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Abstract

This paper develops a sensitivity analysis framework that transfers the average total treatment effect
(ATTE) from source data with a fully observed network to target data whose network is completely unknown.
The ATTE represents the average social impact of a policy that assigns the treatment to every individual
in the dataset. We postulate a covariate-shift type assumption that both source and target datasets share
the same conditional mean outcome. However, because the target network is unobserved, this assumption
alone is not sufficient to pin down the ATTE for the target data. To address this issue, we consider a
sensitivity analysis based on the uncertainty of the target network’s degree distribution, where the extent of
uncertainty is measured by the Wasserstein distance from a given reference degree distribution. We then
construct bounds on the target ATTE using a linear programming-based estimator. The limiting distribution
of the bound estimator is derived via the functional delta method, and we develop a wild bootstrap approach
to approximate the distribution. As an empirical illustration, we revisit the social network experiment on
farmers’ weather insurance adoption in China by Cai et al. (2015).
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1 Introduction

Randomized controlled trials (RCTs) have long been the gold standard for estimating causal effects. However,
it is rare that the group of individuals of interest for whom researchers or policymakers wish to know causal
effects precisely coincides with the experimental sample. In many cases, the purpose of conducting an RCT is
to determine in advance whether a treatment of concern yields positive effects so that it can then be introduced
to a target population of real interest.

Nevertheless, the causal effects estimated from the experimental data cannot, in general, be directly applied
to the non-experimental target data. To transfer estimation results from the source to the target data, we need to
employ some data-adaptation techniques – causal transfer learning, transfer learning methods to infer causal
effects in the target data, optimal treatment rules, and so forth. There is a rapidly growing body of literature
developing transfer learning methods in this context (e.g., Stuart et al., 2011; Hartman et al., 2015; Buchanan
et al., 2018; Wu and Yang, 2023, among many others). For comprehensive surveys and tutorials, see, for
example, Dahabreh et al. (2020) and Degtiar and Rose (2023).

Meanwhile, causal inference under network interference has gained increasing attention in the literature
across economics, education, epidemiology, political science, and related areas. In these literature, performing
an RCT has become one of major approaches for estimating treatment effects and spillover effects – the effects
of others’ treatments on one’s own outcome (e.g., Bond et al., 2012; Cai et al., 2015; Paluck et al., 2016;
Carter et al., 2021, among many others). While these studies have revealed both own and spillover effects in
their experimental samples to some extent, policymakers ultimately may wish to extrapolate such findings to
larger populations of their real concern. However, to the best of our knowledge, in contrast to the rich body of
studies without network interactions, there are few, if any, studies that explicitly consider the transferability of
causal effects under network interference.

The purpose of this paper is to fill this gap. Specifically, we propose a framework for inferring causal policy
effects in target network data by transferring results obtained from source network data. In particular, we focus
on the situation in which only individual covariates (or their distributions) are available for the target data
but its network structure is completely unknown. Such situations are typical. For example, when evaluating
infection prevention policies such as mandatory face-mask wearing or vaccination, the target population of
interest for policymakers is the entire country. Collecting detailed network information for all citizens would
be prohibitively costly, whereas demographic variables are often readily available from surveys and the census.
As another example, suppose a financial company wishes to promote its insurance or savings products for
farmers. Using an RCT among Chinese rice farmers, Cai et al. (2015) show that holding detailed information
sessions significantly increases insurance take-up through social networks in each village. Given this evidence,
the insurer might wish to scale up the same sessions nationwide. In that case, the target population is all farmers
in the country, but information on the social networks in all villages is usually unavailable.

In order to transfer results from one sample to another, it is generally necessary to impose some similarity (or
transferability) condition that links the two samples. A common condition of this kind is the so-called covariate
shift, which assumes that the two datasets share common conditional mean potential outcome functions, while
the covariate distributions may differ. When the objective is merely to estimate the conditional mean potential
outcome, as is often the case in the causal inference literature, the covariate-shift assumption alone suffices.
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However, from a policymaker’s perspective, the goal is often to assess the expected social impact of a specific
policy, rather than to estimate the conditional mean function itself. Motivated by this, we focus on the policy
that assigns treatment to every unit in the dataset. Then, the causal parameter of interest in this context is the
average total treatment effect (ATTE) over the target data. The total treatment effect is defined as the difference
in potential outcomes when all units are assigned to treatment versus when all units are assigned to control;
this is also referred to as the global treatment effect (e.g., Chin, 2019; Ugander and Yin, 2023; Faridani and
Niehaus, 2024). In policy settings such as nationwide infection-prevention campaigns or the promotion of
insurance services to all farmers, as in the examples above, the ATTE should be a natural target parameter.

In the absence of network information in the target data, the covariate-shift assumption alone is not
sufficient to point estimate the target ATTE. To address this issue, we propose to conduct a sensitivity
analysis with respect to the target network’s degree distribution. Specifically, following the idea of Wasserstein
distributionally robust optimization (e.g., Blanchet and Murthy, 2019; Blanchet et al., 2021; Gao and Kleywegt,
2023), we quantify the uncertainty in the target degree distribution using the Wasserstein distance from a given
reference distribution. While in the literature of sensitivity analysis on distributional uncertainty, the Kullback-
Leibler divergence is more commonly used (e.g., Duchi and Namkoong, 2021; Spini, 2021; Christensen and
Connault, 2023), the Wasserstein distance offers several practical merits, such as allowing non-overlapping
supports and computational simplicity. We show that the resulting bound estimator for the target ATTE can
be obtained by solving a set of simple linear programming problems. Under regularity conditions, we derive
the limiting distribution of the bound at each Wasserstein radius via the functional delta method (Fang and
Santos, 2019). Moreover, we propose a dependent wild bootstrap method to approximate the distribution of
the bound, following the approach of Conley et al. (2023).

As an empirical illustration, we apply our method to data from a field experiment conducted by Cai et al.
(2015), which investigated how social networks affect the adoption of a weather insurance product among
rural Chinese rice farmers. To evaluate the performance of our sensitivity analysis framework, we randomly
partition the villages into source and target groups and estimate the bound on the ATTE for the target group.
Since the full network information is available for all villages, we are able to compute the point estimate of the
target ATTE and examine how the choice of the Wasserstein radius influences the coverage of the ATTE. In this
setting, since both groups are essentially drawn from a common population (i.e., they are all rice farmers in the
same Chinese province), the resulting bounds are shown to be very informative even under small Wasserstein
radius.

Paper organization The remainder of the paper is organized as follows. Section 2 formally presents our
problem setup and the parameter of primary interest, the ATTE. Section 3 provides a linear-programming
characterization of the Wasserstein bound on the target ATTE. The estimation of the bound and its asymptotic
properties are discussed in Section 4, where we also introduce a wild bootstrap procedure for inference. In
Section 5, we conduct a set of Monte Carlo simulations to examine the finite sample performance of the
proposed inference method. Section 6 presents an empirical illustration based on the data from Cai et al.
(2015). Section 7 concludes. The appendix contains proofs and additional technical supplementary material.
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2 Problem Setup

Consider a set of observations I of size nI “ |I|, which we label the experimental sample. Here, ”experi-
mental” is for terminology purposes only, and we do not strictly require that an experiment is performed on
I, provided that a suitable independence condition (given in Assumption 2.2) is satisfied. We also refer to I
interchangeably as the source sample, source data, etc.

For each unit i P I, we observe pYi, Di, Xi, A
I
i1, . . . , A

I
inI q, where Yi P R is the outcome of interest,

Di P t0, 1u is the treatment indicator, and Xi P X is the vector of covariates. We assume that X is a finite
set with dx “ |X |. Here, AI

ij denotes the pi, jq-th element of nI ˆ nI adjacency matrix AI . We assume
that AI is fixed during the experiment and treat it as a non-stochastic object. In addition, AI does not have
self-loops and may or may not be directed; i.e., AI

ij ‰ AI
ji is allowed. The degree of i, the number of network

connections of i, is denoted as Gi “
ř

jPI A
I
ij . When AI is directed, Gi is interpreted as the out-degree of

i. Because AI is treated as non-stochastic, so is the degree Gi. Let G denote the finite set of possible degree
values and write dg “ |G|. For a generic nI-dimensional treatment assignment dI P t0, 1un

I , define the
number of treated peers for i by Sipd

Iq :“
ř

jPI A
I
ijdj and denote its realized value by Si “ SipD

Iq, where
DI “ tDi : i P Iu.

Next, we introduce the exposure mapping Ei “ epSi, Giq, where e : GˆG Ñ E is a deterministic function
chosen by the researcher. The exposure mapping summarizes peer-treatment impacts into lower dimensional
statistics. Since individuals usually have their own unique social networks, it is generally impossible to identify
meaningful causal parameters without dimensionality reduction of the interference structure, and exposure
mapping is the standard approach in the literature (e.g., Aronow and Samii, 2017; Aronow et al., 2021; Leung,
2024). Typical choices of exposure mapping include epS,Gq “ S, epS,Gq “ S{G, and epS,Gq “ 1tS ą 0u.
In this study, we assume that the exposure mapping is correctly specified (in the sense of Assumption 2.1(i)
below) as a function of pS,Gq.1

The individuals of primary interest are not those in the experimental sample but those in the target data
J , whose size is nJ :“ |J |. We assume that either the same set of covariates Xj P X as in I is observed
for all j P J , or the distribution of X over J is known (i.e., the proportion of each x P X is observed).
The former is reasonable if X consists of socioeconomic characteristics that policymakers can access through
official surveys. Miao et al. (2024) consider transfer learning when only a subset of X is observed for the
target data. The latter case corresponds to situations, for example, where Xj contains private information
or where J is so large that individual-level data cannot be collected and only their distributions are publicly
available to researchers. In both cases, the covariates for the target data are treated as given. As mentioned in
the introduction, the network AJ in the target data is assumed to be unobserved. Although partial knowledge
of AJ can help tighten the bounds on policy effects, we focus on the case where AJ is completely unknown
for clarity of presentation.

Now, we introduce the following transferability assumption.

1When the exposure mapping is misspecified, the resulting estimates generally exhibit biased causal interpretations; see Leung
(2024). To mitigate the misspecification problem, Hoshino and Yanagi (2023) propose a specification test for the exposure mapping.
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Assumption 2.1 (Transferability). (i) For both data I and J , the outcome Y is generated as

Y “ ypD,E,G,X, ϵq, (2.1)

where ϵ is an unobserved disturbance term of arbitrary dimension.

(ii) For all i P I, j P J , and pd, e, g, xq P t0, 1u ˆ E ˆ G ˆ X ,

µpd, e, g, xq :“ EIrYipd, eq | Gi “ g,Xi “ xs “ EJ rYjpd, eq | Gj “ g,Xj “ xs,

where Y pd, eq :“ ypd, e,G,X, ϵq denotes the potential outcome when pD,Eq “ pd, eq.

Assumption 2.1 requires a certain degree of similarity between the source and target data to ensure the
transferability of results. Specifically, condition (i) imposes two main restrictions. First, the exposure mapping
E “ epS,Gq must be correctly specified.2 Note that a correct exposure mapping is generally not unique; any
mapping consistent with (2.1) can be employed. However, for estimation efficiency, it is preferable to use a
”coarser” mapping (in the sense of Hoshino and Yanagi (2023)). Second, the outcome may depend on the
network structure, but only through the degree G. This is motivated by possible heterogeneity in treatment and
spillover effects with respect to G. For example, when epS,Gq “ S{G is used, we wish to distinguish between
having exactly one friend, who is treated, and having many friends, all of whom are treated. In addition to G, if
desired, our approach allows to include other ”node-level” network covariates (e.g., centrality, local clustering)
in the model, as in Lin and Xu (2017); however, the resulting prediction bounds will be much larger relative to
the present specification. Also note that the model cannot incorporate ”network-level” statistics as covariates;
an extreme case is Y “ yApD,E,G,X, ϵq. In such cases, it is impossible to generalize results from a single
network to another network without additional structural assumptions.

