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Abstract

We propose, analyze, and apply a conditional density estimator that projects a prior time-
series estimator onto the set of distributions satisfying given conditional moment conditions
with a functional nuisance parameter. Theoretically, we show that the estimator reduces
the limiting divergence from the latent population density when the prior is inconsistent
and the moment conditions are correctly specified. A Monte Carlo simulation and an
empirical application to stock index returns illustrate the method, using moment conditions
derived from option pricing restrictions and treating the stochastic discount factor as a
nuisance parameter. The simulations demonstrate substantial improvements in density
estimation under realistic yet controlled conditions. Empirically, the estimator enhances
monthly S&P 500 index return density forecasts in likelihood ratio tests and improves the
out-of-sample investment performance of option-enhanced portfolios by refining the timing
and composition of one-month S&P 500 index option combinations.

Keywords: Conditional density estimation, information projection, Stochastic Dominance,
stock index returns, stock index options

1 Introduction

Financial decision making in risk management, derivative pricing, and portfolio
optimization often requires conditional density estimates of asset returns. Approaches
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based on Expected Utility, Stochastic Dominance (SD), or Mean-Lower Partial
Moment orders rely on a full probabilistic view that accounts for asymmetry and tail
risk beyond point forecasts and variances. In addition, the return distribution should
be updated to reflect prevailing market conditions. Common sources of conditioning
information include market prices and investment yields of securities, and theoretical
pricing restrictions.

A key challenge is incorporating new information to refine an existing density
estimate. A large forecasting literature estimates conditional return distributions
using GARCH-type models, quantile regressions, and nonparametric methods. These
approaches rely primarily on historical data and often do not explicitly integrate
real-time market conditions or theoretical pricing restrictions. How can an existing
density estimate be updated to incorporate the available conditioning information?

We propose a new estimator for this task: the Conditional Information Projection
Density Estimator (CIPDE). It starts with a potentially inconsistent prior estimate
of the conditional return distribution and updates it to satisfy conditional moment
conditions via information projection (see for example (Csiszar, 1975; Schennach, 2005;
Komunjer and Ragusa, 2016)) to minimize the divergence from the prior. This results
in a new density estimate that integrates information from both the prior estimate and
the moment conditions. To acknowledge that side information is generally incomplete,
the conditional moment conditions may take the form of inequalities and include
functional nuisance parameters such as the ubiquitous Stochastic Discount Factor
(SDF) in Finance.

While the CIPDE estimator is valid for multivariate densities, our primary focus
is on forecasting univariate conditional densities, where the curse of dimensionality is
more manageable and the projection-based methods show tangible improvements in
finite samples.

Although the CIPDE estimator is not derived from a likelihood, it admits a
Bayesian interpretation: the prior density estimate is updated via an information
projection that incorporates moment conditions as constraints. This can be seen as a
generalized Bayesian update that replaces the likelihood with a set of economically mo-
tivated admissible distributions. The resulting posterior minimizes Kullback—Leibler
divergence from the prior while satisfying the conditioning information, echoing
principles of robust and entropic Bayesian inference under partial specification-see
Jewson et al. (2018).

In our empirical analysis, we anticipate that the initial density estimator may be
statistically inconsistent (and thus may asymptotically violate moment conditions)
because it is constructed under assumptions of debatable distributional shapes or
erroneous conditioning information.
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We establish a statistical theory for the CIPDE, including pseudo-consistency,
convergence rates, and the limiting distribution, using a combination of information-
theoretic and variational techniques. Among other things, the theory shows that
CIPDE asymptotically reduces KL divergence to the latent true conditional distribu-
tion under general regularity conditions.

A Monte Carlo simulation experiment and an empirical analysis apply CIPDE
to stock index returns using conditional moment restrictions based on market prices
and pricing restrictions for index options. The experiment foreshadows the empirical
analysis by density forecasting based on repeated random samples drawn from a
simplified but known simulation process. The empirical analysis focuses on density
forecasting for monthly S&P 500 index (SPX) returns and optimization of combina-
tions of one-month Chicago Board Options Exchange (CBOE) SPX options given
the posterior density estimate.

For the pricing and trading of options, it is essential to account for the conditional
and non-Gaussian nature of the return distribution. Most liquid index options have
a short maturity of several days or weeks and their valuation and risk assessment
critically requires depends on up-to-date market information. Since option payoffs are
inherently asymmetric, mean-variance analysis is not appropriate and higher-order
risk needs to be taken into account. Encouragingly, payoffs at expiry of concurrent
option series are driven solely by by the value of the index at the option expiration
date, so that the estimation can focus the one-dimensional density of SPX returns.

The conditional moment conditions in the simulation experiment and empirical
analysis are based on observed market price quotes for index options and general
option pricing restrictions that exclude SD relations in the spirit of Constantinides
et al. (2009). In the simulation experiment, these conditions are known to be true
for a subset of all options; in the empirical analysis, they are assumed to be true for
the options that are selected based on a number of option characteristics (maturity,
moneyness, delta and premium).

The optimization of option combinations is inspired by Constantinides et al.
(2020); Post and Longarela (2021); Beare et al. (2025), but seeks to improve the
density forecast of index returns that is plugged into the solver. The earlier studies
employed conditional density estimates that are statistically inconsistent because they
fix or restrict the variation of the shape of the distribution and its parameters and
use a limited set of conditioning information (such as the risk-free rate and a market
volatility index). In the present study, these estimates serve as the initial estimator,
and we attempt to correct their biases using the conditional moment conditions.

The simulations demonstrate significant potential improvements in density es-
timates through information projection, particularly when the prior is biased or
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imprecise. The reduction in relative entropy increases with the number of qualified op-
tions and decreases in the bid-ask spread, highlighting the crucial role of conditioning
information.

In the empirical analysis of SPX returns and options, CIPDE significantly improves
the density forecasts out-of-sample (OOS) for a range of prior density forecasts. In
optimizing index option combinations, the use of CIPDE yields significant OOS
performance improvements compared with the use of the prior or a risk-neutral
posterior density forecast, accounting for quoted bid-ask spreads using a simple
buy-and-hold strategy.

Apart from the link with the aforementioned studies on the pricing and trading
of index options using SD, our study is related to several earlier applications of EL
and Bayesian econometrics in asset pricing and portfolio optimization.

Most notably, Stutzer (1996) applied Bayesian updating with moment conditions
to option prices for option valuation. However, that study focuses on estimating the
risk-neutral distribution rather than the physical (or real-world) distribution. The
risk-neutral distribution is a biased estimator of the physical distribution because it
conflates the physical distribution with the SDF. Although the risk-neutral distribution
can be used for valuing options, it is less suitable for real-world decision making
and utility-based portfolio optimization due to its biased nature. Furthermore,
Stutzer (1996) does not provide a formal statistical theory for the estimated risk
neutral distribution, instead focusing on practical application rather than developing
a comprehensive statistical framework for the distribution itself.

In a related study, Stutzer (1995) pioneers the application of Bayesian econometrics
for model selection and validation in empirical asset pricing. Similarly, Almeida and
Garcia (2012) and Post and Poti (2017) develop and apply asset pricing tests based
on general Minimum Discrepancy estimation and a combination of EL and SD,
respectively. These studies however do not focus on density estimation and its
application in forecasting and optimization.

Post et al. (2018) developed statistical theory and numerical algorithms for
portfolio optimization based on EL and applied them to an equity industry allocation
problem. The present study focuses on information projection instead of moment
projection, considers conditional moment conditions, and it account for potentially
inconsistent priors and the role of functional nuisance parameters. In addition, the
index option combination problem seems more suitable for a model-free approach than
the multi-asset allocation problem, due to its lower dimensionality (one underlying
stock index vs. a multitude of industries).

The remainder of the paper is structured as follows. Section 2 introduces the formal
framework of the CIPDE, presents its variational representation, and establishes
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the statistical properties of the estimator. Section 3 introduces the principles of
option pricing and option trading that will be used in our simulation study and
empirical study. Section 4 conducts Monte Carlo experiments, and Section 5 applies
the methodology to the estimation of the conditional distribution of monthly S&P
500 index returns and optimization of SPX option combinations. Section 5 concludes.

2 Statistical Theory

2.1 Preliminaries

We aim to estimate a latent conditional distribution £, using (i) an initial estimator
F (the prior) and (i) a set of .J valid conditional moment inequalities. The proposed
estimator belongs to the class of information projection-based methods, relying on
the minimization of the KL divergence subject to the moment constraints. Unlike
classical Bayesian updating which uses a likelihood function, this procedure integrates
information through conditional moment restrictions.

The framework admits the possibility that the distribution depends on conditioning
information summarized by observed and/or latent variables (e.g., covariates). While
those are not explicitly modeled here, all results are to be understood as applying
conditionally, for almost every fixed value of the conditioning variables.

The support & C RP is assumed independent of the conditioning variables. In
our simulation experiment and empirical analysis, a univariate distribution (p = 1)
is used, but the method also applies to multivariate cases (p > 2), although the
curse of dimensionality presumably makes direct applicability in high-dimensional
applications elusive; see the Conclusions.

This curse arises because the in high dimensions, the linear growth of the available
data is not usually able to match the exponentially growing complexity of the feasible
set, making it increasingly difficult to accurately estimate the high-dimensional
conditional density or ensure feasibility of the moment inequalities without substantial
regularization or structural assumptions.

The prior F, which may be a kernel density estimator or a parametric model-
based estimate, is assumed to be absolutely continuous with respect to the Lebesgue
measure, almost surely. This means that £ admits a density function f on its support.
This assumption is standard in nonparametric and semiparametric density estimation
and holds for most practical estimators used in empirical work. It ensures that the
KL divergence between F and other distributions with densities is well-defined. F' is
allowed to be an inconsistent estimator of F'.

The conditional moment conditions include a functional parameter m € M, where
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M is a convex and closed subset of a Sobolev space of smooth functions. More
precisely, M C W?22(8), the space of square-integrable functions on S whose first and
second weak derivatives are also square-integrable; see Adams and Fournier (2003)
for a formal definition. In our simulation experiment and empirical analysis, the
functional parameter is an SDF. The moment conditions take the form of inequalities:

/ H(S)m(S)g(S)dS = 0,
S

where ¢ is the density of a candidate conditional distribution G, and H: S — R’ is
a known vector-valued function.

The convex set of admissible densities that satisfy the moment inequalities at the
functional parameter m is denoted by

M(H, F;m) := {G<<F : /S H(S)m(5)g(S)dS > o} :

where < denotes absolute continuity.

The CIPDE estimator (3 is introduced in the next subsection. Its asymptotic
properties as a sample size T' — oo are investigated in the subsequent subsections. The
analysis builds upon variational representations, convexity properties, and information-
theoretic tools to derive results concerning pseudo-consistency, convergence rates,
robustness to prior inconsistency, and inference validity for SD comparisons.

In the following, convergence of densities is mostly assumed to be taking place in
01(S); the space of (equivalence classes of ) integrable real functions on S equipped with
the usual integral of absolute value norm. The symbol ~~ denotes weak convergence,

and <& denotes epi-convergence in distribution; see Knight (1999).

2.2 The CIPDE Estimator

To define the CIPDE estimator we use a variational problem formulation of the
traditional constrained minimization of the relative entropy:

G € argmin min {KL(GIE) + X, () } (1)
where KL(G||F) is the Kullback-Leibler divergence from G to F and xy is the
characteristic function of the admissible set, taking the value 0 for admissible and
~+oo for inadmissible. The estimation involves joint optimization over the density GG
and the functional parameter m.
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Using duality and convex optimization arguments (e.g., Feydy et al. (2019), Yilmaz
(2021)), the variational problem can be equivalently written in a saddle-point form:

inf infsup {KL (G||F) +>\T/H 9(8)dS — M(/ggsmsq)}, (2)

meM G x<o

with Lagrange multipliers A € R? and i € R enforcing the moment and normalization
constraints, respectively. Solving the inner problem yields a closed-form expression
for the optimal density g,, (for a fixed m) in the form of a Gibbs posterior:

7(5) exp (ATH(S)m(S))
Js F(S) exp (AFH(S)m(S)) dS’

gm(9) = (3)

where Ar is the empirical Lagrange multiplier vector satisfying feasibility and com-
plementary slackness. The estimator G is then given by:

6= [ aco(@)iny @)da.

where m7 is the minimizer over M.

The CIPDE can be viewed as a generalized Bayesian estimator: Moment inequali-
ties replace the likelihood in Bayesian updating. The KL divergence plays the role of
a regularizer that ensures proximity to the prior Ia , given that the solution respects
the moment conditions. The additional optimization over the functional parameter
m creates further deviation from the classical Bayesian setting; it provides leeway in
the projection procedure to choose optimally between the projection sets indexed by
the functional parameter.

