, (8) 

here p i j ≡ 1 − (1 − u (a ∗
i 
, a ∗

j 
)) τ . 
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Fig. 3. Maximum-likelihood estimates of activity. Solid line represents median, and 

lower and upper dotted lines respectively denote the 5th and 95th percentiles of 

the estimated activity distribution in each aggregate period. 
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The Poisson approximation enables us to formally test the null

hypothesis that the empirical aggregate degree K i is explained by

random chance. Let K 

c ′ 
i 

denote the c ′ -th percentile (0 ≤ c ′ ≤ 100) of˜ f (K i | a 

∗) . In other words, c ′ / 100 = ̃

 F (K i | a 

∗) , where ˜ F (K i | a 

∗) is the

CDF of ˜ f (K i | a 

∗) . If the data reveal that K i < K 

c ′ 
i 

for c ′ close to zero,

then bank i has a significantly smaller number of trading partners

than random chance would suggest. If this is the case, it indicates a

significant dependence of bank i on relationship lending. Hereafter

we call this type of test the node-based test , and we set c ′ = 1 . 

2.5. Selection of aggregate length τ

Before applying the model and statistical tests described in the

previous sections to empirical data, we must determine parame-

ter τ , the length of an aggregate period. In fact, varying τ would

cause trade-offs between approximation accuracy and the stability

of aggregated data. On the one hand, the choice of τ would di-

rectly affect the accuracy of the Poisson approximation through its

influence on λ∗
i 

and p ij in Eq. (8) . The average error bound ( Eq. (8) )

increases with τ as lim τ→∞ 

p i j = 1 , ∀ i, j (Fig. S1a in Supplemen-

tary Information). Taking into account this positive relationship be-

tween the error bound and τ , τ should be set as small as pos-

sible. On the other hand, employing a smaller value of τ would

also affect the stability of statistical results as the aggregate net-

works could become more unstable because the number of active

banks would change drastically period to period (see Fig. 1 ). This

necessarily reduces the stability of the data to be examined. Fig-

ure S1b illustrates that the average and the standard deviation of

the absolute changes in N , denoted by �N t ′ ≡ | N t ′ − N t ′ −1 | (t ′ =
2 , . . . , t ′ max ) , take minimum values around τ = 12 . Judging from

these observations, we employ τ = 10 as a benchmark value. We

will show that all the qualitative results shown in this paper are

quite robust and not sensitive to the choice of τ . 

3. Results 

3.1. Estimation results: activity level 

The distribution of the estimated activity levels, a 

∗, is shown in

Fig. 3 . The distribution has been relatively stable throughout the

data period. Based on these estimates, we can infer how many

transactions would be conducted under the null hypothesis in

which the matching probability is given by u (a ∗
i 
, a ∗

j 
) ∀ i, j. The em-

pirical number of transactions in an aggregate period, denoted by
 , is given as 

 = 

∑ 

i< j 

m i j . (9)

he expected number of transactions under the null hypothesis M 

∗

s given as 

 

∗ = τ
∑ 

i< j 

u 

(
a ∗i , a 

∗
j 

)
. (10)

ig. 4 a illustrates the relationships between N and M in the em-

irical data and the estimated model. The almost perfect fit be-

ween the estimated values of M 

∗ and the empirical data indi-

ates that the maximum likelihood estimation works fairly well;

he estimated activity accurately captures the actual bank activity

n terms of the total number of trades. In Kobayashi et al. (2018) ,

e showed that there is a clear superlinear relationship between

he numbers of banks and edges at the daily scale (i.e., τ = 1 ) us-

ng the same data. Fig. 4 a in fact reveals that a similar scaling re-

ation arises even at the aggregate level of τ = 10 business days. 

On the other hand, if we take the presence of relationship lend-

ng as a given, the empirical numbers of trading partners should be

maller than the estimated values under the null hypothesis. To see

his, Fig. 4 b shows the average of aggregate degree K , the number

f unique trading partners in an aggregate period: 

 = 

1 

N 

∑ 

i, j 

A i j . (11)

nder the null hypothesis, the average aggregate degree is com-

uted as 

 

∗ = 

1 

N 

∑ 

i, j 

[ 
1 −

(
1 − u (a ∗i , a 

∗
j ) 
)τ

] 
. (12)

s shown in Fig. 4 b, K 

∗ overestimates K , meaning that in the real

orld banks tend to be more selective than a random matching

ould suggest. In the next section, we identify the presence of

elationship lending by statistically testing the extent of deviation

rom the null model. 

.2. Identification results: significant ties and relationship-dependent 

anks 

Figs. 5 a and 5 c, respectively, show the number and the frac-

ion of significant ties identified by the edge-based test. We also

hecked the robustness of the results to different choices of τ in

I (Fig. S2). Overall, while the number of significant ties has been

ecreasing along with the downward trend of E (see Fig. 1 ), the

ercentage of significant ties among all ties is relatively constant

or a given level of statistical significance. However, we see that

he fraction of significant ties apparently went up at the beginning

f 2002, when the circulation of Italian lira officially ended, and

fter the collapse of Lehman Brothers in October 2008. 

Figs. 5 b and 5 d show the number and share of relationship-

ependent banks identified by the node-based tests, respectively.

s in the case of significant ties, the share of relationship-

ependent banks increased drastically at the beginning of 2002

nd after the failure of Lehman Brothers. We note that the re-

ults of the node-based tests should be treated with care; the

raction of relationship-dependent banks increases with τ while

he fraction of significant ties is almost unaffected (Fig. S2). A

ossible reason for this dependence on τ is a deterioration in

he accuracy of the Poisson approximation ( Eq. (8) ) as described

n Section 2.5 . Although the absolute values of the fraction of

elationship-dependent banks vary with τ , the relative trends over

he data period appear still similar. 
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Fig. 4. Comparison between the model and the empirical values of M and K . Each dot corresponds to an aggregate period. (a) The total number of edges predicted by the 

model ( Eq. (10) ) well fits the empirical data. (b) The number of unique partners predicted by the model ( Eq. (12) ) overestimates the empirical data. 