Condition (ii) is our main transferability assumption and parallels the covariate-shift assumption in the
transfer learning literature. It states that the relationship between the potential outcomes and the covariates
pG,Xq is the same in the source and target data, although the distributions of these variables may differ. Given
condition (i), condition (ii) holds if the conditional distributions of ϵi (i P I) and ϵj (j P J ) given pG,Xq are
identical. This is plausible when I and J are drawn from the same population; for example, I is a village
where an experiment was conducted, and J comprises all other villages in the same province, as in Cai et al.
(2015). If we can additionally assume the additive separability: ypD,E,G,X, ϵq “ µpD,E,G,Xq ` ϵ, then
condition (ii) reduces to requiring only that the error terms have mean zero conditional on pG,Xq.

It is important to note that merely estimating µpd, e, g, xq may not necessarily be informative for evaluating
the social impact of a specific policy (i.e., a treatment rule) among the target data. This is because in order
to evaluate a given treatment rule, we need to determine not only each unit’s own treatment status d, but also
the exposure value e. However, the exposure e is not identifiable in the absence of network information, in
general.

2Since E is fully determined by pS,Gq, we may rewrite (2.1) as Y “ ypD,S,G,X, ϵq. A similar model specification can be
found in Leung (2020). However, except when G is a very small set, a fully nonparametric regression on pS,Gq is unrealistic, so the
use of an exposure mapping will eventually be required in practice. We express our model in the form of (2.1) to highlight this point.
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With this in mind, we now introduce our main causal parameter of interest. Let YipdIq denote the potential
outcome when DI “ dI . Observe that the two potential outcome notations are related in the following
manner: YipdIq “ Yipdi, epSipd

Iq, Giqq. Then, the total treatment effect (TTE) for unit i P I is defined as

τi :“ Yip1nI q ´ Yip0nI q

“ Yip1, epGi, Giqq ´ Yip0, ep0, Giqq.

The TTE for j P J is similarly defined. The TTE is interpreted as the individual-level effect of a policy
that assigns all units in the same network to treatment. There is a large literature on statistical inference for
parameters related to the TTE (e.g., Chin, 2019; Yu et al., 2022; Ugander and Yin, 2023; Faridani and Niehaus,
2024). In particular, Yu et al. (2022) is conceptually related to our study in that they also consider estimation
under unknown networks.3 A notable fact is that the TTE depends on the degree of i but not on the other
network statistics.

Because we can observe only one potential outcome for each individual, individual TTEs are not com-
putable. Hence, we adopt the average TTE conditioned on the degree and covariates, which we refer to as the
ATTE, as our main parameter of interest:

κJ :“
1

nJ

ÿ

jPJ
EJ rτj | Gj , Xjs.

By Assumption 2.1(ii),

EJ rτj | Gj , Xjs “
ÿ

xPX

ÿ

gPG
EJ rτj | Gj “ g,Xj “ xs1tGj “ g,Xj “ xu

“
ÿ

xPX

ÿ

gPG
pµp1, epg, gq, g, xq ´ µp0, ep0, gq, g, xqqpJ pxq

1tGj “ g,Xj “ xu

pJ pxq
,

where pJ pxq is the proportion of units with covariate value x in the target data, which is assumed to be
known. When we can observe Xj for all j P J , we set pJ pxq “ pnJ q´1

ř

jPJ 1tXj “ xu. Moreover, letting
πJ pg, xq be the conditional degree distribution given X “ x:

πJ pg, xq :“
1

nJ

ÿ

jPJ

1tGj “ g,Xj “ xu

pJ pxq
,

we can write the ATTE as

κJ “
ÿ

xPX

ÿ

gPG
pµp1, epg, gq, g, xq ´ µp0, ep0, gq, g, xqqpJ pxqπJ pg, xq. (2.2)

As shown here, if pJ is known, we do not need to collect individual covariates to compute κJ . However, since
3Their method, like ours, does not require knowledge of the network structure. However, it assumes that the direct and interference

effects are additively separable and that researchers have prior knowledge of the average baseline outcome. The approach of Faridani
and Niehaus (2024) also allows for settings without precise information about network connections. However, they assume that there
is a known distance measure, such that spillover effects decay in a power of this distance.
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Gj’s are unobserved, πJ pg, xq is also unknown, so κJ cannot be computed directly. For this issue, the next
section introduces a sensitivity analysis framework with respect to the uncertainty of πJ .

Remark 2.1 (Separating the direct and spillover effects). It is easy to see that the ATTE can be decomposed
into a direct effect and a spillover effect: κJ “ κJdirect ` κJspill, where

κJdirect “
ÿ

xPX

ÿ

gPG

`

µp1, epg, gq, g, xq ´ µp0, epg, gq, g, xq
˘

pJ pxqπJ pg, xq,

κJspill “
ÿ

xPX

ÿ

gPG

`

µp0, epg, gq, g, xq ´ µp0, ep0, gq, g, xq
˘

pJ pxqπJ pg, xq.

Applying our proposed method, we can construct bounds for κJdirect and κJspill separately. However, caution
is needed in interpreting these quantities. Note that

ř

xPX
ř

gPG µp0, epg, gq, g, xqpJ pxqπJ pg, xq represents
the average of conditional mean outcomes when all units are untreated but at the same time all of their peers
are treated, which is a logical contradiction. Therefore, κJdirect and κJspill are not, by themselves, representing
”policy effects” of any implementable policy.

Lastly in this section, we discuss the identification of µpd, e, g, xq. The following assumption is plausible
when the source data are obtained through an RCT.

Assumption 2.2 (Unconfoundedness). ϵi KK DI | Gi, Xi for all i P I.

Assumption 2.2 ensures that, conditional on pGi, Xiq, the potential outcomes tYipd, equ are independent
of the realized pDi, Eiq. Since µpd, e, g, xq is estimated using only the source data, this assumption is not
required for the target data. Under Assumption 2.2,

EI rYi | Di “ d,Ei “ e,Gi “ g,Xi “ xs “ EI rYipd, eq | Di “ d,Ei “ e,Gi “ g,Xi “ xs

“ µpd, e, g, xq.

This implies that µpd, e, g, xq is nonparametrically identifiable when the event tDi “ d,Ei “ e,Gi “ g,Xi “

xu occurs with positive probability.

3 The Linear Programming Problem

3.1 A linear-programming characterization of ATTE

As shown in (2.2), in order to compute the ATTE κJ directly, we need the information of πJ pg, xq, which
is unavailable by assumption. Instead, suppose the researcher has a candidate baseline conditional degree
distribution π˚

x P PpGq, where PpGq is the set of probability distributions whose support is a subset of G.
There are several reasonable choices for the baseline distribution. The most natural option would be to use the
degree distribution in the source data π˚

xpgq “ πIpg, xq :“ pnIq´1
ř

iPI 1tGi “ g,Xi “ xu{pIpxq, where
pIpxq :“ pnIq´1

ř

iPI 1tXi “ xu. This choice is particularly advocated when the source and target data
come from the same population. Another possibility is to learn a link-prediction model using any method with
the source data tpXi, A

I
i1, . . . , A

I
inI q : i P Iu, obtain a predicted adjacency matrix for J , pAJ , and set π˚

x to
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the conditional degree distribution on pAJ . If the researcher has background knowledge about the target data
from previous studies and observations, π˚

x may instead be specified a priori.
To quantify the distance between distribution functions in PpGq, this paper uses the Wasserstein distance.

Definition 3.1 (q-Wasserstein distance). The q-Wasserstein distance between π P PpGq and π˚ P PpGq is
given as follows (q P r1,8q):

Wqpπ, π˚q :“

¨

˝ min
ΓPΠpπ,π˚q

ÿ

pu,vqPG2

Γpu, vq
ˇ

ˇu ´ v
ˇ

ˇ

q

˛

‚

1{q

,

where Πpπ, π˚q consists of all nonnegative matrices Γpu, vq satisfying

ÿ

vPG
Γpu, vq “ π˚puq,

ÿ

uPG
Γpu, vq “ πpvq.

The Kullback-Leibler divergence is a popular choice in sensitivity analysis for quantifying the distance
to a reference distribution (e.g., Duchi and Namkoong, 2021; Spini, 2021; Christensen and Connault, 2023).
However, its greatest limitation lies in the requirement of absolute continuity, which significantly restricts
the choice of reference degree distribution π˚

x . For example, if we set π˚
xpgq “ πIpg, xq, then, because I

is typically smaller than J , the support of πIpg, xq is likely to be strictly contained in that of πJ pg, xq.
Consequently, πJ is not absolutely continuous with respect to πI and is therefore excluded from the candidate
set of distributions.4 In contrast, the Wasserstein distance can be computed for essentially any pair of
distributions. Moreover, using the Wasserstein distance allows us to characterize the bounds on κJ through
a set of linear programming problems. For a more detailed discussion of the advantages of the Wasserstein
distance over the Kullback–Leibler divergence in the context of distributionally robust optimization, see Gao
and Kleywegt (2023).

Next, we define the pδ, qq-Wasserstein ball centered at π˚:

Bpπ˚, δ, qq :“ tπ P PpGq : Wqpπ, π˚q ď δu,

for a radius δ P p0,8q. Then, the lower and the upper bounds for κJ at a given Wasserstein radius δ can be
formulated as follows, respectively:

κδ,q :“
ÿ

xPX

«

min
πxPBpπ˚

x ,δ,qq

ÿ

gPG
mpg, xqπxpgq

ff

κδ,q :“
ÿ

xPX

«

max
πxPBpπ˚

x ,δ,qq

ÿ

gPG
mpg, xqπxpgq

ff (3.1)

4Note that if the support of πI
pg, xq is a strict subset of that of πJ

pg, xq, then it is impossible to nonparametrically estimate
µpd, e, g, xq on those pg, xq values. In such cases, one eventually needs to perform inter- or extrapolation of the estimates by assuming
a functional form such as in (4.1).
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where

mpg, xq :“ pµp1, epg, gq, g, xq ´ µp0, ep0, gq, g, xqq pJ pxq.

Clearly, if πJ p¨, xq P Bpπ˚
x , δ, qq for every x P X , κJ P rκδ,q, κδ,qs holds. In addition, πJ p¨, xq P Bpπ˚

x , δ, qq

holds for any baseline π˚
x if we take sufficiently large δ.

Example 3.1. To illustrate the bounds (3.1), we provide a toy example here. Suppose that there are no
covariates and there are only two support points for the degree distribution: G “ t0, 1u. m depends only on g,
and we assume mp0q ď mp1q. For the baseline degree distribution, we set π˚pgq “ pα˚qgp1´α˚q1´g. Then,
for any Bernoulli distribution πpgq “ pαqgp1 ´ αq1´g, setting q “ 1, W1pπ, π˚q “ |α ´ α˚| holds. Under
this setup, the lower and the upper bounds can be obtained as follows:

κδ,1 “ min
αPr0,1s :|α´α˚|ďδ

p1 ´ αqmp0q ` αmp1q

“ mp0q ` maxt0, α˚ ´ δupmp1q ´ mp0qq

κδ,1 “ max
αPr0,1s :|α´α˚|ďδ

p1 ´ αqmp0q ` αmp1q

“ mp0q ` mint1, α˚ ` δupmp1q ´ mp0qq.

Hence, if the chosen δ is large enough, we will have the trivial bounds κδ,1 “ mp0q and κδ,1 “ mp1q.
Figure 3.1 presents the areas of rκδ,1, κδ,1s when mp0q “ 0, mp1q “ 1, and πJ pgq “ p0.4qgp0.6q1´g.

The dotted horizontal line corresponds to the target parameter κJ “ 0.4. It is evident from the left panel that,
when the Wasserstein ball is centered at the true πJ pgq, the interval rκδ,1, κδ,1s contains κJ for any value of
δ ą 0. As the middle and right panels illustrate, even when the reference probability distribution π˚ deviates
from the true πJ , increasing δ sufficiently large still ensures the coverage of κJ .