If an additional prior distribution were available over the functional space M-see,
for example, Li and Zhao (2002), then a density estimator could also be definable by
integrating g,, w.r.t. the m-values for which M(H, a8 m) # (), via the aforementioned
prior that must be supported on them. Such a procedure could then be characterized
as Bayesian information projection averaging, contrasting the current one where the
information projection additionally involves optimal selection of the parameter.

2.3 Pseudo-Consistency

We begin the investigation of the asymptotic properties, by establishing the pseudo-
consistency of the CIPDE estimator; high-level assumptions about the convergence
of the initial estimator F' and the asymptotic identification of the optimal functional
parameter are introduced.
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Assumption 1 (Prior Convergence-Exponential Moments). There ezists a density
foos such that f ~ fo in €'(S). Furthermore, [;exp(tTH(s)m(s)foo(s)ds < 400 for
somet >0, me M.

This first part of the assumption ensures that the initial prior density estimator
converges in probability to a deterministic limit f., inside £}(S). The limit may differ
from the true DGP density f. Fio(s) := [ 1{z<s} () foo(@)dz need not equal the
DGP cdf F. In many applications, it can be expected that F, ¢ M(H, F..;m) for
all m € M for a set of values for the conditioning variables of positive probability,
even though F' € M(H, F,,;m) for some SDF and that the DGP satisfies strictly the
moment inequalities, because the estimator may use a counterfactual distribution
shape or does not correctly take into account the conditioning information or it is
incorrectly smoothed, etc.

In parametric models, the ¢! convergence follows if the likelihood has a bounded
derivative w.r.t. the parameter, and the parametric estimator has a unique pseudo-
true value at which it converges weakly; see Blasques et al. (2018) for examples in the
context of GARCH-type models. In nonparametric kernel-based density estimation,
such convergence can be established under standard bandwidth and smoothness
assumptions; see, for example, T'sybakov (2009). In semiparametric settings, such as
sieve maximum likelihood estimation or partially linear models, uniform convergence
results for f are also available when the parametric component is estimated at y/n-rate
and the nonparametric correction satisfies a Donsker-type condition; see, for example,
Blundell et al. (2012). Thus, the first part of Assumption 1 encompasses a wide range
of estimation frameworks relevant to practitioners.

The second part of Assumption 1 requires the existence of some f,-exponential
moments for the product Hm, for almost every value of the conditioning variables.
It is a strong condition that is, however, weaker than support boundedness. Along
with the first part of the assumption, it implies the weak epi-continuity-see Knight
(1999)-of the functionals g — M(H, g;m) for any g that converges to fs, in £1(S).

The second assumption is useful for asymptotic identification.

Assumption 2 (Functional Parameter Identification). If fo, = f, then there ezists
some mg € M, such that [ H(S)mo(S)f(S)dS > 0. Otherwise, the following hold:

1. The set MY := U,,eA\M(H, F..,m) is conver.

2. The mapping m — G, where G, := arg mingemm, ro:m) KL(G|| Fx), s injec-
tive on MVY.

The first part of Assumption 2 requires the existence of a functional parameter
value w.r.t. which the moment conditions are non-binding for the limiting f.
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when this is actually the DGP. This is a mild restriction given that H can be always
conveniently modified. The remaining part of the assumption ensures the identifiability
of the limiting functional parameter m,, by leveraging the strict convexity of the
KL divergence in its first argument and the convex structure of the feasible sets
M(H, F.;m). The injectivity condition ensures that different m’s lead to distinct
projections, thereby preventing flat regions in the objective function.

The assumption implies that the composite map

m — inf KL(G||Fy)
GEM(H, Foosm)

is strictly convex on MY, and thus admits a unique minimizer mo,. A sufficient
condition for Assumption 2.1 it that there exists a G F, which is a member of any
non empty M(H, Fi,,,m), A sufficient condition for the injectivity of the mapping
m +— Gy, = arg mingem(n, roo;m) KL(G|| Fx) over the set MY is that the moment
function H(S)m(S) is injective in m, for every S in a set of positive F,, probability.

The following result establishes then (pseudo) consistency for G if for some m,
the set M(H, Fi,,;m) is non empty. It derives the existence of a unique limiting and
sample independent m,, at which the empirical parameter my weakly converges.
The limiting density will then be an element of M(H, Fi.,; ms ). If on the other
hand emptyness is the case for any M(H, Fi..; m) then the optimization problem is
asymptotically ill-posed; weak convergence to a limiting criterion that is identically
equal to +o0 is obtained:

Theorem 1. Under Assumptions 1 and 2, as T — oo, then: a) If for some m,
M(H, F.;m) # 0, then there erists a unique my, € ./\/l such that Gm, ~> Gm.,
01(S), for a unique Gy, € M(H, Fo;mog), with G (5) = [¢ 1{z<s(E) g (€ )dm.
b) If M(H, F.o;m) # 0 for all m € M, then the optzmzzatwn problem in (1) is
ill-posed.

Proof. First, notice that KL(-||-) is lower semicontinuous due to Proposition 8 in Feydy
et al. (2019) and the fact that ¢! convergence of densities imply weak convergence of the
underlying measures. Also due to Assumption 1, and via Skorokhod representations ap-
plicable due to Theorem 1 of Cortissoz (2007), we have M(H, F, m) N M(H, F,,m),
continuously w.r.t. m, which is then directly translated to the weak epiconvergence
of the indicators. Using again the Skorokhod representations it is obtained that:

KL(CJIE) + Xaaqet,fm) () > KLCIFoe) + Xoa(enmcmy (),

continuously w.r.t. m. If M(H, F,,,m) # 0 for some m € M, then existence and
uniqueness of my, and subsequently of G, follows from the strict convexity of
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KL(-||F') on the convex M(H, F,, m) for each m for which this is non-empty as well
as from the existence and the identifiability of the limiting parameter implied by
Assumption 2. ]

Thus, the CIPDE procedure guarantees the weak approximation of a unique
limiting posterior distribution G,,_ for which the moment conditions are satisfied, as
long as there exists an m such that M(H, F,,m) is non-empty. When moreover Fj,
obeys the moment conditions, hence F, € M(H, Fi,,,m), then the CIPDE procedure
asymptotically recovers it. G,,_ need not equal the DGP distribution F; this is the
case only if F<F,, and the functional parameter space M is well-specified.

2.4 Rate and Limiting Distribution

The results in case a) of Theorem 1 are refined to obtain standard convergence rates
and the limiting distribution for the scaled discrepancy between the CIPDE density
estimator and its limit.

The derivations are based on the convenient representation of the CIPDE estimator
as the solution of the inner Kuhn-Tucker problem in (2) evaluated at the optimal SDF.
This representation along with Theorem 1.a) already entails that Ar(myg) weakly
converges to a non-sample dependent pointwise negative Lagrange multiplier A (Mmoo );
its 7™ component is zero if [¢H;(S)m(S)fx(S)dS > 0. Using an argument that is
based on Skorokhod representations-see Knight (1999), if [ H;(S)m(S) foo(S)dS > 0,
then A;r(m) is eventually zero almost surely.

The following high-level assumption enables the refinement of the aforementioned
limiting properties of the optimal empirical Lagrange multipliers:

Assumption 3 (Prior Rate and Weak Convergence). For some rp — oo, rp(f —
foo) ~ G pointwisely over S, where G is a process with almost surely continuous
sample paths. If J(H, F.;m) # (0, there exists a neighborhood of my,, such that for
any m inside this, M(H, F,m) and J(H, F.;m) are non-empty, J(H, F;m) is
independent of m, and the matrix

vy, = / H,, (S)HT () exp(AL (m)m(S)H(S)) foo(S)dS,

158 well-defined, and has a minimum eigenvalue bounded below a positive constant that
is independent of m; there J,, := J(H, Fo;m).

For the Empirical Cumulative Distribution Function (ECDF), the assumption can
be verified via results like the ones in Doukhan et al. (1994) for stationary and strong
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mixing processes. For parametric models with differentiable likelihoods, it can be
verified in cases where the derivative is bounded, the parameter estimator has a unique
pseudo-true value and it is asymptotically Gaussian with standard rates; see again
Blasques et al. for GARCH-type models. Other semi-non-parametric estimators, like
the kernel-based estimators or the non-parametric MLEs may have more complicated
rates that could depend on bandwidths, and/or non-Gaussian limiting distributions;
see for example Ch. 24 of Van der Vaart (1998). The second part of the assumption
holds whenever the .J,,__ components of H are linearly independent, and the number
of binding constraints depends continuously on m locally around m., at the limiting
F. This among others enables the invocation of implicit function arguments that
ensure asymptotic smoothness of the associated Lagrange multiplier vectors w.r.t.
the integral constraints.

Assumptions 1-3 and standard expansions then suffice for the derivation of the
limiting behavior of the random element (&7, ;) comprised of the translated and
rescaled by r7 components &7 1= rr(Ap(mr) — Ao (M), and {r 1= re(my — My).
This is summarized in the following auxiliary lemma, which is in turn useful for the
derivation of the rates and the limiting distribution of the CIPDE estimator:

Lemma 1. Suppose that Assumptions 1-3 hold. Then, on ls(R7me x §),

(éT, CT) ~ (éoov COO)7 (4)

for
. argmingey € + V! 2(G, A, moo)H%/me ,on J,
0,on {1,2,...,J} — Jn,

2(G, A mns) = /R H, (S)G*(S)dS.

G*(S) := exp(AL (Mmoo ) Mmoo (SYH(S))G(S), H = ey, Hj. with

R, Ajoo(msy)= ‘
Hj = ¢ Aveo(me) O, |u|% = u™ Au, while
R, )\j,oo(moo) <0

Coo i = argcmin Z(¢)

EHmoo

N
o
i

(Moo (Moo) + D [[s H(S) € (S) foo (5)dS]) " [sH(S) € (S) G (S) dS+
1 [ K6(9)%gm.. (S)dS,
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for 5(8) := AL (moe) H(S) € (S)+ (D [[sH(S) € (S) f (S)dS]) " H(S) mas (S)+
ETH (S) mo (), with Dy denoting the derivative of the limiting vector of Lagrange
multipliers w.r.t. the integral constarints, and H,,. denotes the convex cone obtained
as the Painleve-Kuratowski limit of ro(M — m>).

Proof. Duality implies that for each m, the optimal Lagrange multiplier solves the
optimization problem minx<g [ exp(ATH(S)myp (S ))dE. Assumption 1 implies that
the objective converges locally uniformly over the multiplier, and continuously w.r.t.
Mo in probability to the limiting criterion [ exp(ATH(S)moo(S))dEs, while As-
sumption 3 implies that the latter is strictly convex. The previous imply the existence
of the limiting multiplier Ay (m«) as the unique solution to the asymptotic prob-
lem minx<g [ exp(ATH(S)moo(S))dFs. Consider now the rescaled and translated
problem:

7 (/Sexp ()\EH (S)mr (9)) f(S)ds — /Sexp (}\ZO (Moo) H (S) oo (5)) 7(9) dS) 7

which can be expanded as

=1 [en (L () H(S)mr (5) (14 EH S mr (5) + 5 (€S ma (5))") £ (5)ds

2 / exp (AL (m00) HL(S) s (9)) £ (5) dS,

which weakly converges locally uniformly in £ to the strictly convex €T | s H(S)ms (S) G (S)dS+
€T [(H(S)HT (S)m% (S) gim.. (S) dSE establishing the first result. An analogous

oo
expansion w.r.t. ¢ produces

rrAL (Mo fsexp (AT( ) H < (S))H(S) ¢ (S) f(5) dS+
rr Jsexp (AL (meo) H (5)) Dy fs ( C(S)f(S )dSH(S) ~ (8) f () dS+
Jsexp (AL (moo)H(S)moo <S)DAT fs (S) € (S) f(S)dSH(S) ¢ (S) f(5) dS+
Js exp (AL (mee) H(S) mos (5)) ErH (S) € (S) [ (S) dS+
Jsexp (AL (moo) H(S ) < (9)) 3 (kr(9))* f (S) dS,

where
kr(S) == AL (ma) H(S) € (S)
+Dx, [sH(S)C(S) f(S)dSH (S) mu (S) + a€7H (S) mu (S)

while differentiability of the optimal limiting Lagrange multiplier follows from As-
sumptions 1-3, and the Implicit Function Theorem in Banach spaces, see for example
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Rockafellar and Wets (1998). The previous expansion can be similarly seen to
converge, locally uniformly w.r.t. ¢, to

