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Abstract

Estimating the Riesz representer is central to debiased machine learning for causal
and structural parameter estimation. We propose generalized Riesz regression, a unified
framework for estimating the Riesz representer by fitting a representer model via Breg-
man divergence minimization. This framework includes various divergences as special
cases, such as the squared distance and the Kullback—Leibler (KL) divergence, where
the former recovers Riesz regression and the latter recovers tailored loss minimization.
Under suitable pairs of divergence and model specification (link functions), the dual
problems of the Riesz representer fitting problem correspond to covariate balancing,
which we call automatic covariate balancing. Moreover, under the same specifications,
the sample average of outcomes weighted by the estimated Riesz representer satisfies
Neyman orthogonality even without estimating the regression function, a property we
call automatic Neyman orthogonalization. This property not only reduces the esti-
mation error of Neyman orthogonal scores but also clarifies a key distinction between
debiased machine learning and targeted maximum likelihood estimation (TMLE). Our
framework can also be viewed as a generalization of density ratio fitting under Breg-
man divergences to Riesz representer estimation, and it applies beyond density ratio
estimation. We provide convergence analyses for both reproducing kernel Hilbert space
(RKHS) and neural network model classes. A Python package for generalized Riesz
regression is available at https://github.com/MasaKatO/grr.

1 Introduction

The Riesz representer plays a crucial role in debiased machine learning for a variety of causal
and structural parameter estimation problems (Chernozhukov et al., 2022b), such as Aver-
age Treatment Effect (ATE) estimation (Imbens & Rubin, 2015), Average Marginal Effect
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(AME) estimation, Average Policy Effect (APE) estimation, and covariate shift adaptation
(Shimodaira, 2000; Uehara et al., 2020; Chernozhukov et al., 2025). The Riesz representer
arises from the Riesz representation theorem for the parameter functional, and it also has
a close connection to semiparametric efficiency bounds (Newey, 1994). In particular, by
using the Riesz representer appropriately, we can obtain semiparametric estimators that are
asymptotically linear with the efficient influence function, which is also referred to as the
Neyman orthogonal score (Chernozhukov et al., 2018).

Straightforward approaches to approximating the Riesz representer often rely on inter-
mediate steps. For example, in ATE estimation, the Riesz representer can be written in
terms of the inverse propensity score. A straightforward approach is to estimate the propen-
sity score and then construct the Riesz representer by taking its inverse. In covariate shift
adaptation, the Riesz representer is given by the density ratio, the ratio of two probability
density functions (pdfs). A straightforward approach is to estimate the two pdfs and then
take their ratio. However, it is unclear whether such approaches perform well for the task of
Riesz representer estimation because they are not designed to minimize the estimation error
of the Riesz representer itself.

To address this issue, end-to-end approaches for Riesz representer estimation have been
explored, including Riesz regression (Chernozhukov et al., 2021; Chen et al., 2014; Kanamori et al.,
2009). In particular, in ATE estimation, entropy balancing weights (Hainmueller, 2012), sta-
ble balancing weights (Zubizarreta, 2015), and tailored loss minimization (Zhao, 2019) have
been proposed. In covariate shift adaptation, direct density ratio estimation methods have
been proposed (Sugiyama et al., 2012).

This study provides a general framework for Riesz representer estimation that accommo-
dates these methods. We formulate Riesz representer estimation as a problem of fitting a
Riesz representer model to the true Riesz representer under a Bregman divergence (Bregman,
1967). The Bregman divergence includes various discrepancy measures, such as squared dis-
tance and Kullback—Leibler (KL) divergence, as special cases. We measure the discrepancy
between a Riesz representer model and the true Riesz representer using a Bregman divergence
and train the model by minimizing this divergence, where the discrepancy is interpreted as
a loss function. Although the true Riesz representer is unknown, we derive an objective
function that does not involve the true Riesz representer and can be approximated using
only observations. Therefore, we can train the Riesz representer model within an empirical
risk minimization framework.

Notably, with the squared loss, the Bregman divergence minimization problem aligns with
Riesz regression (Chernozhukov et al., 2021). With the KL divergence loss, the Bregman
divergence minimization problem aligns with tailored loss minimization (Zhao, 2019). We
note that Bruns-Smith et al. (2025) shows that stable balancing weights are dual solutions of
Riesz regression, while Zhao (2019) shows that entropy balancing weights are dual solutions of
tailored loss minimization. Thus, our Bregman divergence minimization formulation unifies
these existing methods within a single framework.

In the following sections, we introduce our general setup (Section 2) and then propose
our Riesz representer estimation method (Section 3). We refer to Riesz representer fitting
under a Bregman divergence as generalized Riesz regression. We may also refer to it as
Bregman-—Riesz regression, direct bias correction term estimation, generalized tailored loss
minimization, or generalized covariate balancing (Remark 3). However, we adopt the term
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generalized Riesz regression because the choice of loss function is closely related to the
choice of link function. For example, the duality relationship between Riesz regression and
stable balancing weights holds when we use a linear link (a linear model) for the Riesz
representer. In contrast, the duality relationship between tailored loss minimization and
entropy balancing weights holds when we use a logistic link (a logistic model) for the Riesz
representer. We make this correspondence explicit in Section 4. We refer to this property as
automatic covariate balancing.

For our proposed framework, this paper provides convergence rate analyses, major ap-
plications, and several extensions. In Section 8, we show the convergence rate of the Riesz
representer model to the true Riesz representer when using reproducing kernel Hilbert space
(RKHS) regression and neural networks. In particular, we establish minimax optimality.
In Section 5, we provide applications of our framework to ATE, AME, and APE estima-
tion, as well as covariate shift adaptation. In Appendices H and I, we also introduce ex-
tensions of our framework that are developed in subsequent works. Kato (2025a) points
out that nearest neighbor matching-based density ratio estimation proposed in Lin et al.
(2023) is a special case of least-squares importance fitting (LSIF) for density ratio estima-
tion (Kanamori et al., 2009). Moreover, since LSIF can be interpreted as Riesz regression,
nearest neighbor matching-based ATE estimation can also be interpreted as ATE estimation
via Riesz regression. Kato (2025¢) proposes a Riesz representer estimation method based on
score matching in diffusion models (Song et al., 2021).

Our framework is primarily built on results from Riesz regression, covariate balancing
weights, and density ratio estimation. In particular, Bregman divergences have already been
applied to density ratio estimation in Sugiyama et al. (2011b), where the authors also re-
port the duality between empirical risk minimization and covariate balancing weights. Our
framework generalizes these results to a broader class of applications and bridges the litera-
ture on density ratio estimation with causal inference, where Riesz regression and covariate
balancing have, in parallel, studied estimation of the Riesz representer via empirical risk
minimization and its dual formulation in terms of covariate balancing weights.

2 Setup

We first describe our general setup, which includes various tasks, such as ATE estimation,
as special cases. We denote the pair W := (X,Y), where Y € ) is an outcome and X € X
is a regressor vector. Here, Y C R and X C R¥ are outcome and (k-dimensional) regressor
spaces, respectively. Let Py be the distribution that generates W. We assume that we can
observe n i.i.d. copies of W, denoted as

D= (Wi}, = {(Xa Y}

We denote the regression function by 7o(z) = Ep, [V | X = z], where Ep, denotes the
expectation over Fy. We drop F when the dependence is obvious.
Our goal is to estimate a parameter of interest of the form

0 == E[m(W, )],
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Figure 1: A unified framework for debiased machine learning via Riesz representer estimation
and Bregman divergence minimization.

where m(W, ) is a functional that depends on data W and a regression function v: X — ).
Note that m(W,~) can receive any function v: X — ), not limited to the “true” ~y. In
the following sections, when we first introduce a function (or functional) that depends on
parameters of the data-generating process (DGP), we can replace it with an estimator that
has the same mapping. Here, 6; depends on the functional m, and by changing m, we can
derive various parameters as special cases, such as ATE, AME, and APE.

2.1 Riesz representer

For simplicity, we assume that the expected functional v +— E [m(VV7 7)] is linear and contin-

uous in v, which implies that there is a constant C' > 0 such that E[m(WV, 7)}2 < CE [y(X)?]
holds for all v with E [y(X)?] < oo. From the Riesz representation theorem, there exists a
function v, with E [v,,(X)?] < oo such that

E[m(W,7)] = E [on,(X)7(X)]

for all v with E [y(X)?] < co. We denote the function v, by ag = v,,, which is referred to as
the Riesz representer (Chen & Liao, 2015; Chernozhukov et al., 2022b). In ATE estimation,
the Riesz representer has also been referred to as the bias-correction term or the clever
covariates (van der Laan, 2006; Schuler & van der Laan, 2024).

Remark. This formulation follows Chernozhukov et al. (2022b) and can be generalized to
non-linear maps v — E [m(W,~)]. However, we do not present this generalization because it
1s not our main focus, and the linear case is sufficient for presenting our results.



2.2 Neyman Orthogonal Scores

Let n9 = (70, a0) be a pair of the nuisance parameters, where «q is the Riesz representer
associated with the parameter functional m. The Neyman orthogonal score is defined as

b(Win,0) =m(W, ) +a(X)(Y —v(X)) — 0.

Here, it holds that
E WJ(W, Mo, 90)] - 07

which serves as the estimation equation (or moment condition) for estimating 6y. Note that,
by Neyman orthogonality, the Gateaux derivative with respect to n at 1y vanishes as

O,E [p(W3n,60)]],_, =0.
Thus, orthogonality ensures that first-order errors from estimating 7o do not affect the asymp-
totic distribution of the final estimator 6 of 6, provided cross fitting (or a Donsker condition)

and mild convergence rate conditions on 7 hold (Chernozhukov et al., 2018, 2022b).
By replacing the moment condition with its empirical analogue, we obtain an estimator

0 of 0y as the value satisfying
1 B
[

where 7 denotes estimates of 1y plugged into the Neyman orthogonal estimating equations.
For convenience, we refer to the estimator

7= 3" (m(W.3) +a06) (Y - 3(X))
i=1
as the Augmented Riesz Weighted (ARW) estimator, which corresponds to the Augmented
Inverse Probability Weighting (AIPW) estimator in ATE estimation. In contrast, we refer
to 0 = Ly Q(X;)Y;, which corresponds to the Inverse Probability Weighting (IPW)
estimator in ATE estimation.

This estimation approach is traditionally called one-step bias correction, or the estimating
equation approach (van der Vaart, 2002; Schuler & van der Laan, 2024). Recent work refor-
mulates it as (automatic) debiased machine learning (Chernozhukov et al., 2018, 2022b,c,
2024). This estimator generalizes the augmented inverse probability weighting (ATPW) esti-
mator in causal inference (Bang & Robins, 2005; Tsiatis, 2007).

2.3 Examples

We provide examples of the problems, along with the corresponding Riesz representers and
Neyman orthogonal scores.



ATE estimation. Let the regressor X be X := (D, Z7), where D € {1,0} is a treatment
indicator, and Z € Z is a covariate vector, where Z denotes its support. Following the
Neyman-Rubin framework, let Y(1),Y(0) € ) be the potential outcomes for treated and

control units. In ATE estimation, using the observations {(X;, Y;)}!, our goal is to estimate
the ATE, defined as

AT = BT (X, 20)], mATE(X, 20) = 20(1, 2) — 30(0, 2).

To identify the ATE, we assume standard conditions such as unconfoundedness, positivity,
and boundedness of the random variables, that is, Y'(1) and Y (0) are independent of D given
Z, there exists a universal constant € € (0,1/2) such that € < eg(Z) < 1 —¢, and X, Y (1),
and Y'(0) are bounded.

In ATE estimation, the Riesz representer is given by

ATE — D _ 1-D
%o (X)'_eO(Z) 1—eo(2)

This term is referred to by various names across different methods. In the classical semipara-
metric inference literature, it is called the bias-correction term (Schuler & van der Laan,
2024). In TMLE, it is called the clever covariates (van der Laan, 2006). In the debiased
machine learning (DML) literature, it is called the Riesz representer (Chernozhukov et al.,
2022b). The component ﬁ may also be referred to as balancing weights (Imai & Ratkovic,
2013b; Hainmueller, 2012), the inverse propensity score (Horvitz & Thompson, 1952), or a

density ratio (Sugiyama et al., 2012).
The Neyman orthogonal score is given as

¢ATE (W; n, 9) = mATE(VV, 'y) + OéATE(X) <Y - '7(X)) — 0.

Plugging in estimates of 7)™ := (7o, ™) and solving 1 >°" | *TE (W;;7,0) = 0 for 6, we
can obtain an ATE estimator as

n

e LS (@) (v - 500 + mTE (,9) ).

=1

This estimator is called the augmented inverse probability weighting (AIPW) estimator, or
the doubly robust estimator.

AME estimation. Let the regressor X be X = (D, Z) with a (scalar) continuous treat-
ment D. We define the AME as

GAME _ | [ad%(D, Z)} .
Here, the linear functional is given by

mAME(W, y) = 94v(D, Z).



The Riesz representer that satisfies E [m*ME(W,7)] = E [af™®(X)7(X)] is the (negative)
score of the joint density of X = (D, Z) with respect to d:

apME(X) = —9,log fo(D, Z),

where fy(X) is the joint probability density of X.
The Neyman orthogonal score is given as

PAME(Wn, 0) = m*™ME(W,~) + P (X) (Y — y(X)) — 6.

Plugging in estimates of nf™F = (79, ay™®) and solving 3" *ME (W;;7,0) = 0 for 6,
we can obtain an AME estimator as

n

GAME = % > (EMMECG) (3 = 3(XG) + mAME (X))

i=1

APE estimation. We consider the average effect of a counterfactual shift in the distribu-
tion of the regressors from a known P_; to another P, when ~ is invariant to the distribution
of X. We refer to this average effect as the APE and define it as

7% = [ a(w)dn(e),

where pu(x) == Pi(x) — P_1(z). Here, the linear functional is given by

mAPE (Y, ) = / (2)dp(z).

For simplicity, let us assume that the distributions P; and P_; have pdfs, which we denote
by pi(x) and p_;(z). We also assume that there exist common supports among the marginal
covariate pdf po(z) of the DGP and the pdfs p;(x) and p_;(z). Then, the Riesz representer

is given as
pi(X) —p1(X)

20 (X) = pO(X)

The Neyman orthogonal score is

VATE(W,0) = mAPE(W, y) + o PE(X) (Y = 7(X)) — 6.

Plugging in estimates of ;™" := (70, af*") and solving 1 37" | A4F® (W;;7,0) = 0 for 0, we

can obtain an APE estimator as

n

7= LS (@700 (- 5000) + AT (,9))

i=1



Covariate shift adaptation. Let X denote a source covariate distribution that generates
labeled data (X,Y) under P,, where the pdf of X is po(z). Let X denote a target covari-
ate distribution Py whose pdf is py(x). Let {(X;,Y:)}iezs be iid. from By (source) and
{)?j}jeIT be ii.d. from Px; (target), independent.

Suppose we train vo(z) = E[Y | X = z] on a source population with covariates (X,Y") ~
Py, but the target parameter averages vy, over a shifted covariate distribution X ~ Px 1:

0% =E[10(X)] =E[m™S(X,%)],  mPS(W,7) =~(X).

Let Pxo be the marginal distribution of X under P, and po(z) and p;(z) be the pdfs.
Assume that if po(z) > 0, then p;(z) > 0 holds. Then, the Riesz representer is

0§ (X) = ro(X) =

The Neyman orthogonal score is given as
VEWin,0) = 5(X) + aB(X) (Y = (X)) - 0.

Plugging in estimates of n§® := (79, af®) and solving 2 37" | % (W;;7,6) = 0 for 6, we can
obtain an estimator as

n

75 = LS (@S0 (% - 3060) + S (4.7 ).

n <
=1

Density ratio estimation We also note that the density ratio itself is important in various
tasks such as learning with noisy labels (Liu & Tao, 2016), anomaly detection (Smola et al.,
2009; Hido et al., 2008; Abe & Sugiyama, 2019; Nam & Sugiyama, 2015; Kato & Teshima,
2021), two-sample testing (Keziou & Leoni-Aubin, 2005; Sugiyama et al., 2011a), and change
point detection (Kawahara & Sugiyama, 2009). Learning from positive and unlabeled data
(PU learning) can also be interpreted as an application of density ratio estimation (Kato et al.,
2019). Thus, density ratio estimation has been studied as an independent task in machine
learning (Sugiyama et al., 2012).

Sugiyama et al. (2008) consider covariate shift adaptation using importance weighting
estimated by LSIF, which are equivalent to Riesz regression in density ratio estimation (Kato,
2025b). Chernozhukov et al. (2025) and Kato et al. (2024a) investigate efficient estimation
of parameters under a covariate shift from some different perspectives.

Notations and assumptions. If there are double parentheses ((+)), we omit one of them.
For example, in ATE estimation, since X = (D, Z), we often encounter f(X) = f((D, Z)) for
some function f of X. In such a case, we write f(X) = f(D, Z). Let E be the expectation
over P, if there are no other explanations. We use the subscript ( to denote parameters
under Fp.



Table 1: Correspondence among Bregman divergence losses, density ratio (DR) estimation
methods, and Riesz representer (RR) estimation for ATE estimation or general purposes. RR
estimation for ATE estimation includes propensity score estimation and covariate balancing
weights. In the table, C' € R denotes a constant that is determined by the problem and the
loss function.

g(a) DR estimation RR estimation
(a—C) LSIF SQ-Riesz regression
' (Kanamori et al., 2009) (Ours)
KuLSIF Riesz regression (RieszNet and RieszForest)
(Kanamori et al., 2012) (Chernozhukov et al., 2021, 2022a)

Sieve Riesz representer
(Chen & Liao, 2015; Chen & Pouzo, 2015)
RieszBoost
(Lee & Schuler, 2025)
KRRR
(Singh, 2024)
Nearest neighbor matching
(Lin et al., 2023)
Causal tree/ causal forest
(Wager & Athey, 2018)
Dual solution with a linear link function

Kernel mean matching Stable balancing weights

(Gretton et al., 2009) (Zubizarreta, 2015; Bruns-Smith et al., 2025)
Approximate Residual Balancing
(Athey et al., 2018)
Covariate balancing by SVM
(Tarr & Imai, 2025)

UKL divergence minimization UKL-Riesz regression

(Nguyen et al., 2010) (Ours)
Tailored loss minimization (o = = —1)
(Zhao, 2019)
Calibrated estimation
(Tan, 2019)

Dual solution with a logistic or log link function

(Jaf = C) log (la] = C) — |a]

KLIEP Entropy balancing weights
(Sugiyama et al., 2008) (Hainmueller, 2012)
(Jo] = C)log (Ja] = O) BKL divergence minimization BKL-Riesz regression
—(Ja| + C) log(|a| + C) (Qin, 1998) (Ours)
TRE MLE of the propensity score
(Rhodes et al., 2020) (Standard approach)

Tailored loss minimization (o = 5 = 0)
(Zhao, 2019)

S e 1

BP divergence minimization = BP-Riesz regression

for some w € (0,00) (Sugiyama et al., 2011b) (Ours)
Clog (1 — |af) PU learning PU-Riesz regression
+Ca| (log (|a]) —log (1 — |e|))  (du Plessis et al., 2015) (Ours)
for « € (0,1) Nonnegative PU learning
(Kiryo et al., 2017)
General formulation by Bregman  Density-ratio matching Generalized Riesz regression
divergence minimization (Sugiyama et al., 2011b) (Ours)
D3RE

(Kato & Teshima, 2021)




3 Generalized Riesz Regression

Various methods for estimating the Riesz representer have been proposed. In ATE estima-
tion, a standard approach is to estimate the propensity score e(z) = P(D =1 | X = z)
via maximum likelihood estimation (MLE) in a logistic model and then plug the esti-
mate into the Riesz representer ofTE(X). Beyond MLE, covariate balancing approaches
have been proposed, where we estimate the propensity score or balancing weights, which
implicitly or explicitly correspond to the inverse propensity score, by matching covariate
moments. Chernozhukov et al. (2021) proposes Riesz regression as a general method for
Riesz representer estimation. In density ratio estimation, related approaches include mo-
ment matching (Huang et al., 2007; Gretton et al., 2009), probabilistic classification (Qin,
1998; Cheng & Chu, 2004), density matching (Nguyen et al., 2010), and density ratio fitting
(Kanamori et al., 2009). For details on related work, see Section A.

In this study, we generalize existing methods through the lens of Bregman divergence
minimization. The Bregman divergence is a general discrepancy measure that includes the
squared loss and the KL divergence as special cases. In this section, we propose Riesz
representer fitting under a Bregman divergence, which we also refer to as generalized Riesz
regression. The term generalized Riesz regression reflects the fact that the choice of loss
function is closely connected to the choice of link function from the viewpoint of covariate
balancing. We explain this viewpoint in Section 4 and refer to it as automatic covariate
balancing. This section provides a general formulation, and we introduce applications of
generalized Riesz regression in Section 5.

Remark. We also refer to our method as direct bias correction term estimation, Bregman
Riesz regression, or generalized tailored loss minimization. In an earlier draft, we used the
term direct bias correction term estimation because the Riesz representer is almost equivalent
to the bias correction term in one step bias correction. Bregman Riesz regression highlights
that the method combines the Bregman divergence with Riesz regression. Generalized tai-
lored loss minimization emphasizes that our generalized Riesz regression extends tailored loss
minimization (Zhao, 2019) and covers a broader class of methods, including Riesz regres-
sion. As discussed in Section 6, standard covariate balancing methods implicitly assume a
constant (homogeneous) ATE across x, whereas the covariate balancing property under gen-
eralized Riesz regression allows for heterogeneity. From this viewpoint, we call the method
generalized covariate balancing.

3.1 Bregman Divergence

This study fits a Riesz representer model a: X — A to the true Riesz representer og(X)
under a Bregman divergence, where A C R is the Riesz representer space. Let g: A — R be
a differentiable and strictly convex function on A. As discussed in Section 4, this function g
corresponds to the objective function in covariate balancing.

