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Abstract

This paper develops a sensitivity analysis framework that transfers the average total treatment effect
(ATTE) from source data with a fully observed network to target data whose network is completely unknown.
The ATTE represents the average social impact of a policy that assigns the treatment to every individual
in the dataset. We postulate a covariate-shift type assumption that both source and target datasets share
the same conditional mean outcome. However, because the target network is unobserved, this assumption
alone is not sufficient to pin down the ATTE for the target data. To address this issue, we consider a
sensitivity analysis based on the uncertainty of the target network’s degree distribution, where the extent of
uncertainty is measured by the Wasserstein distance from a given reference degree distribution. We then
construct bounds on the target ATTE using a linear programming-based estimator. The limiting distribution
of the bound estimator is derived via the functional delta method, and we develop a wild bootstrap approach
to approximate the distribution. As an empirical illustration, we revisit the social network experiment on
farmers’ weather insurance adoption in China by Cai et al. (2015).
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1 Introduction

Randomized controlled trials (RCTs) have long been the gold standard for estimating causal effects. However,
it is rare that the group of individuals of interest for whom researchers or policymakers wish to know causal
effects precisely coincides with the experimental sample. In many cases, the purpose of conducting an RCT is
to determine in advance whether a treatment of concern yields positive effects so that it can then be introduced
to a target population of real interest.

Nevertheless, the causal effects estimated from the experimental data cannot, in general, be directly applied
to the non-experimental target data. To transfer estimation results from the source to the target data, we need to
employ some data-adaptation techniques — causal transfer learning, transfer learning methods to infer causal
effects in the target data, optimal treatment rules, and so forth. There is a rapidly growing body of literature
developing transfer learning methods in this context (e.g., Stuart ef al., 2011; Hartman et al., 2015; Buchanan
et al., 2018; Wu and Yang, 2023, among many others). For comprehensive surveys and tutorials, see, for
example, Dahabreh ef al. (2020) and Degtiar and Rose (2023).

Meanwhile, causal inference under network interference has gained increasing attention in the literature
across economics, education, epidemiology, political science, and related areas. In these literature, performing
an RCT has become one of major approaches for estimating treatment effects and spillover effects — the effects
of others’ treatments on one’s own outcome (e.g., Bond er al., 2012; Cai er al., 2015; Paluck et al., 2016;
Carter et al., 2021, among many others). While these studies have revealed both own and spillover effects in
their experimental samples to some extent, policymakers ultimately may wish to extrapolate such findings to
larger populations of their real concern. However, to the best of our knowledge, in contrast to the rich body of
studies without network interactions, there are few, if any, studies that explicitly consider the transferability of
causal effects under network interference.

The purpose of this paper is to fill this gap. Specifically, we propose a framework for inferring causal policy
effects in target network data by transferring results obtained from source network data. In particular, we focus
on the situation in which only individual covariates (or their distributions) are available for the target data
but its network structure is completely unknown. Such situations are typical. For example, when evaluating
infection prevention policies such as mandatory face-mask wearing or vaccination, the target population of
interest for policymakers is the entire country. Collecting detailed network information for all citizens would
be prohibitively costly, whereas demographic variables are often readily available from surveys and the census.
As another example, suppose a financial company wishes to promote its insurance or savings products for
farmers. Using an RCT among Chinese rice farmers, Cai ef al. (2015) show that holding detailed information
sessions significantly increases insurance take-up through social networks in each village. Given this evidence,
the insurer might wish to scale up the same sessions nationwide. In that case, the target population is all farmers

in the country, but information on the social networks in all villages is usually unavailable.

In order to transfer results from one sample to another, it is generally necessary to impose some similarity (or
transferability) condition that links the two samples. A common condition of this kind is the so-called covariate
shift, which assumes that the two datasets share common conditional mean potential outcome functions, while
the covariate distributions may differ. When the objective is merely to estimate the conditional mean potential

outcome, as is often the case in the causal inference literature, the covariate-shift assumption alone suffices.



However, from a policymaker’s perspective, the goal is often to assess the expected social impact of a specific
policy, rather than to estimate the conditional mean function itself. Motivated by this, we focus on the policy
that assigns treatment to every unit in the dataset. Then, the causal parameter of interest in this context is the
average total treatment effect (ATTE) over the target data. The total treatment effect is defined as the difference
in potential outcomes when all units are assigned to treatment versus when all units are assigned to control;
this is also referred to as the global treatment effect (e.g., Chin, 2019; Ugander and Yin, 2023; Faridani and
Niehaus, 2024). In policy settings such as nationwide infection-prevention campaigns or the promotion of
insurance services to all farmers, as in the examples above, the ATTE should be a natural target parameter.

In the absence of network information in the target data, the covariate-shift assumption alone is not
sufficient to point estimate the target ATTE. To address this issue, we propose to conduct a sensitivity
analysis with respect to the target network’s degree distribution. Specifically, following the idea of Wasserstein
distributionally robust optimization (e.g., Blanchet and Murthy, 2019; Blanchet et al., 2021; Gao and Kleywegt,
2023), we quantify the uncertainty in the target degree distribution using the Wasserstein distance from a given
reference distribution. While in the literature of sensitivity analysis on distributional uncertainty, the Kullback-
Leibler divergence is more commonly used (e.g., Duchi and Namkoong, 2021; Spini, 2021; Christensen and
Connault, 2023), the Wasserstein distance offers several practical merits, such as allowing non-overlapping
supports and computational simplicity. We show that the resulting bound estimator for the target ATTE can
be obtained by solving a set of simple linear programming problems. Under regularity conditions, we derive
the limiting distribution of the bound at each Wasserstein radius via the functional delta method (Fang and
Santos, 2019). Moreover, we propose a dependent wild bootstrap method to approximate the distribution of
the bound, following the approach of Conley er al. (2023).

As an empirical illustration, we apply our method to data from a field experiment conducted by Cai ef al.
(2015), which investigated how social networks affect the adoption of a weather insurance product among
rural Chinese rice farmers. To evaluate the performance of our sensitivity analysis framework, we randomly
partition the villages into source and target groups and estimate the bound on the ATTE for the target group.
Since the full network information is available for all villages, we are able to compute the point estimate of the
target ATTE and examine how the choice of the Wasserstein radius influences the coverage of the ATTE. In this
setting, since both groups are essentially drawn from a common population (i.e., they are all rice farmers in the
same Chinese province), the resulting bounds are shown to be very informative even under small Wasserstein

radius.

Paper organization The remainder of the paper is organized as follows. Section 2 formally presents our
problem setup and the parameter of primary interest, the ATTE. Section 3 provides a linear-programming
characterization of the Wasserstein bound on the target ATTE. The estimation of the bound and its asymptotic
properties are discussed in Section 4, where we also introduce a wild bootstrap procedure for inference. In
Section 5, we conduct a set of Monte Carlo simulations to examine the finite sample performance of the
proposed inference method. Section 6 presents an empirical illustration based on the data from Cai et al.

(2015). Section 7 concludes. The appendix contains proofs and additional technical supplementary material.



2 Problem Setup

Consider a set of observations Z of size n* = |Z|, which we label the experimental sample. Here, “experi-
mental” is for terminology purposes only, and we do not strictly require that an experiment is performed on
7, provided that a suitable independence condition (given in Assumption 2.2) is satisfied. We also refer to Z
interchangeably as the source sample, source data, etc.

For each unit 7 € Z, we observe (Y;, D;, X;, Aizl, cee AZ.In 7), where Y; € R is the outcome of interest,
D; € {0,1} is the treatment indicator, and X; € X" is the vector of covariates. We assume that X" is a finite
set with d, = |X|. Here, Aizj denotes the (i, j)-th element of n? x n? adjacency matrix AZ. We assume
that A7 is fixed during the experiment and treat it as a non-stochastic object. In addition, A does not have
self-loops and may or may not be directed; i.e., AZ-I]- # AJI-i is allowed. The degree of i, the number of network
connections of 7, is denoted as G; = Y| jeT AZI] When A7 is directed, G; is interpreted as the out-degree of
i. Because A7 is treated as non-stochastic, so is the degree G;. Let G denote the finite set of possible degree
values and write d, = |G|. For a generic n’-dimensional treatment assignment d” € {0, 1}7", define the
number of treated peers for i by S;(d?) := Y. jeT Ain d; and denote its realized value by S; = S;(D?), where
DT ={D;:ieT}.

Next, we introduce the exposure mapping E; = e(S;, G;), where e : G x G — & is a deterministic function
chosen by the researcher. The exposure mapping summarizes peer-treatment impacts into lower dimensional
statistics. Since individuals usually have their own unique social networks, it is generally impossible to identify
meaningful causal parameters without dimensionality reduction of the interference structure, and exposure
mapping is the standard approach in the literature (e.g., Aronow and Samii, 2017; Aronow et al., 2021; Leung,
2024). Typical choices of exposure mapping include e(S,G) = S, e(S,G) = S/G,and e(S, G) = 1{S > 0}.
In this study, we assume that the exposure mapping is correctly specified (in the sense of Assumption 2.1(i)
below) as a function of (S, G).!

The individuals of primary interest are not those in the experimental sample but those in the target data
J, whose size is n = |J|. We assume that either the same set of covariates X j € X asin T is observed
for all j € J, or the distribution of X over J is known (i.e., the proportion of each x € X is observed).
The former is reasonable if X consists of socioeconomic characteristics that policymakers can access through
official surveys. Miao et al. (2024) consider transfer learning when only a subset of X is observed for the
target data. The latter case corresponds to situations, for example, where X; contains private information
or where 7 is so large that individual-level data cannot be collected and only their distributions are publicly
available to researchers. In both cases, the covariates for the target data are treated as given. As mentioned in
the introduction, the network A7 in the target data is assumed to be unobserved. Although partial knowledge
of A7 can help tighten the bounds on policy effects, we focus on the case where A is completely unknown

for clarity of presentation.

Now, we introduce the following transferability assumption.

"When the exposure mapping is misspecified, the resulting estimates generally exhibit biased causal interpretations; see Leung
(2024). To mitigate the misspecification problem, Hoshino and Yanagi (2023) propose a specification test for the exposure mapping.