Fig. 5. Statistical identification of relationship lending. The numbers of (a) significant ties and (b) relationship-dependent nodes. The fraction of (c) significant ties and (d) 

relationship-dependent nodes. α ≡ 1 − c/ 100 denotes the significance level. “Bonferroni” (pale-red line) denotes the Bonferroni correction for multiple statistical tests. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5 The list of all countries is as follows (the number of banks is in parenthesis): 

Austria (2), Belgium (6), Switzerland (6), Germany (23), Denmark (1), Spain (7), Fin- 
As we saw in Fig. 5 , the proposed methods ( Section 2.4 ) allow

s to statistically identify bank pairs engaging in relationship lend-

ng and relationship-dependent banks. It is worth noting that this

ould not be possible without an appropriate null model, which

as missing in previous studies (see Section 5 for an evaluation of

he previous measures for the strength of relationship lending). 

Information regarding banks’ country IDs enables us to investi-

ate the correlations between banks’ nationality and the existence

f a significant tie and between nationality and the chance of being

 relationship-dependent bank. Since Italian banks occupy a great

ajority in the e-MID market, we split all ties into three combi-

l

b

ations of nationalities: Italian-Italian, Italian-foreign, and foreign-

oreign pairs. 5 

As shown in Fig. 6 , the fraction of Italian-Italian pairs among

ll pairs was close to one in the early 20 0 0s, yet it considerably

ecreased toward the onset of the global financial crisis in 2007–

008. At the same time, Italian-foreign and foreign-foreign pairs

tarted to increase their presence over the pre-crisis period. The
and (1), France (10), Great Britain (14), Greece (6), Ireland (5), Italy (213), Luxem- 

ourg (4), Holland (4), Norway (1), Poland (1), and Portugal (4). 



26 T. Kobayashi, T. Takaguchi / Journal of Banking and Finance 97 (2018) 20–36 

Fig. 6. Fraction of (a) Italian-Italian, (b) Italian-foreign, and (c) foreign-foreign bank pairs. Solid and dotted lines indicate the fractions of the corresponding pairs among all 

pairs and among relationship pairs, respectively. (d) Fraction of Italian banks among all banks (solid) and among relationship-dependent banks (dotted). 99% significance 

level. 
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fraction of Italian-Italian pairs began to increase again shortly af-

ter the financial crisis occurred, gradually returning to its pre-crisis

level. This seems to suggest that an Italian bank tends to trade

with other Italian banks when the market is under stress. How-

ever, the share of Italian-Italian significant ties among all signif-

icant ties moved in sync with the fraction of Italian-Italian pairs

among all pairs, suggesting the absence of home-country bias

in creating significant ties. Somewhat counterintuitively, Italian-

Italian pairs are less likely to form significant ties compared to

Italian-foreign and foreign-foreign pairs. When it comes to the

fraction of relationship-dependent banks ( Fig. 6 d), the trend over

the data period is similar to that of the fraction of Italian-Italian

pairs ( Fig. 6 a). In particular, the percentage of Italian banks among

all relationship-dependent banks is no less than 80% throughout

the data period. The deviation between the two lines in Fig. 6 d

suggests that the probability of becoming a relationship-dependent

bank has been higher for Italian banks than for non-Italian banks

at least until around 2012. 

Fig. 7 presents a visualization of networks observed in differ-

ent aggregate periods. In the early 20 0 0s, there is no clear cut of

groups since most active banks are Italian and they are well con-

nected to each other. We observe a similar situation when we con-

struct a network of significant ties only. By contrast, in a period

shortly before the financial crisis, apparently there exist two tightly

connected groups of banks, one formed by Italian banks and the

other by foreign banks. This observation is explained by the re-

sult shown in Fig. 6 ; the fraction of foreign-foreign pairs reached

its peak in 2007 while the fraction of Italian-foreign ties began to

decrease in 2006. The two groups can be seen more clearly if we

leave significant ties only since just a few significant ties connect

Italian and foreign banks in this period. In 2014, the network looks
 l  
imilar to that in 2001, but the numbers of active banks and edges

re much smaller in 2014 than in 2001. In addition, the share of

elationship-dependent foreign banks is relatively larger in the pe-

iod during the crisis than in the pre- and post-crisis periods, al-

hough the vast majority of relationship-dependent banks are still

talian banks. 

.3. Role of relationship lending 

The previous sections confirmed the existence of significant ties

n the empirical data. In this section, we explore the difference

n the outcomes of significant and non-significant ties in terms of

heir duration, trading conditions, and structural characteristics. 

.3.1. Duration and the value of partnership 

If relationship lending is understood as a long-lasting relation-

hip between banks, the duration of significant ties should be

onger than that of non-significant ties. Here, the duration of a

non-)significant tie between two banks is defined as the length

f consecutive periods in each of which these banks form a (non-

significant tie between them. In fact, the duration distribution of

ignificant ties has a fatter tail than that of non-significant ties

 Fig. 8 ). The duration distribution of significant ties has a long tail

nd follows a power law at least in the pre-crisis period (20 0 0–

006). This fat-tail behavior indicates that the longer the duration

ength, the more likely the current partnership will continue (i.e.,

he hazard rate is decreasing). To see this, let P (d) = 1 − (κ/γ ) d −γ

 κ > 0) be a continuous approximation of the CDF of duration

ength d . The hazard rate λ, or the probability that a bank pair
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Fig. 7. Visualization of aggregate networks. In the upper and middle rows, red and black circles represent Italian and foreign banks, respectively. In the bottom row, 

relationship-dependent banks are denoted by blue circles. The visualization is done by igraph package for Python ( http://igraph.org/python/ ), using the Kamada- 

Kawai algorithm ( Kamada and Kawai, 1989 ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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erminates their d−period relationship, leads to 

(d) = 

p(d) 

1 − P (d) 
= 

γ

d 
, (13) 

here p ( d ) is the probability density function of d . It follows that

uring the pre-crisis period, the hazard rate at duration length d is

iven by λ(d) ≈ 2 . 17 d −1 . 

The decreasing hazard contrasts with the previous result for

ank–firm relationships shown by Ongena and Smith (2001) . They

ound that the probability of terminating a relationship increases

n duration, arguing that the value of relationships decreases over

ime. Our result indicates that the opposite holds true for the in-

erbank market; the value of interbank relationships may increase

ver time. This is consistent with the traditional theory of rela-

ionship lending that supports the benefit of a long-term relation-

hip ( Freixas and Rochet, 2008 ), suggesting that the longer the du-

ation of a partnership, the greater the extent of private informa-

ion owned by a lender ( Sharpe, 1990 ). 