Given x € X, the Bregman divergence between the scalar values a(x) and a(x) is defined
as

BD} (a0(x) | a(2)) = glas(z)) — g(a(z)) — dglale)) (an(x) — alz),
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where dg denotes the derivative of g. We then define the average Bregman divergence as

BD} (a0 | @) = E[g(a0(X)) - g(a(X)) ~ dg(a(X)) (ao(X) — a(X))]
We define the population target as

a* = argmin BD; (a0 | @),
acH

where H denotes models for ag. If ag € H, then a* = g holds.
Although g is unknown, we can define an equivalent optimization problem that does
not involve ay:

o = argmin BD, (a) ,
acH

where

BD,(a) = E[ — g(a(X)) + dg(a(X))a(X) — m(W, (9g) o a)] .

Here, we use the linearity of m and the Riesz representation theorem, which imply that

E [ag(a(X))ao(X)] — ]E[m(W, (8g) o @)].
We estimate the Riesz representer o by minimizing an empirical Bregman divergence:

Q = arg min ]ﬁ)g (@) + AJ (), (1)

aEH

where J(«) is a regularization function, and

n

BD () = = 3 (= g(a(X0)) + dgla(X))a(X) — m(W;, (99) 0 ).

The choice of the regularization function is important because Riesz representer estimation
is known to exhibit a characteristic overfitting phenomenon, often described as train-loss
hacking or the density chasm. For details, see Section C.

3.2 Special Cases of the Bregman Divergence

By choosing different g, we obtain various objectives for Riesz representer estimation, in-
cluding Riesz regression. Specifically, we obtain the following divergences (loss functions) as
special cases of the Bregman divergence:

e Squared distance (squared loss): ¢°?(a) := (a — C)? for some constant C' € R.

e Unnormalized KL (UKL) divergence: ¢"*“(a) = (Ja| — C)log (la| — C) — |o|
for a € A and some constant C' < inf A.

e Binary KL (BKL) divergence: ¢®(a) := (|a|—-C)log (|| —C) —(|a|+C) log(|a|+
() for a € A and some constant C' < inf A.
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14w
e Basu’s power (BP) divergence (BP-Riesz): ¢°F(a) == (lo1=¢) w—(\a|—c) —(|a|—
C) for some w € (0,0), a € A, and some constant C' < inf A.

e PU learning loss: ¢""(a) = Clog (1 — |a|)+Cla| (log (Jo|) — log (1 — |a|)) for some
C € R, where « takes values in (0, 1).

See also Table 1 for a summary.

We refer to our method as SQ-Riesz when using the squared loss, UKL-Riesz when using
the UKL divergence, BKL-Riesz when using the BKL divergence, BP-Riesz when using the
BP divergence, and PU-Riesz when using the PU learning loss. We explain these special
cases in detail in the following subsections.

3.3 SQ-Riesz Regression

Let C' € R be a constant. We consider the following convex function:
9 Ue) = (a = C).

This choice of convex function is motivated by the squared loss. The choice of C' depends on
the researcher. We propose choosing C' so that the automatic covariate balancing property
holds, see Section 4. The derivative of ¢5?(a) with respect to « is given as

99°%a) = 2(a — C).
Under this choice of g, the Bregman divergence objective is given as
BD, (a) = E[a(X)* - 2m(W, (a(-) - C))|.

Then, the estimation problem can be written as

A := arg min gl\)gscg (o) + A (), (2)
a€H
where .
By (0) = = 3 (a0~ 2m(W;, (a().

Here, for simplicity, we drop constant terms that are irrelevant for the optimization and use
the linearity of m for 2(a(-) — C)'. This estimation method corresponds to Riesz regression
in debiased machine learning (Chernozhukov et al., 2021) and least-squares importance fit-
ting (LSIF) in density ratio estimation (Kanamori et al., 2009). Moreover, if we define H
appropriately, we can recover nearest neighbor matching, as pointed out in Kato (2025a),
which extends the argument in Lin et al. (2023).

!The original Bregman divergence objective using g(a) = (o — C)? in (1) is given as

BDsa(a) = E [~ (a(X) — C)? + 2(a(X) — C)a(X) — 2m(W, (a(-) = C))]
=E [a(X)?> = C? —2m(W, (a(-) — C))] .
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3.4 UKL-Riesz Regression

Next, we consider a KL-divergence-motivated convex function. Let C' < inf, |a(z)| be a
constant. We define

9" (@) = (lo] = C)log (Ja| = C) — al.

The choice of C' depends on the researcher. We propose choosing C' so that the automatic
covariate balancing property holds, see Section 4. The derivative of g"K: () with respect to
« 1s given as

0g""" () = sign(a) log (la| - C).

Under this choice of g, the Bregman divergence objective is given as follows?:

BD o (a) = E[C log (|a(X)| — C) + |a(X)| — m(W, sign (a(+)) log (|a()] — C) )} .
We estimate g by minimizing the empirical objective:

Q= arg min @QUKL (@) + A (),
a€H

where

n

BD, s ( (mog (X)) = C) + |a(X;)| — m(vm,sign (a(-)) log (Ja(-)] = C) )) .

i=1

In the next subsection, we also introduce the BKL divergence as a KL-divergence-motivated
divergence, but the UKL divergence more closely corresponds to the standard KL divergence.
The equivalent formulation is known as KLIEP in density ratio estimation. Note that KLIEP
is a constrained formulation that is equivalent to UKL divergence minimization, and this
equivalence is also known as Silverman’s trick (Silverman, 1978; Kato et al., 2023). This
constrained formulation can also be interpreted as a dual formulation. In ATE estimation,
tailored loss minimization corresponds to UKL minimization, whose dual yields entropy bal-
ancing weights (Hainmueller, 2012).

3.5 BKL-Riesz Regression

We introduce the BKL divergence and BKL-Riesz, which are motivated by the KL divergence
and logistic regression. Let C' < inf, |a(z)| be a constant. We define

9" (a) = (la| = C)log (la| = C) = (la| + C) log(|a| + C).

2This Bregman divergence objective is derived as follows:

BD,ux () = ]E{* (la(X)[ = ©))log (Ja(X)[ = C) + |a(X)[ + sign ((X)) a(X) log (|a(X)| - C)

= m(W,sign (a()) log (la(-)| - ©) ) ].
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The choice of C depends on the researcher. We propose choosing C' so that the automatic
covariate balancing property holds, see Section 4.
Under this choice of g, the Bregman divergence objective is given as follows?:

BDW@@):E{CbgG%%%i%Q—4nOM$gWM)ﬂ%(E%%£%))}

We estimate oy by minimizing the empirical objective:

@ = arg min ]g]\)gBKL (@) + X (a),
acH

where

e IRS a(Xi)| - C : ()| = C
BD =— Cl —_— ] - W, )1 — :
e l2) n;x:%(mxwmr m ( Wasign (a0)) g | 1501576

In ATE estimation, this formulation corresponds to MLE for a logistic model of the
propensity score. In density ratio estimation, this formulation corresponds to a logistic

regression approach, where we classify two datasets using a logistic model and then take the
ratio to obtain a density ratio estimator. For details, see Section 5.

3.6 BP-Riesz Regression

Basu’s power (BP) divergence bridges the squared loss and KL divergence (Basu et al., 1998).
Let C' < inf, |a(z)| be a constant. Based on the BP divergence, we introduce the following
function:

(Ja| = )™ — (Ja| - C)

w

9% (@) =

The derivative is given as

= lal.

0g" (o) = (1 + é) sign(a) ((\04 - C)" - 1).

Using this function in the Bregman divergence yields a BP-motivated loss and the corre-
sponding objective for BP-Riesz regression. The choice of C' depends on the researcher. We
propose choosing C' so that the automatic covariate balancing property holds, see Section 4.

3This Bregman divergence objective is derived as follows:
BDgBKL (Oé)

[ - (a(x)] = O)log (a(X)| - €) = ()] + ) log(la(X)] + C) + sgn (a(X))a(X) og 1250 5 )

14



Under this choice of g, the Bregman divergence objective is given as follows*:

B0, (a) o= 5| SN =20 g3y acx) - €)°

—m (W, <1 + %) sign(a(-)) <(|a(-)| — ) - 1)) ] .

We estimate g by minimizing the empirical objective:

@ = arg min ]§]\)ng (@) + AJ (),

aEH

where

BD BP

3I'—‘
M:

( )!w— V=Y | Cla(x)(jax) - €)*

—m <W (1 + é) sign(a(-)) <(|a(-)| —0) - 1)) >

Basu’s power divergence bridges the squared loss and the (U)KL divergence. When w = 1,
BP-Riesz regression reduces to SQ-Riesz regression, while when w — 0, BP-Riesz regression
reduces to UKL-Riesz regression. This follows because

(Jaf —C)" =1

=log (Ja| — C).

BP-Riesz regression plays an important role in robust estimation of the Riesz represen-
ter. UKL-Riesz regression implicitly assumes exponential or sigmoid models for the Riesz
representer. If the model is misspecified, the estimation accuracy can deteriorate. As
Sugiyama et al. (2012) notes, SQ-Riesz regression is more robust to outliers, while UKL-
Riesz regression can perform well under correct specification. BP-Riesz regression provides
an intermediate objective between these two extremes. In addition, BP-Riesz regression is
useful for understanding the automatic covariate balancing property.

3.7 PU-Riesz Regression

We introduce PU learning loss and PU-Riesz, which are motivated by PU learning. Let
C < inf, |a(z)| be some constant. We define g*'Y

g"(@) = C'log (1 — |al) + Cla]  log (|a]) — log (1  |al) )

4This Bregman divergence objective is derived from

BDgBP (a)
(Jo(X)] = €)™ = (Ja(x)| - €)

w

_E| - +1a(X)] + (1 + 1))l ((ja(X) - €) ~1)

—m (VV7 (14 1/w)sign(«) ((|a()| -0)" - 1)) 1 :
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for some C' € R, and we restrict « to take values in (0,1). The choice of C depends on the
researcher. It corresponds to the class prior in PU learning and plays a role that differs from
the parameter C in the other loss functions. The derivative of g*'Y(a) with respect to « is
given as

C ~ 1
0" e) = - T+ Cignta) (1o ) ~ log (1 - Jal) + =)
= C'sign(a) (1o (|af) — log (1 — |al) ).
Under this choice of g, the Bregman divergence objective is given as follows:
BD,rv (a) == E [_510g(1 ~a(X)]) —m (W, 6sign<a)(1og (Ja()]) = log (1 — |a(-)]) ))] .
Then, we estimate o by minimizing the empirical objective:

Q = arg min @gpu (o) + N (),
acH

where

BD, e (o) = % > (~Clog (1 = a(xX3)]) = m (Wi, Csign(a) (1og (Ja()]) ~ Tog (1 = [a()]) ) ) )
i=1

PU learning is a classical problem. For example, Lancaster & Imbens (1996) studies this
problem under a stratified sampling scheme (Wooldridge, 2001). du Plessis et al. (2015) re-
discovers this formulation and calls it unbiased PU learning. Kato et al. (2019) points out
the relationship between PU learning and density ratio estimation, and Kato & Teshima
(2021) shows that PU learning is a special case of density ratio model fitting under a Breg-
man divergence. Our results further generalize these results. Note that PU learning in these
settings and our setting is called case-control PU learning. There is also another formula-
tion called censoring PU learning (Elkan & Noto, 2008). Kato et al. (2025) considers ATE
estimation in a PU learning setup and applies our method in their study.

4 Automatic Covariate Balancing

Under specific choices of the Riesz representer model and the Bregman divergence, we can
guarantee an automatic covariate balancing property. The key tool is the duality between
Bregman divergence minimization and covariate balancing methods. This automatic covari-
ate balancing property yields the automatic Neyman orthogonalization property discussed
in Section 6, which in turn automatically guarantees Neyman orthogonality for IPW-type
estimators. We note that the covariate balancing property does not hold if we use cross
fitting.
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4.1 Generalized Linear Models

Throughout this section, we consider a Riesz representer model of the form
a(X) = ¢ (X, 6(X)78),

where (! is the inverse of a link function and ¢: X — RP? is a basis function. A link function
¢ connects the Riesz representer « to a linear, or linear in parameters, index,

P(X)'B.

This introduction of a linear index is motivated by generalized linear models. While standard
generalized linear models assume a link of the form a(X) = (7'(¢(X)"3), we allow the
transformation to depend on X as a(X) = (! (X, qb(X)Tﬁ), as described below. Given X,
we define ( so that

((X,a(X)) = o(X)'B.
Examples. For example, we can approximate the Riesz representer by

ag(X) = ¢(X)'B,

which corresponds to using a linear link function for ¢~!. This linear specification can be
applied in many settings, including ATE estimation and density ratio estimation.

We can improve estimation accuracy by incorporating additional modeling assumptions.
For example, in ATE estimation, we can approximate the propensity score eg(Z) = P(D =
1| Z) by a logistic model,

B 1
" rew (- 0l278)

where ¢: Z — RP is a basis function, and 3 is the corresponding parameter. Note that
in this case, we consider a basis function that receives Z not X, or we can interpret that
¢(D, Z) only depends on Z and is independent of D. Plugging this propensity score model
into the Riesz representer for ATE, we can approximate the Riesz representer by

ATE . D _ 1-D
= T T2

BB(Z) .

In such cases, we define (~! so that

as(X) = (X, 9(2)'B)

D 1-D
S ep(2) 1-¢p(2)
= D(l + exp ( - ¢(Z)T,B>> —(1-D) (1 + exp <¢)(Z)TB>>. (3)

Note that we can also model the Riesz representer as
ag(X) = ¢ (X, (X))
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= D(1+exp (- 0(2)78)) - (1= D)(1+exp (6(2)78)). (4)

with including D in the basis function. The choice of basis functions depend on the hetero-
geneity of vo(X). As we discuss in Section 6, if vo(z) is constant for all z, (3) may be more
appropriate. In contrast, if 7o(z) varies across x, (4) may be more appropriate.

Similarly, in covariate shift adaptation, we can model the density ratio as

a3(X) = exp (— 6(X)78).
Here, the link function is given by

¢ (X, 05°(X)) = —o(X)'B.

4.2 Automatic Covariate Balancing

This section presents a covariate balancing property for the basis function ¢(X) when
the Riesz representer model has the form «(X) = C‘l(X, d(X )T,B). Related properties
have been reported in Ben-Michael et al. (2021). More specifically, for Riesz regression,
Bruns-Smith & Feller (2022) and Bruns-Smith et al. (2025) discuss the duality between Riesz
regression and stable balancing weights (Zubizarreta, 2015). Zhao (2019) also reports the
duality between tailored loss minimization and entropy balancing weights. Tarr & Imai
(2025) investigates such a duality in covariate balancing method using the support vector
machine (SVM). Thus, the duality has garnered attention in covariate balancing (Tan, 2019;
Orihara et al., 2025). In density ratio estimation, such a duality is also well known, as dis-
cussed in Sugiyama et al. (2007) and Sugiyama et al. (2011b). In the density ratio estima-
tion literature, the resulting balancing property is typically interpreted as moment matching.
This study generalizes these results and provides new findings on the balancing property.
For the proof, see Appendix B.

Theorem 4.1 (Automatic covariate balancing). Assume that there exists a function g: X X
R — R such that

dg(ap(X;)) = Z B9 (Xi, 0;(Xi));

that is, 0g(ag(X;)) is linear in g (X;, ¢1(X;)), ..., g (Xi, ¢p(X;)). Consider a Riesz represen-
ter estimator a = a5 trained by generalized Riesz regression (empirical risk minimization)
with £q,-penalty as

n
BERP i=1

B ‘= arg min {l Z ( —g(ag(Xy)) + Oég(Xi)ag(Oéﬁ(Xi)) — m(VVi, (0g) o 04,6)) + %AHIBHZ} .

In this case & satisfies

n a—1

% Z (a(Xi>§(Xia ¢j(Xi)) —m(Ws, g (X, ¢j(Xi))))

~

B

<\

Generalized Riesz regression returns a Riesz representer model that minimizes the given loss
among models satisfying the above inequality.
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In addition, if 9g(ap(X;)) = > 71 Bi9;(X;) holds, the following result holds.

Corollary 4.2. Assume the conditions in Theorem 4.1. Then, if 9g(ag(X;)) = > i1 Bi94(Xi)
holds, then the inequality can be written as

n

% 3 <a(Xi)qu(Xi) —m(W;, @-))

=1

a—1

~

<A B

These results correspond to covariate balancing in ATE estimation and moment matching
in density ratio estimation.

Examples. For simplicity, we consider ¢;-penalty in generalized Riesz regression. Then,
in ATE estimation, if we use a linear link and SQ-Riesz regression, we have

Za ¢J D;, Z) ii (¢j(17 Zi) - ¢j<07 ZZ))

=1

<A (forj=1,2,...,p).

If we use a logistic link and UKL-Riesz regression, we have

<A (forj=1,2,...,p).

LS (10D, = 1Ja(x06,(2) — 1[D, = 0a(X)6,(2) )

=1

In density ratio estimation, if we use a linear link and SQ-Riesz regression, we have

n

LS Ao ——z@

i=1

<A (forj=1,2,...,p).

If we use a logistic link and UKL-Riesz regression, we have

n

LS (X6, (X -

=1

1|<A (forj=1,2,...,p).

We explain the details of the automatic covariate balancing property in the following subsec-
tions.

4.3 Choice of Loss and Link Functions

For the automatic covariate balancing property, the linearity assumption

Xi)) = Zﬁj¢j(X)

or dg(ag(X;)) = > 01 B9 (Xi, ¢5(X;)) are crucial. These assumptions depend on the choice
of the function g in the Bregman divergence, which corresponds to the loss function, and on
the choice of the link function.

For example, for SQ-Riesz regression, UKL-Riesz regression, and BP-Riesz regression,
the following choice of Riesz representer models (link functions) guarantee the linearity as-
sumption:
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e Squared distance (SQ-Riesz): We use the identity link function,
ap(X) = (X, ¢(X)7B)
= $(X)7B/2+C.
e UKL divergence loss (UKL-Riesz): We use a log or logistic link function,
(X, 6(x)78)
= £(X)(C+exp (4(X)78) ) = (1 - (X)) (C +exp (— $(X)"B)).

ap(X)

e BP divergence loss (BP-Riesz):
) = (X, 0(3)78)

= ¢(X) (C+ <1+¢(X—I€)TB>1/W> — (1 -&(X)) <C+ (1 - qb(X—k)Tﬂy/w) )

for k:=1+1/w.

Here, £: X — {1,0} is chosen by the researcher. Note that these are not the only possible
choices, and we can still choose link functions that satisfy the linearity assumption. For
example, we can multiply a(X) = ¢(X)'3 + 1 by a function x: X — R. Such extensions
and other cases are straightforward, so we omit them.

For BKL-Riesz regression, we can also obtain automatic covariate balancing under spe-
cific link functions. However, since the link function is somewhat complicated and is not
commonly used in practice, this approach is not practical. Therefore, we only remark on
this point in Remark 4.3. Note that this result implies that, in ATE estimation, the stan-
dard MLE for logistic regression models (sigmoid function + BKL-Riesz regression) does not
yield covariate balancing. Zhao (2019)’s arguments about the choice of tailored loss function
parameters are related to this point. If the parameter of interest is the Optimally Weighted
ATE (OWATE), the MLE of logistic regression (sigmoid function + BKL-Riesz regression =
tailored loss minimization with o = 8 = 0) also attains covariate balancing. See Section 7
for the arguments.

Justification. We justify the above choices of the link functions by showing that under
them, the automatic covariate balancing property holds. The derivative of g is given as

e Squared distance (SQ-Riesz): 9¢°%(a) = 2(a — C).

e UKL divergence loss (UKL-Riesz): 9g"*"(a) = sign(«) log (|| — C) for a < —C
and o > C'. We introduce the following branchwise maps:

09! () i=log(a = C), € (Cr00),
99" (a) = —log(~a — C),  a € (~00,~C),

so that dg"K(a) = 9gY¥(a) for a > C and dg"*" (o) = gV (a) for o < —C.
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e BP divergence loss (BP-Riesz): 9¢°(a) = sign(a)(l + %) <(|a| —-C)" - 1),

dom (9g®") = {a € R: |a| > C} for w > 0, a < —C, and a > C. We introduce the
following branchwise maps:

g5 (@) = (1—1—5) ((a—C’)“’—l), a € [C),00),

0g"" (a) = —(1 - l) <(—a - C)¥ — 1), a € (—oo, —C1,

w
so that 9g"F (o) = 9gBF (o) for a > C' and 9g"F (o) = 9g2F () for a < —C.

We introduce dgY¥* and dgEF (and related functions) to make the inverse mapping one-to-

one on each branch.
The inverse of these derivatives gives intuition for how to choose loss and link functions.
The inverse functions are

e Squared distance (SQ-Riesz):
(06°)) " (v) = (v+C)/2  (vER).
e UKL divergence loss (UKL-Riesz):

(3gHKL)71 (v) = C +exp(v), (v eR),
(8gI_JKL)_1 (v) = —C — exp(—v), (v € R).

e BP divergence loss (BP-Riesz):
_ 1/w
(@) W =0+ (1+2) " =k,

(05) " ) =0~ (1= wew),

for k:==1+1/w.
These inverse functions suggest the above link functions.

Remark (Automatic covariate balancing in BKL-Riesz regression). Consider the BKL gen-

erator
9" (a) = (la] = C)log(la] = C) = (Ja| + C)log(la] + C),  C >0,

with domain {|a| > C}. Its derivative is

0g"" () = sign(a) log (;Z: :L g) :

Then a corresponding link function is given by

1+ exp(p(X)'B)
1 —exp (¢(X)708)
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Consider the generalized Riesz regression problem for 3 (as defined in Section 3), and let
B be any solution. If we use {1-penalty, the KKT conditions yield, for each j =1,...,p,

! 3 (A(X0)8;(X0) —m(Wi,0,))

i=1

<A\

In particular, when A = 0 the fitted BKL-Riesz representer o = a5 satisfies the corresponding
exact sample balancing conditions.

4.4 SQ-Riesz regression with a Linear Link Function

We first introduce the combination of the squared loss and a linear model. Consider the
linear model

ag(X) = ¢(X)'B,
where ¢: X — RP is a basis function.
For this model, using the squared distance (SQ-Riesz regression, or standard Riesz re-
gression) yields automatic covariate balancing. Specifically, under a linear model, if we use

l1-penalty in SQ-Riesz regression, the dual formulation implies that SQ-Riesz regression is
equivalent to solving

min 1 Z(ai —C)?

acR® N 4

subject to <A j=1...,p.