Assumption 2.1 (Transferability). (i) For both data Z and 7, the outcome Y is generated as
Y =y(D,E,G, X,e), 2.1

where € is an unobserved disturbance term of arbitrary dimension.

(ii) Foralli e Z,j e J,and (d,e,g,x) € {0,1} x E x G x X,
u(d,e,g,x) e EI[Y;(dv 6) | Gi=gXi= x] = Ej[}/}(dv 6) | Gj = gvXj = :E],

where Y (d, e) := y(d, e, G, X, €) denotes the potential outcome when (D, E) = (d, e).

Assumption 2.1 requires a certain degree of similarity between the source and target data to ensure the
transferability of results. Specifically, condition (i) imposes two main restrictions. First, the exposure mapping
E = e(S, G) must be correctly specified.” Note that a correct exposure mapping is generally not unique; any
mapping consistent with (2.1) can be employed. However, for estimation efficiency, it is preferable to use a
“coarser” mapping (in the sense of Hoshino and Yanagi (2023)). Second, the outcome may depend on the
network structure, but only through the degree GG. This is motivated by possible heterogeneity in treatment and
spillover effects with respect to G. For example, when e(S, G) = S/G is used, we wish to distinguish between
having exactly one friend, who is treated, and having many friends, all of whom are treated. In addition to G, if
desired, our approach allows to include other "node-level” network covariates (e.g., centrality, local clustering)
in the model, as in Lin and Xu (2017); however, the resulting prediction bounds will be much larger relative to
the present specification. Also note that the model cannot incorporate network-level” statistics as covariates;
an extreme case is Y = ya (D, E, G, X, €). In such cases, it is impossible to generalize results from a single
network to another network without additional structural assumptions.

Condition (ii) is our main transferability assumption and parallels the covariate-shift assumption in the
transfer learning literature. It states that the relationship between the potential outcomes and the covariates
(G, X) is the same in the source and target data, although the distributions of these variables may differ. Given
condition (i), condition (ii) holds if the conditional distributions of ¢; (i € Z) and ¢; (j € J) given (G, X) are
identical. This is plausible when Z and J are drawn from the same population; for example, 7 is a village
where an experiment was conducted, and J comprises all other villages in the same province, as in Cai et al.
(2015). If we can additionally assume the additive separability: y(D, E,G, X, ¢) = u(D, E,G, X) + ¢, then
condition (ii) reduces to requiring only that the error terms have mean zero conditional on (G, X).

It is important to note that merely estimating 1.(d, e, g, z) may not necessarily be informative for evaluating
the social impact of a specific policy (i.e., a treatment rule) among the target data. This is because in order
to evaluate a given treatment rule, we need to determine not only each unit’s own treatment status d, but also
the exposure value e. However, the exposure e is not identifiable in the absence of network information, in

general.

*Since E is fully determined by (S, G), we may rewrite (2.1) as Y = y(D, S, G, X, €). A similar model specification can be
found in Leung (2020). However, except when G is a very small set, a fully nonparametric regression on (S, ) is unrealistic, so the
use of an exposure mapping will eventually be required in practice. We express our model in the form of (2.1) to highlight this point.



With this in mind, we now introduce our main causal parameter of interest. Let Y;(d”) denote the potential
outcome when D? = dZ. Observe that the two potential outcome notations are related in the following
manner: Y;(d?) = Y;(d;, e(S;(dT), G;)). Then, the total treatment effect (TTE) for unit i € Z is defined as

7 = Yi(1,z) — Yi(0,2)
=Yi(1,e(G;,G;)) — Y;i(0,€e(0,Gy)).

The TTE for j € J is similarly defined. The TTE is interpreted as the individual-level effect of a policy
that assigns all units in the same network to treatment. There is a large literature on statistical inference for
parameters related to the TTE (e.g., Chin, 2019; Yu et al., 2022; Ugander and Yin, 2023; Faridani and Niehaus,
2024). In particular, Yu ef al. (2022) is conceptually related to our study in that they also consider estimation
under unknown networks.” A notable fact is that the TTE depends on the degree of i but not on the other
network statistics.

Because we can observe only one potential outcome for each individual, individual TTEs are not com-
putable. Hence, we adopt the average TTE conditioned on the degree and covariates, which we refer to as the

ATTE, as our main parameter of interest:

1
= Y B [1 | G X),
jeT

By Assumption 2.1(ii),

E7 [ | G4, X,] = Z ZIE 75 | Gj =9, X; =z]1{G; = 9, X; =z}

reX geg
= > D (w1, e(g,9),9,2) — 1(0,€(0,9), g, 2))p (x)l{G _5% ~2)
X geg P ( )

where p7 (x) is the proportion of units with covariate value x in the target data, which is assumed to be
known. When we can observe X for all j € J, we set p7 (z) = (n7)~1 2 jes H{X; = x}. Moreover, letting

77 (g, x) be the conditional degree distribution given X = x:

1{G — gv — :U}
(g7 j Z ) bl
JjeJ
we can write the ATTE as
= > > (ullelg, 9), g, ) — (0,€(0,9), g, x))p” (x)77 (g, ). (2.2)

zeX geg

As shown here, if p7 is known, we do not need to collect individual covariates to compute . However, since

3Their method, like ours, does not require knowledge of the network structure. However, it assumes that the direct and interference
effects are additively separable and that researchers have prior knowledge of the average baseline outcome. The approach of Faridani
and Niehaus (2024) also allows for settings without precise information about network connections. However, they assume that there
is a known distance measure, such that spillover effects decay in a power of this distance.



G’s are unobserved, 77 (g, x) is also unknown, so x cannot be computed directly. For this issue, the next

section introduces a sensitivity analysis framework with respect to the uncertainty of 7.

Remark 2.1 (Separating the direct and spillover effects). It is easy to see that the ATTE can be decomposed

into a direct effect and a spillover effect: k7 = ma{rect + prlll’ where
K‘dlrect Z Z 1 € 97 9, ) _'U'(O76(979)7g?x>)p7($)ﬂj(9ax)a
reX geg
bplll Z Z 0 € 97 9, ) —,u((),e(O,g),g,:):))pJ(x)wj(g,m).
reX geg

J

Applying our proposed method, we can construct bounds for x5

and /@;?m separately. However, caution
is needed in interpreting these quantities. Note that >}, >, 1(0, (g, 9), g, x)p7 (x)77 (g, x) represents
the average of conditional mean outcomes when all units are untreated but at the same time all of their peers
are treated, which is a logical contradiction. Therefore, /igrect and “giu are not, by themselves, representing

”policy effects” of any implementable policy.

Lastly in this section, we discuss the identification of y(d, e, g, x). The following assumption is plausible
when the source data are obtained through an RCT.

Assumption 2.2 (Unconfoundedness). ¢; IL D? | G;, X; forall i € Z.

Assumption 2.2 ensures that, conditional on (G;, X;), the potential outcomes {Y;(d, e)} are independent
of the realized (D;, E;). Since u(d, e, g, ) is estimated using only the source data, this assumption is not

required for the target data. Under Assumption 2.2,

EL[Y; | D;=d,E; =e,G; = g, X; = ] = BT [Yi(d,e) | D; = d, E; = ¢,G; = g, X; = ]
= lu’<d7 e)g?'%.)'

This implies that 1.(d, e, g, z) is nonparametrically identifiable when the event {D; = d, E; = ¢,G; = g, X; =

x} occurs with positive probability.

3 The Linear Programming Problem

3.1 A linear-programming characterization of ATTE

As shown in (2.2), in order to compute the ATTE v directly, we need the information of 77 (g, z), which
is unavailable by assumption. Instead, suppose the researcher has a candidate baseline conditional degree
distribution 7% € P(G), where P(G) is the set of probability distributions whose support is a subset of G.
There are several reasonable choices for the baseline distribution. The most natural option would be to use the
degree distribution in the source data ¥(g) = 7% (g,z) = (n?)"1 Y., 1{G; = g, X; = x}/p*(z), where
pr(z) = ()1 Y, 1{X; = x}. This choice is particularly advocated when the source and target data
come from the same population. Another possibility is to learn a link-prediction model using any method with
the source data {(X;, A%, ... ’AiZnI) : 1 € I}, obtain a predicted adjacency matrix for 7, A7 and set 7k to

7



the conditional degree distribution on A7 . If the researcher has background knowledge about the target data
from previous studies and observations, 7 may instead be specified a priori.

To quantify the distance between distribution functions in P(G), this paper uses the Wasserstein distance.

Definition 3.1 (¢-Wasserstein distance). The g-Wasserstein distance between m € P(G) and 7* € P(G) is
given as follows (¢ € [1, 0)):

1/q

Wy(m, 7)== min Z I(u, v)|u — v|* ,
Tell(m,m*) (4,0)€G2

where II(7, 7*) consists of all nonnegative matrices I'(u, v) satisfying

Z [(u,v) = 7*(u), 2 [(u,v) = m(v).
veG ueg
The Kullback-Leibler divergence is a popular choice in sensitivity analysis for quantifying the distance

to a reference distribution (e.g., Duchi and Namkoong, 2021; Spini, 2021; Christensen and Connault, 2023).
However, its greatest limitation lies in the requirement of absolute continuity, which significantly restricts
the choice of reference degree distribution 7. For example, if we set 7%(g) = 7% (g, ), then, because T
is typically smaller than 7, the support of 7% (g, z) is likely to be strictly contained in that of 77 (g, ).
Consequently, 77 is not absolutely continuous with respect to 77~ and is therefore excluded from the candidate
set of distributions.* In contrast, the Wasserstein distance can be computed for essentially any pair of
distributions. Moreover, using the Wasserstein distance allows us to characterize the bounds on k7 through
a set of linear programming problems. For a more detailed discussion of the advantages of the Wasserstein
distance over the Kullback-Leibler divergence in the context of distributionally robust optimization, see Gao
and Kleywegt (2023).