One might argue that the long duration of significant ties sim-

ly comes from the fact that relationship pairs tend to trade more

requently than non-relationship pairs do. However, Fig. 8 d–f re-

eals that the number of periods in which non-relationship pairs

rade is larger than that of relationship pairs. Thus, the long dura-

ion of a significant tie is not attributed to the high frequency of

he pair’s trades. 

.3.2. Terms of trades and the substitutability of trading partners 

In this section, we analyze the impact that the presence of a

ignificant tie has on trade conditions (i.e., interest rates and the
mount of loans). To control for the influences of shifts in the

olicy rate and variations in the trading volume, we define the

eighted average of detrended interest rates on bilateral transac-

ions between banks i and j as 

 t ′ ,i j ≡
∑ 

t∈ D t ′ 
(
r raw 

t,i j 
− 〈 r t 〉 

)
w t,i j ∑ 

t∈ D t ′ w t,i j 

, (14) 

here 

 r t 〉 ≡
∑ 

i< j r 
raw 

t,i j 
w t,i j ∑ 

i< j w t,i j 

, (15) 

nd r raw 

t,i j 
is the raw interest rate. w t, ij is the total volume of funds

raded between banks i and j on day t . Set D t ′ represents the set

f dates t that belong to aggregate period t ′ . The average amount

f loans per trade between banks i and j is defined as 

 t ′ ,i j ≡
∑ 

t∈ D t ′ 

w t,i j 

m t ′ ,i j 

, (16) 

here m t ′ ,i j denotes the total number of trades between banks i

nd j during period t ′ . 
Fig. 9 shows the differences in r t ′ ,i j and W t ′ ,i j between signif-

cant ties and non-significant ties, calculated by subtracting the

alues for non-significant ties from those for significant ties. The

eighted interest rates are higher for relationship trades than for

ransactional trades by around three to six basis points during

he global financial crisis. This fact implies the presence of im-

erfect substitutability of trading partners and that relationship
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Fig. 8. Duration of a lending relationship. (a)–(c): triangle (circle) denotes the complementary cumulative distribution function (CCDF) of the length of consecutive periods 

in each of which a bank pair is connected by a significant tie (a non-significant tie). In panel (a), the slope of the CCDF is also shown (black solid), which is estimated by 

the maximum-likelihood method proposed by Clauset et al. (2009) . (d)–(f): histogram of the total number of periods in which a bank pair is connected by a significant tie 

or a non-significant tie. 

Fig. 9. Impact of relationship lending on (a) interest rates and (b) trade amount. Solid line and shading indicate the average and the 95% confidence interval, respectively. In 

each panel, the difference is calculated by subtracting the values for non-significant ties from those for significant ties. 
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lending played an important role in the management of liquid-

ity ( Affinito, 2012 ). 6 In interbank markets, it is occasionally ob-

served that banks trying to meet urgent liquidity needs accept high

interest rates to avoid stigma even if they can borrow from the

central bank at lower rates ( Ashcraft et al., 2011; Ennis and Wein-

berg, 2013 ). The result shown in Fig. 9 a implies that those banks

that played a role as “lenders of last resort” were connected with

their borrowers by significant ties. 

The upward spike in the difference in interest rates observed

around January 2012 is considered to be caused by a “longer-term
6 A price discrimination could occur if the maturity structures were different be- 

tween relationship and transactional trades, but we focus only on overnight trans- 

actions. 

 

i  

S  

c  
efinancing operation (LTRO)” introduced by the ECB. As pointed

ut by Barucca and Lillo (2016) , the introduction of LTRO suddenly

educed the number of active banks and the volume of loans in the

-MID market. The decrease in the number of active banks might

ave undermined the substitutability of trading partners by limit-

ng the number of potential partners, leading to an increase in the

rice of loans for relationship-dependent banks. 

.4. Extension 

Here, we provide two extended analyses of significant ties. One

s the analysis of a trading relationship among multiple banks.

ince we can identify the significance of relationships between any

ombination of two banks, it is possible to investigate how likely a
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Fig. 10. Trilateral relationship and significant ties. (a) Schematic of the probability P nonsig ≡ T 2 / (T 2 + T 3 ) that a triangle having two significant ties has a non-significant 

closing tie. Solid edges labeled “sig” represent significant ties while dotted lines denote non-significant ties. (b) Time series of P nonsig and the fraction of { T 	 } 	 =0 , 1 , 2 , 3 among 

all triangles. 
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7 The interest rate on the trade between banks i and j at time θ on day t is 

defined as r θ,t,i j = r raw 
θ,t,i j 

− 〈 r t 〉 , where the superscript “raw” denotes the raw interest 

rate (before detrending) and 〈 r t 〉 is defined in Eq. (15) . 
tructure of direct transactions involving multiple banks connected

y significant ties, such as a triangle, will emerge. Another exten-

ion considered here is the application of the identification of sig-

ificant and non-significant ties to characterize the intraday behav-

or of banks. 

.4.1. Relationship among multiple banks 

In the literature of social network analysis, it has been widely

ecognized that there is a tendency that “friends of friends are

riends” ( Wasserman and Faust, 1994 ). This is called a triadic clo-

ure since the two individuals having a friend in common often

lose the triangle ( Easley and Kleinberg, 2010 ). Many studies have

evealed that triadic closure plays an important role in achieving

ocial cooperation ( Hanaki et al., 2007 ), determining the spread of

 behavior across ties ( Centola, 2010 ), and understanding the long-

erm evolution of network structure ( Lewis et al., 2012 ), to name

 few. Analogously, the purpose of this section is to see whether

riadic closures are also ubiquitous in the “friendship” network

f banks. To be more precise, the question we address here is

hether a significant tie is more likely to close a triangle of trad-

ng relationships (i.e., trilateral relationship) than a non-significant

ie, provided that the triangle has at least two significant ties. This

uestion is motivated by the well-known fact that triangles in so-

ial networks are mostly made of three strong ties ( Granovetter,

973; Onnela et al., 2007; Easley and Kleinberg, 2010 ). If a signifi-

ant tie is more likely to close a triangle, it would indicate a pre-

iously unknown similarity between financial and social networks.

n contrast, if a non-significant tie is more likely to close a trian-

le, then it would shed light on a unique characteristic of financial

etworks. 