S (s () — (W)

i=1

This optimization problem matches that used to obtain stable balancing weights (Zubizarreta,
2015). When X\ = 0, it enforces the covariate balancing condition

Z az¢j(Dza Zz) - (Z (¢j(1a Zz) - ¢j(07 ZZ))) = Oa fOI‘ j = 17 27 R 2
=1 =1
where 6?1 = Q’)(XZ)TB

An advantage of linear models is that we can express the entire ATE estimation problem
using a single linear model, as shown by Bruns-Smith et al. (2025).

4.5 UKL-Riesz Regression with a Logistic or Log Link Function

We next introduce the combination of the UKL divergence loss and a log link function.
Consider the log link model

ap(X) = (X (C +exp (#(X)8) ) = (1= £(X))(C +exp (— $(X)B) ).

We call this a log link function because ag(X) = (7(X, ¢(X) T 3) can be inverted in ¢(X) '3
by taking logarithms on each branch given £(X). For example, in ATE estimation, we set
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€(X) =D and C = 1. In density ratio estimation, we set {(X) =1 and C' = 0, as discussed
below.

For this model, using the UKL divergence (UKL-Riesz regression) yields automatic co-
variate balancing. Specifically, under this specification, if we use ¢;-penalty in UKL-Riesz
regression, the dual formulation implies that UKL-Riesz regression is equivalent to solving

n

1

(iré}iRI}L - Z: sign(a;) log (Ja;| — C)
subject to %i (oél- <§(Xi)¢j(Xi) (1- 5(Xi))¢j(xi)) — m<m,¢j(-))> <A G=1,...

This optimization problem matches that used to obtain entropy balancing weights (Hainmueller,
2012). When A = 0, it enforces the covariate balancing condition

%Z (e (£0x)05(X0) = (1= (X)) (X)) = m (Wi, 05()) ) =0,

where @; = ag(X;).

An advantage of a log link function is that it naturally imposes modeling assumptions.
For example, when we assume a logistic model for the propensity score, the induced Riesz
representer takes this log link form.

Special case of the log link function. As a special case, we can model the Riesz
representer as

ag(X) = exp (¢(X)'8),
which corresponds to £(X) = 1 and C' = 0. Such a specification appears in density ratio
estimation, as discussed below. For this model, using the UKL divergence (UKL-Riesz

regression) yields automatic covariate balancing. Specifically, under this specification, the
dual formulation implies that UKIL-Riesz regression is equivalent to solving

RN
min ﬁ;bg (ai)

acR”?

<A for y=1,...,p.

subject to ‘% z”: <Olz¢j(Xi) - m(‘/Vm ij()))

1=

This optimization problem matches that used to obtain entropy balancing weights in the
density ratio setting. When A = 0, it enforces the covariate balancing condition

%i <om¢j(Xz‘) - m<VVz', ¢J())> =0,

where @; = ag(X;).
Exponential models, or log link functions, are closely related to density ratio modeling.
When two probability densities p(x) and ¢(z) belong to exponential families, the density ratio
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can also be expressed in an exponential form. Exponential models also impose nonnegativity
of the density ratio without sacrificing smoothness. For example, if we model a density ratio
r(z) by a linear model, the linear model can violate the nonnegativity condition, since
r(z) > 0 must hold.

4.6 BP-Riesz Regression and a Power Link Function

We next introduce a specification that pairs the BP divergence loss with a link function that
interpolates between the linear link used for SQ-Riesz regression and the log link used for
UKL-Riesz regression. This specification is useful both as a robustness device and as a way
to understand how automatic covariate balancing varies continuously with the choice of loss
and link functions.

Let w € (0,00) and define k := 1 + 1/w. Consider the following model for the Riesz
representer:

T\ Vw T\ Ve
aﬁ(X):g(X>(C+(1+W) )—(1—§(X))(C+(1—W) ), (5)

where ¢: X — RP is a basis function and : X — {0, 1} selects the branch. We call a link
function in (5) a power link function.

The choice of (§,C) is application dependent. For example, in ATE estimation we typi-
cally set {(X) = D and C' = 1, while in density ratio estimation we often set {(X) = 1 and
C = 0 so that ag(X) is nonnegative by construction.

Under (5), the dual characterization implies that BP-Riesz regression returns the min-
imum BP-loss solution among approximately balancing models. In particular, if we use
(1-penalty in BP-Riesz regression, BP-Riesz regression is equivalent to solving a constrained
problem of the form

1 n

. - BP )

min nzlg (v)
Z:

n

subject to ‘% Z (Oéiﬁbj(Xi) —m(W;, ij))

i=1

<A for j=1,...,p, (6)

with a; restricted to the domain of gB%, that is, |a;| > C. When A = 0, the constraint (6)
enforces exact balancing:

1 o 1 & ,
Ezaz¢j(Xz):EZm(M/u¢])v for jzla"'vpa
i=1 i=1
where @; = az(X;).

Relationship to the linear and log links. The power link (5) provides a continuous
bridge between the specifications in the previous subsections. As w — 0, we have k =
1+1/w— oo and

(1 + %) e (1 + wt + 0(w)> e — exp(t),
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so (5) reduces to the log link form used for UKL-Riesz regression. At w = 1, the BP loss
reduces to the squared loss, and the link becomes an affine transformation of the linear
index around the origin, which connects BP-Riesz regression to SQ-Riesz regression up to
reparameterization.

This interpolation perspective is also consistent with the robustness interpretation of the
BP divergence (Basu et al., 1998; Sugiyama et al., 2012). Smaller w makes the objective
closer to a KL-type criterion, which can be efficient under correct specification, while larger
w yields behavior closer to squared loss and is typically more robust to misspecification and
extreme weights.

5 Applications

This section provides applications of generalized Riesz regression: ATE estimation, AME
estimation, and covariate shift adaptation (density ratio estimation).

5.1 ATE Estimation.

In ATE estimation, the linear functional is
mATE(W,y) =~(1,2) = (0, 2),
and the Riesz representer is

D 1-D

ay P (X) = o(Z)  1—eo(2)

where eg(Z) = P(D = 1| Z) is the propensity score. Let r4(1, Z) := — and 7r4(0, Z) =

e()(Z)
ﬁo(z) be the inverse propensity score, also called the density ratio. We estimate af ™"

by minimizing the empirical Bregman divergence objective gf)g(a) introduced in Section 3,
with m = mATF, an application-specific choice of ¢, and a model class for a.

SQ-Riesz Regression. We take the squared loss,
§°Ha) = a2,

and minimize the corresponding empirical Bregman objective. By substituting ¢5? into (1)
and using m*TE(W,~) = ~v(1, Z) — v(0, Z), we obtain, up to an additive constant that does
not depend on «,

BDgso(a) = E [a(D, Z)* = 2(a(1, 2) — (0, Z))] .
Thus, SQ-Riesz regression estimates oy T by

Q = arg min 1§]\)gsq(a) + A (o),
acH
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where
n

1
BD = — a(Dy, Z;)? —2(a(1, Z;) — (0, Z))) .
ey - ZZI (04( ) — o >))
This coincides with Riesz regression in Chernozhukov et al. (2021) and corresponds to LSIF
in density ratio estimation (Kanamori et al., 2009). With appropriate choices of H, it also
recovers nearest neighbor matching-based constructions, as discussed in Kato (2025a).

Remark (Linear link function). A recommended Riesz representer modeling is

ap(X) = ¢(X)' B,

where ¢: X — RP is a basis function. Under this model, minimizing the SQ-Riesz regression
yields an estimator that satisfies an automatic covariate balancing property, as discussed in

Section 4 and Zhao (2019).
Concretely, letting a = ag, we estimate B by

n
~

1 2 . Lo
B argmin 3 <(¢<X,-> 8) —2(e(1,2)" - (0, 2) )ﬂ) +-AlBll

=1

By duality, if a = 1, SQ-Riesz regression is equivalent to the following covariate balancing
problem:

min a?
a€cR" <
=1

s.t.

X)) +6,(1.2) = 4,0, Z)| <X forj=1.2,....p,

where the solution W; corresponds to the estimator of ao(X;) if D; = 1 and that of —ap(X;)
if D; = 0; that is,

jﬁ<—— &(1,2&) @fl)izzl,
"1 -a(0,Z) ifDi=0."

UKL-Riesz Regression. Consider Riesz representer models « such that «(1,z) > 1 and
a(0,z) < —1 for all z. We next use the UKL divergence loss with C' = 1,

9" (a) = (la| = 1)log (Ja] = 1) — |a].
By substituting ¢g"KL into (1) and using mAT®(W,~) = (1, Z) — (0, Z), we obtain
BD,uxw () = ]E[log (la(X)] = 1) + |a(X)|
- <sign (a(1, 2)) log (|a(1, Z)| — 1) — sign (a(0, Z)) log (|0, Z)| — 1) )]
Thus, UKL-Riesz regression estimates oy T" by

Q = arg min BDgUKL(a) + A (o),
acH
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where

n

BDgUKL (Oé) = %Z <log (‘OZ(Xz)| - 1) + ‘05<X1>|

=1

- (Sign (a(1, Z;)) log (|a(1, Z;)| — 1) — sign (a(0, Z)) log (|a(0, Z;)| — 1) ))

This coincides with the tailored loss minimization with & = f = —1 in Zhao (2019) and
corresponds to KLIEP in density ratio estimation (Sugiyama et al., 2008).

Remark (Log link function). A recommended Riesz representer modeling is

ap(X) = 1[D = 1)(1+ exp (~ @(X)7B) ) — 11D = 0] (1 + exp (¢(X)7B) ).

where ¢: X — RP is a basis function. Under this model, minimizing the UKL-Riesz regres-
sion yields an estimator that satisfies an automatic covariate balancing property, as discussed
in Section 4 and Zhao (2019).

Concretely, letting @ = agz, we estimate B by

B := arg min ! Z (11[192- =1 (~¢(1.2)"B+1+exp (—¢(1,Z)'B))

n
B i—1

+1[D; = 0] (¢(0, Z;) "B+ 1 + exp (¢(0, Z;) ' B))

- (¢(17 Z1>T - ¢(O> Zz)T)/B) + é)‘H/B”Z

By duality, if a = 1, UKL-Riesz regression is equivalent to the following covariate balanc-
ing problem:

n

i > (wi = 1) log(wi — 1)

n

Z (]l[Di = Nw;¢;(X;) — 11D, = 0]wi¢j(Xi)> - (ij(la Zi) — ¢;(0, Zz))

=1

s.1. <A

forj=1,2,...p,

where the solution W; corresponds to the estimator of ao(X;) if D; = 1 and that of —ap(X;)
if D; =0, that 1s,

w; = - . .
—a(O, Zz) Zf Dz =0.

This modeling enforces the correct signs and nonnegativity of the Riesz representer.

Remark (Propensity score modeling). We can interpret that the Riesz representer model is
based on a propensity score model:

ag(X) = 1[D = 1]ra(1, 2) = 1[D = 0]rg(0, 2),
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where

1 1
7’@(1, Z) = 6,3(2), Tﬂ(()? Z) = TB(Z)J

1
A e (— (27 B)

and ¢: Z — RP is a basis function. Under this model, minimizing the UKL flavored em-
pirical Bregman objective yields an estimator that satisfies an automatic covariate balancing
property, as discussed in Section 4 and Zhao (2019).

Concretely, letting a = o, we estimate B by

8= arg min % En: (11[DZ- — 1] (— log (ﬁ) +rg(l, ZJ)

By duality, if a = 1, this KL divergence objective is equivalent to a covariate balancing
program:

n

min Z(wl — 1) log(w; — 1)

we(1,00)" p
i=1

where the solution W; corresponds to the estimator of ao(X;) if D; = 1 and that of —ap(X;)
if D; = 0; that is,

(L, %) if D=1,

Y TR0,2) D=0

and 7 is an estimator of the density ratio ro. This constrained optimization matches entropy
balancing (Hainmueller, 2012). In particular, when A = 0 we obtain exact balance,

3 (]l[Di —1)@:6,(Z;) — 1|D; = 0]@@(2,-)) =0 forj=12....p.

i=1

This specification has the practical advantage that ¢;(Z) can be chosen independently of D,
which reduces the dimension of the model.

BP-Riesz Regression. BP-Riesz regression uses Basu’s power divergence with C' = 1 and
w € (0,00):

(Jo =)™ = (Jo| = 1)

BP . _
g (o) = - |l
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Plugging ¢®F into (1) and using mAT® yields the empirical objective

BD,ue(a) = 3 <(|Q(D“Zﬂ_ V=L a0 20 (et 201 - 1)

o (Jaft, X0 1)° — (ja(0, )] - 1)“)),

where v =1+ 1/w. We then estimate o) TF by

Q= arg min gf)gsp(a) + A ().
a€H

Remark (Power link function). A convenient parametric specification that is consistent with
Section 4 models o through a power link function for the inverse propensity components:

ag(X) =1[D = 1]rg(1,Z) — 1[D = 0]rg(0, Z),
with

T 1/w T 1/w
ra(1,2) =1+ (1 + —¢(1’UZ) ﬁ) ;o rp(0,2) =1+ (1 — —¢(O’UZ) ﬁ) :

on the domain where the above powers are well defined. This specification interpolates between
the squared distance and UKL divergence: w = 1 recovers SQ-Riesz regression, and the limit
w — 0 recovers UKL-Riesz regression, as discussed in Section 3. In applications, BP-Riesz
regression can mitigate sensitivity to extreme inverse propensity weights while retaining the
covariate balancing behavior implied by the dual characterization.

BKL-Riesz Regression. Consider Riesz representer models « such that a(1,z) > 1 and
a(0,z) < —1 for all z. BKL-Riesz regression uses BKL divergence with C' = 1:

9" (a) = (la| = 1)log (la] = 1) = (la| + 1) log(la] + 1).

ATE

By plugging g% into (1) and using m™™, we have the following empirical objective function:

= _ 15 (X)) -1
BDgBKL (Oé) = E Zzl (10g (W
Oé(l, Zz) —1 —a(O, Zl) —1
N (k’g (a(l,Zi) n 1) +log <—a(0, Z)+ 1 ))
We then estimate o) TE by

Q = argmin ]§]\DQBKL(O<) + A ().
acH
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Remark (MLE of the propensity score). BKL-Riesz regression corresponds to estimating
the propensity score by reqularized logistic likelihood, which is the standard MLE approach in
ATE estimation. Let

1
W e (— 02 B)

and define the Riesz representer model obtained by plugging in eg,
D 1-D
es(Z) 1—es(Z)

ag(X) =

Under the BKL choice in Section 3, minimizing the corresponding empirical Bregman diver-
gence specializes to minimizing the Bernoulli negative log-likelihood:

n

~

B = argﬁmin —% Z (Di log eg(Z;) + (1 — D;) log (1 — %(&‘))) + 1813,
=1

and we set €(Z) = e5(Z) and

.. D 1-D
X =z7 172

This viewpoint aligns with the interpretation of BKL-Riesz as a probabilistic classification ap-
proach to density ratio estimation (Qin, 1998; Cheng & Chu, 2004 ), here applied to treatment
assignment modeling. It also provides a baseline for comparison with the direct objectives in
SQ-Riesz, UKL-Riesz, and BP-Riesz regression.

5.2 AME Estimation

We consider the AME setup described in Section 2. Let X = (D, Z), where D is a scalar
continuous regressor and Z is a vector of covariates. The target parameter is

PAME ]E[ad%(D, Z)}, mAME (W ~) = 947(D, Z).

Assume that X admits a density fy that is continuously differentiable and that an integration
by parts argument is valid, for example, v(x) fo(x) vanishes on the boundary of the support
in the d direction. Then

E[0:/(X)] = E|ad " (X)y(X0)].  ad™(X) = ~4log fo(X),

so the AME Riesz representer is the negative score of the marginal density of X with respect
to d. Since dylog fo(D, Z) = d4log fo(D | Z), we can equivalently view af™ME as the negative
score of the conditional density of D given Z.

To estimate ay™ME| we apply generalized Riesz regression with m = m*ME. The popula-

tion objective in Section 3 becomes
BDAME(q) = E[ — g(a(X)) + dg(a(X))a(X) — Oy (ag(a(X)))] ,

and we minimize its empirical analogue over a differentiable model class H (so that dza(X)
and 9;{0g(a(X))} are well defined), possibly with regularization.

30



SQ-Riesz Regression. Let ¢°?(a) = (a — C)? for an arbitrary constant C' € R, so that
99°?(a) = 2(a — ). Substituting into BD;“\4E yields

BDAME(a) = E[ — (a(X) =€)’ + 2(a(X) - C)a(X) — 6d<2(a(X) - o))}
= E[OJ(X)Z — 28da(X)} + const,

where the constant does not depend on a. Hence SQ-Riesz regression targets ay™M® in L.
This objective is also a score matching style criterion for estimating the score, written here

in terms of the negative score ay™ME. The empirical estimator is

Q = arg min 1 i (oz(XZ-)2 — 2c9doz(Xi)> + AJ ().

aEH n “—
=1

This method corresponds to Riesz regression for AME, as discussed in Chernozhukov et al.
(2021).

UKL-Riesz Regression. To obtain a KL. motivated loss that allows signed «, we use the
signed KL type convex function

g" () = |allog|al — |a|,  9g"*V(a) = sign(a)log |al,

on a domain that excludes @ = 0. Plugging into BD;MwE gives

\

BDME(a) = E| — [a(X)] log[a(X)] + [a(X)| + sign (a(X)) log [a(X)la(X) — 3y( sign (a(X)) log |a(X)|

= E[]a(X)| - 8d<sign ((X)) log |a(X)|>] + const.

/

Accordingly, we estimate ayp™M® by minimizing the empirical version over H:

n

a = arg minl Z (\a(XZ-)| - 8d<sign (a(X;)) log |a(XZ)\)> + A ().

acH N <

In practice, one can use the shifted UKL loss in Section 3 to avoid the singularity at zero
and combine it with a branchwise link specification as in Section 4.

BP-Riesz Regression. BP-Riesz regression interpolates between squared distance and
UKL divergence. For simplicity, we present the unshifted form with C' = 0:

o™ — o

g la) = ——

1
“lal 09 (@) = (142 ) st (lal ~ 1), € (0.00)
Let k:=1+1/v. Then BD?ME simplifies to
BDAE(a) = E[|a(X)]" = 04 (ksign (a(X)) (Ja(X)|" = 1) )| + const.

31



We estimate o™ by minimizing the empirical objective:

Q = arg min % Xj: <|a(X7;)|1+7 — 04 (k; sign ((X;)) (|04(Xi)]V - 1))) + A ().

aEH

As in Section 3, v = 1 recovers the squared loss behavior (up to scaling), while v — 0
approaches a KL type criterion through the identity lim,_,o(|a| — 1) /v = log |/

BKL-Riesz Regression. Finally, we can use the BKL loss from Section 3 to obtain a
logistic motivated criterion. Let C' > 0 and define

g% () = (Ja|—-C)log (\a\—C)—(|OzH—C) log (|a|+C), g% (o) = sign(a) log <||Z: ;g) .

Then the AME objective is

BDE (o) = E {c log (%) — 0y (Sign (a(X)) log <%))] + const,

and the estimator minimizes its empirical counterpart over ‘H with regularization. As in the
ATE case, this loss is naturally paired with a logistic style link for the magnitude of «, while
sign changes can be handled via the branchwise constructions in Section 4.

Once we obtain @*™® and an outcome regression estimator 7, we plug them into the
Neyman orthogonal score in Section 2 to form an estimator of 5ME.

5.3 Covariate Shift Adaptation (Density Ratio Estimation)

We consider the covariate shift setting in Section 2. Let X be the source covariate distribution
that generates labeled observations { (X, Y;)}™ ,, and let X be the target covariate distribu-
tion that generates unlabeled observations { X;}7.,, independent of the source sample. Let

po(z) and p;(z) be the pdfs of X and X, respectively. We assume that pg(z),pi(x) > 0 for
all v € X. The Riesz representer for covariate shift adaptation is the density ratio

ai®(X) = ro(X) =

We estimate rg directly by density ratio fitting under a Bregman divergence, avoiding sepa-
rate density estimation for po(X) and p;(X).

Let g: R, — R be differentiable and strictly convex. The Bregman divergence between
ro and a candidate ratio model « is

BD;(T’O | a) =Eyx (g(ro(X)) — g(a(X)) — ag(oz(X)) (TO(X) — oz(X))).

Dropping the constant Ex [¢(ro(X))] and using the identity Ex [ro(X)h(X)] = Eg [h(X)],
we obtain the equivalent population objective

BD, () = Ex [0g(a(X))a(X) - g(a(X))] - Ex [dg(a(X))].
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Given samples {X;}icz, and {)? ;i }iezr, the empirical objective is

@SS(Q) = %Z (&q(a(Xi))a(Xi) — g(a(XQ)) — %Zag(a<ij>)' (7)

=1

We estimate the density ratio by

~ . 568
a = argmin BD, (a) + AJ(a),
acH

where H is a model class and J is a regularizer. A convenient way to enforce a(x) > 0 is to
use a link specification such as a(z) = exp (f(z)) with a flexible regression model f.

SQ-Riesz Regression. For the squared loss, take
FUa) = (a— 17 95°%a) = 2(a—1).

Substituting into (7) and dropping constants that do not depend on «, we obtain

n

BDiwn(a) = % 3 a(X)? - % 3 a(X))

i=1 j=1

This is the classical least-squares importance fitting (LSIF) objective in density ratio estima-
tion (Kanamori et al., 2009). In the debiased machine learning literature, the same squared
loss criterion is also used as Riesz regression for covariate shift adaptation (Chernozhukov et al.,
2025). Related extensions include doubly robust covariate shift adaptation schemes that com-
bine density ratio estimation with regression adjustment (Kato et al., 2024a).

UKL-Riesz Regression. For a KL motivated objective on R, take

gV (o) = aloga — a, 0g"¥(a) = loga.