Next, we define the (0, ¢)-Wasserstein ball centered at 7*:
B(7*, 4, q) i= {m € P(G) : Wy(m,7*) < 5},

for a radius & € (0, 0). Then, the lower and the upper bounds for 7 at a given Wasserstein radius & can be

formulated as follows, respectively:

g = ). [ min Zm(g,wm(g)]

k)
e X T €B(73 ,6,q) geG

Foq = ) [ max Em(gym)ﬂx(g)]

*
e X T2€B(7y,0,q) poere

3.1

*Note that if the support of 7w~ (g, x) is a strict subset of that of 77 (g, ), then it is impossible to nonparametrically estimate
wu(d, e, g, z) onthose (g, z) values. In such cases, one eventually needs to perform inter- or extrapolation of the estimates by assuming
a functional form such as in (4.1).



where

m(g, ) == (u(1,e(g,9),9,2) — (0, €(0, ), 9, 2)) p” ().
Clearly, if 77 (-, z) € B(w%,6,q) forevery z € X, k7 € [£6,4> Fis,q) holds. In addition, 77 (-, x) e B(nk, 6, q)

holds for any baseline 7 if we take sufficiently large J.

Example 3.1. To illustrate the bounds (3.1), we provide a toy example here. Suppose that there are no
covariates and there are only two support points for the degree distribution: G = {0, 1}. m depends only on g,
and we assume m(0) < m(1). For the baseline degree distribution, we set 7*(g) = (a*)9(1 — a*)'=9. Then,
for any Bernoulli distribution 7(g) = («)9(1 — )79, setting ¢ = 1, Wy (m,7*) = |a — o*| holds. Under
this setup, the lower and the upper bounds can be obtained as follows:

551 o 1~ OO) + )

m(0) + max{0, ™ — §}(m(1) — m(0))
(1 —a)m(0) + am(1)

Ks1 max
a€l0,1] :|a—a*|<d

=m(0) + min{1,a* + 0} (m(1) — m(0)).

Hence, if the chosen 0 is large enough, we will have the trivial bounds 5, = m(0) and Fs; = m(1).

Figure 3.1 presents the areas of [k, %s,1] when m(0) = 0, m(1) = 1, and 77 (g) = (0.4)9(0.6)* .
The dotted horizontal line corresponds to the target parameter k7 = 0.4. It is evident from the left panel that,
when the Wasserstein ball is centered at the true 77 (g), the interval [£4,1,Fs,1] contains 7 for any value of
0 > 0. As the middle and right panels illustrate, even when the reference probability distribution 7* deviates
from the true 77, increasing ¢ sufficiently large still ensures the coverage of x .

alpha=0.4 alpha = 0.6 alpha=0.9

kappa
kappa
kappa

0.0 02 04 0.6 0.8 1.0

delta delta delta

Figure 3.1: Upper and lower bounds of x7

Notes: 77 = Bernoulli(0.4), m(1) = 1, and m(0) = 0. (Left) o* = 0.4. (Middle) o* = 0.6. (Right) o* = 0.9.

Hereinafter, since every minimization problem can be converted into a maximization problem by chang-

ing the sign of the objective function, we mainly focus on the computation of the upper bound %s,. For



completeness, the estimation and inference for the lower bound £ , are summarized in Appendix B.

Our goal is to maximize the following objective function: .y >,cg m(g, z)m(g) with respect to
7, subject to m, € B(n},d,q) for each x € X. Note that since >, o 'z(u,v) = 7. (v), we may
write 3 .o m(g, x)mz(g) = 2, pegz I'a(u, v)m(v, 2). In addition, restricting the parameter space to the
Wasserstein ball B(7, d, q) is equivalent to satisfying the following set of linear equalities and inequalities:
Yiveg La(u,0) = 75 (u), X, pege Lo (u, v)|u — v|* < 69, and ', (u,v) > 0. Consequently, the upper bound

Kg,q corresponds the objective value of the following linear program:

maximize Z Z Ly (u,v)m(v, x)

X u,veG?
3.2)
subject to Z Cy(u,v) = 7)(u), Z Ty (u,v)u —v|* < 6%, T4(u,v) =0,V (z,u,v) € X x G°
veg u,veG?

Remark 3.1 (Non-uniqueness of the solution). Since the parameter space for I';; is a compact convex subset
of the probability simplex, the optimal value in the problem (3.2) exists uniquely. However, as in typical linear
programming problems, the solution that attains the optimal value is not unique in general.” Note that once
the target distribution 7, is fixed for each x € X, the optimal transference plan can be found uniquely when
q > 1 (see, e.g., Theorem 1.5.1 in Panaretos and Zemel (2020)). For the uniqueness of ., since the objective
function is linear, the solution 7, will be unique if the Wasserstein ball B(7%, §, ¢) were strictly convex, which

is not true in general in our setting.

Despite the non-uniqueness of the solution to problem (3.2), one might still wish to exemplify specific
network structures that attain the maximum or minimum objective value. Note, however, that the degree
distribution obtained from (3.2) need not be graphic; that is, it is not always possible to realize an arbitrary
degree distribution with a simple graph. In graph theory, the Erdos—Gallai theorem provides a simple necessary
and sufficient condition for a sequence of positive integers to be graphic (see, e.g., Tripathi ef al., 2010). When
this condition is met, one can generate such graphs using some computational algorithms.® Meanwhile, even
when the obtained degree distribution is not graphic, it is still possible to construct a graph whose expected
degree sequence matches the given degree distribution, for instance, by employing the Chung-Lu model (see,
e.g., 4.1.5 of Jackson, 2008).

Remark 3.2 (Interpretation of ¢). Interpreting the Wasserstein neighbourhood size § in practice is a central
issue in sensitivity analysis. One possible approach is to split the source data into disjoint networks. For
example, in a school experiment, students’ friendship networks are often disjoint across grades. Then, by
computing the Wasserstein distance between the degree distribution of one grade and that of another, we
obtain a typical discrepancy value 5 between degree distributions drawn from the same population. If the
source and target data are believed to come from a similar population, we may then set §, conservatively, for
example ¢ € (0, 25]

For example, consider the following setup without covariates: G = {1,2,3}, (m(1),m(2),m(3)) = (1,2,3
(r*(1),7*(2),7*(3)) = (1/2,1/2,0), § = 1, and ¢ = 1. Then, the optimal 7 is giveln for example by (77(11),71'( ),7™(3)) =
0o 1 0 4+ 0
(0,1/2,1/2), which can be achieved by two different transference plans: T*) = [O 1 O] and T(® = [O 0 ;] .
0 0 O 0 0 O

SFor example, the igraph R package offers the function realize_degseq that can be used for this purpose.
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The number of variables in the linear program (3.2) is dxdf]. Although the problem can be simplified by
decomposing it into d, sub-linear programs, some computational effort may still be required when d,, is large.

Fortunately, the dual problem of (3.2) can be easily derived.

Proposition 3.1 (Dual problem). Suppose that m(v, x) is bounded uniformly in (v,z) € G x X. Then, for
any q € [1,00) and § > 0,

_ . q B L ak

Kéq = Z [gh}% {)\I(S + 2 rq{lgagx{m(v,x) Azlu — ] }ﬂx(u)}] . (3.3)
reX ueGg

Proposition 3.1 shows that the optimal value of the primal linear program (3.2) can be obtained by solving

d, separate univariate minimization problems. The derivation of (3.3) is provided in Appendix A.l. For a

formal proof in a more general setting, see Theorem 1 of Blanchet and Murthy (2019) or Theorem 1 of Gao

and Kleywegt (2023). As an illustration, the dual problem for Example 3.1 is presented in Appendix A.2.

3.2 Examples of degree distributions

When the researcher has prior knowledge about the network structure in the target data, the baseline 7 can
be chosen based on it. For example, when links are believed to exist independently with each other with equal
probability (i.e., an Erd6s—Rényi graph), the degree distribution of a large network can be approximated by a
Poisson distribution. However, many empirical networks are known to deviate substantially from the Poisson
distribution (e.g., Albert and Barabasi, 2002). For example, across a wide range of scientific areas, a power-law
distribution (i.e., m(g) ~ g~ ¢ for some ¢ > 0) often serves as a good approximation of the observed degree
distribution (e.g., Kolaczyk, 2009).

Meanwhile, in social relationship networks, extremely large degrees are rarely observed in practice. Figure
3.2 shows the degree distributions of a mutual friendship network among students and a bilateral information-
exchange network among farmers, created from Paluck ef al. (2016) and Cai ef al. (2015), respectively. In
both cases, we assume that there is a link only when the two individuals nominate each other as partners. As
indicated in the left panel, the number of closest school friends peaks at about three or four. In the information
exchange network among farmers, a large share of farmers has no such partner.

These observations suggest that, depending on the type of data, its degree distribution may follow a typical
shape pattern such as unimodality, monotonicity, or symmetry. Explicitly imposing the shape restrictions on
the candidate degree distributions can yield tighter prediction bounds. For example, in the case of monotonicity
as in the right panel of Figure 3.2, we can add the linear inequality constraints 7, (g1) = 7;(g2) forall g1 < go

directly into the linear program (3.2).

4 Estimation and Asymptotic Properties

4.1 Estimation

The linear program in (3.2) is not feasible because m(g, ) = (u(1,e(g,9), g, ) — 1(0,¢(0,9), g, 2))p” ()

is unknown. Nonparametrically estimating p(d, e, g, ) is unrealistic due to the curse of dimensionality, except
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Figure 3.2: Real data examples of degree distribution

Notes: (Left) Mutual friendship network among students: data source Paluck er al. (2016). (Right) Mutual information exchange
network among farmers: data source Cai ez al. (2015).

when the sample size n”

is extremely large. Therefore, we would need to introduce additional functional-form
restrictions on the outcome equation y(d, e, g, z, €) in most applications. Although many specifications could

be considered, we adopt the following varying-coefficient model as a typical candidate:

y(d,e,g,x,¢) = w(d,e,g9)" B(z) +, (4.1)

where w : {0,1} x £ x G — R% is a pre-specified basis function, and e is a scalar error term. Then, under
this specification, we only need to estimate the coefficient functions 3(x) to recover m(g, ).

For the estimation of 3(x), we adopt the kernel weighted regression approach proposed by Li and Racine
(2010). Recalling that the covariates X are discrete variables, we partition X into d.-dimensional categorical
variables X ¢ and d,-dimensional ordered variables X° (d.+d, = d;). Then, define the kernel weight function
for discrete covariates as follows: L; () := H;lc:l LS, (@) ,Cclozl Ly, ,(x°), where

Gip(9) = UH{XG, = a5} + 1{X; # 25}b.
XO — o
ia(@?) = LUXE = af) + 1{XG # afyby )

C o

r = (2%2°),2¢ = (2f,...,25 ), 2° = (2%, ..., 23 ), withbandwidths b = (b, b,) = (b7, b, n7) € [0, 1]2.