Ao (Moo) + K)' [ H S)G*(S)dS+
LIS AL (meo) H(S) ¢ (S) + KTH(S)m <>+szo (S) o (9)]” G (S) dS,

where K := D, [[{H(S) ¢ (5)fx (S)dS], due to that under Assumptions 1 and 3,
the following term converges to zero in probability as T" — oc:

AT (170) / H(S)¢(S) exp (NLH(S)ma () rr.f (S)dS

This last result holds because A, (M) satisfies the first-order condition of the limiting
dual problem:

/S H(S)m.0 (S) exp (NLH(S)ma (S)) foo(S)dS = 0,

implying that first-order deviations in the moment function are asymptotically or-
thogonal to the gradient direction. The limiting criterion is then strictly convex due
to that the integrand of the second term is a strictly convex quadratic form in ¢,
provided that g, (S) > 0 almost everywhere and H(.S) has full rank on the support
S. The first term is linear in {. Therefore, Z({) is a strictly convex functional.
Also, the feasible set H,,_, defined as the Painlevé—Kuratowski limit of (M —
M), 18 a convex cone. Hence, the strict convexity of the objective over a convex
domain implies the existence and uniqueness of the minimizer. The previous establish
the second result. O

Then the required limit theory of the CIPDE density estimator is readily obtained
from (3) and the Delta method; the following theorem describes it:

Theorem 2. Suppose that Assumptions 1-3 hold, and that M(H, F.;m) # 0 for
somem € M. a. If J,., =0, then in (=(S),

TT(Q - foo) ~G. (5)
b. If Jp, # 0, then in £2(S),
rT(f] - gmoo) ~ gom (6)

where

o A(S +gmoo fS
goo(s) T fsexp()\;ro(moo)H(S) oo( ))foo( )dS

A (S) = G"(8) + (€x () s (S) + Al (Mo) G (5)) H(S) g ()

and €, Coo, G, as in Lemma 1.
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Proof. The first case follows from the eventual nullification of Ay w.h.p. and As-
sumption 3. The second case follows from the fact that Assumptions 1-3 along

rT(fT - foo) g
with Lemma 1, imply that &r ~ | € |, the fact that §,,,.(S) =
CT Coo

F(S)exp(AFH(S)mr(S)) . (S) = £(8) exp(ALH(S)meo(S))
s F(8) exp( AL H(S)m1(S))dS” Grmeo Js foo () exp(ALH(S)moo (S) )dS
applications of the Delta method. [

and two successive

Theorem 2 specifies a rate of convergence, inherited by the limit theory of the
prior, and a limiting distribution for the translated conditional density estimator of F'.
In all the considered cases the CIPDE estimator is not asymptotically independent of
the limiting prior; this result is not surprising because the KL inconsistency reduction
obtained by the CIPDE is asymptotically defined by restrictions that depend on the
limiting prior Fi.

Whenever J,,,.. = 0, and thus F, strictly satisfies the moment conditions, the
eventual nullification of the multiplier implies that the limit theory of the initial
estimator is recovered. Due to the first part of Assumption 2 this encompasses the
case where the prior is consistent, i.e. fo = f.

When the limiting Lagrange multipliers are non-zero, i.e., J,,. # (), the CIPDE
estimator incorporates binding moment inequality constraints. These constraints
act as a source of side information, effectively restricting the estimator to a lower-
dimensional feasible set. The resulting limiting distribution G, is a projection of
the unconstrained limit process G onto a constrained tangent cone, modulated by
the Lagrange multipliers and the local geometry of the feasible set (via the influence
functions &, and (). As is well known from the theory of constrained M-estimation
and semiparametric efficiency bounds, such projections reduce asymptotic variance
in directions aligned with the active constraints. Hence, the CIPDE estimator may
achieve variance reduction-i.e., efficiency gains-relative to the unconstrained estimator
f , provided that the constraints are informative. This interpretation aligns with
results in Andrews (1999), van der Vaart (1998), and Bickel et al. (1998), and
formalizes the intuition that valid economic restrictions, when binding, yield more
precise inference.

In the special case where rp = /T, G is zero mean Gaussian, I 0, Ajoo <
0, Vj € Jm., and for any S € S, Ueen,,.. {€(5)} = R, then G, is a zero mean
Gaussian process, and the likelihood ratio tests performed in Section 5.4, can be
proven to be asymptotically valid.
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2.5 Inconsistency Correction

Theorem 1 provides limited information regarding the relation between the limiting
G and the true F. If M(H, Foo;m) = {F} for some m € M, then G = F, and G
is then a weakly consistent estimator of the DGP distribution. However, in many
applications, F' cannot be expected to be the single element of M(H, F,,;m) for
any premissible SDF. For instance, when F' satisfies moment inequalities with strict
inequality, there will typically be other elements nearby it.

The result below, utilizing the Pythagorean Theorem within information ge-
ometry (refer to Nielsen (2020) for instance), asserts that G effectively diminishes
the asymptotic divergence to F' in scenarios where F, fails to meet the moment
inequalities:

Theorem 3. Under Assumption 1, and if F € M(H, F;m) for some m € M, then:
KL(F||G) = KL(F| F) — KL(G| Fx)- (7)

Proof. It F = F, or G = F,, the result follows trivially by Theorem 1. If
F # F, and G # F,, then Theorem 1 along with the CIPDE estimator rep-
resentation in (3) implies that there exists a limiting non-sample dependent, pointwise
non-positive and non identically zero multiplier Ay (my), such that g, (S) =

foo (8) exp(AL (Moo )moo (S)H(S)) ; Ky
T ®) exg(A;(mm)mm(S)H(S))dS. The second part of Theorem 3.1 in Csiszar (1975)

then implies the result. [

Equation (7) has a nontrivial information-theoretic interpretation when F,, ¢
M(H, F; ms): the information lost by approximating the DGP F by the limiting
posterior G, compared to the information lost by approximating F' by the limiting
prior Fi, is reduced by the non-negative quantity KL(G||F) > 0, that is, the
information gained by using moment inequalities to update the inference to the
limiting posterior G, instead of using the moment conditions ignorant limiting prior.
Hence, whenever F, violates the moment conditions, the CIPDE density estimator
performs asymptotically a (partial) KL inconsistency correction.

2.6 Inconsistency Correction under Approximate Feasibility

In practice, F' may not exactly satisfy the pricing-implied moment inequalities required
by the feasible set; F' ¢ M(H, Fi,,,m), Ym € M. Notably, asset pricing restrictions
may be violated if the stock market or option market is out of equilibrium or if
the observed prices are not fully synchronized. This motivates the study of cases of
approximate feasibility where I’ violates the constraints only by a small amount at
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least for some m. The question then becomes whether CIPDE still asymptotically
yields a meaningful Kullback-Liebler correction towards F'.

Suppose that the limiting prior F, is both different from F' and does not satisfy
the moment inequalities, while additionally F' is only approximately feasible:

inf /Hj(S)moo(S)f(S)dS = —0, for some small § > 0,

jEJ’moo S

thus the Pythagorean decomposition of KL divergence does not necessarily hold
exactly. However, it remains plausible to ask whether the limiting CIPDE still
satisfies:

KL(F||G) < KL(F||Fx),

thus constituting an asymptotic partial KL-correction on F'. This is formalized in
the following result:

Proposition 1 (Partial KL Correction under Approximate Feasibility). Under
Assumption 1, suppose also that:

(a) F ¢ M(H, F,m) for allm € M,

(b) the following exponential moment condition holds:

/ exp (ALH(S)m0(S)) f(S) dS > exp (!Jmm\ - sup | .5) ,
S jeJ*

where
— inf /H Ymao (S) f(S) dS,
je‘]’moo
J* = arg min /H Ymeo(S) f(S) dS.
]ejmoo
Then,

KL(F||G) < KL(F||Fa).

Proof. Using elementary calculus, we obtain the KL. decomposition:

KL(F|[F) = KL(FIIG)+KL(GIIFw)+[S(1Ogg(S) —log foo(5)) (f(S) — ¢(95)) dS.
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Rearranging the expression with respect to KL(F||G), we get:
KL(F||G) = KL(F|[F) — KL(G|[ Fix)
- [ GoBa(5) ~10g £2(5) (4(5) - 9(5)) 5.

By the first-order condition of the limiting dual problem, the cross term equals:
| Gora(S) ~ g £2(8)) (1) = 9(5)) 5 = tog ( [ exp (NLH(S)ma(5)) £(5) a5

~ [ XLH(S)ma($)1(5) dS
S
The second term above can be bounded using the worst-case component in the
set J:
[ XCH(S)ma($)/(8)dS < | - 515 Ay -5
S jeJ*
Therefore, we obtain the inequality:

KL(F||G) < KL(F||Fx) — KL(G|| Fx) + |Jm.. | - sup |Asj| - 0.
jeJ*

Hence, partial correction is ensured whenever:

KL(G||Fx) > |Jm sup |As | - 9.

jeJ*

ol
Finally, by the dual representation of the projection GG, we have:

KL(G]Fi) = log [ exp (NLH(S)mac(S)) £(S) dS,
S
which completes the proof. O

The above result shows that even when the moment conditions fail to hold
exactly, the CIPDE projection may still produce a KL-partially corrected update,
provided the dual potential (expressed through the exponential moment) outweighs
the severity of the moment violations. Intuitively, this implies that the model’s
“pull” through the dual weighting structure can still dominate minor economic
inconsistencies — a robustness property particularly valuable in contexts where asset
pricing restrictions rely on data from disequilibrium or unsynchronized sources. The
proposition formalizes a sufficiency threshold: if the prior is bad enough and feasibility
violations are small enough, the update is justified.

The bound involving |/ | - SUp;e s« [Ao,j| - 0 is conservative. A refined inequality
could use Jensen’s inequality or concentration bounds to exploit curvature in the
exponential term, especially if the vector A, is sparse or structured.
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3 Option Pricing and Option Combinations

CIPDE is applied in this study to stock index returns using moment conditions
based on an option pricing system in the spirit of Constantinides et al. (2009), and
optimization of combinations of index options in the spirit of Constantinides et al.
(2020); Post and Longarela (2021); Beare et al. (2025). This approach is applied
both to randomly generated data sets from a known DGP in a simulation experiment
(Section 4) and to historical monthly SPX returns and price quotes of CBOE SPX
options in an empirical application (Section 5).

Constantinides et al. (2009) develop a system of model-free pricing restrictions for
multiple concurrent option series with different option types (put or call) and different
strike prices. These restrictions are quite general because they don’t assume that the
option market is complete or perfect, and they furthermore don’t assume a specific
functional form for the SDF. Still, the truth of these restrictions may depend on the
characteristics of the selected option series and the prevailing market conditions.

Violations of the equilibrium system, or pricing errors, imply that the market
index is inefficient in the sense of being dominated by second-degree SD (SSD)
by portfolios that are enhanced using properly constructed option combinations.
Constantinides et al. (2020); Post and Longarela (2021); Beare et al. (2025) develop
and apply optimization problems to construct such enhanced portfolios. These studies
do not find robust evidence for mispricing in the form of significant out-of-sample
out-performance for one-month options, consistent with the notion that the price
quotes correctly reflect the latent conditional return distribution.

A limitation of these studies is that they do not account for time-variation of
the shape of the distribution and risk premiums which generally results in statistical
inconsistency of the conditional distribution estimator. For instance, the empirical
analysis by Constantinides et al. (2009) is based on a scaled version of the unconditional
ECDF, which uses a fixed shape, fixed Market Risk Premium and fixed Variance
Risk Premium. Estimation error for the conditional distribution in turn introduces
the risk of false rejection of options market efficiency and poor OOS performance of
optimized option combinations.

The present section discusses the use of CIPDE in this application area. We
analyze the statistical significance of the improvements in OOS forecasting ability
using a Likelihood Ratio Test (LRT). We analyze the economic significance using the
OOS investment performance of option combinations that are optimized under the
posterior density (G).

We deliberately deviate from the aforementioned studies in two subtle ways. First,
the equilibrium system of Constantinides et al. (2009) is tightened by requiring the
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SDF to be log-convex, which refines SSD into Decreasing Absolute Risk Aversion
(DARA) SD (henceforth DSD) (Vickson, 1975; Bawa, 1975). This approach, also
used in Post and Poti (2017), sharpens the analysis by excluding pathological shapes
of the SDF and facilitates numerical implementation by allowing for a convenient
log-linearization of the CIPDE problem.

Second, rather than accepting or rejecting the pricing efficiency of all options, we
identify a subset of options for which it is plausible that the pricing system is valid.
Specifically, we consider a superset of N tradable options and a subset of Ny < N
options that pass a stricter set of filters for assumed pricing efficiency. This approach
parallels Stutzer (1996), who constructed a nonparametric risk-neutral distribution
from one set of option prices and applied it to value other options.