Figure 3.1: Upper and lower bounds of κJ

Notes: πJ
“ Bernoullip0.4q, mp1q “ 1, and mp0q “ 0. (Left) α˚

“ 0.4. (Middle) α˚
“ 0.6. (Right) α˚

“ 0.9.

Hereinafter, since every minimization problem can be converted into a maximization problem by chang-
ing the sign of the objective function, we mainly focus on the computation of the upper bound κδ,q. For
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completeness, the estimation and inference for the lower bound κδ,q are summarized in Appendix B.
Our goal is to maximize the following objective function:

ř

xPX
ř

gPG mpg, xqπxpgq with respect to
πx subject to πx P Bpπ˚

x , δ, qq for each x P X . Note that since
ř

uPG Γxpu, vq “ πxpvq, we may
write

ř

gPG mpg, xqπxpgq “
ř

u,vPG2 Γxpu, vqmpv, xq. In addition, restricting the parameter space to the
Wasserstein ball Bpπ˚

x , δ, qq is equivalent to satisfying the following set of linear equalities and inequalities:
ř

vPG Γxpu, vq “ π˚
xpuq,

ř

u,vPG2 Γxpu, vq
ˇ

ˇu ´ v
ˇ

ˇ

q
ď δq, and Γxpu, vq ě 0. Consequently, the upper bound

κδ,q corresponds the objective value of the following linear program:

maximize
ÿ

xPX

ÿ

u,vPG2

Γxpu, vqmpv, xq

subject to
ÿ

vPG
Γxpu, vq “ π˚

xpuq,
ÿ

u,vPG2

Γxpu, vq
ˇ

ˇu ´ v
ˇ

ˇ

q
ď δq,Γxpu, vq ě 0,@ px, u, vq P X ˆ G2

(3.2)

Remark 3.1 (Non-uniqueness of the solution). Since the parameter space for Γx is a compact convex subset
of the probability simplex, the optimal value in the problem (3.2) exists uniquely. However, as in typical linear
programming problems, the solution that attains the optimal value is not unique in general.5 Note that once
the target distribution πx is fixed for each x P X , the optimal transference plan can be found uniquely when
q ą 1 (see, e.g., Theorem 1.5.1 in Panaretos and Zemel (2020)). For the uniqueness of πx, since the objective
function is linear, the solution πx will be unique if the Wasserstein ball Bpπ˚

x , δ, qq were strictly convex, which
is not true in general in our setting.

Despite the non-uniqueness of the solution to problem (3.2), one might still wish to exemplify specific
network structures that attain the maximum or minimum objective value. Note, however, that the degree
distribution obtained from (3.2) need not be graphic; that is, it is not always possible to realize an arbitrary
degree distribution with a simple graph. In graph theory, the Erdös–Gallai theorem provides a simple necessary
and sufficient condition for a sequence of positive integers to be graphic (see, e.g., Tripathi et al., 2010). When
this condition is met, one can generate such graphs using some computational algorithms.6 Meanwhile, even
when the obtained degree distribution is not graphic, it is still possible to construct a graph whose expected
degree sequence matches the given degree distribution, for instance, by employing the Chung-Lu model (see,
e.g., 4.1.5 of Jackson, 2008).

Remark 3.2 (Interpretation of δ). Interpreting the Wasserstein neighbourhood size δ in practice is a central
issue in sensitivity analysis. One possible approach is to split the source data into disjoint networks. For
example, in a school experiment, students’ friendship networks are often disjoint across grades. Then, by
computing the Wasserstein distance between the degree distribution of one grade and that of another, we
obtain a typical discrepancy value pδ between degree distributions drawn from the same population. If the
source and target data are believed to come from a similar population, we may then set δ, conservatively, for
example δ P p0, 2pδ s.

5For example, consider the following setup without covariates: G “ t1, 2, 3u, pmp1q,mp2q,mp3qq “ p1, 2, 3q,
pπ˚

p1q, π˚
p2q, π˚

p3qq “ p1{2, 1{2, 0q, δ “ 1, and q “ 1. Then, the optimal π is given for example by pπp1q, πp2q, πp3qq “

p0, 1{2, 1{2q, which can be achieved by two different transference plans: Γp1q
“

»

–

0 0 1
2

0 1
2

0
0 0 0

fi

fl and Γp2q
“

»

–

0 1
2

0
0 0 1

2

0 0 0

fi

fl.

6For example, the igraph R package offers the function realize degseq that can be used for this purpose.
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The number of variables in the linear program (3.2) is dxd2g. Although the problem can be simplified by
decomposing it into dx sub-linear programs, some computational effort may still be required when dg is large.
Fortunately, the dual problem of (3.2) can be easily derived.

Proposition 3.1 (Dual problem). Suppose that mpv, xq is bounded uniformly in pv, xq P G ˆ X . Then, for
any q P r1,8q and δ ą 0,

κδ,q “
ÿ

xPX

«

min
λxě0

#

λxδ
q `

ÿ

uPG
max
vPG

tmpv, xq ´ λx|u ´ v|quπ˚
xpuq

+ff

. (3.3)

Proposition 3.1 shows that the optimal value of the primal linear program (3.2) can be obtained by solving
dx separate univariate minimization problems. The derivation of (3.3) is provided in Appendix A.1. For a
formal proof in a more general setting, see Theorem 1 of Blanchet and Murthy (2019) or Theorem 1 of Gao
and Kleywegt (2023). As an illustration, the dual problem for Example 3.1 is presented in Appendix A.2.

3.2 Examples of degree distributions

When the researcher has prior knowledge about the network structure in the target data, the baseline π˚
x can

be chosen based on it. For example, when links are believed to exist independently with each other with equal
probability (i.e., an Erdős–Rényi graph), the degree distribution of a large network can be approximated by a
Poisson distribution. However, many empirical networks are known to deviate substantially from the Poisson
distribution (e.g., Albert and Barabási, 2002). For example, across a wide range of scientific areas, a power-law
distribution (i.e., πpgq „ g´c for some c ą 0) often serves as a good approximation of the observed degree
distribution (e.g., Kolaczyk, 2009).

Meanwhile, in social relationship networks, extremely large degrees are rarely observed in practice. Figure
3.2 shows the degree distributions of a mutual friendship network among students and a bilateral information-
exchange network among farmers, created from Paluck et al. (2016) and Cai et al. (2015), respectively. In
both cases, we assume that there is a link only when the two individuals nominate each other as partners. As
indicated in the left panel, the number of closest school friends peaks at about three or four. In the information
exchange network among farmers, a large share of farmers has no such partner.

These observations suggest that, depending on the type of data, its degree distribution may follow a typical
shape pattern such as unimodality, monotonicity, or symmetry. Explicitly imposing the shape restrictions on
the candidate degree distributions can yield tighter prediction bounds. For example, in the case of monotonicity
as in the right panel of Figure 3.2, we can add the linear inequality constraints πxpg1q ě πxpg2q for all g1 ă g2

directly into the linear program (3.2).

4 Estimation and Asymptotic Properties

4.1 Estimation

The linear program in (3.2) is not feasible because mpg, xq “ pµp1, epg, gq, g, xq ´ µp0, ep0, gq, g, xqqpJ pxq

is unknown. Nonparametrically estimating µpd, e, g, xq is unrealistic due to the curse of dimensionality, except

11



Figure 3.2: Real data examples of degree distribution

Notes: (Left) Mutual friendship network among students: data source Paluck et al. (2016). (Right) Mutual information exchange
network among farmers: data source Cai et al. (2015).

when the sample size nI is extremely large. Therefore, we would need to introduce additional functional-form
restrictions on the outcome equation ypd, e, g, x, ϵq in most applications. Although many specifications could
be considered, we adopt the following varying-coefficient model as a typical candidate:

ypd, e, g, x, ϵq “ wpd, e, gqJβpxq ` ϵ, (4.1)

where w : t0, 1u ˆ E ˆ G Ñ Rdw is a pre-specified basis function, and ϵ is a scalar error term. Then, under
this specification, we only need to estimate the coefficient functions βpxq to recover mpg, xq.

For the estimation of βpxq, we adopt the kernel weighted regression approach proposed by Li and Racine
(2010). Recalling that the covariates X are discrete variables, we partition X into dc-dimensional categorical
variables Xc and do-dimensional ordered variables Xo (dc`do “ dx). Then, define the kernel weight function
for discrete covariates as follows: Li,bpxq :“

śdc
j“1 L

c
ji,bpx

cq
śdo

k“1 L
o
ki,bpx

oq, where

Lc
ji,bpx

cq :“ 1tXc
ji “ xcju ` 1tXc

ji ‰ xcjubc

Lo
ki,bpx

oq :“ 1tXo
ki “ xoku ` 1tXo

ki ‰ xokub
|Xo

ki´xo
k|

o ,

x “ pxc, xoq, xc “ pxc1, . . . , x
c
dc

q, xo “ pxo1, . . . , x
o
do

q, with bandwidths b “ pbc, boq ” pbc,nI , bo,nI q P r0, 1s2.
Our estimator of βpxq is given by

pβpxq :“

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

nI

ÿ

iPI
WiYiLi,bpxq, (4.2)

where Wi “ wpDi, Ei, Giq. Then, mpg, xq can be estimated by pmpg, xq :“ zpg, xqJ
pβpxq, where

zpg, xq :“ pJ pxqtwp1, epg, gq, gq ´ wp0, ep0, gq, gqu.
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Finally, by replacing m in (3.2) by pm, we can estimate κδ,q by

pκδ,q :“
ÿ

xPX

»

–max
Γx

ÿ

u,vPG2

Γxpu, vq pmpv, xq

fi

fl

subject to
ÿ

vPG
Γxpu, vq “ π˚

xpuq,
ÿ

u,vPG2

Γxpu, vq
ˇ

ˇu ´ v
ˇ

ˇ

q
ď δq,Γxpu, vq ě 0,@ px, u, vq P X ˆ G2

Of course, one may alternatively solve the dual problem (3.3) by putting pm in the place of m. We can similarly
obtain pκδ,q, whose definition should be clear from the context.

4.2 Asymptotic properties

In this subsection, we derive the asymptotic distribution of pκδ,q and present a wild bootstrap procedure for
approximating the distribution. We begin by stating the asymptotic distributions of pβ and pm in the next
proposition. Since these results are not quite new and depend heavily on the model specification in (4.1),
all assumptions and detailed discussion are relegated to Appendix A.3. The definitions of the asymptotic
covariance matrices are also provided there.

Proposition 4.1 (Asymptotic normality of pβ and pm). Suppose that Assumption A.1 in Appendix A.3 holds.
Then,

(i)
?
nI

´

pβpxq ´ βpxq

¯

d
Ñ N

`

0dw , pΣIpxqq´1ΩIpxqpΣIpxqq´1
˘

for each x P X ,

(ii)
?
nIpxm ´ mq

d
Ñ N

`

0dxdg ,ZJIΩIJIZ
J

˘

,

where m “ pmpv1, x1q, . . . ,mpvdg , x1q, . . . ,mpv1, xdxq, . . . ,mpvdg , xdxqqJ, and xm is defined similarly.

We now turn to the asymptotic distribution of pκδ,q. By the fundamental theorem of linear programming,
an optimal Γx for each x P X can be found among the set of basic feasible solutions of (3.2); that is, the
”corners” of the feasible set for Γx satisfying all equality and inequality constraints in (3.2). We denote this
set by Bδ,q,x. Let S˚

δ,q,x denote the set of maximizers:

S˚
δ,q,x :“ argmax

ΓPBδ,q,x

ÿ

u,vPG2

Γpu, vqmpv, xq.