Then (7) becomes, up to an additive constant that does not depend on «,

n

— CS 1 1 & =
BDgUKL(a) = E 2106<X1> - E leog Oz(Xj).
1= J=

A standard implementation imposes the normalization constraint + Y% | «(X;) = 1, in which
case minimizing BD juk:. is equivalent to maximizing the target log-likelihood -- >y log a(X;)

subject to normalization and nonnegativity, which yields KLIEP style procedures (Sugiyama et al.,
2008). This constrained view is also useful for understanding the dual characterization and
the associated moment matching property.
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BP-Riesz Regression. BP-Riesz regression interpolates between squared loss and KL
type objectives. For v € (0, 00), consider the BP choice on R, with C' = 0,

Pt a0 = (14 1) (a0 -1).

v gl

A useful simplification is that 9gP" (a)a — gBF () = a7, so (7) reduces, up to constants, to

—~ CS I - N R
BD e () = ;a(xi) - (1 + ;> ~ jzl a(X;).
When v = 1, this objective coincides with the SQ-Riesz objective, up to scaling and constants.
As v — 0, it approaches a KL flavored criterion via the expansion a” = 1 + vlog a + o(7),
providing a continuous bridge between LSIF and KLIEP, and offering a robustness device

against extreme ratios (Basu et al., 1998; Sugiyama et al., 2012).

BKL-Riesz Regression. BKL-Riesz regression corresponds to probabilistic classification
based density ratio estimation, which estimates the log density ratio by fitting a classifier
that discriminates target covariates from source covariates (Qin, 1998; Cheng & Chu, 2004).
Let S € {0,1} denote a domain indicator, where S = 1 for target and S = 0 for source,
and let 7 := P(S = 1) denote the mixture class prior. Under Bayes’ rule, the density ratio
satisfies

_piz) 1-7P(S=1|X=u1)

Copolr) o P(S=0]|X=2a)

We model P(S =1 | X = x) by a logistic specification

ro(x)

1
1+ exp ( — (b(x)TB) ’

and estimate B by regularized Bernoulli likelihood on the pooled sample:

pa(S=1]X=12) =

n+m
+ i=1 j=1

B\ — arggnin— 1 (Z log (1 —pg(S =1 | Xz)) + ZIOgPB(S =1 | )A(:])) + AHﬁ”%

With 7 = -, we then set

1-7 pa(S=1|X=u) 1-7 N

) =% - p(S=1]X=2) = ex ($(x) ).

This construction enforces nonnegativity by design and connects density ratio estimation to
standard classification tools.

Remark (From density ratio estimation to covariate shift adaptation). Once we obtain &
and an outcome regression estimator 7, we plug them into the covariate shift Neyman score
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in Section 2. In particular, a doubly robust estimator that accommodates separate source and
target samples s

95 = % Z F(X;) + % Z a(x;) (K; - wg)) .

The corresponding IPW estimator is obtained by dropping the regression adjustment term
and using 055, = %Z?:l a(X;)Y;. Cross fitting can be applied by estimating @ and 5 on

auziliary folds and evaluating the above scores on held out folds.

6 Automatic Neyman Orthogonalization

The advantage of (automatic) covariate balancing lies in the fact that it automatically implies
Neyman orthogonality. Specifically, we consider an estimator given by

~ 1 &
0= — a(X,)Y;,
PILCY

where & is an estimator of the Riesz representer obtained from generalized Riesz regression.
Recall that we refer to this estimator as a Riesz Weighted (RW) estimator, which corre-
sponds to the IPW estimator in ATE estimation (Horvitz & Thompson, 1952) and covariate
shift adaptation with importance weighting (Shimodaira, 2000). We show that this estima-
tor satisfies Neyman orthogonality if the regression function v, belongs to the linear space
spanned by ¢(X), which is used for Riesz representer estimation. We refer to this property

as automatic Neyman orthogonalization.

6.1 Automatic Neyman Orthogonalization

The following result holds for a Riesz representer model @ trained by generalized Riesz
regression. As discussed below, this result implies that if exact balancing holds,

e the RW estimator is automatically Neyman orthogonal;

e the choice of loss and link functions does not affect the final estimator.

Theorem 6.1. Consider generalized Riesz regression with the model
a(X) =X, 6(X)78),

where (1 is the inverse of a link function and ¢: X — RP is a vector of basis functions.
Suppose that 0g(ag(X;)) = i1 Bi6;(Xi) holds. If ~o belongs to the linear span of ¢(X),
then it holds that

NN
= > <a(Xi>(Yz’ —0(X3)) + m(Wz‘Wo))
i=1
If & satisfies the Donsker condition and is consistent, then 0 is asymptotically efficient.
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Theorem 6.1 is shown as follows. Recall that the sample average of the Neyman orthog-
onal score is given by

n

S w0 = 3 (A0 (Y = (X)) + m(Wi o) — 0),

i=1

where 77 := (v, @).
In Section 4, we model the Riesz representer as a(X) = ¢! <X, qﬁ(X)TB). Then, a Riesz

representer estimator a trained by generalized Riesz regression with A = 0 satisfies
1=/~
23 (8(X)6(X) = m(Wi, ) =0
i=1

for all j = 1,2,...,p by the automatic covariate balancing property (Corollary 4.2).
If vo(X) is given as 7o(X) = ¢(X) " py for some py € RP, then we have

% > (W, 6)
=1

n

= % > (&(Xi)(Yi —70(Xi)) +m(Wi,70) = 0)
-1 f (A0 (¥ = @(X0) po) + pm(Ws, $(X)) = 0)
-1 y (a0 - 0),

where we used )
1 /o

>~ poa - (GX0)95(X) = m(Wi, ) =0

j=1 i=1
from the automatic covariate balancing property.

Such a property has been reported by Wong & Chan (2017) and Zhao (2019) in ATE

estimation. Although they require a constant treatment effect, our results generalize them
by allowing heterogeneous treatment effects. We emphasize that (i) the Riesz representer

estimator a does not require a specific convergence rate; (ii) we do not use cross-fitting, and
we assume the Donsker condition (if we use cross-fitting, the covariate balancing collapses).

Riesz weighted estimator = OLS = doubly robust. Theorem 6.1 is closely related to
Proposition 3.1 in Bruns-Smith et al. (2025), which shows the following result. Let an OLS
estimator of v5(X) be Jors(X) == ¢(X) " poLs, where

n T n
Pors = (% > ¢<Xi>¢<xif> L3 G
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where { denotes the pseudo-inverse and ¢(X) is the basis function also used in the Riesz
representer estimator. Then, for @(X) = ¢(X) '3, it holds that

6= ax)y,
=
_ % :1 a(X)(X;)" (% :1 qb(Xz)qb(Xi)T)T % Xj; D(X:)Yi
:% Anl 3(X:)p(X) Povs
:% 'n a(X;)AoLs(X;)

Thus, the Riesz weighted estimator can be written in terms of an OLS estimator. Further-
more, if exact balancing holds (A = 0), we have

0==-3 ax,y,
nlzla( z) 7
1 e~ . .
= a(X:)e(Xi) pors
i=1
.
m<Wi;¢1)
1 — m<Wi7¢2> ~
= — . POLS;
nea :
m(le¢p)

where we used
LS (A0, — m(We ) =0
i=1

forall j =1,2,...,p.

This result essentially implies that the Riesz weighted estimator with exact balancing
(A = 0) is a sample average of an OLS estimator, projected onto the parameter-of-interest
space by the known parameter function m. Here, recall that a Riesz weighted estimator is
automatically Neyman orthogonal, which corresponds to double robustness in many settings.
Therefore, this property corresponds to the result that “Ordinary Least Squares (OLS) is
doubly robust,” as discussed in Robins et al. (2007); that is, the OLS estimator

This result also implies the perhaps surprising fact that the choice of loss and link func-
tions does not affect the final estimator if exact covariate balancing holds. Even though this
is convenient because it allows us to omit the Riesz representer estimation procedure, this
property does not guarantee good performance of the final estimator. In fact, the OLS esti-
mator can suffer from severe overfitting. In such cases, adding regularization may improve
performance. Adding regularization implies inexact covariate balancing.
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General case with inexact covariate balancing. Bruns-Smith & Feller (2022) further
generalizes this result from the augmented covariate balancing viewpoint to the case with
inexact covariate balancing. Such cases occur when using a regularization parameter A # 0
or cross-fitting.

For this case, Bruns-Smith et al. (2025) show that the AWR estimator can be written as
the sample average of two regression function estimators. Recall that the AWR estimator is

~ 1< A N
0= = (m(w:,3) +a(x) (¥ = 5(x) )
Then, if the Riesz representer estimator a(X) can be written as a(X) = ¢(X )TB for some
3, and the regression function estimator Juue(X) is written as Juue(X) = ¢(X) " p for some

p, then we have

m(Wi,én)\ "
é\: %Z m(VVZ,ng) b\T’
. m(w/i>¢p)

where
p; = <1 - wj>ﬁaug,j + w;PoLs.;;
LS (mWi,6y) = 63(X0)
LY (@008 (X0) — 65(X0))

wj =

Special case with inexact covariate balancing. Under some special cases, we can
simplify the final estimator. For example, if we use an fs-penalty for both generalized
Riesz regression and regression function estimation of vy, the resulting final AWR estimator
becomes a ridge estimator of vy (Bruns-Smith et al., 2025). For example, consider kernel
ridge regression (KRR). Let K be the kernel matrix and let 6 be the ridge regularization
for the outcome fit. If we use ¢y-penalized generalized Riesz regression with regularization
parameter A, then in the resulting AWR estimator

. . m(Wi, ¢1) !
0= (mweA) +alx) (vi-30x0) ) =+ 3 m(I/V;,qﬁg) P,
“ \morg)

p' can be written as a single KRR estimator with an effective regularization parameter 5

Y,
~N\-1[ Y2 ~ oA
~F —
P=(ei) | T e
Y,
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where o2 denotes the (simplifying) common eigenvalue scale used in the diagonalized represen-
tation. This equivalence implies that augmentation can be interpreted as a data-dependent
undersmoothing rule for the outcome regression. Motivated by this result, Singh (2024)
analyzes kernel balancing.

6.2 Automatic Neyman Error Minimization

Covariate balancing can also be interpreted as minimizing the estimation error of the Neyman
orthogonal score. Given a nuisance parameter estimator 77 and the true nuisance parameter
7o, the estimation error is given by

(W1, 0) = (W30, 6)
= (m(W.3) + &) (Y =3(X)) ) = (m(W,70) + ao(X) (Y = 20(X))).

Here, ap(X )(Y — Y(X )) has mean zero and is ignorable in expectation. Therefore, we
consider

1 n
NeymanError = - Z (Z)Z(Xi)(Yi — /V\(X,)) +m(W;,7) — m(Wi,%)) )
i=1

Suppose that we estimate oy by generalized Riesz regression using the basis function
¢(X), and that vy belongs to the linear space spanned by ¢(X). Recall that we have

1=

If ¥ equals 7o or 7 is estimated as ¢(X) " p, then by Neyman orthogonality, we have
1 n
N E = — a(X,)Y; — m(Wi, .
eymanError = — ; (@(X5) m(Wi, 7))
Furthermore, since Y = ~¢(X) + ¢ for an error term ¢ such that E[e | X] = 0, we have

1 n
NeymanError = - Z (a(Xi)vo(Xi) = m(Wi,v)) + U,

i=1

where U is a term whose expectation is zero. Here, we again have
1~
n Z (@(Xi)0(Xi) = m(Wi, 7)) =0
i=1

from the automatic covariate balancing property. Thus, automatic covariate balancing and
automatic Neyman orthogonalization also imply minimization of the Neyman error.

This property is discussed in Zhao (2019) for the case where UKL-Riesz regression with
a basis function ¢: Z — RP is used in ATE estimation. Our result generalizes the finding
in that work to more general models, losses, and parameters of interest.
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Cross fitting and the Neyman error If we use cross fitting, the exact automatic co-
variate balancing property may not hold. On the other hand, exact automatic covariate
balancing typically requires the Donsker condition to obtain an efficient estimator of the
parameter of interest. We need to carefully address this trade-off.

Basis functions depending only on Z In ATE estimation with standard propensity
score modeling, we typically use basis functions depending on Z, that is, ¢: Z2 — RP.
Under this choice, m(W, ¢;(-)) = 0. Therefore, automatic covariate balancing guarantees
only £ 3" | (@(X;)y(X;)) = 0. This result eliminates part of the Neyman error only when
the conditional ATE given z is invariant across x, that is, when the treatment effect is
homogeneous. From the regression-function point of view, this requires that o(X) lies in the
linear space spanned by ¢(Z). If we aim to guarantee automatic Neyman orthogonalization
under treatment effect heterogeneity, we should use ¢p: X — RP, even though the Riesz
representer corresponds to inverse propensity scores 1/eq(Z) and 1/(1 — eo(Z2)).

6.3 Comparison with TMLE

TMLE is another promising approach in debiased machine learning (van der Laan, 2006).
TMLE adds a perturbation to an initial estimate of 5. TMLE works to eliminate the
sample average of the (%) part in the following Neyman error:

1 n
NeymanError := — E a(X)(Y; = 7(Xy)) +m(Wi,7) — m(Wi, y0)
n (.
i—1

In contrast, generalized Riesz regression works to eliminate the sample average of the (%)
part in the following Neyman error:

1 n
NeymanError := - Z a(X) (Y —9(Xy)) + m(Wy, 7)) —m (W, 7o)
i=1

That is, TMLE and generalized Riesz regression differ as follows:

e TMLE puts the difficulty of efficient estimation of 6y into the estimation of v by
eliminating the influence of a.

e Generalized Riesz regression puts the difficulty of efficient estimation of 6, into the
estimation of ag by eliminating the influence of 7.

Remark (TMLE). We introduce TMLE in more detail. Let 5 be an initial estimate of
Y. Then, given estimates 7% and &, TMLE updates the regression function as

> a(X) (Vi - 719(X0)

~(1) — ~(0)
> imy A(XG)?

a(x).
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It then estimates the parameter of interest as
1 n

I = 1S v A
1=

Note that this update is derived as the solution in € of

n

> oaxs) (Vi - (39X5) + ed(Xy))) =0,

i=1
which s given by
X (Y- A0
2 im1 Q(X3)?

Then, we derive YV (z) as
W (@) =79(2) +€a(x).

Under this update, the sample average of (x) in the Neyman error becomes zero.

6.4 Modeling of Regression Function and Riesz Representer

We have focused on estimating the Riesz representer agy. However, the regression function
v(x) = E[Y | X = z] remains the other essential nuisance. We highlight the relationship
between (i) fitting o directly and (ii) fitting 7o in a way that implicitly stabilizes, or even
eliminates, the need for separate Riesz representer estimation. For simplicity, in this section,
we focus on RKHS-based modeling of regression and Riesz representer functions and discuss
how they are related in the Riesz Weighted (RW) estimator, and the Augmented WR (AWR)
estimator. As a result, we confirm that regression function modeling and Riesz representer
estimation are complementary.

Bias in the AWR estimator Given estimates 7 and @, the AWR estimator is given as

1= L3 (w3 + a0 (v - 500)).

1=

A standard second-order expansion implies that the leading remainder term is governed by
the product

W - 70”2 : ||a - 040||27

under cross-fitting or Donsker-type conditions. Consequently, the estimator can be efficient
even when each nuisance converges slower than n~'/2, provided

7 = 0llz - 1@ = aollz = 0p(n~"?).

This decomposition suggests two extremes: (i) Riesz-representer-centric strategies that target
accurate @, and (ii) regression-function-centric strategies that make 7 sufficiently accurate
for the functional of interest, often via undersmoothing.
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Regression-function-centric view Our final estimation target is not the regression func-
tion 7, but 6y = E[m(W,~)]. Therefore, a recurring theme is that prediction-optimal reg-
ularization may be too aggressive for inference on fy, and one often needs undersmoothing
(smaller regularization) to reduce functional bias.

Representer-centric view Complementing regression-function-centric undersmoothing,
Singh (2024) studies kernel ridge estimation of the Riesz representer (Kernel Ridge Riesz Re-
gression; KRRR) and analyzes its generalization error in population L. Singh (2024) shows
that Riesz representer estimation error can be characterized by the counterfactual effective
dimension, which is controlled by the usual effective dimension under a semiparametric con-
tinuity condition.

A second message in Singh (2024) is robustness under misspecification in orthogonal
constructions. For an orthogonal estimator built from a regression function approximation
v¢ and an Riesz representer approximation a4, a double-robust type statement persists:
if either v¢ = 79 or a4 = ap, then the resulting debiased estimator is consistent, up to
stochastic terms controlled by the convergence rates of ¥ and a.

Remark (Minimax rate and definition of common support). Mou et al. (2023) provides a
complementary minimazx viewpoint for estimating weighted linear functionals from observa-
tional data, including regimes where strict overlap fails and semiparametric efficiency bounds
may be infinite. Two aspects are especially relevant for RR-based debiasing. First, the func-
tional difficulty is governed by a modulus of continuity. Second, for RKHS classes, Mou et al.
(2023) shows that this lower bound can be achieved up to constants by computationally simple
outcome regression estimators that do not require knowledge of the behavioral policy w. This
underscores that the geometry of the function class and the induced Riesz representer govern
the attainable risk.

7 Choice of Basis, Link, and Loss Functions

We have shown that generalized Riesz regression includes a broad class of objective functions
(loss functions) for Riesz representer estimation. This section summarizes and discusses
how we select basis functions, link functions, loss functions, and the final estimator of the
parameter of interest. These elements should be chosen based on the following perspectives:

e Loss functions should be chosen based on the estimand of the final estimation (the
parameter of interest) and the data sensitivity of Riesz representer estimation.

e Link functions should be compatible with the loss functions to preserve the automatic
covariate balancing property (Section 4).

e Basis functions should be chosen based on the relationship between the Riesz rep-
resenter and outcome models. If outcome models lie in the linear span of the basis
functions, we can automatically obtain Neyman orthogonality of the Riesz weighted
estimator (Section 6).
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Exact covariate balancing

No Yes
Specific combination The final estimator is
of regularized estimation the sample average
of the Riesz representer a, of the OLS estimator .

and regression function y,
(E.g., Ridge + Ridge)

o [T ¥e

Both the Riesz representer The final estimator is

estimator and the regression the sample average
function estimator affect of some estimator of y,.
the final estimator (E.g., Ridge regression)

Choice of loss functions : Choice of loss functions
—-..affects the final estimator__ __ i i_does not affect the final estimator _ i

Figure 2: The case where the choice of loss function in generalized Riesz regression affects
the final estimator of 6.

e Final estimators There are three main choices of final estimators: the Riesz weighted
(RW) estimator, the augmented Riesz weighted (ARW) estimator, and TMLE. Under
exact balancing, the RW and ARW estimators are equal. Under inexact balancing,
they behave differently.

They are closely related and cannot be discussed separately.

Inexact balancing and specific combinations of regularization As discussed above
and shown in Bruns-Smith et al. (2025), in some situations, the choice of loss function in
generalized Riesz regression does not affect the final estimator. If exact balancing holds, the
final estimator is the sample average of the OLS estimator of vy under any loss function used
in generalized Riesz regression. Therefore, in this case, there is no need to carefully choose
the loss function for generalized Riesz regression. Moreover, under specific combinations of
Riesz representer estimation for o and regression function estimation for =y, the resulting
final estimator can be simplified. For example, if we use an fy-penalty (ridge) for both
estimators, the final estimator is the sample average of the ridge estimator of 7y (Singh,
2024). In other cases, the choice of loss function affects the final estimator (Figure 2).

Automatic covariate balancing determines the choice of loss and link functions.
First, from the viewpoint of constructing a Neyman orthogonal final estimator, we aim to
use the automatic covariate balancing property. As discussed in Section 4, the combination
of loss and link functions is determined accordingly.

Loss-link pair is determined from the sensitivity viewpoint. Second, the choice of
the loss-link pair is determined by sensitivity to the data. For example, in ATE estimation,
the link function affects the sensitivity of the Riesz representer estimator to the data as
follows:
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e SQ-Riesz + linear link. This choice makes Riesz representer estimation robust to
outliers.

e UKL-Riesz + log link. This choice introduces model specification for the Riesz rep-
resenter. Riesz representer estimation becomes accurate if the model specification is
correct. However, since the model includes an exponential function, it is easily affected
by outliers.

e BP-Riesz + power link. This choice is intermediate between the above choices.

See also Menon & Ong (2016) and Zellinger (2025) for related discussions in density ratio
estimation.

Regularization and final estimator. If we do not use cross-fitting, A = 0, and exact
balancing is feasible, the RW estimator and the ARW estimator are equivalent. If A > 0, the
ARW estimator and RW estimator differ. From the viewpoint of Neyman orthogonality, we
should use the ARW estimator or the TMLE estimator.

ARW estimator and TMLE estimator. The ARW estimator shifts the difficulty of
semiparametric inference to Riesz representer estimation, while the TMLE estimator shifts
the difficulty of semiparametric inference to regression function estimation (Section 6.3).

Choice of basis functions. Ideally, as discussed in Section 6, the regression function g
lies in the linear span of ¢(X). Under certain conditions, we can mitigate the overlapping
assumption if we are only interested in the minimax rate, as discussed in Section 6.4.

Remark (Proper scoring rule based on Beta family). As discussed in Zhao (2019), if we
restrict the loss functions to the Beta family, the parameter of interest corresponding to BKL-
Riesz regression is the Optimally Weighted ATE (OWATE), not the ATE, which is defined
as

GOWATE . E[eO(Z) (1 - eO(Z)> (Y(1) - Y(O))].

This argument assumes sigmoid-function-based propensity modeling, that is, the log link func-
tion. If we use a more complicated link function, we can still attain covariate balancing (Re-
mark 4.3). Therefore, if we carefully choose a link-function and loss-function pair, we can
rebut the claim by Zhao (2019). However, even if covariate balancing can be attained, such
a choice is not practical, so we do not discuss this approach in detail.

Remark (Choice of loss functions and exact balancing). If we do not use cross-fitting and
exact covariate balancing is feasible, the choice of loss function does not affect the final
estimator of the parameter of interest. Moreover, as discussed in Section 6, the final estimator
becomes equivalent to the OLS estimator.
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8 Convergence Rate Analysis

This section provides an estimation error analysis for generalized Riesz regression. We model
the Riesz representer o by

0y (X) = ¢ (X S(X))

where ( is a continuously differentiable and globally Lipschitz link function, and f is a base
model. Note that unlike Section 4, we do not restrict f to be a linear model. For example,
in addition to linear models ¢(X) "3, we can use random forests, neural networks, and other
models for f. In this section, we consider the case where we use RKHS methods and neural
networks for f.

Throughout this section, we assume that the Riesz representer is bounded.

Assumption 8.1. There exists a constant C' > 0 independent of n such that |a(z)| < C for
allx € X.