To answer this question, we first need to count the numbers

f triangles in the aggregate networks having different numbers

f significant ties (see Appendix for the procedure of calculation).

et T 	 denote the number of triangles having 	 significant ties (	 =
 , 1 , 2 , 3) in an aggregate network. The quantity we want to com-

ute is schematically visualized in Fig. 10 a; if P nonsig ≡ T 2 / (T 2 + T 3 )

s significantly larger than the fraction of non-significant ties in the

hole network (i.e., the probability of placing a non-significant tie

y chance), then the closing tie of a trilateral relationship is more

ikely to be a non-significant tie than random chance would sug-

est. Since the percentage of significant ties is roughly 20%–30%

hroughout the data period ( Fig. 5 ), the fraction of non-significant

ies, denoted by S nonsig ≡ | I nonsig |/ 
i < j A ij , where I nonsig is the set of

on-significant ties, turns out to be around 0 . 7 − 0 . 8 , which be-

omes the baseline for evaluating P nonsig . 

Fig. 10 b shows that P nonsig is always above 0.9 except for a few

ggregate periods, meaning that a trilateral relationship having at

east two significant ties tends to have a non-significant tie as the
losing tie. This observation is statistically verified by the t -test for

he null hypothesis that the means of P nonsig and S nonsig are equal,

hich is rejected with p -value < 0.001. Fig. 10 b also illustrates the

ime series of { T 	 } 	 =0 , 1 , 2 , 3 normalized by T , the total number of tri-

ngles in each period. The order T 0 > T 1 > T 2 > T 3 consistently holds

rue throughout the data period. In addition, we see some trends

n their relative shares; the share of T 0 and T 1 roughly move in

pposite directions while the shares of T 2 and T 3 remain stable. 

The result suggests that the local dynamics of tie formation in

nancial networks is quite different from that in social networks.

hile triangles of three strong ties are ubiquitous in networks

ormed by human interactions, interbank networks do not exhibit

uch a property. 

.4.2. Intraday analysis 

In the previous sections, we observed that bank pairs connected

y significant ties exhibit different behaviors than other transac-

ional pairs at a τ -day aggregate scale. In this section, we explore

ntraday trading patterns to see if the existence of a significant tie

as any impact on trades at higher frequencies. 

In Fig. 11 , we observe subtle differences in the timing of intra-

ay trading. A bank pair engaging in relationship lending tends to

onduct a larger fraction of trades at early hours (9:0 0–11:0 0) and

 smaller fraction of trades after 15:00 than a bank pair engag-

ng in transactional trading ( Fig. 11 a). This difference in the timing

f trades does not seem to have a considerable impact on interest

ates, but late-hour relationship trades resulted in slightly higher

nterest rates than those of transactional trades until the crisis pe-

iod ( Fig. 11 b). 7 Nevertheless, we still see a downward sloping term

tructure of intraday interest rates, which has been reported previ-

usly ( Baglioni and Monticini, 2010, 2008; Abbassi et al., 2017 ). 

It is evident from Fig. 11 c that the positive difference in the

rade amount between relationship and transactional lending tends

o get larger as the market-closing time approaches. These gaps in

he interest rate and amount of trades may reflect the fact that

hose banks that must obtain or release liquidity at the end of the

arket tend to rely on their partners to which they are connected

y significant ties. 

.5. Policy implication 

Our finding that there are significant ties in the interbank mar-

et can have some policy implications for daily market interven-

ion conducted by central banks. First, the fact that the probabil-
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Fig. 11. Impact of relationship lending on intraday interest rate and trade amount. In each panel, dotted and solid lines denote significant ties and non-significant ties, 

respectively. (a) Frequency of trades in each time interval. (b) Mean deviation of interest rates from the daily mean. (c) Average amount of trade. In panels (a) and (b), the 

error bar indicates the 95% confidence interval. 
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ity of terminating relationship lending decreases in the duration of

relationship ( Fig. 8 ) would allow the central bank to predict which

banks are likely to trade with whom. Monitoring banks’ funding

behavior is an important task for central banks to maintain the

health of the financial markets, and this becomes particularly im-

portant when the markets are under stress. Our statistical tests in-

dicate that at the time of financial distress, a bank in need of liq-

uidity tends to rely on a limited number of lending banks (see,

Section 4.4 ), which could further exacerbate the fear of liquidity

shortage. In a situation in which some banks are vulnerable to

liquidity shortage, the central banks should pay attention partic-

ularly to the behavior of relationship-dependent banks to promote

smooth liquidity funding. 

Second, along with the identification of significant ties that will

help central banks predict future bilateral transactions, the pres-

ence of patterns in the formation of triangles may further rein-

force predictability. Our analysis of triadic closure suggests that

the probability that a triangle is formed by three significant ties

is smaller than expected by random chance. This trilateral prop-

erty would benefit the central bank’s market-monitoring ability by

adding additional dimension of trading-relationship structures. 

Over the past decades, the network property of interbank mar-

kets and its implication for systemic risk have been extensively

studied ( Boss et al., 2004; Nier et al., 2007; Iori et al., 2008; Gai

and Kapadia, 2010; Caccioli et al., 2018 ). However, the vast major-

ity of the previous studies focused on static networks, which are

created by aggregating daily interbank networks, while we provide

a novel way of analyzing the statistical property of edge dynam-

ics. The dynamical aspect of real interbank networks is still an un-

explored area 8 , but exploiting the temporal patterns of interbank

transactions would become an important tool for monitoring and

controlling systemic risk. 
8 Exceptions are Afonso and Lagos (2012) and Kobayashi et al. (2018) . 

 

. Robustness check 

In this section, the robustness of the baseline framework is in-

estigated. We first examine the power of the proposed test on

ynthetic core-periphery networks. We also perform edge- and

ode-based tests in a more general setting where bank activity is

ime-varying and/or edges are directed. 

.1. Monte Carlo analysis with core-periphery structure 

We check the power of the proposed test by numerical simula-

ion. To generate a sequence of synthetic daily networks on which

ignificance tests are based, we employ a core-periphery structure

ince it has been shown to be a plausible network structure in

arious interbank markets ( Imakubo and Soejima, 2010; Craig and

on Peter, 2014; Fricke and Lux, 2015 ). 

The procedure of the Monte Carlo analysis is as follows: 

1. Initially there are N isolated banks. Fraction f c of the banks

are designated as core banks and fraction 1 − f c as periph-

eral banks. 