Furthermore, defineG “ pGpv1, x1q, . . . ,Gpvdg , x1q, . . . ,Gpv1, xdxq, . . . ,Gpvdg , xdxqq as adxdg-dimensional
multivariate normal random variable with mean zero and covariance matrix ZJIΩIJIZ

J.

Theorem 4.1 (Asymptotic distribution of pκδ,q). Suppose that Assumption A.1 in Appendix A.3 holds. Then,

?
nI

´

pκδ,q ´ κδ,q

¯

d
Ñ

ÿ

xPX

»

– max
ΓxPS˚

δ,q,x

ÿ

u,vPG2

Γxpu, vqGpv, xq

fi

fl .

Theorem 4.1 states that the limiting distribution of the upper-bound estimator is not pivotal, but can be
numerically simulated through G to estimate the asymptotic critical values. A similar result to our theorem
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can be found in Bhattacharya (2009).
To estimate the critical value at a given significance level, a natural approach would proceed as follows.

First, we estimate S˚
δ,q,x by

pS˚
δ,q,x :“

$

&

%

Γ P Bδ,q,x :
ÿ

u,vPG2

Γpu, vq pmpv, xq ě pκδ,q,x ´ a

,

.

-

, (4.3)

for some threshold parameter a ” anI tending to zero, where pκδ,q,x :“ maxΓPBδ,q,x

ř

u,vPG2 Γpu, vq pmpv, xq.
Second, generate independent draws Gprq „ N

`

0dxdg ,ZJIΩIJIZ
J

˘

for r “ 1, . . . , R, with sufficiently
large R. For each draw, compute ξ

prq

δ,q :“
ř

xPX

”

max
ΓxP pS˚

δ,q,x

ř

u,vPG2 Γxpu, vqGprqpv, xq

ı

. Finally, the

α-level critical value is estimated by the p1 ´ αq empirical quantile of tξ
prq

δ,q : r “ 1, . . . , Ru.
This approach is straightforward, and a similar method has been considered in Bhattacharya (2009).

However, note that to implement the second step above, we must consistently estimate the covariance matrix
ZJIΩIJIZ

J, which typically requires a heteroscedasticity and autocorrelation consistent (HAC) estimator.
In general, the accuracy of the normal approximation with a HAC-estimated covariance matrix is limited when
the sample size is not large.

Alternatively to the normal approximation with a HAC-estimated covariance, following Fang and Santos
(2019), this paper considers a bootstrap procedure. In particular, since the data may exhibit cross-sectional
dependence, we adopt the wild bootstrap approach by Conley et al. (2023). Specifically, to capture the
dependence among units, we consider a setup similar to Kelejian and Prucha (2007), Kim and Sun (2011),
and Conley et al. (2023). That is, we assume that there is a socio-economic distance measure ∆ij such
that the dependence between i and j becomes stronger as ∆ij becomes smaller.7 Although ∆ij may be
unobservable, an approximation r∆ij “ ∆ij ` νij is available, where νij is a measurement error. Let
K : R Ñ r´1, 1s be a real-valued kernel function, and define the matrix KI :“ pKp r∆ij{dqqi,jPI , where
d ” dnI is a bandwidth parameter. Further, assuming that KI is positive semidefinite,8 obtain its eigen-
decomposition KI “ ΦIΛIΦ

J
I , where ΛI is a diagonal matrix of the nonnegative eigenvalues of KI , and the

columns of ΦI are the corresponding orthonormal eigenvectors. Now, we are ready to present our bootstrap
procedure.

7If it is believed that the dependence is only through network link connections, we can alternatively use Kojevnikov (2021)’s
network wild bootstrap approach. The socio-economic distance-based approach considered here has the advantage of flexibility in the
choice of distance measure, so that we can allow dependence of individuals even when they are apart in the network.

8 The positive semidefinite-ness of KI is not always guaranteed and heavily depends on the choice of the kernel function K. For
more detailed discussion on this issue, see, for example, Kelejian and Prucha (2007) and Conley et al. (2023).
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Algorithm 4.1 Wild bootstrap procedure for inference on κδ,q

1: Estimate pβpxq for all x P X using (4.2)
2: Compute the residual pϵi :“ Yi ´ WJ

i
pβpXiq for all i P I

3: for b “ 1 to B do
4: Draw ηpbq “ pη

pbq

1 , . . . , η
pbq

nI q „ ΦIΛ
1{2
I Np0nI , InI q

5: Generate a bootstrap sample tpWi, Y
˚pbq

i q : i P Iu, where Y
˚pbq

i :“ WJ
i

pβpXiq ` η
pbq

i pϵi

6: Obtain pβ˚pbqpxq by the kernel weighted regression of Y ˚pbq

i on Wi for all x P X
7: Compute pκ

˚pbq

δ,q :“
?
nI ř

xPX

”

max
ΓxP pS˚

δ,q,x

ř

u,vPG2 Γxpu, vqzpv, xqJppβ˚pbqpxq ´ pβpxqq

ı

8: end for
9: Compute the empirical α quantile pχB,α of

!?
nIppκ

˚pbq

δ,q ´ pκδ,qq : b “ 1, . . . , B
)

The validity of this bootstrap procedure is stated in the next proposition. Again, the assumptions used here
are all relegated to Appendix A.3.

Theorem 4.2 (Validity of the wild bootstrap). Suppose that Assumptions A.1 and A.2 in Appendix A.3 hold.
Then,

Pr˚
´?

nIppκ
˚

δ,q ´ pκδ,qq ď s
¯

“ Pr
´?

nIppκδ,q ´ κδ,qq ď s
¯

` oP p1q

uniformly in s P R, where Pr˚ denotes the conditional probability given the source data.

Theorem 4.2 implies that pχB,α is a consistent estimator for the α quantile of
?
nIppκδ,q ´ κδ,qq as B Ñ 8.

Therefore, the asymptotic 100p1 ´ αq% confidence interval (CI) for κδ,q can be obtained by

C1´αpκδ,qq :“

„

pκδ,q ´
pχB,1´α{2

?
nI

, pκδ,q ´
pχB,α{2
?
nI

ȷ

.

5 Monte Carlo Simulation

In this section, we examine the finite sample performance of the proposed wild bootstrap procedure through
Monte Carlo simulations. We consider the following data generating process:

Yi “

6
ÿ

ℓ“1

Wiℓ bℓpX1i, X2iq ` ϵi, i P I,

where pWi1, . . . ,Wi6qJ “ wpDi, epSi, Giq, Giq, wpd, e, gq “ p1, d, e, de, logpg ` 1q, e logpg ` 1qq, eps, gq “

s{g, and

b1px1, x2q “ 1, b2px1, x2q “ 1 ` 0.5Φpx1 ` x2q,

b3px1, x2q “ Φpx1q ` Φpx2q, b4px1, x2q “ Φpx1q ` Φpx2q,

b5px1, x2q “ 0.5 expt´0.5px1 ` x2qu, b6px1, x2q “ 0.5 expt´0.5px1 ` x2qu.
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The sample size is either nI “ 400 or 1200. The treatment variable and covariates are generated as follows:
Di „ Bernoullip0.5q, X1i „ Bernoullip0.5q, X2i „ Unift´1, 0, 1u, and X3i „ Np0, 1q. Supposing that the
target population shares the same distribution of pX1, X2q as the source population, we set pJ pxq “ 1{6 for all
x P X . In addition, we create a mismeasured version of X3i as Xer

3i “ X3i ` νi, where νi „ Unifr´0.3, 0.3s.
The network AI is generated as follows. We first draw each unit’s degree Gi independently from

G “ t0, 1, 2, 3, 4u. Then, for each j ‰ i, we set Aij “ 1tdistij ď giu, where gi is the Gi-th smallest element
of tdistij : j P Iztiuu, and distij is the Mahalanobis distance based on pX2, X3q. We also define Ădistij as the
Mahalanobis distance based on pX2, X

er
3 q, which serves as the proxy of distij . The error term follows a network

autoregressive process ϵi “ ρ
ř

j‰i
rAI
ijϵj ` ui, where ui „ Np0, 1q and rAI

ij denotes the pi, jq-th element of
the row-normalized version of AI . The network autoregressive parameter is chosen from ρ P t0.3, 0.5u.

To implement our inferential procedure, several functions and parameters need to be specified. First, the
bandwidth b “ pbc, boq in the discrete kernel regression is set as b “ cb ¨ pbnI , where cb is a scaling constant
chosen from cb P t0.5, 1, 2u, and pbnI are optimal bandwidths estimated via leave-one-out cross validation in
the kernel regression.9 The solution set S˚

δ,q,x is estimated according to (4.3), with a “ pκδ,q,x ¨ pnIq´2{5. To
assess the impact of estimating S˚

δ,q,x on the precision of inference, we also consider an infeasible estimator
that employs the true S˚

δ,q,x in line 7 of Algorithm 4.1. For the kernel function used in the wild bootstrap, we set
Kpuq “ 1t|u| ď 1up1 ´ uq2. As a distance measure that combines information of both the covariate distance
(which is mismeasured) and network proximity, we consider the following network weighted Mahalanobis
distance

r∆ij “ γij Ădistij , where γij “ 1tj ‰ iuΦ

˜

1 ´
1

pathij ´ 1

¸

,

and pathij denotes the shortest-path distance between units i and j on AI . For example, γii “ 0, γij “ 0

if AI
ij “ 1 (i.e., pathij “ 1), γij “ 0.5 if pathij “ 2, and so forth. Defining the distance in this way may

be seen as a combination of Kojevnikov (2021) and Conley et al. (2023). The bandwidth d is set to be the
pcdmaxiPI Gi{n

Iq quantile of t r∆ij : i, j P I, i ‰ ju, where cd is chosen from cd P t2, 4, 6u. For comparison,
we also compute the empirical coverage for the estimator that ignores cross-sectional dependence (i.e., setting
KI “ InI ).

In this analysis, we perform the wild bootstrap to simulate the distribution of Tδ,q :“
?
nIppκδ,q ´ κδ,qq,

where we consider the Wasserstein ball with q “ 2 and four radius values δ P t0.05, 0.1, 0.2, 0.5u centered at
the uniform reference distribution π˚

xpgq “ 1{5, for all g P G and x P X . The number of bootstrap replications
is set to B “ 500, and we compute the 95% and 99% bootstrap CIs for Tδ,q, checking whether it is contained
in each case. This procedure is repeated for 500 Monte Carlo replications to compute the empirical coverage
probabilities.

Tables 1 and 2 report the results for ρ “ 0.3 and ρ “ 0.5, respectively. The main findings are as follows.
When the dependence of the error terms is relatively weak (ρ “ 0.3), our wild bootstrap method performs well
overall. In particular, when the sample size is large, the empirical coverage rates are satisfactorily close to the
nominal levels in almost all cases. The choice of the two bandwidths, one in the discrete kernel regression

9We used the npscoef function in the np package. Since performing the cross validation in every iteration is computationally too
demanding, we computed the optimal bandwidths for 20 burn-in samples in each setting and used their averages as pbnI .
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and the other in the dependent wild bootstrap, has relatively a small influence on the results. Moreover, the
effect of estimating S˚

δ,q,x on the coverage accuracy is almost negligible, which is consistent with our theory.
By contrast, when the network dependence among error terms is ignored, the resulting CIs are clearly too
narrow, especially for smaller samples. As the magnitude of network dependence increases (ρ “ 0.5), this
undercoverage becomes more serious. Even for our dependent wild bootstrap, a slight loss of coverage is
observed for smaller samples, but the accuracy improves as the sample size grows. Similar results to ours have
been reported in previous studies, such as Kim and Sun (2011). Overall, these results confirm that the proposed
wild bootstrap procedure performs reliably and is relatively insensitive to the choice of tuning parameters, at
least for this particular DGP. Ideally, a fully data-driven method for selecting these factors could be developed,
but we leave this for future research.