To illustrate the importance of estimating the physical distribution and modeling
the SDF, we also estimate the risk-neutral distribution by applying CIPDE under a
constant SDF, which resembles the methodology of Stutzer (1996) even more closely.
While the risk-neutral distribution is, by construction, well-suited for valuing options,
it is less suitable for forecasting and optimization because of its inherent pessimistic
bias.

3.1 Preliminaries

The focus is on European-type stock index options. A total of N distinct option series
are considered with different option types (put or call) and different strike prices Kj
i=1,...,N. All options have the same time to expiry (denoted here by one time
unit), and their expiration date equals the forecast horizon for the underlying index
return.

The annualized risk-free rate on a maturity-matched Treasury bill is Rg. The
current index value and the index value at expiry date are Sy and S; = Sp(1 + Rs),
respectively. The (annualized and maturity-matched) dividend yield to the index is
RD-

The price return Rg is treated as a random variable with latent distribution F' that
is estimated with priors F' and posteriors G. The specification of the priors will be
discussed in more detail in Section 4 (Monte Carlo simulation) and Section 5 (empirical
study); the specification of the moment conditions is discussed in Subsection 3.2
below.

The option payoffs are X, = P;; := max(K; — S;,0) for puts and X;; = C;; :=
max(S; — K;,0) for calls, : = 1,..., N. The payoffs of all options are driven exclusively
by the index price return Rg, so that a perfect single-factor structure arises for the
payoffs of all options.
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The present values are denoted by X; o = P, for puts and X, = C; for calls,
respectively. Whereas the present values are latent, the quoted ask price a; and
quoted bid price b; > a; are observable. In addition, if prices are efficient, then the
ranking b; > X, o > a; is obtained.

Dynamic replication or hedging of options using rebalanced combinations of bills
and stocks is not considered because it is challenging to estimate the entire dynamic
process and the relevant transaction costs of portfolio rebalancing, which depend on
the rebalancing frequency and portfolio turnover. Instead, the investment universe
consists of combinations of bills, stocks, and options that are held until the option
expiry date.

Buying or selling bills and stocks is assumed to involve proportional one-way
transaction costs of 0.1%, which has a negligible effect on the reported results based on
our buy-and-hold strategies (in contrast to dynamic replication or hedging). Options
can be bought at the quoted ask price a; and written at the quoted bid price b;.
Relative to the option premium, the bid—ask spread (a; — b;) is much larger and more
consequential than the proportional transaction costs for trading bills and stocks,
especially for illiquid option series and during market turbulence. The profit or
loss at the expiration date is given by (X;1 — a;(1 + Rp)) for a bought option and
(b;(1+ Rp) — X;1) for a written option.

The focus is on one-month options. For this maturity segment, a relatively long
time series, broad cross-section of liquid options, and rich research literature are
available for SPX options. In addition, this maturity aligns with the common use of
one-month returns in financial econometrics, portfolio optimization, and empirical
asset pricing.

3.2 Option pricing conditions

To update the prior Ftoa posterior G, CIPDE uses conditioning information in the
form of conditional moment conditions. It is important that the moment conditions
are not controversial because they are not directly tested but used to incorporate
side information, in this study. For this reason, we eschew parametric option pricing
formulas, fully-specified asset pricing theories or models that assume a complete or
perfect option market.

Instead, we employ and extend a system of model-free pricing restrictions based
on Constantinides et al. (2009). The restrictions are imposed for a subset of Ny < N
options that pass a set of data filters. In arbitrage-free equilibrium, an SDF for
pricing cash flows at the option expiration date, m : S; — R, exists that is consistent
with the prevailing market prices of the securities (index, bill and options):
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0.999 < Ep[m(1 + Rg)] < 1.001; (8)
0.999 < Ep[m(1 + Rp)] < 1.001; (9)
bi S EF[mXi,l] S ag;; 7 = 1, e 7]\/'0. (10)

Attractively, these pricing restrictions do not assume that options can be replicated
without costs using dynamic combinations of bills and stocks, and they furthermore
accounts for the relatively large bid-ask spread for index options. In addition, the
restrictions are imposed in the empirical application only for options that pass our
tight filters based on maturity, moneyness, option delta and option premium (see
Section 5.1).

The SDF is generally not unique under these conditions, and the estimation
benefits from imposing structure on the SDF to prevent overfitting it to a misspecified
prior F. The SDF is assumed to represent the Intertemporal Marginal Rate of
Substitution (IMRS) of index investors and it is partially identified by a set of
functions that obey standard regularity conditions for the IMRS:

{m e C®:m(Sr) > 0;m'(St) < 0;In(m(Sr))” >0} =2 M > m. (11)

These SDF's are positive, increasing and log-convex, as required for the IMRS of
standard utility functions. Although Constantinides et al. (2009) do not require this
property, convexity directly follows from the generally accepted property of DARA
for standard utility functions (Kimball (1990)). Violations of the equilibrium system
(8)-(11), or pricing errors, imply that the market index is dominated by DSD by
portfolios that enhance the index using certain option combinations.

If the log-convexity condition is not imposed, as in Constantinides et al. (2009),
the analysis allows for SDF's with a pathological shape such an implausible reverse
S-shape with increasing risk aversion followed by decreasing risk aversion. As a result,
pricing errors occur less frequently under the prior estimate; the posterior density
will diverge less from the prior density if pricing errors do occur; and the evidence for
OOS forecasting success and investment outperformance weakens. Similarly, Basso
and Pianca (1975) show that general n-th degree SD allow for financial option prices
that are inconsistent with DARA.

The risk-neutral distribution (@) can be estimated using the same pricing con-
ditions (((8))-((10))) by restricting the SDF to be constant: m(S) = (1 + Rg)~'.
This approach naturally introduces a pessimistic bias for estimating the physical
distribution which may weaken forecasting success and investment performance.

The pricing restrictions (8)-(11) are conditional moment conditions because the
probability distribution and option prices are updated every month. The truth of the
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moment conditions is not directly tested in this study. In the simulation study, the
moment conditions are known to be true. In the empirical study, we select a subset
of options for which the moment conditions appear most plausible uisng option filters.
In addition, the truth of the moment conditions (for the selected options) is tested
indirectly based on the OOS forecasting and investment success.

The CIPDE relies on the empirical counterparts of the moment conditions (8)-(11)
based on Exs[m(1 + Rg)|, Esm(1 + Rp)], and Eg[mX;4], ¢ = 1,---, Nyp. These
empirical conditions are expected to be effective because specification error and
estimation error is likely to lead to violations of these conditions for at least some of
the option series.

If the density estimator is discretized using a finite set of atoms {S;r}, the
condition m € M can be discretized and linearized to a finite set of linear restrictions
on the SDF values {m(S;r)}. In this study, we discretize the density estimators using
an equally spaced grid in the range[-0.6,0.6] with 25 bps (0.0025) grid size, resulting
in 481 atoms. After discretization and linearization, CIPDE becomes a Bi-convex
Programming problem that is convex in the SDF values m(S; 1) and convex in the
probability weights §(S; ). The present study solves the problem using the two-step
optimization procedure of Post and Poti (2017).

3.3 Likelihood Ratio Test

To evaluate the OOS forecasting ability, we apply the Likelihood Ratio (LR) test of
Vuong (1989), as per Amisano and Giacomini (2007).

WLRt-‘rl(Fu é) = <log ft(St—i-l) — log §¢(Sr+1)

N——

; (12)

n~ 'S WLR 1 (F, G)
VY WLR, o (F, G)2 v/

where t = 1 refers to the month that the first one-step-ahead OOS forecast is produced
and n is the number of forecasts evaluated.

As per Amisano and Giacomini (2007), the numerator does not include a correction
for serial dependence because serial dependence is relatively weak for monthly stock
index returns. Ljung-Box tests and autocorrelation function analysis of the log
likelihood ratios, WLRHI(F , G), do not detect significant serial autocorrelation over
our sample of 321 months. Short truncation lags in correcting for serial dependence in
the denominator of Eq. (13) have been shown to improve the finite-sample properties

LRT(F,G) := (13)
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of tests of equal predictive ability (see Diebold and Mariano, 2002), this is used to
motivate excluding the correction term in Amisano and Giacomini (2007).

3.4 Optimized option combinations

To analyze the economic significance of the improvements in forecasting ability in the
empirical application, we analyze the investment performance of option combinations
that are optimized based on prior or posterior estimates. The aim is to identify risk
arbitrage opportunities that occur if an option-enhanced portfolio dominates the
index by SD.

The analysis differs from Constantinides et al. (2020), Post and Longarela (2021),
and Beare et al. (2025) because it assumes pricing efficiency for the Ny options
included in the moment conditions used to construct the posterior. Consequently,
performance improvement under the posterior can stem from (i) avoiding unprofitable
positions in the options included in the moment conditions and (ii) exploiting pricing
errors in options not included in the moment conditions.

The optimization problem for a given density forecast H = F.G, Q is specified as
follows:

N N
max Z Bib; — Z o a; (14)
N =1 ]zV:I
s.t. <51 + ZO‘Z’XM — Z@'Xm) = S, (15)
'LTVI N =1
Z%%—Z&SL (16)
i=1 i=1

o, B3>0, i=1,..., N. (17)

The model variables {«;} and {5;} represent the open long positions entered at
the best ask price and short positions entered at the best bid price, respectively, in
the individual options.

The objective is to maximize the net option premium, following Post (2003) and
Beare et al. (2025). A key advantage of this objective is that the premium is indepen-
dent of distributional assumptions or estimation error. Maximizing this deterministic
return component is expected to improve the robustness of the dominance relation.

The operator >y denotes the partial order induced by the SSD relation. The
optimization is based on the second-order SD rule instead of DSD, as in the afore-
mentioned benchmark studies. Tightening the dominance rule in this way is expected
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to enhance robustness to distributional assumptions and estimation error (H # F).
Second, exact and tractable problem formulations are available for optimization
with SSD constraints, while optimization under higher-order SD constraints relies on
approximations and is computationally more demanding (see, e.g., Post and Kopa
(2017)).

The SSD condition is generally infinite-dimensional and non-smooth, and thus
numerically intractable. For discretized density estimates, however, it reduces to
a finite system of Mixed Integer Linear Programming constraints on the Expected
Shortfall levels of the option-enhanced portfolio and the index. We adopt the
computational strategy of Post and Longarela (2021), which builds on the linearization
of Expected Shortfall by Rockafellar and Uryasev (2000).

Finally, the position limit vazl o + Zf\;l B; <1 is imposed, following Constan-
tinides et al. (2020). This limit reduces concerns about market liquidity, since at most
one open option position is taken per unit of index. In addition, it acts as a vector
norm restriction on the model variables, which is expected to enhance robustness
and realized performance; see DeMiguel et al. (2009). As the objective function, the
position limit is not affected by distributional assumptions or estimation error.

Optimal positions that are expected if the density forecasts are accurate include
writing overpriced covered calls (if any) and buying underpriced protective puts (if
any), because such positions simultaneously lower downside risk (by construction)
and improve risk-adjusted expected returns (in case of mispricing), as required by
the dominance condition.

At every formation date, we solve the linearized problem using Linear Programming
for the various discretized prior and posterior density forecasts (H = F.G, Q) For
every forecast, we evaluate the consequences for index investors of buying the chosen
options at their ask prices or writing at bid prices, and holding the options until
cash settlement at expiration. We evaluate the OOS investment performance of
the option-enhanced portfolio. In addition to the mean and the standard deviation
of return, we evaluate the Certainty Equivalent Return (CER) for a power utility
function with RRA = 1, 4, 10, computed across the expiration dates.

4 Monte Carlo Experiment

A Monte Carlo simulation experiment is used to analyze the pre- asymptotic behavior
of the updated density estimator. We simulate the divergence KL(-||F') for F, G, and
Q and the test statistic LRT (-, F ) for F, G, and Q The experiment assumes that
all options are correctly priced (Ng = N), so risk arbitrage opportunities do not exist.
In this case, option-enhanced portfolios based on F necessarily underperform those
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based on G, making such a comparison tautological. We therefore focus exclusively
on statistical performance and do not report investment performance in this section.

4.1 Design

Suppose that Sy = 100 and Rg obeys a log-normal distribution (F'). The expected
return is based on the classic mean-variance approximation pg = pu(vy) :== Rp + 703,
where v is a latent aggregate RRA coefficient.

The variance is based on a second-order Taylor series approximation by Kang and
Yoon (2010): 0§ = 0*(7) := 0§ + y040q + 0.57°04 (kg — 3), where (03,0, kq) are
the risk-neutral variance, skewness and kurtosis.