2. On day t , any two core banks are connected with probability

p cc , a core bank and a peripheral bank are connected with

p cp , and there is no edge between two peripheral banks. We

generate a sequence of τ snapshots of daily interbank net-

works, ̂ A (t) , ̂  A (t + 1) , . . . , ̂  A (t + τ ) . 

3. Among the pairs that had at least one transaction within τ
days, choose a fraction f rel of pairs at random as relationship

pairs. For a relationship pair ( i, j ), assume that the proba-

bility that an additional trade is not imposed at t , denoted

by p norel 
i j 

(t) , depends on the number of consecutive trading

days up to t − 1 . The hazard rate is given by 

p norel 
i j (t) = 

b 0 
b 1 + b 2 D i j (t − 1) 

, (17)
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Fig. 12. Edge test on synthetic networks with core-periphery structure. The true fraction of significant ties is set at 0.2. α denotes the significance level. 
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c  
where D i j (t − 1) denotes the number of consecutive trans-

actions between i and j up to t − 1 , and b 0 , b 1 and b 2 are

non-negative parameters. 

4. If ̂ A i j (t) = 0 , add a relationship edge ( i, j ) with probability

1 − p norel 
i j 

(t) for all relationship pairs ( i, j ), i � = j . This gives us

the sequence of adjacency matrices with relationship edges,

{ ̂  A rel (t) } . 
5. Estimate bank activity { a i } using { ̂  A rel (t) } in the same way

as described in Section 2.3 and implement the edge-based

tests. 

It should be noted that if there is no relationship edge in

he synthetic networks (i.e., networks { ̂  A (t) } ), then the number

f transactions between two banks follows a binomial distribution

ince in each day a bilateral edge ( i, j ) is created with a constant

robability u ( a i , a j ). By contrast, if two banks are matched in a

on-random manner, then the number of connections no longer

beys a binomial distribution. In the latter case, the presence of

on-random edges should be detected by the proposed tests. 

We run simulations 50 0 0 times with the length of simulation

eriods 3,0 0 0. For significance tests, only the last τ periods are

sed and the initial (30 0 0 − τ ) periods are discarded. The pa-

ameter values are set as follows: f c = 0 . 5 , p pp = 0 . 06 , p cp = 0 . 03 ,

 0 = 1 and f rel = 0 . 2 . We check different values of b 1 and b 2 . 

Fig. 12 illustrates the density functions of the fraction of de-

ected significant ties. Fig. 12 a corresponds to the case of no re-

ationship lending (i.e., b 2 = 0 ), in which the number of transac-

ions between two banks follows a binomial distribution. We see

ype-I errors in Fig. 12 a because multiple tests are implemented,

ut the tests with Bonferroni correction alleviates the problem.

ig. 12 b and c introduce relationship lending into the otherwise
andom network with a core-periphery structure. It turns out that

he proposed tests are able to detect significant ties quite accu-

ately as long as there is a certain extent of non-random relation-

hip. Fig. 12 d shows that increasing the length of time window, τ ,

ay improve the accuracy of the tests on synthetic networks. 

.2. Different time windows 

In the baseline framework, we split the whole data period

nto non-overlapping t ′ max = 	 t max /τ
 time windows, each of which

onsisting of τ business days. To check the sensitivity of the results

o the way we split the data, we implement significance tests by

sing rolling time windows for different values of τ . 

Fig. S2 presents the results for τ = { 5 , 10 , 20 } , in which we pro-

ressively slide the start date of a τ -day time window by one day

ncrements. We see that introducing rolling time windows does

ot have a quantitative impact on the fractions of significant ties

nd relationship-dependent nodes. The figure also indicates that

ime windows of τ = 5 may be too narrow to capture banks’ re-

ationship dependency since it gives us much lower fractions of

elationship-dependent banks compared to the cases of τ = 10 and

0. On the other hand, the results for τ = 10 and 20 are quite sim-

lar, which suggests that the choice of τ = 10 would be appropriate

iven the fact that an increase in τ also has negative effects on the

ccuracy of the Poisson approximation while improving the consis-

ency of maximum-likelihood estimates ( Fig. 12 ). 

.3. Time-varying bank activity 

In the baseline null model, we assumed that activity level a is

onstant within a time interval. Here, we relax this assumption by
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Fig. 13. Fractions of significant ties and relationship-dependent banks detected by a null model with variable activity. 
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allowing a to fluctuate at the daily scale. The matching probability

between banks i and j is given by 

u (a i (t) , a j (t)) ≡ a i (t) a j (t) , ∀ i, j, t, (18)

where a i ( t ) denotes the activity of bank i on day t . Thus, we need

to estimate N × τ activity parameters, ( a (1) , . . . , a (τ )) . 

4.3.1. Edge-based test 

The procedure for the edge-based test based on variable activi-

ties is as follows: 

1. By imposing τ = 1 in Eq. (4) , we obtain the estimates of ac-

tivities on day t , denoted by ˆ a (t) , by solving the following N

equations: 

ˆ H i 

(
ˆ a (t) 

)
≡

∑ 

j : j � = i 

A i j (t) − ˆ a i (t ) ̂  a j (t ) 

1 − ˆ a i (t) ̂  a j (t) 
= 0 , ∀ i = 1 , . . . , N, (19)

where A ij ( t ) denotes the ( i, j )th element of a binary adja-

cency matrix of day t . 9 Under the null, the total number

of transactions between banks i and j in a given time in-

terval, denoted by m ij , obeys a Poisson binomial distribu-

tion with mean 

ˆ λi j ≡
∑ τ

t=1 u ( ̂  a i (t) , ̂  a j (t)) and variance ˆ σi j ≡∑ τ
t=1 (1 − u ( ̂  a i (t ) , ̂  a j (t ))) u ( ̂  a i (t ) , ̂  a j (t )) . 

2. Approximate the Poisson binomial distribution of m ij by a Pois-

son distribution: 

f 
(
m i j |{ ̂  a (t) } ) ≈

ˆ λ
m i j 

i j 
e −ˆ λi j 

m i j ! 
≡ ˜ f 

(
m i j |{ ̂  a (t) } ), (20)

where the error bound is given by the Le Cam’s theorem: 

∞ ∑ 

m i j =0 

∣∣∣∣∣ f 
(
m i j |{ ̂  a (t) } ) −

ˆ λ
m i j 

i 
e −ˆ λi j 

m i j ! 