6 An Empirical Illustration

As an empirical illustration, we apply our bound estimator and wild bootstrap method to the data on farmers’
insurance adoption in Cai et al. (2015). Cai et al. (2015) conducted a field experiment to estimate the effect of
providing intensive information sessions about the weather insurance on farmers’ insurance take-up decisions.
In the experiment, four types of sessions were provided: first round simple, first round intensive, second round
simple, and second round intensive. In each round, the simple sessions only explain the insurance contract,
while intensive sessions cover all information provided in simple sessions and additionally provide financial
education to help farmers understand how the insurance works and its benefits. The farmers were randomly
assigned to each session according to household size and area of rice production per capita, which we denote
by hhsize and rice, respectively.

In this analysis, the outcome variable is Yi P t0, 1u, which indicates whether farmer i decided to buy the
weather insurance after attending the session. Let inti P t0, 1u denote whether i was assigned to an intensive
session, and firsti P t0, 1u denote whether i was assigned to the first round session. The spillover effects matter
only for the second round participants, as they can receive information from the first round participants. Then,
as own treatment indicator, we set Di “ inti. Meanwhile, reflecting the experimental design, the exposure
variable is defined as follows:

Ei “ p1 ´ firstiq
ÿ

jPI
AI

ij intj firstj{Gi,

whereAI
ij indicates whether i and j are mutual information-exchange partners. The TTE in this context is given

by τi “ Yip1, 1q ´ Yip0, 0q. τi interpreted as the individual policy effect for the policy that provides intensive
session for all farmers, and they all have enough time to exchange their information with their partners.

As the covariates, we use X1i “ 1 thhsizei ě Medrhhsizeisu and X2i “ 1 tricei ě Medrriceisu, where
Med denotes the empirical median. For the basis function w, we consider the following form: wpd, e, gq “

p1, d, e, de, logpg ` 1q, e logpg ` 1qq.
To evaluate the performance of our proposed method in a realistic setting, we randomly divide the original

data into two groups. Specifically, since the data consist of 47 administrative villages, we randomly select 17
villages as the source sample (nI “ 1514) and use the remaining 30 villages as the target sample (nJ “ 3351).
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Table 1: Empirical coverage probabilities: ρ “ 0.3

95% CI 99% CI

nI cb S˚ K δ “ 0.05 0.1 0.2 0.5 δ “ 0.05 0.1 0.2 0.5

400 0.5 est cd “ 2 0.942 0.942 0.934 0.930 0.982 0.982 0.978 0.980
cd “ 4 0.942 0.940 0.940 0.926 0.984 0.984 0.984 0.982
cd “ 6 0.934 0.934 0.930 0.926 0.978 0.976 0.978 0.976
K “ I 0.854 0.852 0.854 0.856 0.946 0.948 0.948 0.944

true cd “ 2 0.944 0.944 0.944 0.942 0.982 0.982 0.980 0.984
cd “ 4 0.942 0.938 0.940 0.938 0.984 0.984 0.984 0.984
cd “ 6 0.936 0.934 0.934 0.936 0.978 0.978 0.980 0.982
K “ I 0.854 0.854 0.854 0.866 0.946 0.944 0.940 0.946

1.0 est cd “ 2 0.948 0.946 0.938 0.940 0.978 0.978 0.982 0.986
cd “ 4 0.954 0.954 0.942 0.948 0.986 0.986 0.990 0.984
cd “ 6 0.942 0.942 0.940 0.938 0.984 0.984 0.978 0.982
K “ I 0.862 0.862 0.860 0.856 0.950 0.946 0.942 0.954

true cd “ 2 0.948 0.948 0.946 0.950 0.978 0.978 0.980 0.984
cd “ 4 0.952 0.952 0.948 0.956 0.986 0.986 0.986 0.986
cd “ 6 0.942 0.942 0.942 0.946 0.984 0.984 0.984 0.988
K “ I 0.862 0.864 0.862 0.866 0.952 0.952 0.952 0.950

2.0 est cd “ 2 0.946 0.946 0.940 0.948 0.986 0.986 0.986 0.988
cd “ 4 0.960 0.958 0.954 0.954 0.988 0.988 0.988 0.986
cd “ 6 0.952 0.952 0.942 0.946 0.980 0.980 0.980 0.984
K “ I 0.876 0.874 0.870 0.864 0.952 0.952 0.952 0.954

true cd “ 2 0.946 0.946 0.946 0.952 0.986 0.986 0.988 0.986
cd “ 4 0.960 0.960 0.960 0.960 0.988 0.988 0.988 0.990
cd “ 6 0.950 0.950 0.948 0.954 0.980 0.980 0.980 0.982
K “ I 0.876 0.874 0.874 0.874 0.952 0.954 0.954 0.960

1200 0.5 est cd “ 2 0.954 0.954 0.952 0.956 0.992 0.992 0.992 0.988
cd “ 4 0.960 0.960 0.956 0.954 0.994 0.994 0.994 0.988
cd “ 6 0.964 0.962 0.958 0.962 0.992 0.992 0.992 0.990
K “ I 0.890 0.890 0.878 0.884 0.962 0.962 0.950 0.954

true cd “ 2 0.954 0.954 0.956 0.964 0.992 0.992 0.992 0.990
cd “ 4 0.960 0.960 0.960 0.960 0.994 0.994 0.994 0.990
cd “ 6 0.966 0.966 0.966 0.964 0.992 0.992 0.992 0.990
K “ I 0.890 0.888 0.888 0.892 0.962 0.962 0.960 0.964

1.0 est cd “ 2 0.956 0.954 0.952 0.956 0.992 0.992 0.992 0.990
cd “ 4 0.962 0.960 0.956 0.952 0.994 0.994 0.994 0.992
cd “ 6 0.964 0.962 0.960 0.964 0.992 0.992 0.992 0.992
K “ I 0.894 0.892 0.884 0.888 0.966 0.964 0.958 0.954

true cd “ 2 0.956 0.956 0.960 0.964 0.992 0.992 0.992 0.992
cd “ 4 0.962 0.962 0.960 0.958 0.994 0.994 0.994 0.992
cd “ 6 0.964 0.964 0.966 0.962 0.992 0.992 0.992 0.990
K “ I 0.894 0.896 0.892 0.900 0.966 0.966 0.964 0.964

2.0 est cd “ 2 0.962 0.962 0.956 0.958 0.992 0.992 0.990 0.988
cd “ 4 0.966 0.968 0.958 0.954 0.992 0.992 0.992 0.992
cd “ 6 0.962 0.962 0.962 0.956 0.992 0.992 0.992 0.990
K “ I 0.898 0.900 0.890 0.890 0.970 0.970 0.966 0.968

true cd “ 2 0.962 0.962 0.960 0.966 0.992 0.992 0.992 0.994
cd “ 4 0.966 0.968 0.970 0.964 0.992 0.994 0.994 0.994
cd “ 6 0.962 0.962 0.962 0.964 0.994 0.992 0.992 0.992
K “ I 0.900 0.902 0.898 0.902 0.970 0.970 0.970 0.968

NOTE: ”est” and ”true” in the column S˚ indicate that the estimated and true S˚
δ,q,x are used, respectively. In the column K,

”K “ I” indicates that network dependence is ignored in this case.
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Table 2: Empirical coverage probabilities: ρ “ 0.5

95% CI 99% CI

nI cb S˚ Estimator δ “ 0.05 0.1 0.2 0.5 δ “ 0.05 0.1 0.2 0.5

400 0.5 est cd “ 2 0.934 0.932 0.922 0.918 0.976 0.976 0.974 0.978
cd “ 4 0.942 0.940 0.930 0.924 0.984 0.984 0.980 0.978
cd “ 6 0.930 0.930 0.914 0.912 0.974 0.974 0.972 0.972
K “ I 0.804 0.802 0.788 0.788 0.902 0.896 0.892 0.902

true cd “ 2 0.934 0.934 0.932 0.938 0.976 0.976 0.976 0.976
cd “ 4 0.942 0.942 0.944 0.938 0.984 0.984 0.982 0.980
cd “ 6 0.930 0.930 0.930 0.924 0.974 0.974 0.974 0.976
K “ I 0.804 0.802 0.804 0.802 0.902 0.902 0.904 0.916

1.0 est cd “ 2 0.940 0.934 0.930 0.932 0.976 0.976 0.974 0.978
cd “ 4 0.946 0.940 0.930 0.934 0.984 0.984 0.982 0.978
cd “ 6 0.932 0.930 0.922 0.920 0.978 0.976 0.978 0.974
K “ I 0.810 0.808 0.804 0.788 0.904 0.900 0.896 0.906

true cd “ 2 0.940 0.940 0.936 0.946 0.976 0.976 0.974 0.976
cd “ 4 0.944 0.946 0.944 0.940 0.984 0.984 0.984 0.980
cd “ 6 0.932 0.932 0.934 0.936 0.978 0.978 0.978 0.980
K “ I 0.810 0.812 0.816 0.804 0.904 0.904 0.906 0.920

2.0 est cd “ 2 0.942 0.944 0.936 0.938 0.982 0.982 0.980 0.978
cd “ 4 0.946 0.944 0.940 0.936 0.984 0.986 0.988 0.988
cd “ 6 0.940 0.940 0.934 0.928 0.980 0.980 0.980 0.980
K “ I 0.830 0.826 0.818 0.808 0.922 0.922 0.912 0.914

true cd “ 2 0.942 0.944 0.942 0.950 0.982 0.982 0.982 0.984
cd “ 4 0.946 0.948 0.948 0.948 0.984 0.986 0.988 0.988
cd “ 6 0.940 0.940 0.938 0.946 0.980 0.980 0.980 0.978
K “ I 0.830 0.830 0.824 0.824 0.922 0.922 0.922 0.922

1200 0.5 est cd “ 2 0.946 0.944 0.942 0.944 0.988 0.988 0.988 0.990
cd “ 4 0.952 0.952 0.946 0.942 0.990 0.990 0.990 0.988
cd “ 6 0.958 0.956 0.948 0.952 0.994 0.994 0.992 0.986
K “ I 0.844 0.836 0.834 0.822 0.932 0.932 0.920 0.930

true cd “ 2 0.952 0.948 0.946 0.958 0.988 0.988 0.988 0.988
cd “ 4 0.952 0.952 0.952 0.958 0.990 0.990 0.990 0.988
cd “ 6 0.958 0.956 0.958 0.960 0.994 0.994 0.994 0.986
K “ I 0.844 0.844 0.844 0.828 0.934 0.934 0.940 0.938

1.0 est cd “ 2 0.950 0.946 0.940 0.942 0.988 0.988 0.988 0.990
cd “ 4 0.950 0.950 0.948 0.944 0.990 0.990 0.990 0.990
cd “ 6 0.962 0.960 0.954 0.950 0.994 0.994 0.992 0.986
K “ I 0.850 0.848 0.840 0.832 0.936 0.936 0.928 0.928

true cd “ 2 0.952 0.952 0.952 0.960 0.988 0.988 0.988 0.988
cd “ 4 0.952 0.954 0.956 0.960 0.990 0.990 0.990 0.990
cd “ 6 0.962 0.960 0.960 0.964 0.994 0.994 0.994 0.986
K “ I 0.850 0.848 0.842 0.840 0.936 0.938 0.944 0.936

2.0 est cd “ 2 0.960 0.958 0.946 0.944 0.988 0.988 0.988 0.988
cd “ 4 0.954 0.954 0.954 0.948 0.992 0.990 0.990 0.990
cd “ 6 0.960 0.960 0.958 0.952 0.994 0.994 0.994 0.990
K “ I 0.858 0.860 0.848 0.846 0.940 0.938 0.932 0.930

true cd “ 2 0.960 0.960 0.954 0.962 0.988 0.988 0.988 0.988
cd “ 4 0.954 0.954 0.958 0.960 0.992 0.992 0.992 0.990
cd “ 6 0.960 0.960 0.962 0.962 0.994 0.994 0.994 0.990
K “ I 0.858 0.856 0.850 0.844 0.940 0.940 0.944 0.934

NOTE: ”est” and ”true” in the column S˚ indicate that the estimated and true S˚
δ,q,x are used, respectively. In the column K,

”K “ I” indicates that network dependence is ignored in this case.
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We then compute the ATTE bounds for the target sample by transferring the estimates obtained from the source
sample. In this analysis, because the network structure in the target data is actually known, we can directly
compute πJ pg, xq for each pg, xq. This enables us to approximately assess the coverage property of our bound
estimator under different choices of the Wasserstein radius δ. In addition, to illustrate the effect of increasing
the size of source sample, we also consider a case in which five additional villages are included in the source
sample (nI “ 1812).