By the probability calculus of the lognormal, the location parameter is M () =
In(1 + pu(v)) — 4V (7) and the scale parameter is V(v) = In (1 + o?(7)/(1 + pu(7))?).
The risk-neutral distribution @) arises here as the special case with v = 0.

The prior F' takes the correct, lognormal form but its parameters are based on
the RRA estimator 4p: M (7) and V(97). It could be based on time-series estimates
for the physical variance 0%, combined with the extracted @ moments, in a GMM
estimation procedure, as in Bakshi and Madan (2006) or Kang and Yoon (2010).
Instead of modeling the precise volatility dynamics and estimation method, we assume
that 47 ~ U(y+ do — 01,7+ do + 1), where &g is the bias and 0; > 0 is the semi-range.

One may think of §y as capturing the non-vanishing effect of specification error for
the volatility dynamics and §; as capturing the vanishing effect of sampling variation
reflecting the sample size (T'). The limiting case d; — 0 then represents 7' — oc.

The conditional information for constructing the posterior G includes the quotes b;
and a; for N call options with strikes K; = Sy +0.015¢(i —0.5(N + 1)), i =1,--- | N,
as well as the equilibrium system (8)-(11).

The Present Value of the call options amounts to X, := Eg[mX; ], where the
latent SDF is assumed to take a power shape: m o (1 + Rg)~7. The bid-ask spread
has width W; := (a; —b;) = wX, o, where w > 0 is the fractional spread; it is randomly
located around the Present Value: a; ~ U(X; 0, X;0(1 + w)), so that it includes the
latent true Present Value: a; < X, <0;,1=1,--- .

We set v =5 and (Rp, 0622, 0o, ko) = (0,0.04/12, —1,4.5), all representative values
for monthly S&P500 returns and one-month SPX options. The RRA level v = 5
is relatively high compared to estimates from risky choice experiments, to generate
realistic values for the Market Risk Premium and Variance Risk Premium, as is also
the case for typical option-implied RRA estimates in Bakshi and Madan (2006) or
Kang and Yoon (2010). We abstract from dividends in the simulations: Rp = 0.

We vary the bias §y = 0,5 and semi-range §; = 1,5 to analyze the effect of the
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goodness of the prior, and we vary the cross-sectional breadth N = 5,25 and the
spread w = 0.010,0.002 to analyze the effect of the information contents of the
moment conditions. The assumed breadth is smaller than the number of qualified
SPX options in our empirical analysis; the assumed spreads are representative for the
quoted spreads under normal market conditions in recent years.

The improvements in density estimation are quantified by repeatedly drawing
a random RRA estimate 4y ~ U(y + 6o — 61,7 + 0o + 61), t = 1,---,300, each
representing a random underlying time series sample, and computing the parameters
of F accordingly (M (%), V(%)) Next, we construct (¢ using CIPDE based on system
(8)-(11) and the simulated bid-ask prices {a;, b; } We also construct the risk-neutral
() using the constant SDF m(Sy) = (1+ Rp)~!

Having generated F, G and Q for a given 44, we proceed to compute the divergence
measures KL(F||F), KL(G||F) and KL(Q||F) In addition, we apply forecasting
ability tests based on LRT(F, F'), LRT(G, ') or LRT(Q, F') to 10,000 random samples
of 300 return realizations from the true F. Finally, we construct the optimal active
portfolio with open option positions and evaluate its economic goodness relative to
the true F' using various investment performance measures.

The simulation design aligns with the statistical theory outlined in Section 2.
The form of the SDF and the moment functions, together with the assumption of
log-normal index returns, imply the existence of exponential moments. The choice of
the bias and semi-range parameters is consistent with RRA estimates that converge,
as 01 — 0 (or T'— oo in case of time-series estimation), to a deterministic value at
standard rates and with asymptotic Gaussianity.

4.2 Divergence

Table 1 summarizes the results for the divergence measure KL(H||F), H = F, G, Q.
Reported are the quartile boundaries (p25, p50 and p75) across the 300 random
draws of 4.

Not surprisingly, if F' is unbiased and precise ((dy,d;) = (0,1)), improvements are
difficult to achieve, even if many tight moment inequalities are available ((N,w) =
(25,0.002)).

However, the divergence KL(F||F) quickly increases as the bias (6y) or semi-
range (0;) is increased. Whereas the bias (Jy) mostly affects the median value of the
divergence (p50), the semi-range mostly affects the inter-quartile range (p75-p25).
Even a small number of loose moment inequalities ((N,w) = (5,0.010)) now suffices
for achieving material improvements.

The strongest results naturally are obtained if F' is biased and imprecise, and
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many tight moment inequalities are available ((dg,d1, N, w) = (5,5,25,0.002)). In
this case, G generates more than 50% reduction of the KL(-|F) levels.

The estimated risk-neutral Q strongly diverges from the true F', due to its false
assumption that v = 0, even in the benign case with (dg,d1) = (0,1). The bias is
already severe if only a few loose moment conditions are imposed. If the prior is
consistent (6, = 0) or precise (§; = 1), then @ is clearly inferior to the physical G.
Even in the least favorable case (dy,d,) = (5,5), Q shows greater divergence than G
in most cases.

[Insert Table 1 about here.]

4.3 Predictive Ability

An alternative way to evaluate the effect of the information projection is to analyze
the rejection rates for the forecasting ability test. For this purpose, LRT(F, F )
LRT(@,F), or LRT(Q,F) are computed based on 10,000 random samples of 300
return realizations from the true F'. Table 2 reports the rejection rates for nominal
significance levels of 2.5%, 5%, and 10%. The rejection rate measures the relative
frequency of samples in which F, G, or Q is classified as significantly better than F
at the assumed significance level.

The rejection rates for LRT(F, F ) are slightly above the nominal significance level
if F' is unbiased and precise ((Jo,d1) = (0,1)). This finding is reassuring about the
statistical test size, given that F, lies in the null for 65 = 0.

The rejection rate increases significantly if F is estimated with lower accuracy.
The high rejection rate for oy = 5 is reassuring about the statistical test power, given
that Fi lies deep in the alternative in this case. The rejection rate for LRT(G, F) is
even higher than for LRT(F), F ), as a result of the relatively high correlation between
the likelihood scores of F' and G.

Consistent with the high KL(Q|| F) in Table 1, rejection rates are very low for
LRT(Q F ) across all specifications, reflecting the mherent pessimistic bias of Q

[Insert Table 2 about here.]

5 Empirical Analysis

The analysis now shifts to real-life stock index returns and option price quotes.
The focus is on density forecasting for monthly SPX returns and optimization of
combinations of monthly CBOE SPX options using various prior and posterior density
forecasts.
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5.1 Data

The primary source for SPX option price data is intra-day quotes captured at 15:45
ET from the iVolatility database, available from January 2004 through January 2023.
We backfill these intra-day quotes with closing price data from OptionMetrics IvyDB,
covering the period from January 1996 to December 2003. We include options with
29 calendar days to expiry.

Before January 2016, SPX option expiry dates were recorded as the Saturday
following the third Friday of the month, although the Friday index level was used for
settlement. We use the time to the settlement value in our time-to-expiry estimation.
In four months, the sample trade dates fell on Thanksgiving Day, when the options
exchange was closed (22 November 2001, 2007, 2012, and 2018). The absence of
quotes on these days leaves M = 321 trade dates with valid option data for analysis.

We apply a series of filters based on moneyness, option delta, and
option premium to select options for inclusion in the analysis. A first,
more permissive set of filters defines the investable universe of N tradable
options, while a second, more restrictive set of filters specifies the subset of
Ny options for which the moment conditions are imposed in the posterior
density estimation.

Following standard conventions in empirical research, we exclude in-the-
money (ITM) options, which tend to be less liquid than out-of-the-money
(OTM) options. We also impose a minimum delta of 0.15 for calls and a
maximum delta of —0.15 for puts, in order to exclude deep OTM options.
Additionally, we exclude options with bid prices below 15 cents.

Table 3 presents summary statistics for the options that are filtered in. Separate
results are provided for puts and calls. The table reports the quartile boundaries (p25,
p50, and p75), computed across all M = 321 monthly strips, for the cross-sectional
breadth (Np for puts and N¢ for calls), as well as the average and standard deviation
(computed across all Np or No qualified options) of moneyness, IV, and the bid-ask
spread.

Consistent with the maturation of the options market, the cross-sectional breadth
increases and quoted spreads decline over time. In the most recent five years, the
number of qualified option series (Np + N¢) exceeds 100, and the quoted spread falls
below 1% of the midpoint premium for both puts and calls. These patterns suggest
increasing market efficiency and declining profitability of active option trading over
time. They also support the calibration of option breadth and bid-ask spreads used
in the Monte Carlo simulations in Section 4.

[Insert Table 3 about here.]

To characterize general market conditions, our analysis also uses data on the
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risk-free rate, dividends paid on the index constituent stocks, and the overall level
of market volatility. The one-month T-bill rate and dividend yield are obtained
from OptionMetrics IvyDB, while S&P 500 Index and VIX values are sourced from
Thomson Reuters Eikon.

5.2 Prior Density Estimators

To generate prior density estimates (F’ ), we apply three common methods for esti-
mating the conditional distribution of stock index returns:

Fix:a lognormal distribution with conditional mean and volatility,
FECDF . a transformation of the historical unconditional ECDF, and

Fyns © a forecast density generated using a GJR-GARCH model with returns
simulated via Filtered Historical Simulation (FHS).

The conditional means for all three forecast distributions, and the conditional
standard deviation for FLN and FECDF, are estimated using arguments from Constan-
tinides et al. (2009). Specifically, the conditional mean is based on the prevailing
one-month Treasury bill rate (Rp), the estimated market risk premium (MRP), and
the prevailing dividend yield (Rp), such that Ex[Rs| = Rp + MRP — Rp.

We set the annualized MRP to 4%, and verify that that our results and conclusions
are robust to plausible variations in this parameter—presumably because option prices
are more sensitive to the scale and shape of the return distribution than to its location.

Conditional volatility is proxied by the implied volatility (IV) of the nearest-to-
the-money call option. Our results and conclusions about information projection are
robust to reasonable variations in the estimator of conditional standard deviation.
However, it should be noted that the CIPDE problem may fail to admit a solution if
an excessively poor prior is used.

The conditional ECDF ﬁ’ECDF is derived by transforming the unconditional ECDF
computed over a rolling window of 800 monthly returns before each trade date. This
broad window is chosen to capture sufficiently many historical tail events. The ECDF
is build on a regular grid of return values in the range [—0.6,0.6], spaced at 25
basis points. Translation and scale transformations are applied to the atoms of the
unconditional ECDF to match the target mean E[Rs] and volatility (IV). Using
this approach, the conditional distribution preserves the shape of the unconditional
distribution.
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The GJR-GARCH FHS model is implemented following Barone-Adesi et al.
(2020)." On each trade date, the model is fitted using daily return data in an 800-
month historical moving window up to the trade date. A set of 10,000 return paths
is then simulated, with drift adjusted to the target mean, and the conditional ECDF
is estimated from the simulated series using a Gaussian kernel smoothing function
with bandwidth set using Silverman’s rule.

To facilitate OOS evaluation, the discrete forecast distributions—namely, the trans-
formed unconditional ECDF and the conditional ECDF from FHS—are smoothed us-
ing kernel density estimation to yield continuous densities: pj(S) := SNk (8=5)),
where k is a Gaussian kernel and h is the bandwidth chosen via Silverman’s rule.
Smoothing is essential because the OOS realized returns almost surely do not coincide
with atoms in the discrete forecast distributions. In contrast, FLN already defines a
smooth density and thus requires no additional smoothing.

All three priors satisfy our statistical theory. Under standard regularity conditions—
including stationarity, ergodicity, and mixing—their estimated densities converge
uniformly in probability to pseudo-true limits. For Fix, convergence follows if
the estimated mean and volatility converge uniformly. For Frepr, convergence
derives from the Glivenko-Cantelli theorem applied to the rolling-window empirical
distribution, with affine transformations preserving uniform convergence. For F’FHS,
provided the GARCH model is pseudo-consistently estimated and the empirical
residuals are ergodic, the smoothed ECDF also converges uniformly to a pseudo-true
limit. Hence, Assumption 1 is satisfied in all three cases.