Our estimator of 3(x) is given by

—1
~ 1 1
B(x) = <n_1 > WiwiTLi,b(Jf)) T D I WiYiLip(z), (4.2)

1€l €l
where W; = w(D;, E;, G;). Then, m(g, x) can be estimated by m(g, x) := z(g, a:)TB(m) where

2(g,2) = p” (z){w(l,e(g, 9),9) — w(0,e(0,9),9)}-

12



Finally, by replacing m in (3.2) by m, we can estimate R 4 by

~

Rq = Z max Z Ly (u,v)m(v, x)

reX ¥ uweG?
subject to Z Cy(u,v) = 7)(u), Z Ty (u,v)u —v|" < 69, Ty(u,v) =0,V (z,u,v) € X x G°
veG u,veG?

Of course, one may alternatively solve the dual problem (3.3) by putting /m in the place of m. We can similarly

obtain K ,, whose definition should be clear from the context.

4.2 Asymptotic properties

In this subsection, we derive the asymptotic distribution of %&q and present a wild bootstrap procedure for
approximating the distribution. We begin by stating the asymptotic distributions of B and m in the next
proposition. Since these results are not quite new and depend heavily on the model specification in (4.1),
all assumptions and detailed discussion are relegated to Appendix A.3. The definitions of the asymptotic

covariance matrices are also provided there.

Proposition 4.1 (Asymptotic normality of B and m). Suppose that Assumption A.l in Appendix A.3 holds.
Then,

() VT (Be) = Blx)) S N (0a,, (S2(2)) ' Q(e)(Sr(x) ") foreachz € X,

(ii) \% nz(ﬁ — m) —d> N (Odmdgv ZJIQIJIZT) s

where m = (m(vi,21),...,m(vq,, 1), ..., m(vi,2q,), .., m(va,,xq,))", and 7 is defined similarly.

We now turn to the asymptotic distribution of %&q. By the fundamental theorem of linear programming,
an optimal I',, for each x € A can be found among the set of basic feasible solutions of (3.2); that is, the
“corners” of the feasible set for I';; satisfying all equality and inequality constraints in (3.2). We denote this

set by Bs 4 .. Let S 4. denote the set of maximizers:

S5 4.0 = argmax 2 T (u,v)m(v,x).

FGB(;ﬂq,m U,U€g2

Furthermore, define G = (G(v1,71), ..., G(vq,, 1), ..., G(v1,24,), - - -, G(va,, 74,)) as ad,d,-dimensional

multivariate normal random variable with mean zero and covariance matrix ZJZQZJ7Z .
Theorem 4.1 (Asymptotic distribution of %57(1). Suppose that Assumption A.1 in Appendix A.3 holds. Then,

W(%&q —E(sjq) A Z max Z [y(u,v)G(v, x)

ryeS¥
xeX x Sév‘]qz u}v€g2

Theorem 4.1 states that the limiting distribution of the upper-bound estimator is not pivotal, but can be

numerically simulated through G to estimate the asymptotic critical values. A similar result to our theorem
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can be found in Bhattacharya (2009).
To estimate the critical value at a given significance level, a natural approach would proceed as follows.

First, we estimate S5 . by

§(§k7qvx = F € 867q7x : Z F(“’ ,U)m(v7 ':E) 2 %67(,],1' —a 9 (4‘3)

u,veG2

for some threshold parameter a = a,,z tending to zero, where &z 4, = MAXTeB; , o Dy veg2 L (U, V)MV, T).

Second, generate independent draws G ~ N (Odmdg, ZJIQIJIZT) for r = 1,..., R, with sufficiently

large R. For each draw, compute §§Tq) = D rex []{m&txF 8% DuveG? Iy (u,v)G" (v,;p)]. Finally, the
bl x 5yq7x k)

a-level critical value is estimated by the (1 — «) empirical quantile of {ggfq) :r=1,...,R}.

This approach is straightforward, and a similar method has been considered in Bhattacharya (2009).
However, note that to implement the second step above, we must consistently estimate the covariance matrix
ZJ:QrJrZT, which typically requires a heteroscedasticity and autocorrelation consistent (HAC) estimator.
In general, the accuracy of the normal approximation with a HAC-estimated covariance matrix is limited when
the sample size is not large.

Alternatively to the normal approximation with a HAC-estimated covariance, following Fang and Santos
(2019), this paper considers a bootstrap procedure. In particular, since the data may exhibit cross-sectional
dependence, we adopt the wild bootstrap approach by Conley er al. (2023). Specifically, to capture the
dependence among units, we consider a setup similar to Kelejian and Prucha (2007), Kim and Sun (2011),
and Conley er al. (2023). That is, we assume that there is a socio-economic distance measure A;; such
that the dependence between ¢ and j becomes stronger as A;; becomes smaller.” Although A;; may be
unobservable, an approximation Aij = A;; + v;; is available, where v;; is a measurement error. Let
K : R — [—1,1] be a real-valued kernel function, and define the matrix Kz = (K (ﬁij /d)); jeT, Where
d = d,z is a bandwidth parameter. Further, assuming that Kz is positive semidefinite,® obtain its eigen-
decomposition Kz = CIJIAZ@} , where A7 is a diagonal matrix of the nonnegative eigenvalues of Kz, and the
columns of ®7 are the corresponding orthonormal eigenvectors. Now, we are ready to present our bootstrap

procedure.

"If it is believed that the dependence is only through network link connections, we can alternatively use Kojevnikov (2021)’s
network wild bootstrap approach. The socio-economic distance-based approach considered here has the advantage of flexibility in the
choice of distance measure, so that we can allow dependence of individuals even when they are apart in the network.

8 The positive semidefinite-ness of Kz is not always guaranteed and heavily depends on the choice of the kernel function K. For
more detailed discussion on this issue, see, for example, Kelejian and Prucha (2007) and Conley er al. (2023).
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Algorithm 4.1 Wild bootstrap procedure for inference on %5 4

1: Estimate 3(1:) for all z € X using (4.2)
: Compute the residual ¢; :=Y; — VViT B (X;) forallieZ
: forb=1to Bdo
Draw n® = (n%b), e 777,(9) ~ @IA;/ZN(Onz, I,7)
Generate a bootstrap sample {(1V;, Y;*(b)) : 1 € T}, where Y;*(b) = Wfﬁ (X5) + nﬁb)a
Obtain 3*(® (x) by the kernel weighted regression of Y;*(b) on W forallz € X
Compute ﬁ;(qb) =vVnIY [maxrze§§‘q ) Yuvege Ta(u,v)z(v, 2)T(B*®) (z) — 3(:1:))]
end for

: Compute the empirical « quantile X g  of {\/ nt (%;(qb) — %qu) b=1,... ,B}

R A O i

The validity of this bootstrap procedure is stated in the next proposition. Again, the assumptions used here

are all relegated to Appendix A.3.

Theorem 4.2 (Validity of the wild bootstrap). Suppose that Assumptions A.1 and A.2 in Appendix A.3 hold.
Then,

Pr* (V nz(%;q —Rsq) < s) =Pr (\/ nT(Rsq — Fsq) < S) +op(1)

uniformly in s € R, where Pr* denotes the conditional probability given the source data.

Theorem 4.2 implies that { g, is a consistent estimator for the av quantile of vnZ(Rs,, — Fs,q) as B — 0.
Therefore, the asymptotic 100(1 — «)% confidence interval (CI) for %; , can be obtained by

~ X\B,lfa/Q = 2B,a/2:|

Ci_a(Rsg) == |:/-€5 — ———, KR§

a( 7q) »q '\/7’],7 »q \/ﬁ
5 Monte Carlo Simulation

In this section, we examine the finite sample performance of the proposed wild bootstrap procedure through

Monte Carlo simulations. We consider the following data generating process:

6
Y, = Z Wie be(X14, Xoi) + €, 1€,
=1

where (Wi1, ..., Wis) " = w(D;,e(S;,Gy), Gi), w(d, e, g) = (1,d,e,de,log(g+1),elog(g+1)), e(s, g) =
s/g, and

bl(xl,.l’g) =1, bz(.%'l,xg) =1+ 0.5@(1‘1 + .7}2),
b3($1,$2) = <I>(ac1) + (I)(l'g), b4($1,$2) = @(l’l) + (I)(l'g),
bs(z1,22) = 0.5exp{—0.5(x1 + z2)}, bgs(z1,22) = 0.5exp{—0.5(x1 + z2)}.
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The sample size is either n” = 400 or 1200. The treatment variable and covariates are generated as follows:
D; ~ Bernoulli(0.5), X1; ~ Bernoulli(0.5), X2; ~ Unif{—1,0, 1}, and X3; ~ N(0, 1). Supposing that the
target population shares the same distribution of (X1, X) as the source population, we set p (z) = 1/6 for all
x € X. In addition, we create a mismeasured version of X3; as X§i = X3; + 14, where v; ~ Unif[—0.3,0.3].

The network A7 is generated as follows. We first draw each unit’s degree G; independently from
G ={0,1,2,3,4}. Then, for each j # i, we set A;; = 1{dist;; < g,}, where g; is the G;-th smallest element
of {dist;; : j € Z\{i}}, and dist;; is the Mahalanobis distance based on (X», X3). We also define (ii\gtij as the
Mahalanobis distance based on (X2, X§"), which serves as the proxy of dist;;. The error term follows a network
autoregressive process €; = p ﬁizjej + wu;, where u; ~ N(0,1) and EZIJ denotes the (4, j)-th element of
the row-normalized version of AZ. The network autoregressive parameter is chosen from p € {0.3,0.5}.