To determine a plausible range for δ, we compute the 2-Wasserstein distance between the degree distribu-
tions of the 17 source villages and 30 target villages for each covariate group (throughout this analysis, we use
the 2-Wasserstein distance). The results are reported in Figure 6.1. In the figure, ”LL” stands for the subsample
with pX1 “ 0, X2 “ 0q, ”LU” for pX1 “ 0, X2 “ 1q, and so on. The number shown at the top of each panel
indicates the computed 2-Wasserstein distance. From these results, we observe that when the source and target
data are drawn from the same population, the typical 2-Wasserstein distance is roughly 0.25 or so.

Figure 6.1: Conditional degree distributions

Based on the above finding, we slightly conservatively set the region for δ as δ P p0, 0.6s. As the baseline
conditional degree distribution, we set π˚

xpgq “ πIpg, xq (see Figure 6.1). The distance measure r∆ij is
computed using the Mahalanobis distance based on age, gender, acreage of rice production, and household
size, weighted by the path length as in Section 5. Furthermore, when i and j belong to different villages, we set
r∆ij “ 8. All other setups for estimation and bootstrap inference follow those used in the simulation analysis
in Section 5.

We report our bound estimation results in Figure 6.2. In the figure, the left and right panels correspond
to the cases with 17 and 22 villages in the source sample, respectively. The upper shaded area represents the
upper half of the 95% CI for the upper bound, and the lower shaded area shows the lower half of the 95% CI
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for the lower bound. The dashed line indicates the (infeasible) point estimate of κJ , computed using the true
conditional degree distribution πJ in the target data. Since the source and target datasets come from essentially
the same population and πI « πJ holds, as shown in Figure 6.1, our ATTE bound is highly informative,
successfully covering the estimated κJ even for small values of δ. In addition, the estimated worst case bound
does not fall below zero for any δ ď 0.6 for both sample sizes. Regarding the impact of increasing the size
of the source sample, we can observe that the length of the CI for each δ is significantly narrower in the right
panel than in the left. When 22 villages are used for the source sample, the lower 95% bound remains positive
for almost the entire range of δ values considered here. From these findings, we may state that the ATTE is
likely positive for the target data with a certain degree of confidence.

Figure 6.2: Estimated coefficient functions

(a) Sensitivity analysis result (17 villages: nI “ 1514) (b) Sensitivity analysis result (22 villages: nI “ 1812)

7 Conclusion

This paper proposes a transfer learning framework for policy evaluation in settings where the network structure
of the target data is unobserved. Following the existing literature, we adopt a covariate-shift type assumption
to estimate conditional mean potential outcomes using experimental source data. However, in the presence of
spillover effects, this assumption alone is insufficient to evaluate a specific policy in the target data due to the
lack of network information. To address this issue, we propose a sensitivity analysis approach that quantifies
the uncertainty in the unobserved target network using the Wasserstein distance between degree distributions.
The resulting bounds on the policy effect can be computed by solving a set of linear programming problems.
We derive the asymptotic distribution of the bound estimator via the functional delta method and develop a
wild bootstrap procedure for inference. As an empirical application, we use the experimental data from Cai
et al. (2015) to illustrate the practical implementation and empirical usefulness of the proposed method.

Several limitations should be noted. First, the covariate-shift assumption may be violated if the source
and target data are too dissimilar. Second, the current model specification assumes that network effects can be
entirely captured by node-level covariates, not allowing any network-level heterogeneity. Third, the proposed
framework cannot be directly applied to the evaluation of more complex policies that assign treatment based
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on individual characteristics or network positions. Finally, as with any sensitivity analysis, the interpretation
and selection of the uncertainty parameter (δ in our context) remain open questions.
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Appendix

A Technical Appendix

A.1 Derivation of the dual problem (3.3)

Recall that our primal linear program is formulated as follows:

maximize
ÿ

xPX

ÿ

u,vPG2

Γxpu, vqmpv, xq

subject to
ÿ

vPG
Γxpu, vq “ π˚

xpuq,
ÿ

u,vPG2

Γxpu, vq
ˇ

ˇu ´ v
ˇ

ˇ

q
ď δq,Γxpu, vq ě 0,@ px, u, vq P X ˆ G2

Now, introduce dual variables npu, xq for the equality constraint
ř

vPG Γxpu, vq “ π˚
xpuq for each px, uq P

X ˆ G and λx ě 0 for the inequality constraint
ř

u,vPG2 Γxpu, vq
ˇ

ˇu ´ v
ˇ

ˇ

q
ď δq for each x P X . Then, the

Lagrangian function is given by

LpΓ, n, λq “
ÿ

xPX

ÿ

u,vPG2

Γxpu, vqmpv, xq ´
ÿ

xPX

ÿ

uPG
npu, xq

˜

ÿ

vPG
Γxpu, vq ´ π˚

xpuq

¸

´
ÿ

xPX
λx

¨

˝

ÿ

u,vPG2

Γxpu, vq
ˇ

ˇu ´ v
ˇ

ˇ

q
´ δq

˛

‚

“
ÿ

xPX
λxδ

q `
ÿ

xPX

ÿ

uPG
npu, xqπ˚

xpuq `
ÿ

xPX

ÿ

u,vPG2

Γxpu, vq tmpv, xq ´ npu, xq ´ λx|u ´ v|qu .

Define the dual function by

Dpn, λq :“ sup
Γě0

LpΓ, n, λq

“
ÿ

xPX
λxδ

q `
ÿ

xPX

ÿ

uPG
npu, xqπ˚

xpuq ` sup
Γě0

ÿ

xPX

ÿ

u,vPG2

Γxpu, vq tmpv, xq ´ npu, xq ´ λx|u ´ v|qu .

If the following inequality is not satisfied

mpv, xq ´ npu, xq ´ λx|u ´ v|q ď 0 (A.1)

for some px, u, vq, then we can set the corresponding element of Γxpu, vq arbitrarily large, resulting in an
unbounded Dpn, λq. Thus, whenever (A.1) is satisfied, we must have

Dpn, λq “
ÿ

xPX

˜

λxδ
q `

ÿ

uPG
npu, xqπ˚

xpuq

¸

.
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To minimize the dual function Dpn, λq, in view of (A.1), we can profile out n from Dpn, λq by setting

npu, xq “ max
vPG

tmpv, xq ´ λx|u ´ v|qu.

Plugging this into λxδ
q `

ř

uPG npu, xqπ˚
xpuq gives the objective function in (3.3).

A.2 The dual problem of Example 3.1

The dual problem of Example 3.1 is as follows: minλě0Dpλq, where

Dpλq :“

#

λδ `
ÿ

uPG

„

max
vPG

tmpvq ´ λ|u ´ v|u

ȷ

π˚puq

+

.

By direct calculation,

ÿ

uPG

„

max
vPG

tmpvq ´ λ|u ´ v|u

ȷ

π˚puq “ maxtmp0q ´ λ,mp1quα˚ ` maxtmp0q,mp1q ´ λup1 ´ α˚q

“ mp1qα˚ ` maxtmp0q,mp1q ´ λup1 ´ α˚q.

Now, when λ ą mp1q ´ mp0q,

min
λąmp1q´mp0q

Dpλq “ min
λąmp1q´mp0q

tλδ ` mp1qα˚ ` mp0qp1 ´ α˚qu

ą mp0q ` pmp1q ´ mp0qqpα˚ ` δq.

Meanwhile, if λ ď mp1q ´ mp0q,

min
0ďλďmp1q´mp0q

Dpλq “ min
0ďλďmp1q´mp0q

tλδ ` mp1q ´ λp1 ´ α˚qu .

Hence, if δ ě p1 ´ α˚q, we should set λ “ 0, leading to min0ďλďmp1q´mp0q Dpλq “ mp1q. On the other
hand, if δ ă p1 ´ α˚q, the optimal λ is given by mp1q ´ mp0q, leading to min0ďλďmp1q´mp0q Dpλq “

mp0q ` pmp1q ´ mp0qqpα˚ ` δq. Then, it is straightforward to see that minλě0Dpλq “ κδ,1 holds.

A.3 Proofs of Proposition 4.1, Theorem 4.1, and Theorem 4.2

Throughout the proofs, we use the following notations:

ΣnI pxq :“
1

nI

ÿ

iPI
ErWiW

J
i 1tXi “ xus

ΩnI pxq :“
1

nI

ÿ

i,i1PI
E

“

WiW
J
i1 ϵiϵi11tXi “ Xi1 “ xu

‰

ΩnI px1, x2q :“
1

nI

ÿ

i,i1PI
E

“

WiW
J
i1 ϵiϵi11tXi “ x1, Xi1 “ x2u

‰
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pJnI :“

¨

˚

˚

˚

˚

˝

`

1
nI

ř

iPI WiW
J
i Li,bpx1q

˘´1
0dwˆdw ¨ ¨ ¨ 0dwˆdw

0dwˆdw

`

1
nI

ř

iPI WiW
J
i Li,bpx2q

˘´1
¨ ¨ ¨ 0dwˆdw

...
... . . . ...

0dwˆdw 0dwˆdw ¨ ¨ ¨
`

1
nI

ř

iPI WiW
J
i Li,bpxdxq

˘´1

˛

‹

‹

‹

‹

‚

JnI :“

¨

˚

˚

˚

˚

˝

pΣnI px1qq
´1 0dwˆdw ¨ ¨ ¨ 0dwˆdw

0dwˆdw pΣnI px2qq
´1

¨ ¨ ¨ 0dwˆdw
...

... . . . ...
0dwˆdw 0dwˆdw ¨ ¨ ¨ pΣnI pxdxqq

´1

˛

‹

‹

‹

‹

‚

ΩnI :“

¨

˚

˚

˚

˚

˝

ΩnI px1q ΩnI px1, x2q ¨ ¨ ¨ ΩnI px1, xdxq

ΩnI px2, x1q ΩnI px2q ¨ ¨ ¨ ΩnI px2, xdxq

...
... . . . ...

ΩnI pxdx , x1q ΩnI pxdx , x2q ¨ ¨ ¨ ΩnI pxdxq

˛

‹

‹

‹

‹

‚

and

Zpxq

dgˆdw

:“

¨

˚

˚

˚

˚

˝

zpg1, xqJ

zpg2, xqJ

...
zpgdg , xqJ

˛

‹

‹

‹

‹

‚

, Z
dgdxˆdwdx

:“

¨

˚

˚

˚

˚

˝

Zpx1q 0dgˆdw ¨ ¨ ¨ 0dgˆdw

0dgˆdw Zpx2q ¨ ¨ ¨ 0dgˆdw
...

... . . . ...
0dgˆdw 0dgˆdw ¨ ¨ ¨ Zpxdxq

˛

‹

‹

‹

‹

‚

.

Moreover, we write β “ pβpx1qJ, βpx2qJ, . . . , βpxdxqJqJ, pβ “ ppβpx1qJ, pβpx2qJ, . . . , pβpxdxqJqJ, mpxq :“

pmpg1, xq, . . . ,mpgdg , xqqJ, and m :“ pmpx1qJ, . . . ,mpxdxqJqJ.

Assumption A.1. 1. ||wpd, e, gq|| ď cw ă 8 a.s. uniformly in pd, e, gq P t0, 1u ˆ E ˆ G.