Regarding Assumption 3, and under regularity conditions, Fin exhibits v/T-rate
weak convergence via the delta method, since its parameters (mean and variance)
converge at parametric rates. Fyopr satisfies a Donsker-type weak convergence result
under standard assumptions (e.g., strong mixing and a Lipschitz-continuous kernel),
as discussed in Mojirsheibani (2006); the use of a fixed bandwidth preserves this rate.
For FFHS, the GARCH volatility model is estimated via quasi-maximum likelihood,
which guarantees v/T-consistency under suitable conditions, and the simulation of
10,000 paths regularizes the empirical forecast distribution. Uniform-type empirical
process convergence results, under stationarity and mixing, justify the assumption;
see, for example, Rao and Krishnaiah (1988).

Table 4 compares the three prior density estimators based on quartile boundaries
(p25, Pso, and prs), computed over M = 321 months, for the first four central moments,
99% Value-at-Risk (VaR) and 99% Value-at-Gain (VaG), and pairwise KL divergences.

FECDF and FFHS tend to exhibit pronounced negative skewness and fat tails,
consistent with empirical stylized facts. These features are most pronounced in FFHS,

1'We thank Carlo Sala for kindly providing the code to implement this method.
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which helps explain why the largest divergence is observed between Fin and Frps.
Despite their negative skewness and excess kurtosis, FECDF and FFHS tend to have
less downside risk and upside potential than Fix due to lower standard deviation or
higher peakedness.

The bottom row shows the number of months in which prior distribution violates
the conditional moment conditions (Mp,). In these months, updating is required
to obey the moment conditions. Violations are most frequent for Fix (96% of the
months) and least frequent for Fropp (61%).

The prior density estimates fix or constrain the shape and parameters of the
return distribution using limited conditioning information (Rp, Rp, and IV). These
simplifying features make the priors potentially biased and inefficient, allowing for
improvements via additional conditional moment conditions based on index option
market prices.

[Insert Table 4 about here.]

5.3 Posterior Density Estimation

The prior distributions are updated to posterior distributions using the moment
conditions (8)—(11), applied to all options that pass the data filters for pricing
efficiency. For the risk-neutral posterior, the SDF is restricted to m(Sr) = (1+ Rp)™".
Table 5 summarizes the properties of the posterior physical distributions (@) and the
posterior risk-neutral distributions (Q), using the same format as Table 4.

The top panel reports results for the three posterior physical distributions (G’LN,
GrepF, GFHS) Relative to their priors (FLN, Fropr, F’FHS), they tend to display more
negative skewness and greater excess kurtosis. Given the typical smiles and smirks of
the IV curve for SPX options, it is unsurprising that the skewness and kurtosis of the
lognormal Fix are substantially revised. Even for the ECDF and FHS specifications,
the prior skewness and kurtosis tend to be too moderate to align with option prices.
For @LN, the increase in negative skewness and excess kurtosis is accompanied by
both lower downside risk and reduced upside potential, reflecting a combination of
lower standard deviation and increased peakedness. Given these large revisions in
central moments and tail risk, it is unsurprising that the divergence KL(G’, F ) is
largest for the lognormal specification.

The last row reports the number of months in which a feasible posterior distribution
could not be found (M), in which case the prior was retained as the posterior. This
occurred in only one out of M = 321 months, indicating that the moment conditions
are generally consistent.

The bottom panel presents results for the posterior risk-neutral distributions (Q)
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As expected, they are more pessimistic than the corresponding physical posteriors,
exhibiting lower means, higher standard deviations, more negative skewness, greater
excess kurtosis, higher downside risk, and lower upside potential. The risk-neutral
posteriors also diverge more strongly from their priors than the physical posteriors
do across all three specifications. Although these adjustments are consistent with the
prices of the filtered options by construction, they are considerably larger than would
be required if a strictly risk-averse SDF were assumed.
[Insert Table 5 about here.]

5.4 Predictive Ability

To evaluate the improvements in forecasting ability achieved by the posteriors, the LR
test discussed in Section 77 is applied based on the realized index return on the M =
321 option expiry dates. In addition to comparing posteriors with their corresponding
priors (e.g., LRT(@LN, FLN) and LRT (QLN, FLN)), comparisons are also made across
pI‘iOI‘S (e.g., LRT(FECDF,FLN), LRT(GECDF,FLN), and LRT(QECDF7FLN)). Table 6
summarizes the test results.

Among the three priors, Fin exhibits the lowest predictive ability—significantly
worse than both FECDF and FFHS This finding is consistent with the counterfactual
moments and tail risk of the lognormal reported in Table 4, as well as with the
large divergence between FLN and its posterior counterpart GLN shown in Table 5,
reflecting its low consistency with the prices of filtered-in options.

The posterior physical distribution G provides a significantly better density
forecast than the corresponding prior F for all three specifications (LN, ECDF,
FHS), as indicated by the low p-values for LRT(GLN, ﬁ’LN), LRT(@ECDF, FECDF), and
LRT(@FHS, FFHS) This pattern aligns with the theoretical benefits of information
projection and the assumption that the option pricing system holds for the filtered
options.

The most pronounced improvements are observed for the lognormal prior FLN,
reflecting its relatively poor forecasting ability. The improvements remain statistically
significant for Fyys, which exhibits the highest predictive performance among the
three priors, as evidenced by the p-value for LRT(GFHS, FFHS)

The posterior risk-neutral distribution Q also improves upon the prior F for all
three specifications. However, these improvements are less pronounced than those for
the posterior physical distribution G, reflecting the intrinsic pessimistic bias of the
risk-neutral distribution.

[Insert Table 6 about here.]
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5.5 Investment Performance

Table 8 summarizes the composition and performance of the optimized option com-
binations for the various priors and posteriors. As discussed in Section 3.4, the
option combinations are obtained by maximizing net premium income subject to the
dominance constraints and the position limit.

The top panel reports the number of formation dates on which arbitrage opportu-
nities were detected and active (non-zero) option positions were taken. The next three
panels summarize the composition and characteristics of the open option positions,
using the median (across all non-zero solutions) of the number of options and their
weighted-average moneyness and implied volatility for bought calls, written calls,
bought puts, and written puts.

The fifth and sixth panels evaluate performance in-sample and out-of-sample.
The fifth panel reports medians of descriptive statistics (mean, standard deviation,
skewness, and 99% CVaR) of the projected distributions of the index and the option-
enhanced portfolio, including the median net premium income (the objective function).
The sixth panel summarizes realized investment performance using the average return
and the CER for RRA = 1,4, and 10.

Finally, the bottom panel reports p-values for SSD tests. Given the modest length
of the time series of realized monthly returns (M = 321), we employ the Empirical
Likelihood Ratio (ELR) test proposed by Arvanitis and Post (2024, Subsection 4.2).
The null hypothesis is that the option-enhanced portfolio dominates the index by
SSD out of sample, since the enhanced portfolio was explicitly engineered to achieve
this outcome.?

Under the prior distributions (ﬁLN, ﬁ’ECDF, F’FHS), option positions are opened
in the large majority of months. Contrary to standard risk-reduction strategies,
the optimal combinations involve substantial purchases of calls and sales of puts.
Moreover, realized performance falls significantly short of projected performance
and trails the index. A similar pattern was also observed by Beare et al. (2025) for
optimization based on the lognormal model.

The composition, divergence, and underperformance likely reflect the combined
effects of inaccuracies in the prior density forecasts, relatively high pricing efficiency
in the index option market, and the impact of bid—ask spreads. The performance
deterioration is largest for the lognormal prior forecast, FLN, in which case the SSD
hypothesis is decisively rejected, and smallest for the GARCH prior forecast, F’FHS,

2 An alternative approach to test the same hypothesis, based on resampling Kolmogorov—Smirnov
or Cramér—von Mises-type statistics, provides consistent inference under very general conditions (see,
e.g., Linton et al. (2005, 2010)). However, such resampling-based methods tend to be less powerful
in settings with relatively short time series, as is typical for a few decades of index option data.
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consistent with the notion that investment performance is driven by forecasting ability,
as shown in Table 6.

Under the posterior physical distributions (G’LN, éECDF, GFHS), it is substantially
more difficult to detect arbitrage opportunities, and the number of non-zero solutions
drops to less than one-third of the months. In addition, covered calls become more
frequent due to the reduction in projected upside potential. Realized investment
performance improves markedly relative to the priors, and outperformance of the
index is achieved with a perfect dominance relation out of sample (p-value = 1) in
each of the three cases. A discernible pattern among the three posteriors is that the
use of covered calls becomes more common, the strike prices of the covered calls are
higher, and the investment performance is stronger for the posteriors with the highest
forecasting ability, especially Grus.

The performance improvements highlight the economic significance of the forecast
gains achieved through conditional information projection. The results also validate
the dichotomy introduced by the option filters: the prices of the options that were
filtered were sufficiently informative about the conditional distribution of index returns
to identify pricing inefficiencies among the remaining, filtered-out options.

A very different picture emerges for the posterior risk-neutral distributions (QLN,
QECDF, QFHS) In the majority of months, active positions are again opened. Due to
the strong pessimistic bias of these forecasts, protective puts are bought and covered
calls are written in most months, leading to a substantial reduction in downside risk.
The option-enhanced portfolio, however, strongly underperforms the index by average
realized return and CER;, owing to reduced equity exposure and the associated
decline in the risk premium, as well as transaction costs from bid—ask spreads. As
expected, SSD is strongly rejected. These findings highlight that a pessimistic forecast
bias can lead to economically significant decision errors.

[Insert Table 8 about here.]

5.6 Robustness Analysis

To evaluate the robustness of our results and conclusions, we analyze the effects of
excluding months with extreme economic circumstances from the time series and
excluding illiquid deep OTM options from the monthly option strips.

We consider three alternative time-series subsamples: (i) a subsample excluding
the 34 months where the US economy was classified as being in recession by the
NBER,; (ii) a subsample excluding the 32 months where the financial uncertainty
index of Jurado et al. (2015) was above its 90th percentile level; (iii) a subsample
excluding the 32 months where the VIX was above its 90th percentile level for the
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sample.

In addition, we consider a more restrictive option filter for the conditional moment
conditions used to estimate the posterior forecasts. Specifically, the OTM delta filter
is tightened to exclude OTM options with absolute delta in the range [0, 0.15] instead
of [0, 0.05]. Is the filter for optimization also changed based on [x, 1-x]|?
How do these changes affect the median and IQR of the number of options
used for estimation and for optimization?]

Table 9 summarizes the LRT results for the alternative samples. The improvements
in forecasting accuracy from conditional information projection are highly robust to
the exclusion of extreme months and deep OTM options. Across all four sub-samples
and three prior forecast distributions, the posterior forecast distribution consistently
enhances the OOS goodness of fit.

[Insert Table 9 about here.]

Table 10 summarizes the OOS investment performance of the option-enhanced
strategies after the exclusions. The performance improvements are robust for Fin
and FFHS However, they are less robust for FECDF, which is unsurprising given the
low frequency of option position openings and low LWS10 p-value under this prior.

[Insert Table 10 about here.]

6 Conclusions

This study has introduced CIPDE to estimate conditional densities by integrating prior
estimates with conditional moment conditions with functional nuisance parameters.
The prior density estimate is updated through information projection onto the
set of distributions that satisfy the moment conditions. Theoretical analysis and
Monte Carlo simulations demonstrate that CIPDE achieves lower relative entropy
to the latent conditional distribution when the prior is inconsistent and the moment
conditions hold.

In option market research, conditional density estimates are essential due to the
dynamic and non-Gaussian nature of the index return distribution and the short
maturity of the most liquid series. Our empirical analysis shows that conditional
information projection enhances the forecasting performance of standard conditional
density estimators used in this domain.

The conditional moment conditions incorporate observed SPX option prices
and general option pricing restrictions that rule out SD relations for filtered-in
options. CIPDE, based on these moment conditions, significantly improves OOS
forecasting accuracy. It also enhances investment performance by improving the
timing and composition of option combinations. The improvements critically depend
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on incorporating the SDF as a parameter in the moment conditions to avoid the
pessimistic bias of the risk-neutral density. Robustness checks confirm the stability
of the improvements across alternative subsamples that exclude extreme economic
conditions and illiquid options.

The documented forecast improvements support the truth of the moment con-
ditions based on the CJP pricing system. At the same time, our objective is not
to establish the overall pricing efficiency of the index option market, and on this
broader issue our results remain inconclusive. Two distinctions are important here:
first, between the stricter estimation filters and the weaker investment filters; and
second, between avoiding underperformance and achieving outperformance.

The forecast improvements support pricing efficiency for the options that pass the
estimation filters. However, they are also consistent with the equilibrium system being
only approximately—rather than exactly—correct, provided that pricing errors are
rare or small for the filtered options. Moreover, while the optimized option positions
based on the posterior physical distribution clearly improve on those based on the
prior or the risk-neutral distribution—thereby avoiding the underperformance of the
latter—the outperformance relative to the market index remains limited to tens of
basis points per annum. Finally, for the options that pass the investment filters but
not the estimation filters, tradability remains uncertain once slippage risk and market
impact are taken into account.