This boundedness assumption holds in the standard ATE setting, which assumes common
support of the treated and control groups and bounded outcomes. In many other applications,
this assumption also holds. If we wish to allow unbounded support, we can develop such an
extension by imposing appropriate tail conditions. For example, the density ratio between
two Normal distributions may violate this assumption. In such cases, Zheng et al. (2022)
presents a convergence rate analysis, and we can follow their approach. In practical data
analysis, it is often reasonable to treat the Riesz representer as bounded.

8.1 RKHS

First, we study the case with RKHS regression. Let FRXHS be a class of RKHS functions,
and define -
FREHS . 41 min BD,(ay) + M| f]l%,
fe]:RKHS

where || - ||% is the RKHS norm. Then, we define an estimator as
~RKHS o 1 TRKHS
a (l’) = OfrKHs (x) = (l‘, / (QJ)) :

We analyze the estimation error by employing the results in Kanamori et al. (2012), which
studies RKHS based LSIF for DRE. We define the following localized class of RKHS functions
as a technical device: Fy1S .= { f € FREHS: J(f) < M} for some norm I(f) of f. We also
define HRKHS .= {(=1(. f()): f € FREISL We then impose the following assumption on

this localized class.

Assumption 8.2. There exist constants 0 < 7 <2, 0< B <1, ¢ >0, and A > 0 such
that for all M > 1, it holds that Hg (8, FiKHS, Py) < A ()", where Hp(8, FREHS Py) is the
bracketing entropy with radius 6 > 0 for the function class FEXHS and the distribution Py.

For details on bracketing entropy, see Appendix F and Definition 2.2 in van de Geer
(2000).
Under these preparations, we establish an estimation error bound.
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Theorem 8.1 (Ly-norm estimation error bound). Suppose that g is p-strongly convex and
there exists a constant C' > 0 such that |¢"(t)] < C Vt € R. Assume also that (~1(0) is
finite. Suppose that Assumptions 8.1 and 8.2 hold. Set the reqularization parameter X = A\,
so that lim, o A, = 0 and \,;' = O(n'~°) (n — o). If ay € HEEHS | then we have

[G5(X) = ag(X)||7, 1y = Or (A2

The proof is provided in Appendix F, following the approach of Kanamori et al. (2012).
The parameter 7 is determined by the function class to which fy belongs.

8.2 Neural Networks

Second, we provide an estimation error analysis when we use neural networks for H. Our
analysis is mostly based on Kato & Teshima (2021) and Zheng et al. (2022). We define
Feedforward neural networks (FNNs) as follows:

Definition 8.1 (FNNs. From Zheng et al. (2022)). Let D, W, U, and S € (0,00) be
parameters that can depend on n. Let FINN = ]Fw]gw%s be a class of ReLU activated
FNNs with parameter 3, depth D, width W, size S, and number of neurons U, and satisfying
the following conditions: (i) the number of hidden layers is D; (ii) the maximum width of
the hidden layers is W; (iii) the number of neurons in eg is U; (iv) the total number of
parameters in eg is S.

For the model FFN we define fF™ = arg min ;¢ rean ]§]\)g(af). Then, we define an

estimator as
AN (@) = ¢ (TN (@)

For this estimator, we can prove an estimation error bound. We make the following assump-
tion.

Assumption 8.3. There ezists a constant 0 < M < oo such that || follee < M, and || flloc <
M for any f € FFNN,

Let Pdim(F*™ ) be the pseudodimension of FF*NN. For the definition, see Anthony & Bartlett
(1999) and Definition 3 in Zheng et al. (2022). Then, we prove the following estimation error
bound:

Theorem 8.2 (Estimation error bound for neural networks). Suppose that g is p-strongly
convex and there ezists a constant C' > 0 such that |¢"(t)| < C Vt € R. Assume also that
¢71(0) s finite. Suppose that Assumption 8.3 holds. For fy such that

ao(z) = ¢z, fo(x)),
also assume fo € X(v, M,[0,1]%) with v = k + a, where k € Nt and a € (0,1], and
FINN has width W and depth D such that W = 38(|v| + 1)2alMJrl and D = 21(|v] +

2 __d__ _d__ : :
1) [n2@27) log, <8n2<d+2">>1. Then, for M > 1 and n < Pdim(F*N), it holds that

HaFNN(X) _ @O(X)HZLQ(PO) = CO(LI/J + 1)9d2LuJ+(uA3)n_% log®n,

where Cy > 0 is a constant independent of n.
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The proof is provided in Appendix G, following the approach of Zheng et al. (2022). This
result directly implies the minimax optimality of the proposed method when f; belongs to
a Holder class.

8.3 Construction of an Efficient Estimator

This section provides how we construct an efficient estimator for the parameter of interest 6,
using generalized Riesz regression. As we discussed in Section 2, we construct an estimator

0 of 6y as
1< B
ﬁ;w (Wu7779> - Oa
where (W3 n,0) is the Neyman orthogonal score is defined as
(Wi, 0) = m(W,y) +a(X) (Y - (X)) -0

for n = (a,7) (o,7: X — R). As introduced in Section 2, we refer to this estimator as
the AIPW estimator. We prove that under certain conditions, the proposed estimator is
asymptotically normal.

We first make the following assumption.

Assumption 8.4 (Donsker condition or cross fitting). Either of the followings holds: (i) the
hypothesis classes H and M belong to the Donsker class, or (ii) 7 and & are estimated via
cross fitting.

For example, the Donsker condition holds when the bracketing entropy of H is finite. In
contrast, it is violated in high-dimensional regression or series regression settings where the
model complexity diverges as n — oo. For neural networks, the assumption holds if both
the number of layers and the width are finite. However, if these quantities grow with the
sample size, the assumption is no longer valid.

Even if the Donsker condition does not hold, we can still establish asymptotic normality
by employing sample splitting (Klaassen, 1987). There are various ways to implement sample
splitting, and one of the most well-known is cross fitting, used in debiased machine learning
(Chernozhukov et al., 2018). In debiased machine learning, the dataset is split into several
folds, and the nuisance parameters are estimated using only a subset of the folds. This
ensures that in m(W;,7) + a(X;) (Y; — 7(X;)), the observations (X;,Y;) are not used to
construct 7 and @. For more details, see Chernozhukov et al. (2018).

Assumption 8.5 (Convergence rate). ||a — a0H2 = 0,(1), |7 - 70H2 = 0,(1), and ||a —

ol [[7 = 0ll, = 0p(1/ V).

Under these assumptions, we show the asymptotic normality of . We omit the proof.
For details, see Chernozhukov et al. (2018) or Schuler & van der Laan (2024), for example.

Theorem 8.3 (Asymptotic normality). Suppose that Assumptions 8.1, and 8.4-8.5 hold.
Then, the AIPW estimator converges in distribution to a normal distribution as

\/ﬁ(é— 90> 9 N0, V),
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Table 2: Experimental results using the synthetic dataset. We report the mean squared
error (MSE) of the ATE estimator and the empirical coverage ratio (CR) of nominal 95%
Wald-type confidence intervals over 100 Monte Carlo replications. The column block “True”
uses oracle nuisance functions (the true propensity score and true outcome regressions) and
is therefore infeasible. “SQ-Riesz” and “UKL-Riesz” estimate the ATE Riesz representer
by generalized Riesz regression with the squared-loss and unnormalized-KL objectives, re-
spectively; “BKL-Riesz = MLE” corresponds to estimating the propensity score by BKL
objective (logistic MLE) and plugging it into the ATE Riesz representer. For SQ-Riesz we
compare two link specifications (Linear and Logit). For UKL-Riesz we compare two feature
sets: ¢@(Z) uses only covariates Z, while ¢(X) uses the full regressor X = (D, Z) (allow-
ing treatment-dependent features). For each Riesz-representer fit we report three estimators:
the direct method (DM), inverse probability weighting (IPW), and augmented IPW (AIPW).
DM depends only on the outcome regression; small differences across DM columns arise from
recomputing the outcome regression within each run of the AIPW construction. Values of
CR close to 0.95 indicate well-calibrated uncertainty quantification.

True SQ-Riesz (Linear) SQ-Riesz (Logit) UKL-Riesz (¢(Z)) | UKL-Riesz (¢(X)) | BKL-Riesz (MLE)

DM IPW AIPW | DM IPW AIPW | DM IPW AIPW | DM IPW AIPW | DM IPW AIPW | DM IPW AIPW

MSE | 0.00 1.44 0.0110.39 049 0.19 1 0.39 1.38 0.08 | 0.38 1.50 0.10 | 0.40 1.52 0.10 | 0.39 3.79 0.23
CR | 1.00 0.84 0.98 1 0.06 0.98 0.87]0.12 0.80 0.89]0.08 0.73 0.77]0.06 0.68 0.81]0.06 0.32 0.60

where V* is the efficiency bound defined as

V*=E [ (W;n0,60)%] .

Here, V* matches the efficiency bound given as the variance of the efficient influence
function (van der Vaart, 1998; Hahn, 1998). Thus, this estimator is efficient.

9 Experiments

We evaluate generalized Riesz regression as a building block for debiased machine learning,
focusing on average treatment effect (ATE) estimation. Across all experiments, we compare
three ways of estimating the ATE Riesz representer (bias-correction term) introduced in
Section 3: SQ-Riesz (squared-loss objective), UKL-Riesz (unnormalized-KL objective), and
BKL-Riesz (binary-KL objective). In the ATE setting, BKL-Riesz coincides with estimating
the propensity score by Bernoulli likelihood (logistic MLE) and then plugging it into the
closed-form ATE Riesz representer; we therefore refer to it as “BKL-Riesz = MLE.”

Given an estimate of the outcome regression 7 and an estimate of the Riesz representer
a, we report three ATE estimators:

e DM: the plug-in direct method based only on 7,

e IPW: the IPW estimator based only on a,
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e AIPW: the Neyman-orthogonal (doubly robust) estimator combining 7 and @ as in
Section 2.

We quantify accuracy by the mean squared error (MSE) of the ATE estimate and quantify
uncertainty by the empirical coverage ratio (CR) of nominal 95

9.1 Experiments with synthetic dataset

Design The covariates are three-dimensional, K = 3, and we fix the sample size at
n = 3000. In each Monte Carlo replication, we generate covariates Z; € R3 from a multi-
variate normal distribution N (0, I3) and construct a nonlinear propensity score model with
polynomial and interaction terms as

1
T 1 texp(=h(Z))’

€O(Zi>

where , ,
hZ;) = Z a; Z; j + Z ijZj AN CVIRVAR I N YARYAR IS S VARVARS
j=1 j=1

The coefficients a;, b;, and ¢; are independently drawn from A(0,0.5). Given these propen-
sity scores, the treatment assignment D; is sampled accordingly. We then generate the
outcome as

3 2 3
Y, = 1.0+ (Z Zi,jaj> +1/ <1 +exp (— (Z Zgj@) )) +70D; + €,
j=1 j=1

where ; ~ N(0,1) and 7y = 5.0.

Estimators and implementation We estimate the Riesz representer using the following
variants, matched to Table 2.

e SQ-Riesz (Linear) and SQ-Riesz (Logit): squared-loss generalized Riesz regression
with two different link specifications for the Riesz-representer model.

e UKL-Riesz (¢(7)) and UKL-Riesz (¢(X)): UKL generalized Riesz regression with
a log-type link, comparing two feature sets. Here X = (D, Z) and ¢(Z) uses only Z,
while ¢(X) uses the full regressor (allowing treatment-dependent features).

e BKL-Riesz (MLE): propensity-score MLE (Bernoulli likelihood) followed by plug-
ging e(Z) into the ATE Riesz representer.

For the Riesz representer and regression models, we separately use a neural network with
one hidden layer consisting of 100 nodes. To avoid relying on the Donsker condition, we
estimate all nuisance functions using two-fold cross fitting. In each replication, we split the
sample into two folds, estimate the nuisance functions on one fold, evaluate the corresponding
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scores on the other fold, and then swap the roles of the folds. The final estimators aggregate
the two cross-fitted scores.

This experiment does not guarantee automatic Neyman orthogonalization, since we use
cross fitting and do not use the same basis functions for outcome modeling. However, this
implementation is standard in debiased machine learning; therefore, we adopt it.

We repeat the simulation 100 times. The “True” columns in Table 2 report infeasible
oracle performance using the true nuisance functions.

Results Table 2 highlights three robust patterns. First, oracle baselines separate esti-
mation error from intrinsic variance. The oracle AIPW estimator is close to the efficiency
benchmark (MSE = 0.01) and achieves near-nominal coverage (CR = 0.98). In contrast,
even with the true propensity score, oracle IPW remains noisy (MSE = 1.44) and under-
covers (CR = 0.84), reflecting the well-known finite-sample instability of pure weighting in
challenging overlap regimes.

Second, the plug-in DM estimator is not reliable for inference in this design. Across
feasible implementations, DM has moderate MSE (about 0.38-0.40) but extremely poor
coverage (CR = 0.06-0.12). This indicates that the outcome regression learner, while not
catastrophically inaccurate in MSE, does not deliver a reliable uncertainty estimate when
used without orthogonalization, and the resulting Wald intervals are severely miscalibrated.

Third, how we fit the Riesz representer matters substantially for IPW, and AIPW mit-
igates (but does not eliminate) this sensitivity. For IPW, SQ-Riesz (Linear) is the best-
performing option in Table 2 (MSE = 0.49) and yields near-nominal coverage (CR = 0.98).
In contrast, IPW based on UKL-Riesz has larger MSE (about 1.50) and noticeably lower
coverage (CR = 0.68-0.73), while BKL-Riesz (= MLE) performs worst (MSE = 3.79, CR
= 0.32), consistent with propensity-score MLE producing more extreme effective weights in
this design.

The AIPW estimator is uniformly more stable than IPW and DM in terms of MSE,
but calibration still depends on the Riesz-representer fit. SQ-Riesz (Logit) attains the best
ATPW MSE (0.08) with CR 0.89. UKL-Riesz achieves similarly small AIPW MSE (0.10)
but exhibits undercoverage (CR = 0.77-0.81). BKL-Riesz (= MLE) improves substantially
over its IPW counterpart (AIPW MSE = 0.23), yet its coverage remains poor (CR = 0.60).
Overall, directly fitting the Riesz representer via generalized Riesz regression can materially
improve finite-sample performance relative to the MLE plug-in baseline, and the combination
of objective and link specification plays a first-order role, especially for IPW and for the
calibration of AIPW intervals.

9.2 Experiments with semi synthetic datasets

We next evaluate the same family of estimators on the semi-synthetic IHDP benchmark,
following Chernozhukov et al. (2022a). We use the standard setting “A” in the npci package
and generate 1000 replications. Each replication contains n = 747 observations with a binary
treatment, an outcome, and p = 25 covariates. The estimand is the ATE.

We report DM, IPW, and AIPW for each Riesz-representer estimator (SQ-Riesz, UKL-
Riesz, and BKL-Riesz (= MLE)). We consider two nuisance-learner families:
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Table 3: Experimental results using the semi-synthetic IHDP dataset. We report the mean
squared error (MSE) and the empirical coverage ratio (CR) of nominal 95% confidence
intervals over 1000 replications for the direct method (DM), inverse probability weighting
(IPW), and augmented IPW (AIPW) estimators. Nuisance functions are estimated either
by a neural network with one hidden layer of size 100 or by an RKHS regression with 100
Gaussian basis functions. The columns correspond to SQ-Riesz regression (SQ-Riesz), UKL-
Riesz regression (UKL-Riesz), and BKL-Riesz regression (BKL-Riesz (MLE)). BKL-Riesz
(MLE) implies BKL-Riesz regression is essentially equivalent to MLE of logistic models for
the propensity score.

Neural network

SQ-Riesz UKL-Riesz BKL-Riesz (MLE)
DM IPW AIPW | DM IPW AIPW | DM IPW AIPW
MSE | 1.52  6.82 0.31 | 1.55 2.84 0.32 | 1.58 3.00 0.43
CR |0.03 041 1.00 | 0.03 0.73 0.940.01 0.61 0.90

RKHS

SQ-Riesz UKL-Riesz BKL-Riesz (MLE)
DM IPW AIPW | DM IPW AIPW | DM IPW AIPW
MSE | 19.98 3.56 19.97 | 2.59 1.78 4.45 | 248 1.22 2.32
CR 0.00  0.00 0.00 | 0.48 0.93 0.88 1 0.39 0.81 0.84

e a feedforward neural network with one hidden layer of 100 units,
e an RKHS learner with 100 Gaussian basis functions (with tuning by cross validation).

For each configuration, we compute the MSE of the ATE estimate and the empirical coverage
ratio (CR) of nominal 95% Wald-type confidence intervals across the 1000 replications; CR
close to 0.95 indicates well-calibrated uncertainty quantification. Results appear in Table 3.

Two findings stand out. With neural networks, AIPW is consistently accurate (MSE
around 0.31-0.43) and well calibrated for UKL-Riesz and BKL-Riesz (CR = 0.94 and 0.90),
while SQ-Riesz yields overly conservative AIPW intervals (CR = 1.00). In contrast, DM
has very low coverage (CR near zero) and IPW exhibits large error, especially for SQ-Riesz
(MSE = 6.82), reinforcing that orthogonalization is essential in this benchmark.

With RKHS, performance becomes much more sensitive to the particular objective: SQ-
Riesz deteriorates sharply (MSE around 20 with CR = 0 for both DM and AIPW), whereas
UKL-Riesz and BKL-Riesz remain substantially more stable. In particular, UKL-Riesz at-
tains strong IPW calibration under RKHS (CR = 0.93) with comparatively low MSE (1.78),
while BKL-Riesz provides a competitive alternative (IPW MSE = 1.22 with CR = 0.81).
These results underscore that, in finite samples, the interaction between the Riesz-representer
objective and the nuisance-function learner can be decisive, and that UKL-type objectives
can offer noticeably more robust behavior than squared-loss fitting in this semi-synthetic
setting.
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10 Conclusion

This paper develops a unified perspective on estimating the Riesz representer, namely, the
bias correction term that appears in Neyman orthogonal scores for a broad class of causal
and structural parameters. We formulate Riesz representer estimation as fitting a model
to the unknown representer under a Bregman divergence, which yields an empirical risk
minimization objective that depends only on observed data. This generalized Riesz regression
recovers Riesz regression and least squares importance fitting under squared loss, it recovers
KL based tailored loss minimization and its dual entropy balancing weights under a KL
type loss, and it connects logistic likelihood based propensity modeling with classification
based density ratio estimation through a binary KL criterion. By pairing the loss with an
appropriate link function, we make explicit a dual characterization that delivers automatic
covariate balancing or moment matching, which clarifies when popular balancing schemes
arise as primal or dual solutions. We provide convergence rate results for kernel methods
and neural networks, including minimax optimality under standard smoothness classes, and
we show how the framework instantiates in ATE, AME, APE, and covariate shift adaptation.
Our experiments suggest that directly estimating the bias correction term can be competitive
with common propensity score based baselines and can be stable across divergence choices
when combined with cross fitting. Overall, the proposed framework bridges density ratio
estimation and causal inference, and it offers a single set of tools for designing, analyzing,
and implementing Riesz representer estimators, while motivating extensions such as nearest
neighbor and score matching based constructions.
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A Related Work

A.1 Asymptotically Efficient Estimation

Early history. The construction of asymptotically efficient estimators is a classical prob-
lem in statistics, machine learning, economics, epidemiology, and related fields. In this
problem, we consider semiparametric models with a low-dimensional parameter of inter-
est and additional nuisance parameters. Our interest lies in obtaining ./n-consistent and
asymptotically normal estimators of the parameter of interest. The difficulty stems from
the estimation error of nuisance parameters, whose convergence rates are typically slower
than, or at best comparable to, y/n. Reducing the influence of nuisance estimation error
has been investigated in many studies, including Levit (1976), Ibragimov & Khas'minskii
(1981), Pfanzagl & Wefelmeyer (1982), Klaassen (1987), Robinson (1988), Newey (1994),
van der Vaart (1998), Bickel et al. (1998), Ai & Chen (2012), and Chernozhukov et al. (2018).

In the construction of asymptotically efficient estimators, we aim to develop estimators
that are y/n-consistent and asymptotically normal, with asymptotic variances that attain
the asymptotic efficiency bounds. Asymptotic efficiency bounds are called H'ajek—Le Cam
efficiency bounds, or semiparametric efficiency bounds when we consider semiparametric
models (Hajek, 1970; Le Cam, 1972, 1986). They share the same motivation as the Cram’er—
Rao lower bound. While the Cram’er—Rao lower bound provides a lower bound for unbiased
estimators, asymptotic efficiency bounds provide lower bounds for asymptotically unbiased
estimators, called regular estimators. It is known that efficient estimators are regular and
asymptotically linear (RAL) with the efficient influence function. Therefore, the construction
of asymptotically efficient estimators is equivalent to the construction of RAL estimators
(van der Vaart, 1998).

There are three main approaches to constructing efficient estimators, one-step bias cor-
rection, estimating equation methods, and TMLE (Schuler et al., 2018; van der Vaart, 2002;
van der Laan, 2006; van der Laan & Rose, 2018). In many cases, these approaches yield
estimators that are asymptotically equivalent. However, their finite sample behavior may
differ. Another related line of work is post-selection inference with high-dimensional control
variables (Belloni et al., 2011, 2014, 2016).

Debiased machine learning and Riesz representer. Debiased/double machine learn-
ing (DML) provides a general recipe for constructing asymptotically linear and semiparamet-
rically efficient estimators by combining flexible first-step learning with Neyman-orthogonal
scores (Chernozhukov et al., 2018). In classical semiparametric theory, such orthogonal-
ization is naturally expressed through the efficient influence function (EIF), obtained by
projecting the pathwise derivative onto the nuisance tangent space (Newey, 1994). Related
influence-function/projection-based bias corrections also appear in earlier semiparametric
two-step and sieve inference work (e.g., (Chen et al., 2008; Ackerberg et al., 2014)).

For many targets, the orthogonal score admits an augmentation (bias-correction) form. In
particular, for linear (and local) functionals of a regression-type nuisance, Chernozhukov et al.
(2022b) make explicit that one can write an orthogonal score as a plug-in term plus a correc-
tion that multiplies the regression residual by the functional’s Riesz representer; they treat
the Riesz representer itself as an additional nuisance parameter and propose to estimate it
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from data via regularized Riesz representer regression, combined with cross-fitting, yielding
adaptive inference for regular and nonregular local functionals (Chernozhukov et al., 2022b).
This places the adjustment term, often called the one-step bias-correction term or the clever
covariate, into the same estimation pipeline as other nuisances.