2. For all i P I,

ϵi “
ÿ

jPI
rijεj ,

where rij is a non-stochastic possibly unknown weight; tεiu are independently and identically dis-
tributed over I, independent of tpWi, Xiqu, with mean zero and variance σ2

ε ; E|εi|
4 ă 8; and

maxtmaxiPI
ř

jPI |rij |,maxjPI
ř

iPI |rij |u ď cr ă 8, uniformly in nI .

3. ΣnI pxq, ΩnI pxq, and ΩnI are positive definite for all sufficiently large nI .

4. For all x P X ,
›

›

›

›

›

1

nI

ÿ

iPI
WiW

J
i 1tXi “ xu ´ ΣnI pxq

›

›

›

›

›

“ OP

´

1{
?
nI

¯
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5. There exists b P p0, 1q such that pbc, boq — b and
?
nIb Ñ 0.

Assumption A.1.1 is standard in applications. A.1.2 allows for cross-sectional dependence in the error
terms. For example, if rij “ AI

ij , the last condition implies that each individual has only finitely many
interacting partners. The same type of error structure has often been considered in the literature (e.g., Kelejian
and Prucha, 2007; Conley et al., 2023). A.1.3 is a standard non-singularity condition. It also requires that the
proportion of each x-value is nondegenerate. A.1.4 is high-level but can be satisfied under appropriate weak
dependence conditions on tpWi, Xiqu. Finally, A.1.5 is a technical condition to eliminate the bias in the kernel
regression.

Next, we introduce assumptions used to establish the validity of the wild bootstrap procedure. Let

Bi,I – tj P I : r∆ij ď du, λi,I :“ |Bi,I |, λI :“
1

nI

ÿ

iPI
λi,I , Vi :“

¨

˚

˚

˚

˚

˝

Wi1tXi “ x1u

Wi1tXi “ x2u

...
Wi1tXi “ xdxu

˛

‹

‹

‹

‹

‚

ϵi,

where d is the bandwidth parameter used in the kernel function K.

Assumption A.2. 1. Kpsq “ Kp´sq for all s P R and Kp0q “ 1; supiPI Ep
ř

jRBi,I
|Kp r∆ij{dq|q{EλI “

Op1q; supiPI
ř

jRBi,I
|Kp r∆ij{dq|{EλI “ OP p1q; KI is symmetric and positive semidefinite a.s.

2. There exists cq0 ą 0 such that pnIq´1
ř

i,jPI ||ErViV
J
j s||∆q0

ij ă cq0 , where q0 denotes the Parzen
characteristic exponent of the kernel function K.

3. tνiju are independent of tpWi, Xi, εiqu and are uniformly bounded in i, j P I.

4. For all i P I, λi,I ď cEλI a.s., for some c ą 0.

5. d Ñ 8, and EλI Ñ 8 such that EλI{
?
nI Ñ 0.

6. a Ó 0 such that
?
nIa Ñ 8.

Assumptions A.2.1, A.2.2, A.2.3, and A.2.4 correspond, respectively, to Assumptions 1, 3, 4, and 5 in
Conley et al. (2023). Specifically, A.2.1 collects the conditions on the kernel weight function. As noted in
Footnote 8, the positive semidefinite-ness of KI is a high-level condition. Conley et al. (2023) provide an
alternative bootstrap procedure for situations where this condition fails. A.2.2 requires that the dependence
between i and j decays as the true distance ∆ij increases. The formal definition of the Parzen characteristic
exponent q0, along with related discussion, can be found for example in Andrews (1991) and Conley et al.
(2023). A.2.3 requires that the measurement errors are independent and uniformly bounded, which is standard
in the HAC estimation literature. A.2.4 restricts the number of neighbors each unit can have to be of the same
order. A.2.5 imposes conditions on the bandwidth d. Finally, A.2.6 is a technical condition needed to ensure
the consistency of pS˚

δ,q,x for S˚
δ,q,x.

Proof of Proposition 4.1
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(i) Let ℓi,bpxq :“ Li,bpxq ´ 1tXi “ xu. It is easy to see that ℓi,bpxq ď c ¨ b. To see this, for example,
suppose that do “ dc “ 1. Then,

ℓi,bpxq “ 1tXc
i ‰ xc, Xo

i “ xoubc ` 1tXc
i “ xc, Xo

i ‰ xoub
|Xo

i ´xo|
o ` 1tXc

i ‰ xc, Xo
i ‰ xoubcb

|Xo
i ´xo|

o .

With this and Assumptions A.1.1 and A.1.4,

1

nI

ÿ

iPI
WiW

J
i Li,bpxq “

1

nI

ÿ

iPI
WiW

J
i 1tXi “ xu `

1

nI

ÿ

iPI
WiW

J
i ℓi,bpxq

“
1

nI

ÿ

iPI
WiW

J
i 1tXi “ xu ` Opbq

“ ΣnI pxq ` OP p1{
?
nI ` bq.

(A.2)

Next, write

?
nI

´

pβpxq ´ βpxq

¯

“

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

?
nI

ÿ

iPI
WipYi ´ WJ

i βpxqqLi,bpxq

“ A1pxq ` A2pxq ` A3pxq,

where

A1pxq :“

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

?
nI

ÿ

iPI
WiW

J
i tβpXiq ´ βpxquLi,bpxq

A2pxq :“

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

?
nI

ÿ

iPI
Wiϵi1tXi “ xu

A3pxq :“

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

?
nI

ÿ

iPI
Wiϵiℓi,bpxq.

Observe that, for all x P X ,

A1pxq “

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

?
nI

ÿ

iPI
WiW

J
i tβpXiq ´ βpxqu1tXi “ xu

`

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

?
nI

ÿ

iPI
WiW

J
i tβpXiq ´ βpxqu ℓi,bpxq

“ OP

´?
nIb

¯

.

For A3pxq,

E

›

›

›

›

›

1
?
nI

ÿ

iPI
Wiϵiℓi,bpxq

›

›

›

›

›

2

“
1

nI

ÿ

i,i1PI
E

“

WJ
i Wi1ϵiϵi1ℓi,bpxqℓi1,bpxq

‰
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“
1

nI

ÿ

i,i1,j,j1PI
E

“

WJ
i Wi1rijri1j1εjεj1ℓi,bpxqℓi1,bpxq

‰

“
σ2
ε

nI

ÿ

i,i1,jPI
rijri1jE

“

WJ
i Wi1ℓi,bpxqℓi1,bpxq

‰

ď
σ2
εc

2b2

nI

ÿ

i,i1,jPI
|rij | ¨ |ri1j | “ Opb2q.

Hence, by (A.2) and Markov’s inequality, we have A3pxq “ OP pbq. Hence, we have
?
nIppβpxq ´ βpxqq “

A2pxq ` oP p1q by Assumption A.1.5.
To apply the central limit theorem to A2pxq, define

aj :“ cJ pΩnI pxqq
´1{2 1

?
nI

ÿ

iPI
Wi1tXi “ xurijεj

where c P Rdw satisfying ||c|| “ 1. Note that Erajs “ 0 and
ř

jPI Era2j s “ 1 hold:

ÿ

jPI
Era2j s “ cJ pΩnI pxqq

´1{2 1

nI

ÿ

i,i1,jPI
ErWiW

J
i1 1tXi “ x,Xi1 “ xurijri1jεjεjs pΩnI pxqq

´1{2 c “ 1

by Assumption A.1.2. Moreover, by Assumptions A.1.1, Assumptions A.1.2, and Assumptions A.1.3,

ÿ

jPI
Era4j s “

1

pnIq2

ÿ

jPI

ÿ

i1,i2,i3,i4PI
E

”

ri1jri2jW
J
i1 pΩnI pxqq

´1{2
ccJ pΩnI pxqq

´1{2
Wi2

ˆ ri3jri4jW
J
i3 pΩnI pxqq

´1{2
ccJ pΩnI pxqq

´1{2
Wi4 ¨ 1tXi1 “ Xi2 “ Xi3 “ Xi4 “ xuε4j

ı

ď
c

pnIq2

ÿ

jPI

ÿ

i1,i2,i3,i4PI
|ri1j | ¨ |ri2j | ¨ |ri3j | ¨ |ri4j |E

”

WJ
i1 pΩnI pxqq

´1
Wi2W

J
i3 pΩnI pxqq

´1
Wi4

ı

ď
cc4wc

4
r

nI Ñ 0.

Then, by Lyapunov’s central limit theorem, we obtain
ř

jPI aj
d

Ñ Np0, 1q. Finally, by (A.2) and Slutsky’s
theorem,

?
nI

´

pβpxq ´ βpxq

¯

d
Ñ N

`

0dw , pΣIpxqq´1ΩIpxqpΣIpxqq´1
˘

,

where ΣIpxq :“ limnIÑ8 ΣnI pxq, and ΩIpxq :“ limnIÑ8 ΩnI pxq.

(ii) By definition,

?
nIpxm ´ mq “

?
nIZ

´

pβ ´ β
¯

“ Z pJnI
1

?
nI

ÿ

iPI

¨

˚

˚

˚

˚

˝

Wi1tXi “ x1u

Wi1tXi “ x2u

...
Wi1tXi “ xdxu

˛

‹

‹

‹

‹

‚

ϵi ` oP p1q,
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where the last equality follows from the same argument as above. Note that we have pJnI
p

Ñ JnI by Assumption
A.1.4. Similarly as above, we define

aj :“ cJ pΩnI q
´1{2 1

?
nI

ÿ

iPI

¨

˚

˚

˚

˚

˝

Wi1tXi “ x1u

Wi1tXi “ x2u

...
Wi1tXi “ xdxu

˛

‹

‹

‹

‹

‚

rijεj ,

for any c P Rdwdx satisfying ||c|| “ 1. Then, by verifying the Lyapunov condition, we obtain
ř

jPI aj
d

Ñ

Np0, 1q, which implies the desired result:

?
nIpxm ´ mq

d
Ñ N

`

0dxdg ,ZJIΩIJIZ
J

˘

by Slutsky’s theorem, where JI :“ limnIÑ8 JnI , and ΩI :“ limnIÑ8 ΩnI .

Proof of Theorem 4.1

Define

ϕpmq :“
ÿ

xPX

»

– max
ΓxPBδ,q,x

ÿ

u,vPG2

Γxpu, vqmpv, xq

fi

fl .

Then, we can write concisely κδ,q “ ϕpmq and pκδ,q “ ϕpxmq.
By Theorem 2.1 of Fang and Santos (2019) (see also Shapiro (1991)), we know that

?
nIppκδ,q ´ κδ,qq “

?
nIpϕpxmq ´ ϕpmqq

“ ϕ1
mp

?
nIpxm ´ mqq ` oP p1q,

and therefore
?
nIppκδ,q ´κδ,qq

d
Ñ ϕ1

mpNp0dxdg ,ZJIΩIJIZ
Jqq, where ϕ1

mphq is the Hadamard directional
derivative of ϕ at m in the direction h P Rdgdx .

The explicit form of ϕ1 can be derived as follows. Let us denote

xΓ, fy :“
ÿ

u,vPG2

Γpu, vqfpvq

ϕpx, fq :“ max
ΓPBδ,q,x

xΓ, fy,

so that ϕpmq “
ř

xPX ϕpx,mp¨, xqq. Define

S˚
δ,q,xpfq :“ argmax

ΓPBδ,q,x

xΓ, fy.
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Consider any sequence ht Ñ h P Rdg as t Ó 0. Observe that, for Γt P S˚
δ,q,xpf ` thtq and Γ0 P S˚

δ,q,xpfq,

ϕpx, f ` thtq ´ ϕpx, fq

t
“

xΓt, f ` thty ´ xΓ0, fy

t
“

xΓt, fy ` txΓt, hty ´ xΓ0, fy

t

ď xΓt, hty,

where the last inequality follows because xΓt, fy ď xΓ0, fy. Since Γt is a sequence in Bδ,q,x and Bδ,q,x is
compact, the right-hand side converges to xΓ0, hy, leading to

lim sup
tÓ0

xΓt, f ` thty ´ xΓ0, fy

t
ď max

ΓPS˚
δ,q,xpfq

xΓ, hy. (A.3)

Meanwhile,

xΓt, f ` thty

t
ě

xΓ0, f ` thty

t

“
xΓ0, fy

t
` xΓ0, hty.