Our statistical theory is designed to work with conditioning variable ranges in
arbitrary Euclidean spaces. In practice, the curse of dimensionality is expected to
kick in for dimensions greater than two. Recent advances in non-parametric statistics
have extended projection methods to high-dimensional settings (potentially diverging
with the sample size) by leveraging structured regularization techniques based on
Hilbert norms (see, for example, Wainwright (2014) and the references therein). The
consideration of such technologies in our framework seems like an interesting path for
further research.
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KL(F||F) KL(GI[F) KL(Q[[F)
6o 01 N w p25 P50 P75 p25 P50 P75 p25 p50 P75
0 1 5 0.010 0.000 0.000 0.001 0.001 0.001 0.001 0.027 0.027 0.028
0.002 0.000 0.000 0.001 0.001 0.001 0.002 0.029 0.029 0.029
25 0.010 0.000 0.000 0.001 0.001 0.001 0.002 0.029 0.030 0.031
0.002 0.000 0.000 0.001 0.001 0.002 0.003 0.032 0.032 0.033
5 5 0.010 0.003 0.012 0.023 0.003 0.011 0.020 0.028 0.032 0.035
0.002 0.003 0.012 0.023 0.003 0.009 0.016 0.029 0.030 0.034
25 0.010 0.003 0.012 0.023 0.003 0.008 0.016 0.030 0.031 0.033
0.002 0.003 0.012 0.023 0.002 0.007 0.014 0.032 0.033 0.034
5 1 5 0.010 0.031 0.038 0.045 0.025 0.031 0.036 0.036  0.037 0.039
0.002 0.031 0.038 0.045 0.016 0.020 0.023 0.030 0.030 0.030
25 0.010 0.031 0.038 0.045 0.016 0.019 0.023 0.030 0.031 0.032
0.002 0.031 0.038 0.045 0.013 0.016 0.020 0.033 0.033 0.033
5 5 0.010 0.010 0.040 0.081 0.008 0.032 0.063 0.030 0.038 0.043

0.002 0.010 0.040 0.081 0.005 0.021 0.042 0.030 0.030 0.030
25 0.010 0.010 0.040 0.081 0.005 0.020 0.042 0.030 0.031 0.032
0.002 0.010 0.040 0.081 0.004 0.017 0.037 0.033 0.033 0.033

Tab. 1: Simulated Divergence. For each combination of the bias (69 = 0,5), semi-range

(61 = 1,5), number of option series (N = 5,25) and fractional bid-ask spread
(w = 0.010,0.002), 300 prior forecasts are generated based on 300 simulated RRA
estimates 4. Given the simulated prior and simulated option prices, the posterior
is estimated using the CIPDE procedure described in Section 2.2. Quartile
boundary values (p25, p50, p75) are reported for the KL divergence from the prior,
F and the posterior, G to the true distribution F. The posterior forecast can
be seen to move significantly closer (in terms of KL divergence) than the prior
forecast to the true distribution in each case, with the exception of (4o, d1) = (0, 1),
where the prior is already very close to the true distribution. The KL divergence
is shown to reduce with increased number of option series (25 vs. 5) and reduced
spread (20 bps vs. 100 bps) and, for given semi-range and bias.
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LRT(F, F) LRT(G, F) LRT(Q, F)
0o 01 N w 25% 5% 10% 2.5% 5% 10% 25% 5% 10%
0 1 5 0.010 0.040 0.060 0.140 0.020 0.040 0.070 0.000 0.000 0.000
0.002 0.040 0.060 0.140 0.020 0.020 0.050 0.000 0.000 0.000
25 0.010 0.040 0.060 0.140 0.020 0.030 0.060 0.000 0.000 0.000
0.002 0.040 0.060 0.140 0.000 0.020 0.040 0.000 0.000 0.000
) 5 0.010 0.290 0.410 0.590 0.100 0.200 0.280 0.000 0.000 0.010
0.002 0.290 0.410 0.590 0.180 0.240 0.370 0.000 0.000 0.000
25 0.010 0.290 0.410 0.590 0.180 0.290 0.370 0.000 0.000 0.000
0.002 0.290 0.410 0.590 0.190 0.250 0.390 0.000 0.000 0.000
5 1 5 0.010 0.720 0.850 0.890 0.720 0.830 0.890 0.020 0.040 0.130
0.002 0.720 0.850 0.890 0.880 0.910 0.960 0.050 0.080 0.170
25 0.010 0.720 0.850 0.890 0.890 0.910 0.970 0.060 0.080 0.190
0.002 0.720 0.850 0.890 0.890 0.930 0.980 0.050 0.080 0.150
5 5 0.010 0.750 0.810 0.890 0.810 0.870 0.940 0.040 0.120 0.200
0.002 0.750 0.810 0.890 0.940 0.950 0.970 0.070 0.160 0.280
25 0.010 0.750 0.810 0.890 0.910 0.960 0.970 0.070 0.150 0.270
0.002 0.750 0.810 0.890 0.940 0.960 0.970 0.070 0.110 0.250
Tab. 2: Simulated LRT Rejection Rates. For each combination of the bias (dp = 0, 5),

semi-range (61 = 1,5), number of option series (N = 5,25) and fractional bid-ask
spread (w = 0.010,0.002), 300 random RRA estimates 47 are generated from the
uniform distribution. For each RRA estimate, the density estimators F, G and Q
constructed and their predictive ability is evaluated. LRT(F, F), LRT(G, F) and
LRT(Q, F ) are computed based on random samples of 10,000 return realizations
from the true F'. The Table reports the rejection rates for nominal significance
levels of 2.5%, 5%, or 10%.
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Calls Puts

P25 p50 p7o p25 p50 P75

# options 7 10 14 10 15 22

IV (Mean) 1098 1476  19.22
St. Dev. 053 073  1.03

14.04 18.69 23.24
1.19 143 1.92

Mnes (Mean) 101.50 101.99 102.83 | 96.66 97.39 97.85
St. Dev. 0.90 1.19 1.55 1.36  1.72 216

6.21 888 10.79
1.65 275 3.85

|

l

|

Spread (Mean)  7.03  10.10  12.28
St. Dev. 245 377 529 |

Tab. 3: Option strip statistics, estimated over 251 monthly call and put option strips (Jan.
1996 - Jan 2023). The sample includes OTM options with abs(delta) >= 0.15
and bid price > $0.15. The mean and standard deviation of the annualised
implied volatility of the options in each monthly strip are reported at the quartile
boundaries in the sample; MNES reports the average and st. dev. of the ratio of
the option strip strikes to the underlying spot price; Spread captures the average
and standard deviation of the option spread in percentage terms (of the midpoint

price) across the option strips. All values are displayed as percentages.
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FLN FECDF FFHS
p25 P50 p75 | p25 p50 p75 | p25 p50 p75

Mean (ann.) 0.022 0.043 0.084 | 0.022 0.044 0.084 | 0.023 0.044 0.086
St. Dev.(ann.)  0.120 0.161 0.211 , 0.124 0.166 0.216 , 0.113  0.147  0.198

Skewness -0.000  -0.000  0.000 | -0.617 -0.593 -0.506 | -0.917 -0.810 -0.726
Kurtosis 3.000 3.000 3.000 ' 5.397 5.677 5960 ' 5589 6.334 7.321
VaRy 0.042 0.055 0.070 1 0.040 0.052 0.068 | 0.037 0.048  0.064

SemiDev_ (ann.) 0.080 0.107 0.136 ' 0.089 0.118 0.151 ' 0.082 0.107 0.144

| |
VaGyg 0.047 0.062 0.082 , 0.042 0.054 0.071 , 0.040 0.053 0.069
| |
| |
SemiDevy (ann.) 0.094 0.121 0.160 ' 0.090 0.116 0.154 ' 0.081 0.106 0.136

KL(-|| Fiy) 0 0 0 100208 0.0233 0.0285 00216 0.0375 0.0771

KL(||Fgcpr)  0.0361 0.0394 0.0470 | 0 0 0 100190 0.0411 0.1132

KL(-||Frus)  0.0356 0.0474 0.0786 | 0.0152 0.0223 0.0462 ' 0 0 0
Ming 307 ! 194 | 238

Tab. 4: Forecast mean, standard deviation, skewness, kurtosis and pairwise KL divergence
(reported as KL(col, row)), between the three prior density estimates. Quartile
values are based on 321 forecast dates with valid option data (Jan. 1996-Jan.
2023).
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G Grcpr Grus

p25 p50 p75 p25 p50 p75 p25 p50 p75

Mean (ann.) 0.052  0.078  0.098 ; 0.031 0.053 0.074 ; 0.024 0.043 0.071
St. Dev. (ann.)  0.102 0.140 0.187 + 0.119 0.159 0.206 + 0.116 0.148 0.195
Skewness -0.590 -0.414 -0.268 | -1.333 -0.976 -0.728 | -1.417 -1.007 -0.784
Kurtosis 3.354  3.519  3.767 | 6.263 7.267 9.997 | 5747 6.795 9.364
VaRyy 0.035 0.048 0.066 ; 0.039 0.052  0.067 ; 0.039 0.051  0.066
VaGyg 0.039 0.0563 0.070 + 0.037 0.049 0.066  0.037 0.050 0.066
SemiDev_ (ann.) 0.068 0.094 0.127 , 0.087 0.116 0.151 , 0.085 0.111  0.146
SemiDev, (ann.) 0.081 0.106  0.140 | 0.080 0.109 0.142 | 0.076 0.100 0.134
KL(~||FLN) 0.0233 0.0414 0.0672 + 0.0163 0.0246 0.0380 ' 0.0149 0.0326 0.0584
KL(+|| Fecpr) 0.0551 0.0751 0.1123 ' 0.0035 0.0114 0.0237 1 0.0249 0.0507 0.1015
KL(-||Frns) 0.0473  0.0628 0.0970 | 0.0179 0.0277 0.0405 | 0.0035 0.0175 0.0404

Myye 1 } 1 } 1
Qrx Qrepr Qrns

p25 p50 P75 p25 ph0 P75 P25 ph0 P75

Mean (ann.) -0.038 -0.022 0.007 1 -0.039 -0.022 0.007 | -0.038 -0.020 0.009
St. Dev. (ann.)  0.127 0.168 0.214 , 0.136  0.179 0.231 |, 0.140 0.183  0.229
Skewness -1.100 -0.849 -0.641 : -1.974 -1.629 -1.234 : -2.476  -1.900 -1.444
Kurtosis 3514 3.862 4.299 ' 7488 9.350 10.763 ' 8.468 11.322 15.174
VaRgyy 0.055 0.072 0.092 i 0.047 0.061 0.077 . 0.046 0.060 0.076
VaGyg 0.036  0.050 0.065 | 0.035 0.048 0.063 |, 0.036 0.049 0.065
SemiDev_ (ann.) 0.103 0.133  0.169 : 0.112 0.149 0.191 : 0.119  0.151  0.189
SemiDevy (ann.) 0.072  0.100 0.130 ' 0.073 0.102 0.131 ' 0.072  0.098 0.128
KL('HFLN) 0.0601 0.0931 0.1505 1 0.0354 0.0538 0.0774 1 0.0409 0.0679 0.1034
KL(‘|| Frcpr) 0.1042 0.1441 0.1800 , 0.0131 0.0234 0.0404 , 0.0432 0.0724 0.1327
KL(+|| Frns) 0.0810 0.1105 0.1518 ; 0.0297 0.0431 0.0644 | 0.0197 0.0393 0.0657

]\/[Inf

1

Tab. 5: Forecast mean, standard deviation, skewness, kurtosis and pairwise KL divergence
between the three posterior density estimates (reported as KL(col, row)), for the

TSD (G) and risk-neutral (@) kernels. Quartile values are based on 321 forecast
dates with valid option data (Jan. 1996-Jan. 2023).
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Fixn' Gin' Qun ' Feeor Greor Qucor ' Frus Gras Qrns
T T

LRT(-, Fix) - 506 368 , 467 500 424 |, 470 521  4.18
- (0.00) (0.00) ' (0.00) (0.00) (0.00) ' (0.00) (0.00) (0.00)

LRT(-, Fgcpr) -4.67 088 098 | - 327 232 123 290 229
(1.00) (0.19) (0.16) ' - (0.00) (0.01) ' (0.11) (0.00) (0.01)
LRT(,, Fyps) -4.70 -0.21 -0.18 , -1.23  0.69 037 , - 182 1.67
(1.00) (0.58) (0.57) ' (0.89) (0.24) (0.36) ' -  (0.03) (0.05)