Closely related Riesz-representation-based characterizations and feasible approximations
of this adjustment term have been developed in the sieve/semiparametric inference litera-
ture by Chen and coauthors. In semiparametric conditional moment restriction settings,
Chen & Pouzo (2015) characterize the pathwise derivative of a target functional as a linear
functional on an (infinite-dimensional) Hilbert space and show that a population Riesz rep-
resenter exists if and only if this derivative is bounded; when it is unbounded (an irregular
functional), the population representer may fail to exist (Chen & Pouzo, 2015). Importantly,
on any finite-dimensional sieve space the derivative is automatically bounded, so a sieve Riesz
representer is always well-defined; it can be used to construct implementable “sieve influence
functions” and variance estimators (Chen & Pouzo, 2015). Building on this perspective,
Chen et al. (2014) emphasize that even when the population Riesz representer is difficult to
compute (or does not exist on the infinite-dimensional space), the sieve Riesz representer can
always be computed explicitly, enabling a unified treatment of regular and irregular function-
als (Chen et al., 2014). Moreover, Chen et al. (2014) relate regularity to the behavior of the
sieve Riesz representer norm as sieve dimension increases, providing a convenient diagnostic
of whether root-n inference is attainable (Chen et al., 2014). Finally, Chen & Liao (2015)
show that while the population representer may not admit a closed-form solution, its sieve
analogue often does and can be computed via finite-dimensional linear algebra (generalized
inverse formulas), yielding practical influence-function-based inference and variance estima-
tion procedures (Chen & Liao, 2015). For the relationship our generalized Riesz regression
and series Riesz representer, see Appendix J.

From this viewpoint, the “Riesz representer regression” terminology of Chernozhukov et al.
(2022b) can be interpreted as a modern, high-dimensional regularized analogue of the sieve
Riesz representer constructions in Chen & Pouzo (2015); Chen et al. (2014); Chen & Liao
(2014, 2015): both lines of work use Riesz representation to express and estimate the
orthogonal-score adjustment term, but Chernozhukov et al. (2022b) focus on learning the
representer in large ML dictionaries via regularization and cross-fitting, complementing the
closed-form series/sieve calculations emphasized in the sieve literature (Chen et al., 2014;
Chen & Liao, 2015).

A.2 ATE Estimation

Randomized controlled trials are the gold standard for causal inference, where treatments are
assigned while maintaining balance between treatment groups. However, they are not always
feasible, and we aim to estimate causal effects from observational data, where imbalance
between treatment groups often arises. To correct this imbalance, propensity scores or
balancing weights have been proposed.

In ATE estimation, the Riesz representer corresponds to inverse propensity weights. Ac-
curate estimation of the propensity score is therefore central to ATE estimation. A standard
choice is maximum likelihood estimation, but many alternative approaches have been stud-
ied. Riesz regression provides an end-to-end approach to estimating the Riesz representer
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and can be applied to tasks beyond ATE estimation (Chernozhukov et al., 2021, 2022a;
Lee & Schuler, 2025). Another promising approach is covariate balancing. The propen-
sity score is also known as the coarsest balancing score (Rosenbaum & Rubin, 1983), and
propensity score estimation via covariate balancing has been extensively studied (Li et al.,
2017; Imai & Ratkovic, 2013a; Hainmueller, 2012; Zubizarreta, 2015; Tarr & Imai, 2025;
Chan et al., 2016; Wong & Chan, 2017). As discussed in this study and related works
(Bruns-Smith & Feller, 2022; Bruns-Smith et al., 2025; Ben-Michael et al., 2021; Zhao, 2019),
Riesz regression and covariate balancing are dual to each other, in the sense that they corre-
spond to essentially the same optimization problem.

Covariate balancing. Covariate balancing is a popular approach for propensity score or
balancing weight estimation. The propensity score is a balancing score, and based on this
property, existing studies propose estimating the propensity score or the weights so that
weighted covariate moments match between treated and control groups. Imai & Ratkovic
(2013b) proposes estimating the propensity score by matching first moments, and Hazlett
(2020) extends this idea to higher-moment matching by mapping covariates into a high-
dimensional space via basis functions. On the other hand, methods that do not directly
specify a propensity score model have also been proposed. Such methods are called empirical
balancing and include entropy balancing (Hainmueller, 2012) and stable weights (Zubizarreta,
2015). These two approaches may appear different, but Zhao (2019) and Bruns-Smith et al.
(2025) show that they are essentially equivalent through a duality relationship.

A.3 Density Ratio Estimation

A parallel line of work is density ratio estimation, which has been extensively studied in
machine learning. We refer to the ratio between two densities as the density ratio. The
density ratio is a useful tool in semiparametric inference, as used in covariate shift adaptation
(Shimodaira, 2000; Kato et al., 2024a), and we show that this framework can be generalized
to a wider class of applications, including ATE estimation.

While the density ratio can be estimated by separately estimating each density, such an
approach may magnify estimation errors by compounding the errors from two separate esti-
mators. To address this issue, end-to-end, direct density ratio estimation methods have been
studied, including moment matching (Huang et al., 2007; Gretton et al., 2009), probabilis-
tic classification (Qin, 1998; Cheng & Chu, 2004), density matching (Nguyen et al., 2010),
density ratio fitting (Kanamori et al., 2009), and PU learning (Kato et al., 2019). It is also
known that when complicated models such as neural networks are used for this task, the loss
function can diverge in finite samples (Kiryo et al., 2017). Therefore, density ratio estimation
methods with neural networks have been investigated (Kato & Teshima, 2021; Rhodes et al.,
2020).

As discussed in this study and in existing work such as Uehara et al. (2020) and Lin et al.
(2023), density ratio estimation is closely related to propensity score estimation. In partic-
ular, this study shows that the formulations of Riesz regression and LSIF in density ratio
estimation are essentially the same. While Riesz regression applies to more general problems,
the LSIF literature provides a range of theoretical and empirical results. One important ex-
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tension is to generalize LSIF via Bregman divergence minimization (Sugiyama et al., 2011b),
and this study is strongly inspired by that work.

Note that density ratios are used not only for semiparametric analysis but also in tasks
such as learning with noisy labels (Liu & Tao, 2016; Fang et al., 2020), anomaly detection
(Smola et al., 2009; Hido et al., 2008; Abe & Sugiyama, 2019), two-sample testing (Keziou & Leoni-Aubin,
2005; Kanamori et al., 2010; Sugiyama et al., 2011a), change-point detection (Kawahara & Sugiyama,
2009), causal inference (Uchara et al., 2020), and recommendation systems (Togashi et al.,
2021). In causal inference, Uehara et al. (2020) investigates efficient ATE estimation and
policy learning under covariate shift. Kato et al. (2024b) applies this approach to adaptive
experimental design, and Kato et al. (2025) extends the framework to a PU learning setup.

Density ratio estimation is discussed from the viewpoint of large language models (LLMs)
by Higuchi & Suzuki (2025).

B Proof of the Automatic Covariate Balancing Prop-
erty

For simplicity, we only consider the case with ¢;-penalty.

B.1 Constrained Optimization Problem

From the Riesz representation theorem, the following equation holds:
E[m(W, (9g) o a)] = E[ag(X)dg(a(X))].

Therefore, we can consider an algorithm that estimates « so that its estimator a satisfies
E[m(W, (8g) o a)} ~ ]E[@(X)ag(a(X))} ,

where we replace oy with a@. Then, it holds that

1
min E;Q(O‘i)

LS (adg(a(x) ~ (W (09) 0 6)) | <

i=1

subject to j=1...,p.

Linearity for the basis functions. Next, we consider the case where

89(045 Zﬁ]g Xl,@( i)

j=1
We consider the following constrained optimization problem:

RS
min ﬁ;g(ai)

subject to




B.2 Dual Formulation

Using Lagrange multipliers 3; € R (j = 1,2,...,p), the constrained optimization problem
can be written as

min sup {% Zg(ai) + Z,Bj (% Z (m(Wi, (0g) 0 @) — g (X5, ¢j(Xi))> - Sign(ﬂj))\> } .

acH™
BERP i1

The dual problem of the above constrained problem is
, 1 & z 1 & _
max ol \n ; g(ai) + ; Bi— Zz; (m(W,», (09) © ¢3) — g (X, ¢j(Xz‘))> —1BilA ) ¢
Let ag(X;) = ¢(X;)" 3. Recall that the empirical Bregman divergence objective is given by
— 1 <
BDy(ag) = — > (= glas(X1)) + dg(ag(X:))an(Xs) — m (Wi, dg(ap(Xy) ).

n
i=1

Let a; = ag(X;). Then the objective can be written as
max it 23 (g3 (813 (m(W,. (99) 0 6,) — 0 (Xo.6,(X2)) ) — 18,17 ) |
BERP a€MH™ N = n I ’ I w I

i=1 j =

From ag(“ﬁ(Xi)) = Z?:l B;g (Xi, $;(Xi)), we have

max inf, {% Z (g(oq) — ;09 (ap(X;)) +m (Wi, (9g) o O‘ﬁ)) + )\||ﬂH1} -

Consider the problem

inf {% Z (g(ai) — ;09(ag(X;)) + m(W;, (9g) o ag)) + )\||5||1} .

acH” -
=1

Since g is twice differentiable and strictly convex for a given domain, the infimum is attained
when

@ =ap(X;) =p(X)'B,  i=1,....n
Substituting o; = ag(X;) = ¢(X;)" 3, we obtain

n

ma {1 S~ (slas(X0) — aidg (X)) +m (Wi, (99) 0 ag) ) = Anmh} .

BeRP n <
=1

This is equivalent to

min {% > (= 9a) + aidg(ap(X.) —m(Wi, (9g) o ap) ) + AHﬂHl} -
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C Opverfitting Problems

Density ratio estimation often suffers from a characteristic form of overfitting. Kato & Teshima
(2021) refers to this issue as train-loss hacking and shows that the empirical objective can
be artificially reduced by inflating 7(X ™) at the training points. Rhodes et al. (2020) high-
lights a related mechanism: when p,, and pq. are far apart, for example when KL(pn|/pae)
is on the order of tens of nats, the estimation problem enters a large-gap regime that exac-
erbates overfitting. They refer to this phenomenon as the density chasm. Although the two
papers emphasize different viewpoints, both point to the same underlying difficulty, finite
samples provide weak control of the ratio in regions where the two distributions have little
overlap.

Non-negative Bregman divergence Kato & Teshima (2021) proposes a modification
of the Bregman divergence objective that isolates the problematic component and applies
a non-negative correction under a mild boundedness condition on ry. Specifically, choose
0 < C < 1/R with R := suprg. The population objective decomposes, up to an additive
constant, into a non-negative term plus a bounded residual. At the sample level, the method
replaces the non-negative component with its positive part [-],. This yields an objective
that curbs train-loss hacking while remaining within the Bregman-divergence framework
(Kiryo et al., 2017; Kato & Teshima, 2021).

Telescoping density ratio estimation Rhodes et al. (2020) proposes telescoping density
ratio estimation, which targets overfitting in large-gap regimes by introducing intermediate
waymark distributions pg = puu, P1, - - - s Pm = Pde- Lhe method estimates local ratios pg/pri1
and combines them through the identity

po(z) ﬁ pr()

pn(@) L ()’

Each local ratio corresponds to a smaller distributional gap, which makes perfect classifica-
tion harder and typically makes the ratio estimation problem more stable at finite sample
sizes. As a result, telescoping can improve robustness and generalization in practice.

Telescoping density ratio estimation is also closely connected to score matching. When
the number of intermediate ratios tends to infinity, the log density ratio can be expressed as
an integral of time scores along a continuum of bridge distributions, and can be approximated
by aggregating these score functions (Choi et al., 2022). Building on this idea, Choi et al.
(2022) proposes density ratio estimation via infinitesimal classification. See Appendix 1.4 for
details.

D Preliminary for the Convergence Rate Analysis

This section introduces notions that are useful for the theoretical analysis.
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D.1 Rademacher complexity

Let 04, ...,0, be n independent Rademacher random variables; that is, independent random
variables for which P(o; = 1) = P(0; = —1) = 1/2. Let us define

R,f = %Zo—if(wi)'
i=1

Additionally, given a class F, we define

R, F =supR,f.
feF

Then, we define the Rademacher average as E[R,F| and the empirical Rademacher average

as E,[ R, F | Xq,...,X,].

D.2 Local Rademacher complexity bound
Let F be a class of functions that map X into [a,b]. For f € F, let us define
Pf=E[f(W)],

Puf = 3 W),
i=1

We introduce the following result about the Rademacher complexity.

Proposition D.1 (From Theorem 2.1 in Bartlett et al. (2005)). Let F be a class of func-
tions that map X into [a,b]. Assume that there is some r > 0 such that for every f € F,
Var(f(W)) <r. Then, for every z > 0, with probability at least 1 — exp(—z), it holds that

sup(Pf—Pnf)ginf{2(1+a)E[%nf]+\/%—x+(b—a)<1+l)f}'
feF a>0 n 3 a)n

D.3 Bracketing entropy

We define the bracketing entropy. For a more detailed definition, see Definition 2.2 in
van de Geer (2000).

Definition D.1. Bracketing entropy. Given a class of functions F, the logarithm of the
smallest number of balls in a norm || - ||a.p of radius 6 > 0 needed to cover F is called the
d-entropy with bracketing of F under the Lo(P) metric, denoted by Hp(d, F, P).

D.4 Talagrand’s concentration inequality
We introduce Talagrand’s lemma.

Proposition D.2 (Talagrand’s Lemma). Let ¢p: R — R be a Lipschitz continuous function
with a Lipschitz constant L > 0. Then, it holds that

R, (poF) < LR, (F).
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E Basic inequalities

E.1 Strong convexity

Lemma E.1 (L, distance bound from Lemma 4 in Kato & Teshima (2021)). Ifinfqe(—o0),00 9" (¥) >
0, then there exists p > 0 such that for all « € H,

o = 0ol < = (BDy(0) = BD,(au)

holds.

From the strong convexity and Lemma E.1, we have

[T ~

L1@ — aollg < BD,(@) — BD, (a).
Recall that we have defined an estimator 7 as follows:

Q = arg min ]§]\)g(a) + A (o),
acH

where J (h) is some regularization term.

E.2 Preliminary

Proposition E.2. The estimator T satisfies the following inequality:
BD,(@) + AJ(@) < BD,(a*) + AJ ("),

where recall that

n

BDy0) = 3~ (= g(a(X)) +dg(a(X)a(X,) — gla(1, X)) - g(a(0, X.) ).

Let Z € Z be a random variable with a space Z, and {Z;}!, be its realizations. For a
function f: Z — R and X following P, let us denote the sample mean as

BI(2) =5 > ()
We also denote E[f(Z)] — E[f(Z)] = (E — E)f(Z)

E.3 Risk bound
Recall that

BD, () = = " (= o(a(X0) + dgla(X))a(X,) — dg(a(l, X)) - dg(a(0, X))



Let us define

L(h, D, X) = —g(a(X)) + 9g(a(X))a(X) = dg(a(1, X)) — 9g((0, X)),
and we can write . R
BD,(a) = E[L(h, D, X)]
Then, from Proposition E.2, we have
E[L(a*, D, X)] — E[L(@, D, X)] + A\ (@) — A\J(a*) > 0.
Throughout the proof, we use the following basic inequalities that hold for a.

Proposition E.3. The estimator T satisfies the following inequality:
po~
L 1a(x) = oI
< (IE - fE) IL(@, D, X) — L(ag, D, X)] + E [L(a*, D, X) — L(ag, D, X)] + A (r0) — MJ(7).
Proof of Proposition E.2 is trivial. We prove Proposition E.3 below.
Proof. From the strong convexity and Lemma E.1, we have
gua — ap|2 < BD, (@) — BD, (a) = E[L(@, D, X) — L(aw, D, X)] .
From Proposition E.2, we have
(X) - aO(X)Hig(PO)
, D, X) — L(ap, D, X)]

,D,X) — L(a, D, X)]
L(a,D,X) — L(a, D, X)]

~E[L(@ D, X) - L(ao, D, X))
+E[L@, D, X) - L(ag, D, X)]
—E[L(@,D,X)— L(a*, D, X)] + M (@) — M (ap).
O
F Proof of Theorem 8.1
We show Theorem 8.1 by bounding
(E - f@) IL(@, D, X) — L(ag, D, X)], (8)

in Proposition E.3. We can bound this term by using the empirical-process arguments.
Note that since ay € H, it holds that a* = ag, which implies that
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F.1 Preliminary

We introduce the following propositions from van de Geer (2000), Kanamori et al. (2012)
and Kato & Teshima (2021).

Definition F.1 (Derived function class and bracketing entropy (from Definition 4 in Kato & Teshima
(2021))). Given a real-valued function class F, define Lo F == {lo f: f € F}. By extension,

we define I : LoH — [1,00) by I({oh) =1I(a) and L o Hy = {loa: a € Hy}. Note that,

as a result, £ o Hyy coincides with {oa € LoH : [(oh) < M}.

Proposition F.1. Let ¢ : R — R be a v-Lipschitz continuous function. Let Hp (5, F. -
]|L2(p0)) denote the bracketing entropy of F with respect to a distribution P. Then, for any
distribution P, any v >0, any M > 1, and any 6 > 0, we have

(s +1)(20)7 <M>7.

HB((;’EOHv | - ||L2(P0)) < ~y 5

J

Moreover, there exists M > 0 such that for any M > 1 and any distribution P,
sup  [[loa —Loa™|L,py < covM,

Loa€loH pp
sup [loa—Loa"|s < couM, for all 6 > 0.

Loa€loH pr
[€oa—Loa* ||y (py) <6

Proposition F.2 (Lemma 5.13 in van de Geer (2000), Proposition 1 in Kanamori et al.
(2012)). Let F C L3(P) be a function class and the map I(f) be a complexity measure of
f € F, where I is a non-negative function on F and I(fy) < oo for a fized fo € F. We now
define Fay = {f € F: I(f) < M} satisfying F = J, ;1 Fu- Suppose that there exist co > 0
and 0 < v < 2 such that -

sup [|f = foll <M, sup  [[f = follw < coM, forall 6 >0,

fe€Fum

feFnm
||f7f0||L2(p)§6
and that Hg(d, Far, P) = O ((M/§)Y). Then, we have

o U = (P = P.)
feF D(f)

where D(f) is defined by

= 0p(1), (n — 0),

I = foll gz G2 1(p)

D(f) = max NG RoYEE=E

Proposition F.3. Let g: K — R be twice continuously differentiable and strictly convex for
the space IC of ag, and suppose that there exists M > 0 such that

lg"(t)| < M for all t € R.
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Let (71: R — R be continuously differentiable and globally Lipschitz, that is, there exists
L¢ > 0 such that
1M (s) = ¢ ()| < Lels —t|  for all s,t € R.

Assume also that (71(0) is finite, and define
a =1¢C"0)], @=L,

so that
I (w)| < ap + ailu|  for all u € R.

Let h be a bounded real-valued function on the domain of (D, X), and write

lloo = sup |a(d, z)].

Let L be a linear functional acting on bounded functions, such that for some constant C'p, > 0,
IL(f)| < CL(1+ | flloo) Jfor all bounded f.

Define

L(¢ o f) =g(¢T o f(D, X)) +9g(¢ o f(D, X))¢ 0 a(D, X)
—9g(¢ o f(1,X)) = 0g(¢™" 0 (0, X)).

Then there exists a constant C' > 0 (depending only on g, ("' and Cy) such that

IL(¢T o fl < C(1+ | f1%)-

F.2 Upper bound using the empirical-process arguments

From Propositions F.1-F.3, we obtain the following result.

Proposition F.4. Under the conditions of Theorem 8.1, for any 0 < v < 2, we have

d (E - 1@:) IL(@, D, X) — L(a, D, X)]

~ e l=v/2 ~ ~
-0 (e E L 9 0+ )
- P 9 I

\/ﬁ n2/(2+)

as n — Q.

F.3 Proof of Theorem 8.1

We prove Theorem 8.1 following the arguments in Kanamori et al. (2012).

74



RKHS

Proof. From Proposition E.3 and «aq € « , we have

00 = a0 (X7, + Al
< (E-E) [L(@ D, X) - L(ao, D, X)] + All foll

From Proposition F.4, we have
~ 2 N
18(X) = o)l + AFIE

/2

it (L 71,) 7 v
o [ d T 0l BHL) (1 g
P T n2/2)

vn

We consider the following three possibilities:
13(X) = a0 (X7, ryy + AR = Op(N),

1—v/2 1+v/2
80 — O AL 0, [ M foliach (14 7],
La(Po) H D \/ﬁ

)"y

18(X) = a0 (X) 1 my + Al IR = Op | =570

The above inequalities are analyzed as follows:

Case (9). We have

16(X) = ao(X) 13 ,py = Op(N),
MIFI3, = Op(N).

Therefore, we have [|a(X) — ao(X)]|p, = Op(AY?) and [|F]ly = Op(1).

Case (10). We have

17 - gty (1+ | AL) ™
- ,

17—l (o ||AL) ™
n

13(X) = a0 (X)) 7, = Op

M fll =0

5

+ Alroll3,-



From the first inequality, we have

600 = ao(X) 5, = D 0, )

nl/(2+7)

de{1,0}

By using this result, from the second inequality, we have

17— sz (|7,
Vn

AN T )T

/@) \/ﬁ

N (CILPAY

n2/(2+'y

AIFI3, =0

This implies that

e+,

||f||7'l = OP )\1/2 2/(247) = Op(l)'

Therefore, the following inequity is obtained.

~ 1
16(X) = ao(X)llp, = Oy (m) = 0,(A'?).

Case 11. We have

(Gl

~ 2
||O{(X) - aO(X)“LQ(PO) = n2/ 247) ;

)

)‘HfH’H = Op 2/(2+7

As well as the argument in (10), we have ||[7]|3 = 0,(1). Therefore, we have

~ 1 1/2
100 = 20Xl = Oy (7 ) = 0N
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G Proof of Theorem 8.2

Our proof procedure mainly follows those in Kato & Teshima (2021) and Zheng et al. (2022).
In particular, we are inspired by the proof in Zheng et al. (2022).
We prove Theorem 8.2 by proving the following lemma:

Lemma G.1. Suppose that Assumption 8.3 holds. For any n > Pdim(F™N), there exists
a constant C' > 0 depending on (u, o, M) such that for any v > 0, with probability at least
1 — exp(—7), it holds that

-5, <c W DA )8 1y = ol + ﬁ) -

As shown in Zheng et al. (2022), we can bound Pdim(F"N)log(n) by specifying neural
networks and obtain Theorem 8.2.