Since the above holds for all Γ0 P S˚
δ,q,xpfq,

lim inf
tÓ0

xΓt, f ` thty ´ xΓ0, fy

t
ě max

ΓPS˚
δ,q,xpfq

xΓ, hy. (A.4)

From (A.3) and (A.4), we can find that ϕ1
f px, hq “ maxΓPS˚

δ,q,x
xΓ, hy.

Hence, in our context, writing S˚
δ,q,x :“ argmaxΓPBδ,q,x

xΓ,mp¨, xqy,

ϕ1
mphq “ lim

tÓ0

ř

xPX ϕpx,mp¨, xq ` thtp¨, xqq ´ ϕpx,mp¨, xqq

t

“
ÿ

xPX

»

– max
ΓxPS˚

δ,q,x

ÿ

u,vPG2

Γxpu, vqhpv, xq

fi

fl .

Consequently,

?
nI

´

pκδ,q ´ κδ,q

¯

“ ϕ1
mp

?
nIpxm ´ mqq ` oP p1q

“
ÿ

xPX

»

– max
ΓxPS˚

δ,q,x

?
nI

ÿ

u,vPG2

Γxpu, vq p pmpv, xq ´ mpv, xqq

fi

fl ` oP p1q

d
Ñ

ÿ

xPX

»

– max
ΓxPS˚

δ,q,x

ÿ

u,vPG2

Γxpu, vqGpv, xq

fi

fl

by Proposition 4.1(ii).

Proof of Theorem 4.2
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Let ϵ˚
i :“ ηipϵi. Write

?
nI

´

pβ˚pxq ´ pβpxq

¯

“

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

?
nI

ÿ

iPI
WiY

˚
i Li,bpxq ´

?
nI pβpxq

“ A˚
1pxq ` A˚

2pxq ` A˚
3pxq,

where

A˚
1pxq :“

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

?
nI

ÿ

iPI
WiW

J
i

!

pβpXiq ´ pβpxq

)

Li,bpxq

A˚
2pxq :“

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

?
nI

ÿ

iPI
Wiϵ

˚
i 1tXi “ xu

A˚
3pxq :“

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

?
nI

ÿ

iPI
Wiϵ

˚
i ℓi,bpxq.

Analogously to the proof of Proposition 4.1, we can easily find that A˚
1pxq “ OP

´?
nIb

¯

. For A˚
3pxq,

decompose A˚
3pxq “ A˚

31pxq ` A˚
32pxq, where

A˚
31pxq :“

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

?
nI

ÿ

iPI
Wipϵ

˚
i ´ ηiϵiqℓi,bpxq

A˚
32pxq :“

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

?
nI

ÿ

iPI
Wiηiϵiℓi,bpxq.

Noting that pϵi ´ ϵi “ Yi ´ WJ
i

pβpXiq ´ ϵi “ WJ
i pβpXiq ´ pβpXiqq, write

Wipϵ
˚
i ´ ηiϵiqℓi,bpxq “ Wiηippϵi ´ ϵiqℓi,bpxq

“ WiW
J
i pβpXiq ´ pβpXiqqηiℓi,bpxq

“: ciηiℓi,bpxq,

where ci “ OP p1{
?
nIq by Proposition 4.1(i). Further,

E˚

›

›

›

›

›

1
?
nI

ÿ

iPI
Wipϵ

˚
i ´ ηiϵiqℓi,bpxq

›

›

›

›

›

2

“
1

nI

ÿ

i,i1PI
E˚

“

cJ
i ci1ηiηi1ℓi,bpxqℓi1,bpxq

‰

“
1

nI

ÿ

i,i1PI
E˚rηiηi1scJ

i ci1ℓi,bpxqℓi1,bpxq.

Recall that E˚rηηJs “ KI , and hence E˚rηiηi1s “ Kp r∆i,i1{dq. Then,

1

nI

ÿ

i,i1PI
cJ
i ci1ℓi,bpxqℓi1,bpxqK

˜

r∆i,i1

d

¸

ď OP pb2q
1

pnIq2

ÿ

i,i1PI

ˇ

ˇ

ˇ

ˇ

ˇ

K

˜

r∆i,i1

d

¸ˇ

ˇ

ˇ

ˇ

ˇ
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“ oP pb2q,

where the last line is due to Lemma A.1 of Conley et al. (2023). Hence, by Assumption A.1.5 and Markov’s
inequality with (A.2), we have A˚

31pxq “ oP˚p1q in probability. Similarly,

E

¨

˝E˚

›

›

›

›

›

1
?
nI

ÿ

iPI
Wiηiϵiℓi,bpxq

›

›

›

›

›

2
˛

‚“
1

nI

ÿ

i,i1PI
E

“

WJ
i Wiϵiϵi1E˚rηiηi1sℓi,bpxqℓi1,bpxq

‰

“
1

nI

ÿ

i,i1PI
E

«

WJ
i Wiϵiϵi1ℓi,bpxqℓi1,bpxqK

˜

r∆i,i1

d

¸ff

“ Opb2q,

implying that A˚
32pxq “ oP˚p1q in probability.

We apply the same decomposition to A˚
2pxq: A˚

2pxq “ A˚
21pxq ` A˚

22pxq,

A˚
21pxq :“

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

?
nI

ÿ

iPI
Wipϵ

˚
i ´ ηiϵiq1tXi “ xu

A˚
22pxq :“

˜

1

nI

ÿ

iPI
WiW

J
i Li,bpxq

¸´1
1

?
nI

ÿ

iPI
Wiηiϵi1tXi “ xu.

Then, by the same argument as in the evaluation of A˚
31pxq, it is straightforward to see that A˚

21pxq “ oP˚p1q

in probability.
Since the above discussion applies to all x P X , consequently, we have

?
nIpxm˚ ´ xmq “

?
nIZ

´

pβ˚ ´ pβ
¯

“ Z pJnI
1

?
nI

ÿ

iPI

¨

˚

˚

˚

˚

˝

Wi1tXi “ x1u

Wi1tXi “ x2u

...
Wi1tXi “ xdxu

˛

‹

‹

‹

‹

‚

ηiϵi ` oP˚p1q,

with probability approaching one, where the definitions of xm˚ and pβ˚ should be clear from the context.
Furthermore, following the same argument as in the proof of Theorem 3.1 (equation (20)) of Conley et al.
(2023), we obtain

pΩnI q
´1{2 1

?
nI

ÿ

iPI

¨

˚

˚

˚

˚

˝

Wi1tXi “ x1u

Wi1tXi “ x2u

...
Wi1tXi “ xdxu

˛

‹

‹

‹

‹

‚

ηiϵi
d˚

Ñ Np0dwdx , Idwdxq

in probability, and hence

Pr˚
´?

nIpxm˚ ´ xmq ď s
¯

“ Pr
´?

nIpxm ´ mq ď s
¯

` oP p1q

32



uniformly in s P R. Then, in view of Proposition 4.1(ii) and Theorem 4.1, we can see that
?
nIppκ

˚

δ,q ´ pκδ,qq

and
?
nIppκδ,q ´ κδ,qq share the same asymptotic distribution conditional on the event t pS˚

δ,q,x “ S˚
δ,q,xu.

In view of the proof of Theorem 4.1, we can see that pκδ,q,x “ κδ,q,x ` OP p1{
?
nIq, where κδ,q,x :“

maxΓPBδ,q,x

ř

u,vPG2 Γpu, vqmpv, xq. Suppose that Γ P S˚
δ,q,x. Then,

ÿ

u,vPG2

Γpu, vq pmpv, xq “
ÿ

u,vPG2

Γpu, vqmpv, xq `
ÿ

u,vPG2

Γpu, vqp pmpv, xq ´ mpv, xqq

“ κδ,q,x ` OP p1{
?
nIq

“ pκδ,q,x ` OP p1{
?
nIq

ě pκδ,q,x ´ a

with probability approaching one under Assumption A.2.6. This implies that PrpS˚
δ,q,x Ď pS˚

δ,q,xq Ñ 1 as
nI Ñ 8. On the other hand, suppose that Γ P pS˚

δ,q,x. Then,

ÿ

u,vPG2

Γpu, vqmpv, xq “
ÿ

u,vPG2

Γpu, vq pmpv, xq `
ÿ

u,vPG2

Γpu, vqpmpv, xq ´ pmpv, xqq

ě pκδ,q,x ´ a ` OP p1{
?
nIq

“ κδ,q,x ´ a ` OP p1{
?
nIq.

Here, note that ifΓ R S˚
δ,q,x, then the strict inequality

ř

u,vPG2 Γpu, vqmpv, xq ă κδ,q,x must hold. Hence, since
a ` OP p1{

?
nIq converges to zero in probability as nI increases, the above inequality implies that Γ P S˚

δ,q,x

holds with probability approaching one; that is, Prp pS˚
δ,q,x Ď S˚

δ,q,xq Ñ 1. Hence, PrpS˚
δ,q,x “ pS˚

δ,q,xq Ñ 1.

B Estimation and Bootstrap Inference for the Lower Bound

The estimation of the lower bound κδ,q can be performed by solving the following linear programming:

pκδ,q :“
ÿ

xPX

»

–min
Γx

ÿ

u,vPG2

Γxpu, vq pmpv, xq

fi

fl

subject to
ÿ

vPG
Γxpu, vq “ π˚

xpuq,
ÿ

u,vPG2

Γxpu, vq
ˇ

ˇu ´ v
ˇ

ˇ

q
ď δq,Γxpu, vq ě 0,@ px, u, vq P X ˆ G2,

where pm is obtained through the varying-coefficient estimation as in Subsection 4.1.
To describe the wild bootstrap procedure for the lower bound, let

pT ˚
δ,q,x :“

$

&

%

Γ P Bδ,q,x :
ÿ

u,vPG2

Γpu, vq pmpv, xq ď pκδ,q,x ` a

,

.

-

,

which is considered as the estimator ofT ˚
δ,q,x :“ argminΓPBδ,q,x

ř

u,vPG2 Γpu, vqmpv, xq. Then, the distribution
of

?
nIppκδ,q ´ κδ,qq can be simulated in the following manner.
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Algorithm B.1 Wild bootstrap procedure for inference on κδ,q

1: Estimate pβpxq for all x P X using (4.2)
2: Compute the residual pϵi :“ Yi ´ WJ

i
pβpXiq for all i P I

3: for b “ 1 to B do
4: Draw ηpbq “ pη

pbq

1 , . . . , η
pbq

nI q „ ΦIΛ
1{2
I Np0nI , InI q

5: Generate a bootstrap sample tpWi, Y
˚pbq

i q : i P Iu, where Y
˚pbq

i :“ WJ
i

pβpXiq ` η
pbq

i pϵi

6: Obtain pβ˚pbqpxq by the kernel weighted regression of Y ˚pbq

i on Wi for all x P X
7: Compute pκ

˚pbq

δ,q :“
?
nI ř

xPX

”

min
ΓxP pT ˚

δ,q,x

ř

u,vPG2 Γxpu, vqzpv, xqJppβ˚pbqpxq ´ pβpxqq

ı

8: end for
9: Compute the empirical α quantile pωB,α{2 of

!?
nIppκ

˚pbq

δ,q ´ pκδ,qq : b “ 1, . . . , B
)

Further, the asymptotic 100p1 ´ αq% CI for κδ,q can be obtained by

C1´αpκδ,qq :“

„

pκδ,q ´
pωB,1´α{2

?
nI

, pκδ,q ´
pωB,α{2
?
nI

ȷ

.
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