To implement our inferential procedure, several functions and parameters need to be specified. First, the
bandwidth b = (b, b,) in the discrete kernel regression is set as b = ¢ - an, where ¢y, is a scaling constant
chosen from ¢, € {0.5, 1,2}, and an are optimal bandwidths estimated via leave-one-out cross validation in
the kernel regression.g The solution set ng P is estimated according to (4.3), with a = %&q’m . (nI)_Q/ 5 To
assess the impact of estimating S ;, g,z O the precision of inference, we also consider an infeasible estimator
that employs the true ng ¢, I line 7 of Algorithm 4.1. For the kernel function used in the wild bootstrap, we set
K(u) = 1{|u| < 1}(1 — u)?. As a distance measure that combines information of both the covariate distance
(which is mismeasured) and network proximity, we consider the following network weighted Mahalanobis

distance

ﬁij = fyijcii\gtij, where ~;; = 1{j # i}® <1 — path; — 1) ,
and path,; denotes the shortest-path distance between units ¢ and j on AL, For example, v; = 0, vij = 0
if Aizj = 1 (ie., path;; = 1), v; = 0.5 if path;; = 2, and so forth. Defining the distance in this way may
be seen as a combination of Kojevnikov (2021) and Conley ef al. (2023). The bandwidth d is set to be the
(cq max;er G;/nt) quantile of {ﬁl] :1,j € Z,1 # j}, where ¢g is chosen from ¢y € {2, 4, 6}. For comparison,
we also compute the empirical coverage for the estimator that ignores cross-sectional dependence (i.e., setting
Kz = I,1).

In this analysis, we perform the wild bootstrap to simulate the distribution of T, = VnT (%5@ — Fs,q)»
where we consider the Wasserstein ball with ¢ = 2 and four radius values § € {0.05,0.1,0.2,0.5} centered at
the uniform reference distribution 7*(g) = 1/5, forall g € G and x € X'. The number of bootstrap replications
is set to B = 500, and we compute the 95% and 99% bootstrap Cls for T} ,, checking whether it is contained
in each case. This procedure is repeated for 500 Monte Carlo replications to compute the empirical coverage
probabilities.

Tables 1 and 2 report the results for p = 0.3 and p = 0.5, respectively. The main findings are as follows.
When the dependence of the error terms is relatively weak (p = 0.3), our wild bootstrap method performs well
overall. In particular, when the sample size is large, the empirical coverage rates are satisfactorily close to the

nominal levels in almost all cases. The choice of the two bandwidths, one in the discrete kernel regression

“We used the npscoef function in the np package. Since performing the cross validation in every iteration is computationally too
demanding, we computed the optimal bandwidths for 20 burn-in samples in each setting and used their averages as b,,z.
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and the other in the dependent wild bootstrap, has relatively a small influence on the results. Moreover, the
effect of estimating S:{ 4. ON the coverage accuracy is almost negligible, which is consistent with our theory.
By contrast, when the network dependence among error terms is ignored, the resulting Cls are clearly too
narrow, especially for smaller samples. As the magnitude of network dependence increases (p = 0.5), this
undercoverage becomes more serious. Even for our dependent wild bootstrap, a slight loss of coverage is
observed for smaller samples, but the accuracy improves as the sample size grows. Similar results to ours have
been reported in previous studies, such as Kim and Sun (2011). Overall, these results confirm that the proposed
wild bootstrap procedure performs reliably and is relatively insensitive to the choice of tuning parameters, at
least for this particular DGP. Ideally, a fully data-driven method for selecting these factors could be developed,

but we leave this for future research.

6 An Empirical lllustration

As an empirical illustration, we apply our bound estimator and wild bootstrap method to the data on farmers’
insurance adoption in Cai ef al. (2015). Cai et al. (2015) conducted a field experiment to estimate the effect of
providing intensive information sessions about the weather insurance on farmers’ insurance take-up decisions.
In the experiment, four types of sessions were provided: first round simple, first round intensive, second round
simple, and second round intensive. In each round, the simple sessions only explain the insurance contract,
while intensive sessions cover all information provided in simple sessions and additionally provide financial
education to help farmers understand how the insurance works and its benefits. The farmers were randomly
assigned to each session according to household size and area of rice production per capita, which we denote
by hhsize and rice, respectively.

In this analysis, the outcome variable is Y; € {0, 1}, which indicates whether farmer i decided to buy the
weather insurance after attending the session. Let int; € {0, 1} denote whether ¢ was assigned to an intensive
session, and first; € {0, 1} denote whether ¢ was assigned to the first round session. The spillover effects matter
only for the second round participants, as they can receive information from the first round participants. Then,
as own treatment indicator, we set ID; = int;. Meanwhile, reflecting the experimental design, the exposure

variable is defined as follows:

E; = (1 — first;) Z AZ-IJ- int; first; /G,

JjeT

where Ain indicates whether ¢ and j are mutual information-exchange partners. The TTE in this context is given
by 7; = Y;(1,1) — ¥;(0,0). 7; interpreted as the individual policy effect for the policy that provides intensive
session for all farmers, and they all have enough time to exchange their information with their partners.

As the covariates, we use Xy1; = 1 {hhsize; > Med|hhsize;|} and Xo; = 1 {rice; > Med|rice;]}, where
Med denotes the empirical median. For the basis function w, we consider the following form: w(d, e, g) =
(1,d,e,de,log(g + 1),elog(g + 1)).

To evaluate the performance of our proposed method in a realistic setting, we randomly divide the original
data into two groups. Specifically, since the data consist of 47 administrative villages, we randomly select 17

villages as the source sample (n? = 1514) and use the remaining 30 villages as the target sample (n = 3351).
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Table 1: Empirical coverage probabilities: p = 0.3

95% CI 99% CI
ntf o S* K 6 =0.05 0.1 0.2 0.5 6=0.05 0.1 0.2 0.5
400 05 est cq=2 0942 0942 0934 0.930 0982 0982 0.978 0.980
cqa = 0942 0940 0940 0.926 0.984 0984 0984 0.982
cqg =6 0934 0934 0930 0.926 0978 0976 0978 0.976
K=1 0.854 0.852 0.854 0.856 0.946 0948 0.948 0.944
true cq = 0944 0944 0944 0.942 0982 0982 0980 0.984
cq4 = 0942 0938 0940 0.938 0.984 0984 0984 0.984
ca =06 0936 0.934 0934 0.936 0.978 0978 0.980 0.982
K= 0.854 0.854 0.854 0.866 0.946 0944 0940 0.946
1.0 est cq= 0948 0946 0938 0.940 0978 0978 0.982 0.986
cqg =4 0954 0954 0942 0.948 0.986 0986 0.990 0.984
cq = 0942 0942 0940 0.938 0.984 0984 0978 0.982
K= 0.862 0.862 0.860 0.856 0.950 0946 0942 0.954
true cq =2 0948 0.948 0946 0.950 0978 0978 0.980 0.984
cq = 0952 0952 0948 0.956 0986 0986 0.986 0.986
cq = 0942 0942 0942 0.946 0984 0984 0984 0.988
K=1 0.862 0.864 0.862 0.866 0952 0952 0952 0.950
20 est cqg=2 0946 0946 0940 0.948 0986 0986 0986 0.988
cqg =4 0960 0.958 0954 0.954 0.988 0.988 0.988 0.986
cqa =06 0952 0952 0942 0.946 0.980 0980 0.980 0.984
K=1 0.876  0.874 0.870 0.864 0952 0952 0952 0.954
true cqg =2 0946 0946 0946 0.952 0986 0.986 0.988 0.986
cqg =4 0.960 0.960 0.960 0.960 0.988 0.988 0.988 0.990
cqa =6 0950 0.950 0948 0.954 0.980 0980 0.980 0.982
K=1 0.876 0.874 0.874 0.874 0952 0954 0954 0.960
1200 05 est cq=2 0954 0954 00952 0.956 0.992 0992 0992 0.988
ca =4 0960 0.960 0956 0.954 0.994 0994 0994 0.988
cqg =6 0964 0962 0958 0.962 0.992 0992 0.992 0.990
K=1 0.890 0.890 0.878 0.884 0.962 0962 0950 0.954
true cqg =2 0954 0954 0956 0.964 0.992 0992 0.992 0.990
cqg =4 0.960 0.960 0.960 0.960 0.994 0994 0.994 0.990
cqa =6 0.966 0.966 0.966 0.964 0.992 0992 0992 0.990
K=1 0.890 0.888 0.888 0.892 0.962 0962 0.960 0.964
1.0 est c¢qg=2 0956 0.954 0952 0.956 0.992 0992 0.992 0.990
cqg =4 0962 0960 0956 0.952 0.994 0994 0994 0.992
cqg =6 0964 0962 0960 0.964 0.992 0992 0992 0.992
K=1 0.894 0.892 0.884 0.888 0.966 0964 0.958 0.954
true cq =2 0956 0.956 0.960 0.964 0.992 0992 0992 0.992
ca =4 0962 0962 0960 0.958 0.994 0994 0994 0.992
cqa =06 0964 0.964 0966 0.962 0.992 0992 0.992 0.990
K=1 0.894 0.896 0.892 0.900 0.966 0966 0.964 0.964
20 est cqg=2 0962 0962 0956 0.958 0.992 0992 0.990 0.988
cqg =4 0.966 0.968 0.958 0.954 0.992 0992 0992 0.992
cqa =6 0962 0962 0962 0.956 0.992 0992 0992 0.990
K=1 0.898 0.900 0.890 0.890 0970 0970 0.966 0.968
true cq =2 0962 0.962 0.960 0.966 0.992 0992 0992 0.994
cqg =4 0966 0.968 0970 0.964 0.992 0994 0994 0.994
cqg =6 0962 0962 0962 0.964 0.994 0992 0992 0.992
K=1 0.900 0.902 0.898 0.902 0970 0970 0.970 0.968

NOTE: “est” and true” in the column S* indicate that the estimated and true S:{ 4. are used, respectively. In the column K,

”K = I” indicates that network dependence is ignored in this case.
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Table 2: Empirical coverage probabilities: p = 0.5