∣∣∣∣∣ < 

2 

(
1 − e −ˆ λi j 

)
ˆ λi j 

τ∑ 

t=1 

u 

(
ˆ a i (t) , ̂  a j (t) 

)2 
, ∀ i, j. (21)

3. Implement the edge-based tests by using Eq. (20) as a null dis-

tribution. 

Fig. 13 a shows that the qualitative result does not change even

after introducing variable activity parameters while the detected

fraction of significant ties is slightly lower than before. 
9 As is shown in Fig. S3, the estimated daily activities fluctuate around the con- 

stant activity levels. 

l  

v

 

i  
.3.2. Node-based test 

The only modification for the node-based test is that we now

ake into account the fact that the probability of matching be-

ween two nodes can change over time. Here, the probability

hat bank i has at least one transaction with bank j in a given

eriod is given by 1 − ∏ τ
t=1 (1 − u ( ̂  a i (t ) , ̂  a j (t ))) . Accordingly, ag-

regate degree K i (i.e., the number of bank i ’s unique trading

artners) follows a Poisson binomial distribution with mean 

ˆ λi ≡
 

j : j � = i 
[
1 − ∏ τ

t=1 (1 − u ( ̂  a i (t ) , ̂  a j (t ))) 
]
. The distribution of K i is then

pproximated by a Poisson distribution: 

f 
(
K i | ̂  a 

)
≈

ˆ λK i 
i 

e −ˆ λi 

K i ! 
≡ ˜ f 

(
K i | ̂  a 

)
. (22)

Fig. 13 b indicates that again the introduction of variable activ-

ties does not change the time-series behavior of the fraction of

elationship-dependent banks. 

.4. Directed edges 

Our statistical tests can also incorporate the directionality of

dges. Here, we need to consider two sorts of bank activities: in-

ctivity and out-activity. The random probability that bank i lends

o bank j is now given by 

 i → j 

(
a out 

i , a in j 

)
= a out 

i a in j , (23)

here a in and a out denote in- and out-activity, respectively. The

aximum-likelihood estimates of in- and out-activity are the so-

ution for the following 2 N equations: 

∑ 

j : j � = i 

m i j − τa out 
i 

a in 
j 

1 − a out 
i 

a in 
j 

= 0 , (24)

∑ 

j : j � = i 

m ji − τa out 
j 

a in 
i 

1 − a out 
j 

a in 
i 

= 0 , (25)

or i = 1 , . . . , N. Using the matching probability Eq. (23) as a pa-

ameter, we can test the significance of a directed edge in the same

ay as explained in Section 2.4.1 . The dependency of a node on

articular creditors (i.e., borrowing dependency ) or borrowers (i.e.,

ending dependency ) can also be tested by implementing a directed

ersion of the node-based test. 

It is also straightforward to introduce a daily variations of activ-

ty (see Section 4.3 ) into the directed version of significance tests.
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Fig. 14. Edge- and node-based tests for directed networks. Upper panels (i.e., a–c) represent the fraction of edges or banks that passed the tests for directed networks based 

on constant bank activity (see Section 4.4 ). Lower panels (i.e., d–f) show the corresponding results for the tests based on variable bank activity (see Section 4.3 ). 
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n  
he daily in- and out-activity on day t are estimated by solving the

ollowing 2 N equations: 

∑ 

j : j � = i 

A i j (t) − a out 
i 

(t ) a in 
j 
(t ) 

1 − a out 
i 

(t) a in 
j 
(t) 

= 0 , (26) 

∑ 

j : j � = i 

A ji (t) − a out 
j 

(t ) a in 
i 
(t ) 

1 − a out 
j 

(t) a in 
i 
(t) 

= 0 , (27) 

or i = 1 , . . . , N. Then we estimate 2 N × τ parameters for each time

indow. 

The directed edge test in fact yields essentially the same result

s the one we obtained in the undirected model ( Fig. 14 a and d).

 reason for this is that there are few pairs that have bidirectional

dges ( Kobayashi et al., 2018 ). 

On the other hand, we see an interesting property for the di-

ected node-based tests. For a sufficiently high level of statisti-

al significance, the fraction of borrowing-dependent banks spiked

round the global crisis ( Fig. 14 c and f) while the fraction of

ending-dependent banks did not ( Fig. 14 b and e). This strongly

uggests that the rise of relationship-dependent banks in the midst

f the global financial crisis, as indicated by the undirected node

est, could be attributed to the increased fraction of borrowing

anks that relied on a limited number of creditors. 

. Comparison with previous measures 

In this section, we first assess the previously proposed mea-

ures of relationship lending by computing the extent to which

hey are able to detect significant ties. Then, we implement some

egression analyses to examine how the introduction of a new rela-

ionship measure would affect the estimated impact that the pres-

nce of relationship lending has on lending rates. 

.1. Naive measures 

A naive measure of lending relationship is the frequency of in-

eractions between two banks defined by ( Furfine, 1999; Kysucky

nd Norden, 2015; Bräuning and Fecht, 2017 ): 

L t ′ ,i j ≡ log (1 + m t ′ ,i j ) , (28) 
b  
hich denotes the logarithm of the number of transactions be-

ween banks i and j conducted in aggregate period t ′ . 
The second and more widely used measures are a borrower

reference index (BPI) and a lender preference index (LPI) ( Cocco

t al., 2009; Affinito, 2012; Craig et al., 2015; Bräuning and Fec ht,

017 ): 

PI t ′ ,i j ≡
∑ 

t∈ D t ′ w t,i j ∑ 

i : i � = j 
∑ 

t∈ D t ′ w t,i j 

, (29) 

PI t ′ ,i j ≡
∑ 

t∈ D t ′ w t,i j ∑ 

j : j � = i 
∑ 

t∈ D t ′ w t,i j 

, (30) 

here BPI (LPI) captures the degree of concentration of borrow-

ng from (lending to) a particular partner. If the fraction of funds

orrowed from (lent to) a particular partner is high, then it would

ndicate the existence of relationship lending. 