G.1 Proof of Lemma G.1

We prove Lemma G.1 by bounding (8) in Proposition E.3.
To bound (8), we show several auxiliary results. Define

n

FI = (€ FN DS (H(X) - (X)) < ),

i=1
g = {( -y e P,
palu) =By RG]
ul =inf {u>0: Kl(s) < s* Vs >u}.
Here, we show the following two lemmas:

Lemma G.2 (Corresponding to (26) in Zheng et al. (2022)). Suppose that the conditions in
Lemma G.1 hold. Then, for any z > 0, with probability 1 — exp(—z) it holds that

~

E[L(a,D,X) — L(ag, D, X)]

Lemma G.3 (Corresponding to (29) in Zheng et al. (2022)). Suppose that the conditions in
Lemma G.1 hold. If there exists ug > 0 such that

[£(X) = fH(X)l2 < uo,
then it holds that

E— E) (L@, D, X) — L(ag, D, X)]

<C(E, |G| + uO\/g + %) .
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Additionally, we use the following three propositions directly from Zheng et al. (2022).

Proposition G.4 (From (32) in Zheng et al. (2022)). Let uw > 0 be a positive value such
that

If = foll <
for all f € F. Then, for every z > 0, with probability at least 1 — 2 exp(—=z), it holds that

X ST (F(X) = fo(X0))* < 2u.

n <
=1

Proposition G.5 (Corresponding to (36) in Step 3 of Zheng et al. (2022)). Suppose that
the conditions in Lemma G.1 hold. Then, there exists a universal constant C' > 0 such that

- FFNN
ot < CM\/szm(]—" ) log(n)

n

Proposition G.6 (Upper bound of the Rademacher complexity). Suppose that the condi-
tions in Lemma G.1 hold. If n > Pdim(F™N), ug > 1/n, and n > (2eM)?, we have

. im( FFNN
E, [%ngf ,u0:| < CTO\/szm(]: )logn.

n

Then, we prove Lemma G.1 as follows:

Proof of Lemma G.1. If there exists ug > 0 such that

~

1F(X) = (X2 < o,

then from (8) and Lemmas G.2 and G.3, for every z > 0, there exists a constant C' > 0
independent n such that

I(X) = a2
z 16M=z Pdim(FFNN) Jog n z Mz
SC(Hf*—fon\/%Jr ™ +uO\/ P logn s —+—>. (12)

n n n

This result implies that if \/Pdim(F¥NN), then there exists ng such that for all n > ng, there
exists u; < ug such that

18(X) = ao(X)|[7,(py) < w1
For any z > 0, define u as
u, > max{\/m,ll\/g]\/[\/z/_n,ﬂ} .
Define a subspace of F¥N as
SN (fo,w = {f € FNN | f = foll <.}
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Define
£ = [log(2M/ \/Tog(n) /).

Using the definition of subspaces, we divide F* N into the following ¢ 4 1 subspaces:

ggNN ::SFNN (an E) )
S =8I aN\ST(fy,7),

—FNN

Sy =8N (fo, 2WN\S™ (fo, 2 m).
Since w, > u', from the definition of u!, we have
u: < KY(T).

If there exists j < /£ such that ]?E E?NN, then from (12), for every z > 0, with probability
at least 1 — 8exp(—z), there exists a constant C' > 0 independent of n such that

[a(X) — ao(X)];

3 FNN
<c (Qe—la W Pim(FP) log(n) \ﬁ) FIF = ol 4157 = ol + %> -
n n n n

(13)

Additionally, if

. (\/Pdim(fFNN)log(n) n E) < %QJH’ (14)

n n
* 2 * Z MZ 1 27—2
_ _ 2R < 2oy 1
0 (17 = Bl + 17 = sl = + 22 < Jom (15
hold, then
J3(X) - ao(X)l, <2 (16

Here, to obtain (16), we used @ > max{\/log(n)/n,4\/§M\/z/n,uT}, (13), (14), and
(15).
From Proposition G.5, it holds that

; FNN
ot < C’M\/Pdlm(]: ) log(n)

n

Therefore, we can choose u as

u=C <\/Pdim(]:FNN) log(n) + /log(n)/n + 4\/§M\/Z/_n> :

n

where C' > 0 is a constant independent of n. O
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G.2 Proof of Lemma G.2

From Proposition D.1, we have

~

E[L(@, D,X) — L(ag, D, X))
<E[L(@, D, X) — L(ag, D, X)] + V20| f*(X) — fo(X)ll\/g + —1603;MZ-

This is a direct consequence of Proposition D.1. Note that o* and ag are fixed, and it is
enough to apply the standard law of large numbers; that is, we do not have to consider
the uniform law of large numbers. However, we can still apply Proposition D.1, which is a
general than the standard law of large numbers, with ignoring the Rademacher complexity

part.
We have

E[L(@,D,X) — L(ag, D, X)]
<E[L@,D,X) — L(cag, D, X)]

z 16CyMz z  16C5Mz
FVEGIF = foll [+ O 4 Va2 4 1O
n 3n n 3n

M
<C (Hf* = folla +11f" = fo“\/%+ 16§n Z> '

G.3 Proof of Lemma G.3
Let g == (f — f*)%. From the definition of FNNs, we have

g < AM?

Additionally, we assumed that ||]/‘:— f*ll2 < up holds. Then, it holds that Varp,(g) < 4M?ug.
Here, we note that the followings hold for all f (r):

L(a) - Le") < C|f(X) - f1(X)].

where C' > 0 is some constant
Then, from Proposition D.1, for every z > 0, with probability at least 1 — exp(—z), it
holds that

(IE - 1@) [L(@, D, X) — L(ag, D, X)]
<C (EU [%néf*’“ﬂ + ro\/ng %) .

H Riesz Regression and Density Ratios

As explained in the main text and in Kato (2025b), the Riesz representer is closely connected
to density ratio estimation. In particular, for ATE, the Riesz representer can be expressed
in terms of two density ratios relative to the marginal covariate distribution, which leads to
a decomposition of the squared loss objective into two LSIF problems.
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Riesz representer and density ratio. Let p; denote the marginal density of Z and
Pz|p=q the conditional density of Z given D = d. Let xq := Fy(D = d). By Bayes’ rule,

» (2) = pz(z2)Po(D =d| Z = 2) _ pz(2)en(2)%(1 — ep(2))1 7
#ip=d Py(D = d) Kd ’

where eg(z) = Py(D =1| Z = 2).
Define the density ratios with respect to the marginal distribution of Z by

pz(2) pz(2)
ri(z) = , ro(z) = .
1(2) pZ|D:1(Z) ol2) PZ|D=0(Z)
From the expression above,
. K1 . Ko
ri(z) = eo(z)’ rolz) = 1—eo(z)
Therefore, the ATE Riesz representer can be written as
11D =1 1D = A Z
ayT(D, Z) = [ ]_Up=9_ 1[D = 1]—“( ) _ 1[D = 0]T°< )
60(2) 1-— €O(Z) K1 Ko

Equivalently, estimating a)T® reduces to estimating the pair (r1,7), which compare the

marginal covariate distribution to the treated and control covariate distributions.

Squared loss objective and decomposition into two LSIF problems. We next con-
nect this representation to LSIF, a density ratio estimation method proposed in Kanamori et al.
(2009). Let ¢°%(u) := (u — 1)? be the squared loss. The corresponding population squared
loss Bregman objective can be written as

BDgsa(a) = E| - 2(a(1, 2) - a(0, 2)) + (D, 2]

where «(d, Z) denotes the value of the representer evaluated at treatment status d and
covariates Z. Under the parameterization

Tl(Z) N l[D _ 0]T0<Z)’

o(D,Z) = 1[D = 17 .

we have a(1, Z) = r1(Z)/k1 and a(0, Z) = —ro(Z) /Ko, hence a(1,Z) —a(0,2) = r1(Z)/r1 +
10(Z)/kKo. Substituting this into BDsq (o) and using the law of total expectation yields
r(4) | r(Z)

BD = 2F
gSQ(O‘) [ Ky + Ko

] +E[a(D,Z)?] . (17)

(2 p-a.

Moreover,

E[O&(D, Z>2] = Iil]E + lioE

(57) o=
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Rewriting (17) in terms of expectations with respect to pz and pz p—q and dropping constants
gives

BDsq(a) == —2Ez [r1(Z)] + Ezip=1 [r1(2)*] — 2Ez [ro(Z)] + Ezp=o [ro(Z2)?] . (18)

Minimizing this objective is exactly LSIF, and in our setting it coincides with SQ-Riesz
regression for ATE estimation.

Furthermore, if r1(-) and 7o(-) are treated as independent functions, minimizing BD s (o)
over (r1,79) separates into two independent LSIF type problems

r} = arg min {—2Ez[T1(Z)] + Ez|D:1[7’1(Z)2]} ,

1

ry = arg min {—2Ez[’r’0(Z)] + EZ|D:0[7’0(Z)2]} ,

To

where Ez and Ep—q denote expectations under Py(Z) and Py(Z | D = d). At the sample
level, with G; and G, defined as in the Introduction, the empirical LSIF objectives are

fil(ﬁ) = —% 27’1(21) + L 27”1(22‘)27

I Extensions

I.1 Nearest Neighbor Matching

Following this study, Kato (2025a) shows that nearest neighbor matching for ATE estimation
can be interpreted as a special case of SQ-Riesz regression, that is, Riesz regression or LSIF.
The key step is to express the ATE Riesz representer o T2(D, Z) in terms of density ratios
with respect to the marginal covariate distribution, and to approximate these density ratios
via nearest neighbor cells, following the density ratio interpretation in Lin et al. (2023).

NN matching ATE estimator. Let
Ju(i) € {1,...,n}

be the index set of the M nearest neighbors of X; among the units with D; =1 — D;. We
define estimators Y (d) as

ﬁ ZjeJM(Z') Y;, if D;=1 ’
1 . B
Yi, if D;=1
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Then, the NN matching ATE estimator is given by
—~ 1 </~ ~
o= — > (V1) = %i(0))
i=1

Introduce the matched-times count (the number of times unit ¢ is used as a match by units
in the opposite group) as

Ku(i)y= > 1lieJu(j)].
j=1, D;=1-D;
Then, gM can be written as follows:

5M:%(Z (1+Kﬂﬁi))m— > (1+Kﬂ(i>>¥i> :%i(wi—m (1+Kﬁi)>m.

1:D;=1 1:D;=0 =1

Nearest neighbor matching as density ratio estimation. Lin et al. (2023) first shows
that nearest neighbor matching can be interpreted as a method for density ratio estimation.
Let X, Z € X be independent whose pdfs are p; (z ) and po(z). We assume that p;(z), po(z) >
0 for all # € X. We observe i.i.d. samples {X;}°, and {Z; } 2, and aim to estimate the
density ratio

T(T)(x = pi()

po(x)
For M € {1,..., Ny} and 2 € R?, let X5)(2) be the M-th nearest neighbor of z in {X;}*
under a given metric || - ||. Define the catchment area of x as
Ap() = {z: |lz — 2| < [|Xan(z) — 2|},

and the matched-times count as

Lin et al. (2023) proposes the one-step estimator

~ No KM(QJ)
7”}.\/[(93') = E M )

which corresponds to nearest neighbor matching in ATE estimation.

Using this result, Lin et al. (2023) explains that nearest neighbor matching corresponds
to the estimation of the density ratio ry defined above. They also show that their method is
computationally efficient and rate-optimal for Lipschitz densities.
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Nearest neighbor matching as LSIF We next show that the density ratio estimator
of Lin et al. (2023) is a variant of LSIF. Therefore, since we have already discussed that
Riesz regression and LSIF are essentially the same, NN matching can also be interpreted as
a special case of Riesz regression.

Let us consider the following density ratio model:

r(l,2) = ¢(2)5,
where ¢(-) is a basis function defined as
O(2) = p.(2) =1 [z € AM(C)},

and recall that Ay (c) = {z : [lc — 2| < | X (2) — 2| }.
For z = ¢ = X, we define an estimator of the density ratio as

~

7(1,¢) = ¢(c)
with the estimated parameter defined as

~ 1

[ = arg min { = (

BER 2 Zi:l 1[D; = 1]

This estimation corresponds to LSIF with the kernel function.
This estimator is equivalent to

0(2)) = 0203},

~ 1 - ~ ~ A ~ -1
B = argmin{—BTHﬁ—ﬁTh—i——||6H§} = <H+/\I> h,
/je]R 2 2

where

where we recall that



Therefore, when A = 0, the estimator 71 (c) is given by

L) = (L Z) =1+ —Kﬂﬁi).

Similarly, we can estimate 7(0, ¢) = qﬁc(c)g by solving an empirical version of the following
problem:

~ 1 2 1
= I c Zz - —%c Zz )
’ al“%er]gln {22?_1 1[D; = 0] <¢ ( )6> ”gb ( )6}
Then, the estimator is given by
N . K (i)
7(0,¢) =7(0, Z;) + i

Using these estimators, we construct the following inverse propensity score estimator for the

ATE:
aM:%(Z (1+ 2D vi- 3 (H%”)YZ—).

:D;=1 :D;=0

This estimator is equivalent to an ATE estimator proposed in Lin et al. (2023), which is
shown to be equal to the NN matching estimator of Abadie & Imbens (2006).

Thus, NN matching estimator is a special case of SQ-Riesz regression (LSIF) with a
particular choice of a basis function.

I.2 Causal Tree / Causal Forest

Causal trees and causal forests estimate the conditional average treatment effect (CATE) by
constructing a partition of the covariate space and estimating a local ATE within each cell,
as in Wager & Athey (2018). We emphasize that this procedure implicitly constructs an
estimator of the corresponding Riesz representer. In particular, once a partition is fixed, the
leafwise CATE estimator can be rewritten as an inverse probability weighting type estimator,
with weights that coincide with a leafwise Riesz representer estimator.

Leafwise CATE as a Riesz representer plug in. Let II = {{} be a partition of the
covariate space Z produced by a causal tree, and let ¢(z) € II denote the leaf containing
z € Z. For a leaf ¢, define ny == 31" | 1[Z; € (], nie = > 1[D; = 1,Z; € (], and
noe =y . 1[D; =0, Z; € {]. The CATE estimator obtained by a causal tree is the leafwise
difference in means

é\(z) = ! Z Y — ! Z Y.

n T,
V=) D=1 z;e0() 042) .p,=0,Z;ct(2)

This estimator admits the weighted representation

0(z) = =3 a(Di 2 2)Ys

n <
=1
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where

- D 1-D 1 - -
a(D,Z;z) =1[Z € l(2)] | = - X —, T = w’ Do = @
T1,0(z) T0,6(2) Pez) Ty n

~

Hence 60(z) is an inverse probability weighting type estimator with a weight function a(-, -; z).
This weight function is a plug-in estimator of the leafwise Riesz representer for the local ATE

0(0) =E[Y(1) =Y (0) | Z € (],

because the corresponding population representer takes the same form, with (T4, De) re-
placed by their population counterparts. Therefore, conditional on the partition, causal
trees estimate the CATE by implicitly estimating a Riesz representer that is constant on
each leaf.

Connection to SQ-Riesz regression and adaptive nearest neighbors. The expres-
sion above shows that a causal tree is a histogram-type estimator of the Riesz representer,
where the feature dictionary is given by leaf indicators {1[Z € ¢]}senr. This is directly
analogous to the nearest neighbor histogram model in the previous subsection, except that
the partition is learned from the data rather than fixed a priori. From this viewpoint, the
splitting criterion in a causal tree can be interpreted as choosing an adaptive partition that
reduces the error of the induced leafwise Riesz representer approximation, and hence reduces
the error of the resulting local CATE estimator.

A causal forest averages many such trees, built on subsamples and random feature choices,
and therefore produces weights that average the leafwise Riesz representer estimators across
trees. Equivalently, causal forests produce an adaptive nearest neighbor type representation
for CATE, where the neighborhood structure is learned via the random partitions. This
clarifies why causal trees and causal forests fit naturally into the same squared loss Bregman
divergence, namely SQ-Riesz, perspective as nearest neighbor matching, with the main dif-
ference being that causal forests learn the partition adaptively to target CATE estimation
accuracy.

I.3 AME Estimation by Score Matching

A subsequent work Kato (2025¢) shows that, for derivative-type linear functionals, the Riesz
representer can be estimated via score matching. This principle also underlies score-based
diffusion models (Song & Ermon, 2020; Song et al., 2021). This viewpoint is useful for AME
and APE estimation, and for mitigating overfitting in flexible Riesz representer models,
because score matching objectives introduce smoothing through derivatives or noise pertur-
bations.

Score matching identity for AME. Recall the AME example in Section 2, where

mAME(W7 7) = adfy(D7 Z)7 aéME(Da Z) = _ad log fO(D7 Z)7
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with fo denoting the joint density of X = (D, Z). Let spq(x) = 94log fo(x) be the dth
component of the score. Consider a sufficiently smooth candidate function a(z) such that
integration by parts is valid and boundary terms vanish. Then,

E [Bya(X)] = / Dua() fo(x)d = — / a(2)0afo(2)dz = —E [ X)s0.a(X)]
Therefore, the squared loss Bregman objective for AME can be rewritten as
E [a(X)? = 2040(X)] = E [a(X)* + 2a(X)s0,4(X)] = E [(a(X) + Soyd(X))Q} —E [s0,4(X)?] .

The last term is constant in «. Hence minimizing E [a(X)? — 29,a(X)] is equivalent to

minimizing | [(a(X) - aéME(X))Q} , and the population minimizer is af™M¥ = —sg 4. This is

a coordinatewise form of the classical score matching principle and shows that, for derivative-
type m, our squared loss Bregman risk coincides with an Ly score matching risk for the Riesz
representer.

Denoising score matching via diffusion. In high dimensions, directly learning the score
x +— V,log fo(x) can be unstable. Score-based diffusion models address this issue by learning
scores of noise-perturbed distributions via denoising score matching (Song et al., 2021). Let
T be a noise index, continuous or discrete, and generate noisy covariates by

Xr=X+0o(T)Z, Z ~N(0,1),

independent of X ~ f,. Let pr denote the density of Xr. A time-dependent score model
se(+, T') is trained by minimizing the denoising objective

E|[lo(T)so(Xr, T) + 2],

which is equivalent, up to an additive constant, to matching sq¢(-,7") to the true score
V. log pr(xz) under an Ly risk. Once sy is trained, we can recover an estimator of the orig-
inal score V, log fo(x) by evaluating at small noise levels and then extracting the relevant
component to estimate

aoAME(aj) = —0ylog fo(z).

Operationally, this replaces the derivative term Jya(X) in the score matching objective
with a denoising criterion that learns a smoothed score field. This smoothing can mitigate
overfitting in high-capacity models and can be combined with flexible neural architectures
through automatic differentiation.

I.4 Riesz Representer Estimation via Infinitesimal Classification

Next, following Kato (2025¢), we introduce Riesz representer estimation via infinitesimal
classification, which also reduces to score matching. This approach applies to a broader
range of applications, not only to AME estimation.
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Density ratio estimation via infinitesimal classification We first review density ratio
estimation via infinitesimal classification, proposed in Choi et al. (2022). Let po(z) and p; ()
be two probability density functions such that po(x) > 0 holds for all x € X'. For x € X, the
density ratio is defined as

We aim to estimate ry.
We define a continuum of bridge densities {p; }+cjo,1] through a simple sampling procedure.
Let pi(x) be the probability density function of the random variable

=8 X + P X,

where Bm, g® : 10, 1] [0,1] are C* and monotonic, and satisfy the boundary conditions
50 =1, 502) =0, 51 =0, and ﬂf) = 1. Using % as an intermediate density ratio,

we decompose the density ratio into a product of density ratios as

ro(z) = ﬁw

1 pt/T(x)
We can choose 8" and Bt so that the density ratio can be trained stably. For example,
DRE-00 proposes using Bt =1—tand ﬁt(z) =t in some applications.

In practice, when optimizing objectives that integrate over ¢, we sample t jointly with
(Xo, X1). Specifically, for each stochastic gradient step we draw a mini batch {(X;, X1,)}2,
with Xg; ~ po and X;; ~ p; independently, and we draw times {¢;}2, i.i.d. from a refer-
ence density ¢(t) on [0,1]. We then form X; ; = BV ()Xo, + 8@ (t;)X1,; and approxi-
mate time integrals using importance weights. For example, an integral term of the form
fol Ex,p, [M(X¢, )]dt is estimated by

[ Exenlh o 5 32 HSE

Endpoint expectations, such as Ex,,,[-] and Ex,~,, [-], are approximated by sample averages
over {Xo;} and {Xj,}, respectively. All derivatives with respect to ¢ that appear in the
objective, such as 0;(A(t)sz(X4, 1)), can be computed by automatic differentiation through
the explicit dependence of X, on t via S (t) and B (t).

By taking the logarithm, we have

log (ro(z)) = i log w

—1 pt/T(ﬂﬁ)

Then, as T — oo, the following holds (Choi et al., 2022; Chen et al., 2025):

x t—1)/7(T /
log ro(x) = log lo O lo dt.
rala) = log (201 - }j (Pl [otoun(e
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Let s§™(z,t) be a time score model that approximates the time score d; logpy(x). We
train sgme(z,t) by minimizing the following time score matching loss (Choi et al., 2022;
Chen et al., 2025):

. 1 _ 2
R (ngc) 3:/0 Exi~pi(a) [)\(t) (at log p:(X:) — ngC(Xtat)) ] dt,

where A: [0,1] — R, is a positive weighting function. Although log p;(z) is unknown in prac-
tice, the following alternative objective has been proposed, which is equivalent to Rf (sgme)
up to a constant term that is irrelevant for optimization:

R (557) = Expomio) O™ (X0,0)| = Bt D™ (X, ]

1
. 1 .
+ /0 ExX,mpi(z) {at (A(t)sg™ (X, 1)) +§A(t)sgme(xt,t)2 dt,

To generate a sample from p;, we proceed as follows. First, draw two independent end-
point samples
Xo ~ po, X1~ pr1,
independently across draws and independent of each other. Second, for a given time ¢t € [0, 1],
construct the bridge sample by the deterministic map

X, = Y1) X, + B (1) X,

We define p; as the probability law of X; induced by this procedure, that is, p; is the
pushforward of the product measure p, ®p; through the map (zq, z1) — B (t)zo+ B (t)z;.
With this definition, expectations under p; can be evaluated by Monte Carlo as

]EXtht [f(Xt’ t)} =K [f(ﬁ(l)(t)XO + 5(2) (t)le t)] )

where the outer expectation is taken over (Xo, X1) ~ po ® p1.