95% CI 99% CI
nt ¢ S* Estimator & =0.05 0.1 0.2 0.5 6=0.05 0.1 0.2 0.5
400 0.5 est cqg =2 0934 0932 0922 00918 0976 0976 0974 0.978
cqg =4 0942 0940 0930 0.924 0984 0984 0980 0.978
cqg =6 0.930 0930 0914 00912 0974 0974 0972 0.972
K=1 0.804 0.802 0.788 0.788 0.902 0.896 0.892 0.902
true cq =2 0934 0934 0932 0.938 0976 0976 0976 0.976
ca =4 0942 0942 0944 0.938 0984 0984 0982 0.980
ca =06 0.930 0.930 0930 0.924 0974 0974 0974 0.976
K=1 0.804 0.802 0.804 0.802 0.902 0902 0904 0916
1.0 est cq =2 0940 0934 0930 0.932 0976 0976 0974 0.978
cqg =4 0946 0.940 0930 0.934 0984 0984 0982 0.978
cqa =6 0932 0930 0922 0.920 0978 0976 0978 0.974
K=1 0.810 0.808 0.804 0.788 0.904 0.900 0.896 0.906
true cqg =2 0940 0.940 0936 0.946 0976 0976 0974 0.976
cq = 0944 0946 0944 0.940 0984 0984 0984 0.980
cq4 = 0932 0932 0934 0.936 0978 0978 0978 0.980
K=1 0.810 0.812 0.816 0.804 0.904 0.904 0.906 0.920
20 est cq =2 0942 0944 0936 0.938 0982 0982 0980 0.978
cqg =4 0946 0944 0940 0.936 0984 0986 0.988 0.988
cqa =06 0940 0.940 0934 0.928 0.980 0.980 0.980 0.980
K=1 0.830 0.826 0.818 0.808 0922 0922 0912 0914
true cqg =2 0942 0944 0942 0.950 0982 0982 0982 0.984
cqg =4 0946 0.948 0948 0.948 0984 0.986 0.988 0.988
cq = 0940 0.940 0.938 0.946 0.980 0.980 0980 0.978
K= 0.830 0.830 0.824 0.824 0922 0922 0922 0.922
1200 0.5  est cqd = 0946 0944 0942 0.944 0.988 0.988 0.988 0.990
cq = 0952 0952 0946 0.942 0.990 0.990 0.990 0.988
cqg =06 0958 0.956 0948 0.952 0.994 0994 0992 0.986
K= 0.844 0.836 0.834 0.822 0932 0932 0920 0.930
true cq = 0952 0948 0946 0.958 0.988 0.988 0.988 0.988
cqd = 0952 0952 0952 0958 0.990 0.990 0.990 0.988
cqa =6 0958 0.956 0.958 0.960 0.994 0994 0994 0.986
K=1 0.844 0.844 0.844 0.828 0934 0934 0940 0.938
1.0 est cq =2 0950 0.946 0940 0.942 0.988 0.988 0.988 0.990
cqg =4 0950 0.950 0948 0.944 0.990 0.990 0.990 0.990
cqg =6 0962 0.960 0954 0.950 0.994 0994 0992 0.986
K=1 0.850 0.848 0.840 0.832 0936 0.936 0928 0.928
true cqg =2 0952 0952 0952 0.960 0.988 0.988 0.988 0.988
ca =4 0952 0954 0956 0.960 0.990 0.990 0.990 0.990
cqa =06 0962 0.960 0.960 0.964 0994 0.994 0994 0.986
K=1 0.850 0.848 0.842 0.840 0936 0938 0944 0.936
20 st cqg =2 0960 0.958 0946 0.944 0.988 0.988 0.988 0.988
cqg =4 0954 0954 0954 0.948 0.992  0.990 0.990 0.990
cqa =6 0960 0.960 0.958 0.952 0.994 0.994 0.994 0.990
K=1 0.858 0.860 0.848 0.846 0940 0938 0.932 0.930
true cqg =2 0.960 0.960 0.954 0.962 0.988 0.988 0.988 0.988
cqg =4 0954 0954 0958 0.960 0992 0992 0992 0.990
cqg =6 0960 0.960 0962 0.962 0.994 0994 0994 0.990
K=1 0.858 0.856 0.850 0.844 0.940 0.940 0.944 0.934

NOTE: “est” and “true” in the column S* indicate that the estimated and true S5, , are used, respectively. In the column K,

”K = I” indicates that network dependence is ignored in this case.
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We then compute the ATTE bounds for the target sample by transferring the estimates obtained from the source
sample. In this analysis, because the network structure in the target data is actually known, we can directly
compute 77 (g, ) for each (g, x). This enables us to approximately assess the coverage property of our bound
estimator under different choices of the Wasserstein radius §. In addition, to illustrate the effect of increasing
the size of source sample, we also consider a case in which five additional villages are included in the source
sample (nt = 1812).

To determine a plausible range for §, we compute the 2-Wasserstein distance between the degree distribu-
tions of the 17 source villages and 30 target villages for each covariate group (throughout this analysis, we use
the 2-Wasserstein distance). The results are reported in Figure 6.1. In the figure, ”LL” stands for the subsample
with (X; = 0, Xy = 0), "LU” for (X; = 0, X2 = 1), and so on. The number shown at the top of each panel
indicates the computed 2-Wasserstein distance. From these results, we observe that when the source and target

data are drawn from the same population, the typical 2-Wasserstein distance is roughly 0.25 or so.

Degree distributions and 2-Wasserstein distances

LL (W2 =0.253) LU (W2 =0.234)
50% [l 50%
A40% 40%
30% 30%
20% 20%
10% 10% HH
Wew __ _ ™ [ P
UL (W2 =0.247) UU (W2 =0.218) I:l Source
I:l Target
50% 50%
40% 40%
30% 20%
20% 20%
10% DD 10% HH
' @ M 9@ = b < ' Q M % o b &
Degree

Figure 6.1: Conditional degree distributions

Based on the above finding, we slightly conservatively set the region for  as ¢ € (0, 0.6]. As the baseline
conditional degree distribution, we set 7¥(g) = 7% (g, ) (see Figure 6.1). The distance measure Azj is
computed using the Mahalanobis distance based on age, gender, acreage of rice production, and household
size, weighted by the path length as in Section 5. Furthermore, when ¢ and j belong to different villages, we set
ﬁzj = o0. All other setups for estimation and bootstrap inference follow those used in the simulation analysis
in Section 5.

We report our bound estimation results in Figure 6.2. In the figure, the left and right panels correspond
to the cases with 17 and 22 villages in the source sample, respectively. The upper shaded area represents the
upper half of the 95% CI for the upper bound, and the lower shaded area shows the lower half of the 95% CI
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for the lower bound. The dashed line indicates the (infeasible) point estimate of x7, computed using the true
conditional degree distribution 7 in the target data. Since the source and target datasets come from essentially
the same population and 77 ~ 77 holds, as shown in Figure 6.1, our ATTE bound is highly informative,
successfully covering the estimated 7 even for small values of §. In addition, the estimated worst case bound
does not fall below zero for any § < 0.6 for both sample sizes. Regarding the impact of increasing the size
of the source sample, we can observe that the length of the CI for each ¢ is significantly narrower in the right
panel than in the left. When 22 villages are used for the source sample, the lower 95% bound remains positive
for almost the entire range of § values considered here. From these findings, we may state that the ATTE is
likely positive for the target data with a certain degree of confidence.

Figure 6.2: Estimated coefficient functions

01

Average Total Treatment Effect
Average Total Treatment Effect

Infeasible transferred Lower bound Upper bound Infeasible transferred Lower bound Upper bound

estimator (true 7') estimator (true =)

(a) Sensitivity analysis result (17 villages: n? =1514) (b) Sensitivity analysis result (22 villages: n’ = 1812)

7 Conclusion

This paper proposes a transfer learning framework for policy evaluation in settings where the network structure
of the target data is unobserved. Following the existing literature, we adopt a covariate-shift type assumption
to estimate conditional mean potential outcomes using experimental source data. However, in the presence of
spillover effects, this assumption alone is insufficient to evaluate a specific policy in the target data due to the
lack of network information. To address this issue, we propose a sensitivity analysis approach that quantifies
the uncertainty in the unobserved target network using the Wasserstein distance between degree distributions.
The resulting bounds on the policy effect can be computed by solving a set of linear programming problems.
We derive the asymptotic distribution of the bound estimator via the functional delta method and develop a
wild bootstrap procedure for inference. As an empirical application, we use the experimental data from Cai
et al. (2015) to illustrate the practical implementation and empirical usefulness of the proposed method.
Several limitations should be noted. First, the covariate-shift assumption may be violated if the source
and target data are too dissimilar. Second, the current model specification assumes that network effects can be
entirely captured by node-level covariates, not allowing any network-level heterogeneity. Third, the proposed

framework cannot be directly applied to the evaluation of more complex policies that assign treatment based
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on individual characteristics or network positions. Finally, as with any sensitivity analysis, the interpretation

and selection of the uncertainty parameter (J in our context) remain open questions.
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Appendix

A Technical Appendix

A.1 Derivation of the dual problem (3.3)

Recall that our primal linear program is formulated as follows:

maximize Z Z Ly (u,v)m(v, x)

X u,veG?
subject to Z Cy(u,v) = 7)(u), Z Ty (u,v)u —v|* < 6%, Ty(u,v) =0,V (z,u,v) € X x G°
veG u,veG?

Now, introduce dual variables n(u, ) for the equality constraint », s I'z(u,v) = 73 (u) for each (x,u) €

X x G and A\, > 0 for the inequality constraint )| 2 T (u, v)|u — v’q < 07 for each z € X. Then, the

u,VEG
Lagrangian function is given by

L(T,n,\) Z Z m(v,x) — Z Z n(u, x) (Z Iy (u,v) — wi‘(u))

reX u,veG? reX ueg veG

- Z Az Z Ly (u, v)|u —v|* — 64

reX u,vEG2
22)\9[;5‘1—1—2271(%3;) Z Z (u,v) {m(v,z) — n(u, ) — Aglu — v|?} .
reX reX ueG zeX u,veG?

Define the dual function by

D(n,\) :==sup L(I", n, \)

=0
ZA5Q+ZZ n(u,x)m +sup2 Z 2 (u,v) {m(v,x) — n(u,x) — Ag|u — v|?}.
reX zeX ueg =0 zeX u,veG?
If the following inequality is not satisfied
m(v,x) —n(u, z) — Aglu —v|? <0 (A1)

for some (z,u,v), then we can set the corresponding element of I';(u,v) arbitrarily large, resulting in an

unbounded D(n, A). Thus, whenever (A.1) is satisfied, we must have

D(n,\) = )] (Axaq + > n(u, x)ﬂ';(u)> .

zeX ueg
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To minimize the dual function D(n, \), in view of (A.1), we can profile out n from D(n, \) by setting

n(u,z) = m%x{m(v, x) — Aglu — v]?}.
ve

Plugging this into A\;67 + >, .5 n(u, z)7} (u) gives the objective function in (3.3).