Now let us assess the accuracy of RL, BPI and LPI in terms of

heir detectability of significant ties. Let I sig denote the set of sig-

ificant ties identified by our directed edge-based test, which is

reated as the “ground truth.” The fraction of significant ties among

ll ties in a given period is represented as S sig ≡ | I sig |/ 
i < j A ij . F or

ach x = RL , BPI , LPI , let I x be the set of bank pairs whose score

f x is ranked top S sig % in the corresponding period. If measure x

orrectly reflects the strength of a bilateral relationship, then the

ollowing Jaccard index will take a value close to one: 

 x = 

| I x ∩ I sig | 
| I x ∪ I sig | , x = RL , BPI , LPI . (31) 

Fig. 15 reveals that, somewhat surprisingly, RL outperforms BPI

nd LPI, although the definitions of BPI and LPI (i.e., degree of con-

entration) seem more sophisticated than that of RL as a measure

f a lending relationship. This may be due to the fact that the

egree of concentration of borrowing from or lending to a par-

icular bank does not necessarily relate to the number of trades,

hereas our definition of significant ties generally favors a bank

air conducting a large number of trades, given activity levels. RL

ust reflects the number of bilateral trades regardless of their vol-

me, but it is in fact closer to our idea of significant ties than

PI and LPI are. Of course, just counting the number of trades is

ot enough because one must take into account the difference in

anks’ activity levels. An observation of repeated trades between
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Table 2 

Regression results of Eq. (32) . 

Data period BPI LPI STD R 2 #period #observation 

All 0.013 ∗∗∗ 0.004 ∗∗∗ 0.031 392 425,386 

(14.396) (5.051) 

0.008 ∗∗∗ −0 . 001 ∗ 0.007 ∗∗∗ 0.032 

(8.407) ( −1 . 814 ) (19.694) 

20 0 0–20 06 0.010 ∗∗∗ 0.005 ∗∗∗ 0.012 161 274,524 

(11.007) (5.628) 

0.008 ∗∗∗ 0.003 ∗∗∗ 0.002 ∗∗∗ 0.012 

(8.770) (3.328) (5.962) 

20 07–20 09 0.022 ∗∗∗ 0.016 ∗∗∗ 0.045 77 81,499 

(9.974) (8.350) 

0.008 ∗∗∗ 0.003 0.018 ∗∗∗ 0.049 

(3.516) (1.496) (18.256) 

2010–2015 0.011 ∗∗∗ −0 . 010 ∗∗∗ 0.030 154 69,363 

(5.020) ( −5 . 230 ) 

0.004 ∗ −0 . 017 ∗∗∗ 0.011 ∗∗∗ 0.031 

(1.860) ( −7 . 935 ) (8.735) 

t -values in parentheses. 
∗ Significance at 10% level. 
∗∗ Significance at 5% level. 
∗∗∗ Significance at 1% level. 

Table 3 

Regression results of Eq. (33) , panel data. 

Fixed effects Random effects 

Data period BPI LPI STD R 2 BPI LPI STD R 2 

All 0.015 ∗∗∗ 0.007 ∗∗∗ 0.001 0.015 ∗∗∗ 0.005 ∗∗∗ 0.001 

(18.76) (9.45) (18.82) (7.32) 

0.011 ∗∗∗ 0.003 ∗∗∗ 0.006 ∗∗∗ 0.002 0.011 ∗∗∗ 0.001 0.006 ∗∗∗ 0.002 

(13.01) (3.36) (17.31) (12.75) (1.13) (17.54) 

20 0 0–20 06 0.010 ∗∗∗ 0.007 ∗∗∗ 0.001 0.010 ∗∗∗ 0.005 ∗∗∗ 0.001 

(11.24) (8.39) (11.44) (6.34) 

0.008 ∗∗∗ 0.005 ∗∗∗ 0.002 ∗∗∗ 0.001 0.008 ∗∗∗ 0.003 ∗∗∗ 0.002 ∗∗∗ 0.001 

(9.22) (6.06) (5.66) (9.06) (3.86) (6.35) 

20 07–20 09 0.024 ∗∗∗ 0.021 ∗∗∗ 0.003 0.022 ∗∗∗ 0.013 ∗∗∗ 0.002 

(10.38) (10.17) (9.55) (6.63) 

0.010 ∗∗∗ 0.008 ∗∗∗ 0.018 ∗∗∗ 0.006 0.008 ∗∗∗ -0.0 0 0 0.018 ∗∗∗ 0.006 

(4.29) (3.71) (17.86) (3.17) (-0.04) (18.04) 

2010–2015 0.015 ∗∗∗ −0 . 005 ∗∗ 0.001 0.015 ∗∗∗ −0 . 005 ∗∗∗ 0.001 

(6.87) ( −2 . 30 ) (6.87) (-2.70) 

0.007 ∗∗∗ −0 . 012 ∗∗∗ 0.013 ∗∗∗ 0.002 0.007 ∗∗∗ −0 . 013 ∗∗∗ 0.013 ∗∗∗ 0.002 

(3.22) ( −5 . 68 ) (10.77) (3.11) ( −6 . 20 ) (10.84) 

t -values and z -statistics in parentheses for fixed and random effects, respectively. 

Fig. 15. Comparison with the conventional measures of relationship lending. Black 

solid, blue dotted and red dashed lines respectively represent the “accuracy” of RL, 

BPI and LPI defined by the Jaccard index ( Eq. (31) ). RL, BPI and LPI are given by 

Eqs. (28) , (29) and (30) , respectively. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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10 We would like to thank the referee and the editor for suggesting this line of 

analysis. 
11 We use a directed-network model, in which the significance level is set at 0.01. 
two banks does not necessarily lead to the presence of a signifi-

cant tie because such repetitive trades may be explained by ran-

dom chance if the two banks exhibit high activity levels. Never-

theless, Fig. 15 shows that RL appears more appropriate than BPI
r LPI as a measure of relationship lending, although J RL ∼ 0.4 does

ot mean that RL is very accurate. 

.2. Regression analysis 

In the literature of relationship lending in the interbank mar-

et, many studies examined the role of relationship lending based

n regression analysis. Here, we also provide some regression anal-

ses to quantify the impact of relationship lending on the observed

ifferences in interest rates 10 . 