Tab. 6: LRT statistics: test statistics are reported for LRT(col, row), with p-values in
brackets. For example, for the lognormal prior, the LRT of the posterior, G1n, to
the prior, Fiy, is 5.06.
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Fix Frepr Frns
Index F G Q F G o] F G Q
Prot. Puts 0.11 0.01 0.92 0.05 0.00 0.93 0.14 0.02 0.90
Avg Mnes 100.25 94.56  99.45 100.16 100.30 99.22 99.85 93.83  98.58
St.Dev. Mnes 0.66 8.12 1.15 0.54 0.00 1.66 0.89 7.43 2.23
Avg IV 0.24 0.46 0.18 0.19 0.15 0.18 0.19 0.40 0.19
St.Dev. IV 0.13 0.44 0.09 0.07 0.00 0.09 0.11 0.26 0.09
Cov. Calls 0.00 0.07 0.55 0.02 0.11 0.55 0.36 0.37 0.63
Avg Mnes 0.00 10197 100.77 101.40 101.64 101.00 101.02 101.18 100.82
St.Dev. Mnes 0.00 2.03 1.01 1.37 1.77 1.34 1.02 1.26 1.02
Avg IV 0.00 0.26 0.17 0.30 0.23 0.18 0.19 0.20 0.18
St.Dev. IV 0.00 0.16 0.08 0.16 0.13 0.08 0.06 0.09 0.08
Ann. Mean (%) 7.88  6.19 7.13 1.38 7.60 7.80 2.56 7.69 7.79 3.06
Ann. St. Dev. (%) 17.58 16.52 16.80 7.37 17.04 16.81 7.65 14.82 1566  7.54
t-test p-value 0.04 0.28 0.02 0.65 0.90 0.05 0.88 0.93 0.08
bootstrap p-value 0.04 0.28 0.02 0.64 0.90 0.05 0.87 0.92 0.08
Ann. CER;(%) 6.24  4.73 5.61 1.11 6.05 6.28 2.26 6.51 6.46 2.77
t-test p-value 0.06 0.33 0.08 0.74 0.95 0.17 0.85 0.83 0.23
bootstrap p-value 0.06 0.32 0.08 0.74 0.94 0.16 0.84 0.83 0.23
Ann. CER»(%) 452  3.17 4.00 0.84 4.41 4.67 1.98 5.27 5.05 2.49
t-test p-value 0.04 0.28 0.02 0.65 0.90 0.05 0.88 0.93 0.08
bootstrap p-value 0.04 0.28 0.02 0.64 0.90 0.05 0.87 0.92 0.08
Ann. CER4(%) 0.58 -0.45  0.25 0.30 0.62 0.91 1.39 2.36 1.72 1.93
t-test p-value 0.04 0.28 0.02 0.65 0.90 0.05 0.88 0.93 0.08
bootstrap p-value 0.21 0.52 0.94 0.94 0.49 0.83 0.28 0.22 0.73
ELRT(Optstrat SDs Index,) 0.0697 0.2924 0.0394 0.7855 1.00 0.0818 0.9532 0.9998 0.1119
ELRT(Index SDs Optstrat) 0.0545 0.1046 0 0.0136 0 0 0 0 0

Tab. 7: Option Combinations:

Composition and Performance.

Returns to a

portfolio consisting of the index and max one protective put and max one covered
call, where the included options (if any) are selected through expected utility
maximization, under the relevant forecast. The Prot. Puts row records the fraction
of months that a protective put is included. The Cov. Calls row records the
fraction of months that a covered call is sold. CIPDEs are estimated using OTM
Puts and Calls (absolute delta range 0.15-0.5). Also reported is the ELR p-value
for the null that the option-enhanced index dominates the passive index.
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Fix Fgcpr Frns
Index 3 G Q 3 G Q F G Q
Count Non-Zero 303 62 240 235 53 226 256 107 218
Buy Call 034 022 000 , 030 018 0.00 , 029 000 0.00
Combosition Sell Call 016 026 039 ' 016 031 040 ' 023 042 046
DOSIt Buy Put 021 021 056 ! 024 022 056 ! 020 024  0.50
Sell Put 029 031 000 1 030 021 000 1 020 028  0.00
Buy Call 103.00 101.04 102.03 | 102.58 100.98 101.95 | 101.74 95.68 101.75
Moneyness Sell Call 9522 9863 9549 ! 96.19 99.16 96.11 ! 98.23 99.73 97.30
ynest Buy Put 102,54 102.94 10253 ' 101.88 102.09 102.30 ' 102.07 103.27 102.76
Sell Put 9534  96.87 95.62 1 96.02 9758 97.12 1 97.05 97.08  98.04
Buy Call 13.75 1934 1178 | 13.68 19.37 1443 | 1627 19.98 13.87
Iolied Vol Sell Call 20.65 2049 19.39 ' 19.63 20.12 19.39 ! 18.12 18.50 18.49
mphed VoL Buy Put 1389 1620 13.30 ' 13.96 16.93 13.67 ' 13.56 1573  13.63
Sell Put 2024 2161 19.02 1 19.67 21.62 19.50 1 19.28 21.87 16.37

7.78 10.59 1.14
16.24  13.94  16.53
0.14 -0.25  -0.68
1117 11.08 1426 1 16.29 16.82  21.67

|

|

|

|

|

|

|

|

:

|

| 7.89 8.43 1.42 7.85 7.38 1.57
|
|
|
:

1.66 0.00 0.47 | 0.39 0.00 0.31

T
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
T
|

|

I

I

I

I

L

I

I

I

I

I

I

I

L

I

I

I

I

I

I

:

Passive Mean :

16.49 1561 1726 | 14.62 1455 17.31

I
I
I
I
I
T
I
I
I
I
I
I
I
T
I
I
I
I
I
I
I
T
I

Passive St.Dev.
Passive Skew
Passive VaR

-0.28 -0.64 -1.21 ' -0.53 -0.71  -1.43
14.49 1533 2244

0.94 0.00 0.18

8.83 7.63 2.04
12.67  13.80 10.30
-0.55  -0.94 -1.86

Projected Distr. Prem. Income

9.19 10.68 1.96 8.51 8.43 2.03
1416 1346  6.95 15.02 1537 875
0.59 -0.25  -0.41 , -0.07 -0.64 -1.28

Active Mean
Active St.Dev.
Active Skew

Active VaR 9.83 11.04  6.59 15.67 16.71 1230 , 13.43 15.18 14.80

Avg Ret. 7.88 5.57 7.85 4.66 6.90 8.11 5.61 7.44 8.04 5.36

CER,4 6.24 4.36 6.25 4.00 5.55 6.51 4.95 6.16 6.52 4.64

0OO0S Performance CER, 0.58 | -0.04 0.71 1.81 0.77 0.95 2.83 1.73 1.21 2.30
CERyo -18.89 | -17.33 -18.56 -4.46 | -17.03 -18.38 -2.71 | -14.32 -17.64 -3.81

SSD Test p-value 0 1.00 0.15 0.14 1.00 0.30 0.67 1.00 0.22

Tab. 8: Option Combinations: Composition and Performance. SSD, [abs(delta) >
x,abs(delta) < 1 — z], x= 0.15, bid price > 0.15.
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Fixn  Gux Quy Fecor Gecor Qecor Frus  Gras Qrws

Excl. High VIX

LRT(~7FLN) - 3.89% 2,920 | 384 4.06™*  3.46™* | 3.94**  4.34**  3.54*

LRT(-, Frcpr) -3.84  0.29 061 | - 2.53™ 1.8 | 105 237" 2.02™

LRT(-, Frus) -3.94  -053  -0.31 : -1.05 0.45 0.24 Lo 1.49* 1.54*
| |

Excl. Recessions

LRT(~7FLN) - 4727 3.337 14337 4.60™ 3.79™ 1 4.76™ 5.03™ 4117

LRT(-, Frcpr) -4.33  0.96 0.69 + - 3.0 1.80™ 1+ 1.34* 3.24™*  2.19**
A | |

LRT(-, Frus) -4.76  -0.02 -029 | -1.34 0.86 026 + - 1.46~ 0.65
| |

Excl. High Fin. Unc. ‘
LRT(-, Fix) - 4627 345

L4317 454 386" | 4.60"*  4.91% 414"
LRT(-, Fecpr) 431 063 096 | - 281 204%™ | 0.88 2.69%* 244
LRT(-, Fens) 460 -0.01 021 ' 08 104 070 | - 150 1.15
Alt. Filters ; ;
LRT(-, Fix) S 449 3497 46T ATETT 4067 | 4707 4.96  4.04°
LRT(-, Frcpr) 467 034 032 0 - 278 178" ! 123 243  2.06”
LRT(-, Frus) 470 -0.61  -0.66 1 -123 042 005 1 - 138  1.43°

Tab. 9: LRT Robustness Analysis: LR tests are repeated in three alternative samples,
excluding (i) the 10% of months with the highest VIX on the trade date (ii) all
months the US economy is classified as being in recession by the NBER and (iii)
the 10% of months with the highest financial uncertainty on the trade date. The
Alt. Filters results are generated using a more restrictive filter on OTM options
where abs(delta) of included options must be in the range [0.2,0.5].
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F‘LN FECDF‘ FFHS

Index F G Q F G Q F G Q

Excl. High VIX

Ann. Mean (%)
Ann. St. Dev. (%)

4.16 3.03 4.34 2.84 @ 3.76 4.60 3.68 + 4.06 476  3.55

|
1599  13.99 15.78 10.59 ' 14.69 15.80 10.60 ' 14.48 15.35 11.23

CERy (%) 280 436 625 400 | 555 651 495 |, 6.16 652 2.89
CER4(%) -2.08 -004 071 181 ' 077 095 283 ' 1.73 121 0.71
CER10(%) -19.84 -17.33 -18.56 -4.46 - -17.03 -18.38 -2.71 :-14.32 -17.64 -5.13

ELRT p-value
Excl. Recessions

Ann. Mean (%)
Ann. St. Dev. (%)

0.00 1.00 0.15 0.14 1.00 0.30 0.67 1.00 0.22

10.40 8.03 10.33 646 | 918 10.67 7.33 . 9.76 10.74 7.67
14.07  11.75 13.79 896 | 1252 13.80 9.22 , 1222 1324 9.76
|
|

CER;(%) 9.36  4.36 6.25 4.00 + 5.55 6.51 495 © 6.16 6.52 7.17
CER4(%) 6.17  -0.04 0.71 1.81 0.77 0.95 2.83 1.73 121 571
CER1o(%) -1.47  -17.33 -18.56 -4.46 | -17.03 -18.38 -2.71 | -14.32 -17.64 2.44

ELRT p-value
Excl. High Fin. Unc.

Ann. Mean (%)
Ann. St. Dev. (%)

0.00 1.00 015 0.14 1.00  0.30 0.67 1.00  0.22

7.78 9.25 6.12 823 911 6.14
13.23 1448 10.16 ' 13.07 13.99 10.80

9.02 6.80 8.97 5.35
14.72 1246 1445 991

CER, (%) 788 436 625 400 555 651 495 616 652 554

CER4(%) 433004 071 181 1 077 095 283 1 173 121 367

CERy(%) 431 -17.33 -18.56 -4.46 | -17.03 -18.38 -2.71 | -14.32 -17.64 -0.82
I I

ELRT p-value 0.00 1.00 0.15 0.14 1.00 0.30 0.67 1.00  0.22
Alt. Filters

Ann. Mean (%)
Ann. St. Dev. (%)

7.88 5.57 7.72 4.06
17.58 15.07 17.02 12.05

6.90 7.81 501 | 7.44 8.09  5.56
1594 1712 1211 ' 1545 16.87 11.30

CER; (%) 624 436 618 324 , 555 626 421 | 616 658 4.90
CERy4(%) 0.58 -0.04 084 -018 ! 077 087 116 | 173 129 283
CER1(%) -18.89 -17.33 -17.85 -21.991-17.03 -17.84 -13.20 ' -14.32 -17.38 -2.18

ELRT p-value 0 091 008 ' 014 1.00 018 ' 067 1.00 0.30

Tab. 10: Investment Performance: Robustness Analysis. Option trading per-
formance is evaluated in three alternative samples, excluding (i) the 10% of
months with the highest VIX on the trade date (ii) all months the US economy
is classified as being in recession by the NBER and (iii) the 10% of months with
the highest financial uncertainty on the trade date. The Alt. Filters results are
generated using a more restrictive filter on OTM options where abs(delta) of
included options must be in the range [0.2,0.5]. [What about the delta filters
for optimization — are they updated to [0.2, 0.8]7] Also reported is the
ELR p-value for the null that the option-enhanced index dominates the passive
index.
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