A.2 The dual problem of Example 3.1
The dual problem of Example 3.1 is as follows: miny>o D(\), where
D(\) ==\ + Z [max{m(v) — ANu — v|}] ™ (u) p .
ueg veg

By direct calculation,

Z [Iﬁ;&gx{m(v) — Au — v|}] 7 (u) = max{m(0) — A\, m(1)}a™* + max{m(0), m(1) — A\}(1 — a¥)

ueg
=m(1)a™ + max{m(0), m(1) — A}(1 — a™).

Now, when A > m(1) — m(0),

' D(\) = i Ad a* 1—af
omm@ 7 T sl gy A0 e 4O ~et))

> m(0) + (m(1) — m(0))(a* + 9).

Meanwhile, if A < m(1) —m(0),

min D)) = min 0 {A+m(1) — A1 —a*)}.

0<A<m(1)—m(0) 0<A<m(1)—m(

Hence, if § > (1 — a*), we should set A = 0, leading to ming<y<m(1)—m(0) P(A) = m(1). On the other
hand, if § < (1 — ), the optimal X is given by m(1) — m(0), leading to ming<r<m(1)—m(o) P(A) =
m(0) + (m(1) — m(0))(a* + §). Then, it is straightforward to see that miny> D()\) = s 1 holds.

A.3 Proofs of Proposition 4.1, Theorem 4.1, and Theorem 4.2

Throughout the proofs, we use the following notations:

5 r(x) = niz STEWW, 1{X, = )]

€l
1
i,4'€L
1
Rz (w1, 22) 1= nZ Z E[W;Wy eienl{X; = 21, Xy = 22}
i,4'€L
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-1
(n% Zz‘eI WZWZTL%b(xl)) Odw X dw e Odw X day

1
~ 04, xdy (=7 Diez WiW,! Lip(22)) e 0d,, xd,,
JnI = . . .
: : . : »
04, xdy, 04, xd,, o (G Dier WiW Lip(2a,))
(Car@))™ Oayxan 0 Odyxd,
Odyxdy  (Spz(w2)™h -+ 04, xd,
JnI = . .
0d,, xd 04y, xdy e (an(mdz))_l
Q,z(z1) Qz(xr,x2) -+ Quz(xr,24,)
an (xg, xl) an (xg) ce an (xg, xdz)
QnI = . .
Qur(za,,x1) (2, 22) - Quz(za,)
and
2(g1,2)" Z(x1)  Odyxd, 04, xd,,
T
92, 04, xd, Z(x2 04, xd.,
Z(z) = ) : Z = e (z2) 9
- .
dg X doy . dgdm X dydg .
#(ga,, )" 0d,xdy, Odgxd, Z(24,)
Moreover, we write 8 = (8(z1)T, B(z2)T, ..., B(xa,) )T, B = (B(x1)T, B(x2)7, ..., Blzg,) )T, m(z) ==
(m(g1,7),...,m(gd,, z))",and m = (m(z1)",...,m(xq,)")".

Assumption A.1. 1. ||w(d,e,g)|| < ¢y < o0 a.s. uniformly in (d, e, g) € {0,1} x € x G.

2. ForallieZ,

€ = Z Tl'j8 79
JET
where 7;; is a non-stochastic possibly unknown weight; {;} are independently and identically dis-
tributed over Z, independent of {(W;, X;)}, with mean zero and variance o2; Ele;|* < oo; and

max{max;er Zjel’ 73], maxjez D o7 |745]} < ¢ < 00, uniformly in nt.

3. %,z(z), Q,z(z), and 2, 7 are positive definite for all sufficiently large n’.

n

4, Forall z € X,

1
ﬁ 2 WZ‘W/Z-T]_{XZ' = 1‘} — Enz(x)
€L

— Op (1/\/771)
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5. There exists b € (0, 1) such that (b, b,) = b and vVnZb — 0.

Assumption A.1.1 is standard in applications. A.1.2 allows for cross-sectional dependence in the error
terms. For example, if r;; = Ain, the last condition implies that each individual has only finitely many
interacting partners. The same type of error structure has often been considered in the literature (e.g., Kelejian
and Prucha, 2007; Conley er al., 2023). A.1.3 is a standard non-singularity condition. It also requires that the
proportion of each z-value is nondegenerate. A.1.4 is high-level but can be satisfied under appropriate weak
dependence conditions on {(W;, X;)}. Finally, A.1.5 is a technical condition to eliminate the bias in the kernel

regression.
Next, we introduce assumptions used to establish the validity of the wild bootstrap procedure. Let
Wil {Xz = xl}

~ Wil{X; = x2}
B;1 = {j el: Aij < d}, )‘LI = |Bi,1 .

1

) >\I = T Z >\i,Z7 ‘/;, = €5
n- «

€L

Wil{Xi = l'dz}

where d is the bandwidth parameter used in the kernel function K.
Assumption A.2. 1. K(s) = K(—s) forall s € Rand K(0) = 1; supez E(X ¢, , |K(ﬁij/d)|)/E)\I =
O(1); Supjez 2. j¢p, |K(A¢j/d)\/E/\z = Op(1); Kz is symmetric and positive semidefinite a.s.
2. There exists ¢;, > 0 such that (n%)~! i jeT HE[V;VJT]HA;J; < ¢qy> Where go denotes the Parzen

characteristic exponent of the kernel function K.
3. {4} are independent of {(;, X;,¢;)} and are uniformly bounded in ¢, j € Z.
4. Foralli e Z, \; 7 < cEAz ass., for some ¢ > 0.
5. d — o0, and EAr — oo such that IE)\I/\/TTI — 0.
6. a | 0 such that vVnTa — .

Assumptions A.2.1, A.2.2, A.2.3, and A.2.4 correspond, respectively, to Assumptions 1, 3, 4, and 5 in
Conley et al. (2023). Specifically, A.2.1 collects the conditions on the kernel weight function. As noted in
Footnote 8, the positive semidefinite-ness of Kz is a high-level condition. Conley e al. (2023) provide an
alternative bootstrap procedure for situations where this condition fails. A.2.2 requires that the dependence
between 7 and j decays as the true distance A;; increases. The formal definition of the Parzen characteristic
exponent ¢qg, along with related discussion, can be found for example in Andrews (1991) and Conley er al.
(2023). A.2.3 requires that the measurement errors are independent and uniformly bounded, which is standard
in the HAC estimation literature. A.2.4 restricts the number of neighbors each unit can have to be of the same
order. A.2.5 imposes conditions on the bandwidth d. Finally, A.2.6 is a technical condition needed to ensure

. Sx *
the consistency of S 5.q.0 fOr S5 .

Proof of Proposition 4.1
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() Let 4; p(x) = L;p(x) — 1{X; = x}. Itis easy to see that ¢; () < c-b. To see this, for example,
suppose that d, = d. = 1. Then,

Cip(@) = T{XE # 2% X0 = 2°be + 1{XE = 2%, X2 # 2°}bb 1 4 1{XE # 2%, X2 # 2°}bebly .
With this and Assumptions A.1.1 and A.1.4,

1 1 1
2 DWW Lip(2) = — > WiW[U{X; = a} + — > WiW; Ui ()

i€l i€l i€l
1
Tz Z;Winl{Xi = a} + O(b) (A2)
i€

= ¥,z(z) + Op(1/vVnZ +b).

Next, write
-1
Vi (B@) - 6(@)) = (nl > W,-WiTLi,bm) 2 DY = W B Lao)
el " jer
= Al(l‘) + AQ(SC) + Ag(ﬂf),
where

-1
1 1
MZWZWZ—I—LI@(‘T)> \/n—zleZIVVZWZT {5(XZ) - /B(x)}Lz,b(x)

i€l

-1
1 1
— > WiWJLi’b(x)> Tz > Wieilip(x).

i€l

-1
Ag(x) = (nlz Z WiWiTLi7b(l‘)> \/% Z Wie;1{X; = z}
X

—1
Ay(a) = (;IZW/Z‘MTLM»(@“O = DWW {B(X) - B@)} 14X = a)
€L " et
-1
4 (;Emwju,b(@ \/%Zwiwj (B(X:) — B2} ()
1€L " et
— Op (V7).
For As(x),
E LZ}VV&-E b(z) 2 _ 1 Z IE[WTW-/G-evﬂb(x)Evb(x)]

= s nIi,i’eI . h
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1
=z Y. E[WIWarirapeseplip(@)ly(x)]

4,4,5,5'€L
0'2 T
=2 D rira B[ W Wik (2)y ()]
3,4/, j€T
o2c?h?

7z D1 Iril - Iragl = O®?).

i,i’ jeT

N

Hence, by (A.2) and Markov’s inequality, we have As(z) = Op(b). Hence, we have VnI(B(x) — B(z)) =
As(z) + op(1) by Assumption A.1.5.
To apply the central limit theorem to As(x), define

1
Z Wll{XZ = x}rijsj

O

aj=c' (Q

n
where ¢ € R% satisfying ||c|| = 1. Note that E[a;] = 0 and ZjGIIE[aJQ-] = 1 hold:

1
M E[a?] = e" (,z(x)) " — E[W; W, 1{X; = 2, Xy = x}rijraieie;] (Quz(z)) 2 e =1
JeT i,i' jeT

by Assumption A.1.2. Moreover, by Assumptions A.1.1, Assumptions A.1.2, and Assumptions A.1.3,

2 Elaj] = (n;)z >, 2 E [mﬂiajWJ (Qnz(2)) " ec (Quz ()2 W;

JjeT JE€L i1,i2,i3,i4€L

X TigiTigWal (Qnz (@) ee™ (Quz (2)) " Wi, - 1{X;

C _ _
SGIE L 2 Il lril e g B W (@) W W (@) W

JEL 41,i2,i3,i14€T

4 4
cc,,Cc
< w-r — O.
nZ

Then, by Lyapunov’s central limit theorem, we obtain ),._; a; 4N (0,1). Finally, by (A.2) and Slutsky’s

jeL
theorem,

Vi (B(e) = B(@)) 4 N (04, (Sx(@)) " 02(2) (Sx(2)) ) |
where X7 (z) := lim,z_,, ¥,7(z), and Qz(x) := lim,z_,, Q,z(x).
(ii) By definition,