We first consider the following regression equation (c.f.,

occo et al. (2009) ): 

 t ′ ,i j = β0 + β1 BPI t ′ ,i j + β2 LPI t ′ ,i j + β3 STD t ′ ,i j + γD 

t ′ + u t ′ ,i j , (32)

here D 

t ′ denotes the vector of time dummies in which only the

 

′ th element takes one while other elements are zeros. u t ′ ,i j is

he residual. STD t ′ ,i j denotes a dummy variable that takes one if

anks i and j are connected by a significant tie in period t ′ and

ero otherwise 11 . It should be noted that regression models de-

eloped in previous studies employ different time resolutions such
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A  
s daily ( Bräuning and Fecht, 2017 ), quarterly ( Cocco et al., 2009 )

nd the frequency corresponding to the reserve maintenance pe-

iods ( Temizsoy et al., 2015 ). In this article, we treat the baseline

ength of an aggregate period (i.e., τ = 10 days) as one period. 

The estimation results with and without STD are shown in

able 2 . In all the sub-peiods, the coefficient on STD is positive

nd significant. The coefficient on STD takes a larger value than

he other coefficients during and after the financial crisis 12 . 

Next, we estimate the following panel-data regression model: 

 t ′ ,i j = β0 + μi j + β1 BPI t ′ ,i j + β2 LPI t ′ ,i j + β3 STD t ′ ,i j + ε t ′ ,i j , (33) 

here μij represents a bank-pair specific effect. We estimate both

xed- and random-effect models. In both fixed- and random-effect

odels, the coefficients on STD takes positive values and are sig-

ificant. Again, the coefficients on STD are larger in absolute value

han the coefficients on BPI and LPI during and after the crisis. 

Overall, our regression results are consistent with the previous

tudies in that relationship lending played an important role in the

etermination of interest rates. It should be noted that our method

oes not exploit the information about trading volumes, while the

revious measures are based on the trading volume in quantifying

he strength of a lending relationship. In this sense, the presence

f significant ties adds one more dimension in the list of possible

eterminants of interest rates, which will improve our understand-

ng of the economic role of strong relationships between banks. 

. Conclusion and discussion 

This study proposed a statistical test for identifying bank pairs

hat are engaging in relationship lending by introducing the con-

ept of a significant tie. The proposed identification tests were ap-

lied to the Italian interbank networks formed by daily overnight

ransactions. The point of our identification method is that we test

hether or not the number of trades between two banks can be

xplained by random chance after controlling for the intrinsic ac-

ivity levels of those banks. If the number of trades is statisti-

ally significant (i.e., cannot be explained by random chance), then

e say that the two banks are connected by a significant tie. We

howed that the percentage of significant ties among all ties has

een quite stable over the past years, while the number of signif-

cant ties itself has been declining along with the total number of

rades in the interbank market. 

We found several important properties that distinguish rela-

ionship lending from other transactional lending. First, the du-

ation of a significant tie is, on average, longer than that of a

on-significant tie. This property indicates that the value of con-

inuing a relationship increases in duration, as suggested by many

heoretical studies ( Freixas and Rochet, 2008 ). Second, in the midst

f financial distress, banks in need of liquidity relied on banks to

hich they are connected by significant ties even at the cost of

igh interest rates. This may be evidence that relationship lenders

layed a role as the “lender of last resort” during financial turmoil.

hird, there is no home-country bias in creating significant ties. 

While we apply the proposed identification method to the Ital-

an interbank market due simply to data availability, in principle

t would also be possible to implement it on various time-varying

etworks. Our method is quite general and thereby not limited to

he use of identification of relationship lending in interbank mar-

ets. For example, it could also be applied to trading networks in

he corporate bond market ( Maggio et al., 2017 ) and the municipal

ond market ( Li and Schurhoff, 2014 ) in search of a hidden struc-

ure of significant ties between market traders. 

We also provide a temporal-network analysis of the interbank

arket, which is still scarce in the field of network science and in
12 Recall that BPI and LPI are defined to take values between 0 and 1. 

A  
conomics, with a few exceptions ( Kobayashi et al., 2018; Barucca

nd Lillo, 2016 ). Understanding the dynamic formation of interbank

etworks is quite important because the network structure formed

y overnight bilateral transactions drastically changes day to day,

eaning that the risk of financial contagion varies on a daily basis.

hile most of the studies on financial systemic risk are based on

tatic networks ( Gai and Kapadia, 2010; Cont et al., 2013; Brum-

itt and Kobayashi, 2015 ), in the real world the risk of financial

ontagion emerges on networks with time-varying structures. We

ope that our study will advance our knowledge about the mecha-

ism of temporal financial networks, which could contribute to the

eal-time management of financial stability. 
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ppendix: Counting the number of triangles 

In Section 3.4.1 , we counted the number of triangles in an ag-

regate network to investigate the role of significant ties in a tri-

ateral relationship. Computing the number of triangles having k

ignificant ties, T k , is straightforward if we exploit the power of

djacency matrix. First, the total number of triangles in the whole

etwork is given by T = 

∑ 3 
k =0 T k = tr (A 

3 ) / 6 , where tr( · ) denotes

race. This equality is based on the fact that the ( i, j ) element of

 

n represents the number of paths from i to j that can be reached

t exactly n steps. Therefore, the diagonal elements of A 

3 contain

he numbers of triangles. Second, the number of triangles formed

y three significant ties is given as T 3 = tr (A 

3 
sig 

) / 6 , where A sig is

n adjacency matrix of the network consisting only of significant

ies. Third, the number of triangles formed only by non-signifiant

ies leads to T 0 = tr ((A − A sig ) 
3 ) / 6 . Fourth, the number of triangles

aving exactly one and two significant ties, T 1 and T 2 , are obtained

s follows: 

1. Create a “signed” adjacency matrix A signed , where

(A signed ) i j = 1 if i and j are connected by a significant tie,

−1 if connected by a non-significant tie, and 0 otherwise. 

2. Compute T signed = tr (A 

3 
signed 

) / 6 . This is equal to the differ-

ence between the number of triangles having an odd num-

ber of significant ties and the number of triangles having

an even number of significant ties (i.e., T signed = (T 1 + T 3 ) −
(T 0 + T 2 )) . 

3. Derive T 1 and T 2 by substituting T, T 0 , and T 3 into equations

T = 

∑ 3 
k =0 T k and T signed = (T 1 + T 3 ) − (T 0 + T 2 ) . 

This procedure gives us T k for k = 0 , 1 , 2 , 3 . 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jbankfin.2018.09.018 
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