Riesz representer estimation via infinitesimal classification Kato (2025¢) extends
density ratio estimation via infinitesimal classification to Riesz representer estimation. In this
subsection, we introduce an example of the method for APE estimation. For implementations
in other applications, see Kato (2025c¢).

In APE estimation, the Riesz representer is given by

_ pi(X) —pa(X)
p0<X) '

oAPE(X)
By using intermediate density ratios, we have

n@) 1 _pyr()
po(z) 1 Pa-1yr()’
p_l(x):ﬁ p-yr()

po(z) 7 P—@-1y7(@)
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Then, we can approximate the density ratio as

T
logp (l’) Zlogpt/T— —>/ 8tlogpt( )dt (T% OO)’

Po :z:) =1 p(t—1)/
)

Zl pt/T —>/ Ologpi(z)dt (T — o0).
1 P—- 1/T

We define a random variable X, as

X, 551)X1 + @5(2))(0 it t>0
WX +8%9Xx, if t<0’

where ﬁt(l),ﬂt(z): [~1,1] — [0,1] are of class C* and monotonic, with ﬂt(l) increasing and
ﬁt(z) decreasing for ¢t > 0, Bt(l) decreasing and 6,5(2) increasing for ¢t < 0, and satisfying the
boundary conditions: Bol =0, 502 1, 6 W =1, ﬁ @ =0, 651) =1, and 59) =

Let pi(x) be the probability density functlon Let s“me( ,t) be a time score model that
approximates the time score d; log p;(z). We train the score model by minimizing

RAPE} ( nge) — /

-1

1

2
om0 (Br1ogm(6) — s060)|

where \: [-1,1] — Ry is a positive weighting function. Since 0;logp:(z) is unknown, we
minimize the following risk:

RATE (nge) = EX—lNP—l(x) [)‘(_1) tlme(X—lv 1)] - IEX1~pl(96) [/\(1) tlme(le 1)]

+/1 EXps () {at( ()47 (X, ) +%A(t) time . ﬂdt‘

1

J KKT Conditions as Bregman Projections

In this section, we show that how the first-order (KKT) conditions in our generalized Riesz
regression coincide with the characterization of a (sieve) Riesz representer as the solution
to a linear equation in a Hilbert space discussed in Chen & Liao (2015) and Chen & Pouzo
(2015), which show that the Riesz representer can be formulated via linear equation in
semiparametric generalized method of moments (GMM) and efficiency analysis.

J.1 Riesz Representer as a Linear Equation in a Hilbert Space

Let H = Lo(Px) with inner product (f,g) = E[f(X)g(X)]. For the linear map v
E[m(W,~)] (Section 2), the Riesz representation theorem yields ag € H such that

Elm(W,7)] = {a0,y) Vv eH. (19)
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If we restrict to a finite-dimensional sieve space H, = span{¢i,...,d,}, the sieve Riesz
representer «, € H, is the unique element satisfying

(ap, ¢j) = Elm(W,¢;)]  j=1,....p. (20)
Writing a,(z) = ¢(x) "B with ¢ == (¢1,...,¢,)", (20) becomes the linear system
E[p(X)$(X)T] B = Elm(W, $)), e1)
:‘:,G ;b

which is the familiar “Gram matrix x coefficients = RHS” equation emphasized in sieve
Riesz-representer constructions.

J.2 Bregman objectives, dual variables, and a common projection
geometry

Recall the pointwise Bregman divergence

BD{(ao(2) | a(z)) = glao(x)) — gla(z)) — dg(a(z)) (av(z) — al)),

and the population target a* = arg min,ey E[BDZ(&O(X ) | a(X))]. A standard first-order
characterization of Bregman projections is the following condition: if H is convex and a* is
an interior minimizer, then

<3g(o¢0) — 9g(a*), a — a*> <0 VacH, (22)

with < 0 replaced by = 0 along feasible smooth directions; with a KKT form for general
constraints. For the derivation, see Remark J.2. Equation (22) makes clear that all losses
share the same underlying Ls(Px) inner product geometry; what changes across losses is the
dual coordinate Og(a) that appears in the orthogonality.

A particularly convenient reparameterization uses the convex conjugate g* and the dual
variable

u(z) = dg(a(x)). (23)

Whenever g is strictly convex and differentiable on its domain, the Fenchel-Young identity
implies ¢*(u) = au—g(a) when u = dg(«), and hence the (population) objective in Section 3
can be written as

BDy(a) = E[¢"(w(X))] — E[m(W,u)] with u = dg o «, (24)

up to an additive constant independent of .. This dual form is useful because its score is
simple: dg*(u) = (9g) ' (u) = a.

Finite-dimensional models and KKT. Consider a model class specified in dual coor-
dinates as

up(X) = o(X)'8,  ap(X) = (99)7 (up(X)), (25)
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possibly with a branch indicator £(X) € {0,1} to enforce sign restrictions (as in Section 4).
Let the empirical objective be the penalized M-estimation problem

A~

B € arg min {E[g"(u(X))] — E[m(W,up)] + 2118]2}.

BeRP

Using (¢*)'(u) = a and dug/08; = ¢;, the KKT conditions take the unified form

B[a(x)6;(X) = m(W07)| € xo(L181)  j=1.....p, (26)

where & := ag and 9(-) denotes the (sub)gradient. In particular, when A = 0, (26) reduces
exactly to the sieve Riesz equations (20):

Bla(x)s(X)| =B[mW.)],  j=1.....p (27)

Thus, independently of the choice of g, once we model dg(«) linearly in the basis ¢, the
KKT conditions say that generalized Riesz regression returns (approximately) the sieve
Riesz representer characterized by the linear equations (20)—(21). The role of g is to select,
among (approximately) balancing solutions, the one that is a Bregman projection (hence a
minimum-g solution).

Remark (Derivation of (22)). This remark derives (22) as a first-order optimality (KKT)
condition. Throughout, equip Lo(Px) with the inner product (f, h) = E[f(X)h(X)].

Recall that for each point a, g € R, the Bregman divergence is given as
BDJ(a | a) = g(ap) — g(a) — dg(a) (a0 — ).
Fiz o. By convexity of g, u BD;(ao | @) is convex and

%BD;(QO | @) = dg(ao) — Ig(a).

For functions a, ag: X — A, consider the following problem
a* € arg gg?r{l]E [BDZ](QO(X) | a(X))],
where H is a convexr subset of Ly(Pyx). Dropping constants that do not depend on « yields
BD,(a) = E[g(a(X)) — g(an(X)) a(X)]
Hence the (Fréchet/Gateauz) gradient of BD,(«) at « in the Lo(Px) geometry is
VBD,(a) = dg(a) — dg(ao),

in the sense that for any direction h € Ly(Px),

%BDg(a—i—th) = (9g(a) — Og(an), h),
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whenever differentiation and expectation can be interchanged (e.g., under dominated conver-
gence and mild integrability conditions).
Assume H is convex and o* is an interior minimizer in H. For any o € H and t € [0,1],
define the feasible path
ap=a" +t(a—a") eH.

Since o minimizes ) over H, the one-sided directional derivative along o — o must be
nonnegative:

d
0 S EBD!](O@)

Compute:

d
EBDQ(QIS)

Therefore,
0< <8g(a*) — Jg(ap), o — a*> — <8g(a0) —Jg(a*), a — a*> <0,

which is exactly (22).
If «* is an interior point of H, then for sufficiently small |t| we have o* + th € H for
any admissible direction h. Applying the previous argument to both t | 0 and t 1 0 forces

iBDg(a* +th)

p =0 for any (smooth) feasible direction h,

t=0

which corresponds to the “= 0 along feasible smooth directions” statement.
Define the normal cone of H at o by

Ny(a¥) = {v € Ly(Px): (v,a—a*) <0 Vace H}
Then (22) is equivalent to the normal-cone inclusion
dg(ao) — dg(a”) € Ny(a™),

which is the standard KKT characterization for minimizing a convex functional over a convex
set.

J.3 (A) Squared loss + linear link (SQ-Riesz) as an L, projection

Take ¢°?(a) = (a — C)? so that dg(a) = 2(a — C) and (9g) "' (u) = (u+ C)/2. Under the
dual linear specification ug(X) = ¢(X)"3, the primal model is the affine (linear-link) form

X)" C
as(X) = %. (28)
With A =0, the KKT equations (27) become the usual normal equations
E[¢(X)p(X)"] B =2E[m(W, $)] - CE[¢(X)], (29)
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which is exactly the “Riesz representer = linear system” form (21). Geometrically, because
Jg(«) is affine, Bregman orthogonality (22) reduces to the standard Ls(Px) projection prop-
erty:

(ap —a*, da) =0 for all feasible directions da € Ty (™).

Hence SQ-Riesz with a linear link is literally an Lo-projection of o onto the linear sieve
space.

J.4 (B) KL-type losses 4+ exponential/logit links (UKL/BKL)

For KL-type losses, the same projection geometry holds, but in the dual coordinate u =

dg(a).

UKL-Riesz regression with exponential/log link. Consider the branchwise UKL gen-
erator (shifted to avoid singularities) on the domain |a| > C":

" (a) = (la| - C)log(la| ~ ) ~ [al,  gla) = sign(a) log(la| - C).

Fix a branch indicator {(X) € {0,1} so that the sign of ag(X) is predetermined (e.g.,
¢(X) =D in ATE), and impose the dual linear model

up(X) = dg(ap(X)) = o(X)'B. (30)
Inverting dg on each branch yields the familiar exponential (log-link) form
ap(X) = £(X) (C+exp (6(X)78)) — (1- (X)) (C+exp (- B(X)B)).  (31)

Despite the nonlinearity in 3, the KK'T conditions remain linear in the test functions: for
A = 0 they are exactly the sieve Riesz equations (27). Hence UKL-Riesz returns the Bregman
(information) projection solution subject to the same Riesz linear equations that define the
representer on the sieve.

BKLL-Riesz regression with logit link. For the BKL generator (again on |a| > C),

9" (a) = (la] = O)log(la| = C) = (la] + C) log(|a] + C),  dg(a) = sign(a) 10g(}§};g>,
impose the same dual linear model ug(X) = ¢(X)"3 (with a sign branch fixed by £(X)).
Inverting g yields a logit/tanh-type link for the magnitude |ag| (and sign controlled by &),
and the KKT conditions are again (26)—(27). In applications such as ATE, this specialization
recovers regularized logistic likelihood (propensity-score MLE) as a particular Bregman—
Riesz choice, while still fitting into the same “Bregman projection under an L, inner product”
template through (22).
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J.5 Summary

Both (A) SQ-Riesz + linear link and (B) UKL/BKL + exponential/logit links can be written
as the same object:

e Under the dual linear specification dg(ag) = ¢ '3, the KKT conditions reduce to the
same sieve Riesz equations (27), i.e., the same “Riesz representer = linear equation’
characterization in the formulations of Chen & Liao (2015); Chen & Pouzo (2015).

9

e The choice of g (squared vs. KL-type) changes which solution is selected among (ap-
proximately) balancing solutions: SQ-Riesz, UKL-Riesz, and BKL-Riesz regression.

K Why a Sigmoid Propensity Model Implies UKL-Riesz

In this section, using our automatic covariate balancing result (Section 4), we explain why
Zhao (2019)’s “estimand-driven loss selection” implies that, once we commit to a sigmoid
(logistic) model for the propensity score, the compatible generalized Riesz regression for
estimating the ATE Riesz representer is the UKL-type loss (UKL-Riesz), and using other
losses without changing the link breaks the covariate balancing characterization.

K.1 Compatibility beteen Loss choice and Covariate Balancing for
the Target Estimand

Zhao (2019) emphasizes that many causal estimands can be written as (or are closely related
to) weighted averages of outcomes (our RW estimator), and that the loss used to estimate
the weights/propensity score should be chosen so that the resulting fitted weights satisfy
the covariate balancing conditions relevant for the estimand. In particular, in ATE estima-
tion, different choices of loss paired with a logistic propensity model correspond to different
target weightings (and hence different estimands), and only specific losses deliver covariate
balancing for the ATE under the logistic specification.

Our generalized Riesz regression framework makes this principle explicit: automatic co-
variate balancing arises only when the loss generator g and the link function are paired so
that dg(ag(X)) is linear in the features used in the index (Theorem 4.1 and Corollary 4.2).

K.2 Sigmoid Propensity Modeling and a Log Link Function

Consider the usual logistic (sigmoid) propensity score model
ea(Z2) =Np(2)),  ns(2)=¢(Z)'B,  Alt):

Then the inverse-propensity components satisfy

ra(1,Z) = =1+exp ( - nﬁ(Z»’

es(Z)

] =1+ exp (ns(2)).

7",3(0, Z) = W
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Therefore, the induced ATE Riesz representer model

D 1-D
ATE
ag (D, Z) = —
7 ep(Z)  1—ep(Z)

can be written as the branchwise exponential form

aATE(D, Z) = D(1 +exp (— ng(Z))> —(1-D) (1 +exp (nﬁ(Z))). (32)

This is exactly the “log-link” Riesz representer specification described in Section 4 with
(&,C) = (D,1). In particular, (32) implies the sign and domain restrictions

agTE(l,z) > 1, agTE(O,Z) < -1,

so the natural shifted domain || > 1 is compatible with the shifted UKL/BKL generators
used in Section 3.

K.3 Automatiuc Covariate Balancng under UKL-Riesz Regres-
sion
The automatic covariate balancing theorem (Theorem 4.1) requires that
dg(ag(X)) is linear in »(X)'B,

in the sense that it can be written as a linear combination of fixed feature transforms inde-
pendent of 3.

For ATE with the sigmoid-induced model (32), consider the shifted UKL generator with
C=1,

9" (a) = (la] = Dlog(la| = 1) —|af,  9g"*(a) = sign(a)log(Ja| - 1).
Evaluate dg"*" at ag™ (D, Z). Let n = 1g(Z).

Treated branch (D = 1). Then a3™(1,Z) = 1 + exp(—n), so |a| — 1 = exp(—n) and
sign(a) = +1, hence

gt (aéTE(LZ)) = log (eXp(—n)) = —1).

Control branch (D = 0). Then ag ®(0,Z) = —(1 4 exp(n)), so |a] — 1 = exp(n) and
sign(a) = —1, hence

dgVKE (ag‘TE(O, Z)) = —log (exp(n)) =—n.

Key identity. Combining both branches yields the same linear index:
09" (af™(D, 2)) = —n(Z) = ~(2)"B. (33)

Thus 9g"""(ag"™ (X)) is exactly linear in the basis ¢(Z). Therefore, the conditions of
Theorem 4.1 (and Corollary 4.2) are met for the original covariate features used in the
propensity index.
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K.4 Resulting Automatic Covariate Balancing

Take ¢1-penalized generalized Riesz regression for 3 as in Theorem 4.1 and let @ = ag. Be-

cause (33) makes Og(ag) linear in ¢(Z)" 3, the KKT conditions imply approximate balancing
of the corresponding moments.

To see the standard ATE interpretation, suppose ¢; depends only on Z (as in standard
propensity modeling), so that

m M E(W, ¢;) = 6;(1,Z) — ¢,(0,Z) = 0.

Then Corollary 4.2 yields (up to the penalty tolerance)

n

%Zawi,zi)@(z-) <A (G=1....p) (34)

i=1
which is equivalent to the familiar “treated vs. control” balancing condition

1 D 1~ 1-D;
- — (7)) ~ — ————_0.(Z,),
nZ@(Zi)¢]( ) nZl—e(Zz-)%( )
i=1 i=1
because a(D,Z) = D/e(Z) — (1 — D)/(1 —e(Z)). This is precisely the covariate balancing
behavior that motivates the ATE-targeted tailored loss choice in Zhao (2019), and it is also
consistent with the dual characterization leading to entropy balancing weights (Table 1).

K.5 Why other losses fail to deliver automatic covariate balancing
under the same sigmoid propensity model

The key requirement behind automatic covariate balancing is loss—link compatibility: the

link must be (up to branchwise constants) the inverse map of dg. When the propensity is

parameterized by a sigmoid, the induced Riesz representer (32) is of log-link form, which

matches the inverse map of the UKL derivative (Section 4). If we keep the sigmoid model

but replace the loss, this compatibility is broken and dg(ag) is no longer linear in the index.
We illustrate this mismatch for two prominent alternatives.

Squared loss (SQ-Riesz) + sigmoid propensity. With ¢5Q(a) = (a — 1)? we have
9% a) = 2(a — 1). Under (32),

dg°? (agTE(l, Z)) =2exp (— (%)), 0g°? (agTE(O, Z)) = —2(2 + exp (77,3(2))>.
These expressions are not linear in ng(Z) = ¢(Z)"3, so the linearity condition in Theo-
rem 4.1 fails. Hence the SQ-Riesz objective does not yield the ATE-style balancing equations

(34) when we insist on a sigmoid propensity model. (Equivalently: to obtain balancing with
squared loss, we must change the link to the linear link discussed in Section 4.)
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Logistic MLE (BKL-Riesz) + sigmoid propensity. BKL-Riesz corresponds to Bernoulli
likelihood (Section 3). Its generator satisfies

g% (o) = sign(a) log (:Z: _1__ 1) :

Under (32), on the treated branch |a] — 1 = exp(—n) but |a| + 1 = 2 + exp(—n), so

00" (a75(1,2)) = o (T2 I} — ()~ tog (2 + exp(-a(2).

which is not linear in ng(Z). Therefore BKL-Riesz (logistic MLE) does not satisfy the
automatic covariate balancing conditions for the ATE under the sigmoid specification. This
aligns with Zhao (2019)’s discussion: within their tailored-loss family, the logistic likelihood
corresponds to a different weighting/estimand than the ATE (see also Remark 7 in the main
text).

BP-Riesz and other divergences. The same point applies more broadly: if we keep the
sigmoid propensity link (32), then for w # 0 the BP derivative involves powers (Ja| — 1)¥ =
exp(+wn) and is not linear in . Thus BP-Riesz does not yield automatic balancing under
the sigmoid link unless one also changes the link to the compatible power link in Section 4.

K.6 Summary

The above calculations show that, under the sigmoid propensity score model, the induced
ATE Riesz representer has the branchwise exponential (log-link) form (32), and only the
UKL generator makes dg(ag) exactly linear in the logistic index ¢(Z)'3 (equation (33)).
Consequently, by Theorem 4.1, UKL-Riesz is the loss that yields the ATE-relevant automatic
covariate balancing equations (34) under sigmoid propensity modeling.

In contrast, using SQ-Riesz, BKL-Riesz (logistic MLE), or BP-Riesz without changing
the link breaks the loss-link compatibility, so the automatic balancing characterization no
longer applies to the original covariate features. Therefore, following Zhao (2019)’s estimand-
consistent principle, if the manuscript adopts a sigmoid approximation for the propensity
score, then UKL-Riesz is the appropriate generalized Riesz regression objective for ATE-
oriented covariate balancing.

98



	Introduction
	Setup
	Riesz representer
	Neyman Orthogonal Scores
	Examples

	Generalized Riesz Regression
	Bregman Divergence
	Special Cases of the Bregman Divergence
	SQ-Riesz Regression
	UKL-Riesz Regression
	BKL-Riesz Regression
	BP-Riesz Regression
	PU-Riesz Regression

	Automatic Covariate Balancing
	Generalized Linear Models
	Automatic Covariate Balancing
	Choice of Loss and Link Functions
	SQ-Riesz regression with a Linear Link Function
	UKL-Riesz Regression with a Logistic or Log Link Function
	BP-Riesz Regression and a Power Link Function

	Applications
	ATE Estimation.
	AME Estimation
	Covariate Shift Adaptation (Density Ratio Estimation)

	Automatic Neyman Orthogonalization
	Automatic Neyman Orthogonalization
	Automatic Neyman Error Minimization
	Comparison with TMLE
	Modeling of Regression Function and Riesz Representer

	Choice of Basis, Link, and Loss Functions
	Convergence Rate Analysis
	RKHS
	Neural Networks
	Construction of an Efficient Estimator

	Experiments
	Experiments with synthetic dataset
	Experiments with semi synthetic datasets

	Conclusion
	Related Work
	Asymptotically Efficient Estimation
	ATE Estimation
	Density Ratio Estimation

	Proof of the Automatic Covariate Balancing Property
	Constrained Optimization Problem
	Dual Formulation

	Overfitting Problems
	Preliminary for the Convergence Rate Analysis
	Rademacher complexity
	Local Rademacher complexity bound
	Bracketing entropy
	Talagrand's concentration inequality

	Basic inequalities
	Strong convexity
	Preliminary
	Risk bound

	Proof of Theorem 8.1
	Preliminary
	Upper bound using the empirical-process arguments
	Proof of Theorem 8.1

	Proof of Theorem 8.2
	Proof of Lemma G.1
	Proof of Lemma G.2
	Proof of Lemma G.3

	Riesz Regression and Density Ratios
	Extensions
	Nearest Neighbor Matching
	Causal Tree / Causal Forest
	AME Estimation by Score Matching
	Riesz Representer Estimation via Infinitesimal Classification

	KKT Conditions as Bregman Projections
	Riesz Representer as a Linear Equation in a Hilbert Space
	Bregman objectives, dual variables, and a common projection geometry
	(A) Squared loss + linear link (SQ-Riesz) as an L2 projection
	(B) KL-type losses + exponential/logit links (UKL/BKL)
	Summary

	Why a Sigmoid Propensity Model Implies UKL-Riesz
	Compatibility beteen Loss choice and Covariate Balancing for the Target Estimand
	Sigmoid Propensity Modeling and a Log Link Function
	Automatiuc Covariate Balancng under UKL-Riesz Regression
	Resulting Automatic Covariate Balancing
	Why other losses fail to deliver automatic covariate balancing under the same sigmoid propensity model
	Summary