V(i —m) = VnZZ (- B)

Wz]-{Xz = l‘l}
Wil{Xi = .1:2}

€; + Op(l),

Wil{Xi = acdx}
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where the last equality follows from the same argument as above. Note that we have J,,z N | ,z by Assumption

A.1.4. Similarly as above, we define

Wzl{Xz = 1‘1}
1 Wil{X; = w2}
T ~1/2
a;=c (an) —F Z . Tij€75,
\/nT €L :
Wil{Xi = xdz}
for any ¢ € R%% satisfying ||c|| = 1. Then, by verifying the Lyapunov condition, we obtain 3 eT @ 4
N(0, 1), which implies the desired result:
VoI —m) 5 N (04,4, ZJ1Q7J7Z )
by Slutsky’s theorem, where J7 = lim,z_,, J,z, and 27 := lim,z_, ., Q, 7.
O

Proof of Theorem 4.1

Define

p(m) = Z max Z Ly (u,v)m(v, x)
zeX

FZEBg
14, T u,veQQ

Then, we can write concisely %5, = ¢(m) and %5,(1 = ¢(m).
By Theorem 2.1 of Fang and Santos (2019) (see also Shapiro (1991)), we know that

VnI(Fsq —Fsg) = VI (¢(m) — ¢(m))
= ¢;71(\/n7(7/ﬁ —m)) +op(1),

and therefore v/nZ (ks , — Fs.q) LA G (N(0g,a,, ZJ1QzJ2Z ")), where ¢, (k) is the Hadamard directional
derivative of ¢ at m in the direction h € Rs%

The explicit form of ¢’ can be derived as follows. Let us denote

@, fy= Y T(uv)f(v)

u,veG2

¢(x7 f) = Fgllsax <Fa f>’

8,q,x

so that p(m) = > 1 é(x, m(-, z)). Define

S:{q,z(f) = arginax <F> f>
TeBs .«
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Consider any sequence h; — h € R% ast | 0. Observe that, for I'; € 85 4o (f +thy) and To € SF (f),

oz, f + the) — d(x, f) _ Ly, f+ thy) — Lo, f) _ T, ) + T, by — Lo, f)
t t t

< (T, he),

where the last inequality follows because (I', f) < (T'g, f). Since I'; is a sequence in Bs, , and Bs g, is
compact, the right-hand side converges to (I'¢, k), leading to

lim sup To fHthy) Lo f) oy <r h. (A.3)

10 t reS*

4,q,x
Meanwhile,

Ty, f + the) - (Lo, f+ the)
t =

= LoDy v .

Since the above holds for all I'g € S5 . (f),

Ty, f + th) — (T
timing Lo 0 = Lo ) o omm, (A4)
tl0 t resy, .(f)

From (A.3) and (A.4), we can find that ¢/; (2, h) = maXpess <F h).

Hence, in our context, writing S§ , = argmaxpcp; <F m(-,x)),

/ . Zze qﬁ(x,m(,x) + tht(',.ﬁ())) - (b(x?m(:m))
Om () = lim St -

= Z max Z Iz (u,v)h(v, x)

r.eS¥
reX *=T6,0,2 4, veG2?

Consequently,

Vi (Rsg = Fing) = O (VT (755 — m)) + 0p(1)

= Z max VnZ Z ) (m(v,z) —m(v,x)) | +op(1)
I.eS¥
reX 6,9,z u,vEG?

A 2 max 2 Ly (u,v)G(v,x)

vex | To€55 0.0 4 vege

by Proposition 4.1(ii).

Proof of Theorem 4.2
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Let €f := n;¢;. Write

where

i€l

-1
1 1
A; (:L') = (nz Z W7;WiTLi,b(:n)> = Wﬁff,"b(l’).

Analogously to the proof of Proposition 4.1, we can easily find that A} (z) = Op (\/ an>. For A% (z),
decompose Aj(x) = A3 (z) + A%y(x), where

,_.

nzez ib (x)

A% () = ( — Y WiW Ly ( ))

€L

NM

A§2(x> = ( IZWWTLZ b( )> \/jZ 177167, zb
€T

€L

Noting that & — ¢; = Y; — W, B(X;) — e; = W,  (B(X;) — B(X;)), write

Wi(e; — niei)lip(x) = Wini(& — ei)lip(2)
= Wi, (B(X,) — B(X:))nilip(x)
= cinils p(x),

where ¢; = Op(1/v/nt) by Proposition 4.1(i). Further,

2
1

— D B (el comimiti (@)l p(2)]

i,4'€L

T Z E*[nins e cirli p(x) i p(2).

i,4'€L
X,
K X

Z Wi(ej —niei)l (*T)

ZEI

Recall that E*[nn "] = Kz, and hence E*[1;1;/] = K(A“//d) Then,

2 e cplip()lo () K (Ad) <op<b2>(n§)2 2

i,8'€L i,4'€L
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= op(b?),

where the last line is due to Lemma A.1 of Conley er al. (2023). Hence, by Assumption A.1.5 and Markov’s
inequality with (A.2), we have A%, (x) = opx(1) in probability. Similarly,

2
1
E rzwﬂhéz (@) | == D) E[W/ Wieiea B [nimir] s p ()i ()]
=7 " e
AZ’,’L” 2
=~ Z E | W, Wieienli p(x)lir p(x) K y = 0(b?),
i,4'el

implying that A%,(z) = op=(1) in probability.
We apply the same decomposition to A% (z): A% (z) = A3, (z) + Ady(z),

Al (z) = (nIZWWTLN,( )) ZW —nie)1{X; = x}

€l ZEI

-1

1

Agy(w) = ( 7 D Wil Ly (x )) —— > Wimie 1{X; = z}.
€L n* €L

Then, by the same argument as in the evaluation of A%, (x), it is straightforward to see that A3, () = opx(1)

in probability.

Since the above discussion applies to all z € X, consequently, we have

ViZ(m* —m) = VnlZ (ﬁ* - B)

Wll{Xl = xl}

Wi]_ Xi = X2
= ZJ T —— Z { . } i€ + OP*(l)’
'LEI :
Wil{Xi = .I‘dz}

with probability approaching one, where the definitions of m* and B* should be clear from the context.
Furthermore, following the same argument as in the proof of Theorem 3.1 (equation (20)) of Conley er al.
(2023), we obtain

Wil{Xi = xl}

Wil{X; = z2} d*
(Q,7) "2 Z Y ni€i = N(Od,d, s Ld,d.)
zeI :

Wz]-{Xz = l‘dm}

in probability, and hence

Pr* (\/ﬁ(m* —m) < s) — Pr (ﬁ(m m) < ) +op(1)
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uniformly in s € R. Then, in view of Proposition 4.1(ii) and Theorem 4.1, we can see that vn< (%;q - %5,,1)
and VnZ (%57,1 — Fs,q) share the same asymptotic distribution conditional on the event {gg‘ gz =Ssqnt

In view of the proof of Theorem 4.1, we can see that K5 4, = s gz + Op(1/vnt), where Réqz =
MAaXres; , . 2y peg2 L (W v)m(v, ). Suppose that I' € S§ . Then,

> T(wo)m(v,z) = > T(w,o)m(v,z) + > T(w,0)(@(v, z) —m(v, z))

u,vEG2 u,vEG2 u,veEG2

502 + Op(1/v/nT)

=K,
= Rsqa + Op(1/VnT)
= %57(171‘ —a

with probability approaching one under Assumption A.2.6. This implies that Pr(S5, , < §§‘ gu) — 1as

n’ — 0. On the other hand, suppose that ' e 3’3“ g Then,

Z L(u,v)m(v,z) = Z I(u,v)m(v, x) + 2 I(u,v)(m(v,z) — m(v,z))

u,vEG2 u,veEG2 u,veG2
= %5’,]71, —a+ Op(l/\/ nI)
= e — a + Op(1/Vn?).

Here, note thatif I' ¢ S5, then the strictinequality 3., ,cg2 I'(u, v)m(v, z) < Ry 4, musthold. Hence, since

A

a + Op(1/vn?) converges to zero in probability as n* increases, the above inequality implies that I" € S} -

holds with probability approaching one; that is, Pr(§§ gz S S5,2) — 1. Hence, Pr(S5, . = §§‘ gz) = L.
[

B Estimation and Bootstrap Inference for the Lower Bound

The estimation of the lower bound £; , can be performed by solving the following linear programming:

Rgq = 2 Hllin 2 Ty (u,v)m(v, x)

xeX z u’veg2
subject to Z Ty(u,v) = 7k (u), Z Ly (u,v)|u —v|? < 69, Ty(u,v) = 0,V (z,u,v) € X x G2,
veG u,veG2

where m is obtained through the varying-coefficient estimation as in Subsection 4.1.

To describe the wild bootstrap procedure for the lower bound, let

Tse = AT €Bsga: Y, Tlu,v)n(v,2) <Bsgp+arg,
u,veG2
which s considered as the estimator of 7% . := argminrep; = 2, eg2 I'(u,v)m(v, z). Then, the distribution

of V'nZ(K;, — ks,,) can be simulated in the following manner.
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Algorithm B.1 Wild bootstrap procedure for inference on ks,

1: Estimate 3(:13) for all x € X using (4.2)
: Compute the residual ¢; :=Y; — W; 3 (X;) forallieZ
: forb=1to Bdo
Draw n®) = (ngb), . ,777(;71)) ~ @IA;/QN(OnI, I.7)
Generate a bootstrap sample {(W;, Y;*(b)) :1 € T}, where Y;*(b) = WiTE (Xi) + nl(b)a-
Obtain B\ *(b) (x) by the kernel weighted regression of Yi*(b) on W;forallz e X
Compute E;(qb) =VnIY _, [minrweﬁ*q ) Diuwegz Lz (u,v)z(v, 2)T(B*®) (z) — B(:r))]
end for
: Compute the empirical o quantile & /2 of { VnZ (E;(qb) —Rgg):b=1,... ,B}

R A S

Further, the asymptotic 100(1 — )% CI for £ , can be obtained by

WB1-a/2 ~ wB,a/2:|

lea(ﬁ&q) = |:E6,q - W’ Ksq — \/’I’L7
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