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Abstract

We characterize when discrete-choice datasets that involve aggregation, such as

category-level items or an outside option, are consistent with a random utility model

(RUM). The underlying alternatives that an aggregated category represents may differ

across individuals and remain unobserved by the analyst. We characterize the observ-

able implications of RUMs with unknown composition of aggregated categories and

show that they are surprisingly weak, implying only limited monotonicity of choice

frequencies and standard RUM consistency on unaggregated menus. These restrictions

are insufficient to justify the aggregated random utility model (ARUM) commonly

assumed in empirical work. We identify two sufficient conditions that restore the im-

plication of ARUM: non-overlapping preferences and menu-independent aggregation.

Simulations show that violations of these conditions generate estimation bias, high-

lighting the practical importance of how aggregated alternatives are defined.

1 Introduction

In empirical studies of discrete choice, it is common practice to aggregate alternatives. For

instance, in car sales data, all variants of the Toyota RAV4 despite differing in features

and prices, are often grouped under a single category, “RAV4.” A particularly important

form of aggregation involves the outside option. In many empirical IO studies (e.g., Nevo

(2001); Shum (2016)), the outside option is modeled as a single alternative that aggregates

all unlisted choices. For example, in Nevo (2001), which studies consumer demand for 25
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cereal brands, the market share of the outside good is defined as the residual: the difference

between one and the total market share of the inside goods, implicitly capturing all other

breakfast options, such as pancakes or omelettes.1

The standard modeling approach assumes a random utility model (RUM) defined di-

rectly over the aggregated categories—what we call the aggregated random utility model

(ARUM). That is, researchers assume that each category corresponds to a single alternative,

and that preferences are defined over these categories as if they were atomic options.

However, this modeling simplification obscures an important complication: while the

analyst only observes aggregate frequencies, the consumer may evaluate the underlying al-

ternatives composing an aggregated category very differently. In the car example, differ-

ent versions of the RAV4 such as the Gasoline LE and the Plug-in Hybrid XSE may vary

significantly in both desirability and prices. Likewise, the outside option may encompass

alternatives that differ greatly in price and quality. Furthermore, the exact composition of

an aggregated category may be unobservable to the analyst. As a result, observed choice

frequencies over aggregated categories may not represent consumers’ underlying preferences.

Our paper is the first to formally analyze the implications of unknown composition in

aggregated categories. We characterize the observable restrictions of RUM in this setting

and show precisely how they are weaker than those implied by ARUM. Through a simulation

exercise, we further demonstrate that this weakness can lead to significant estimation biases.

Building on these findings, we provide theoretical results that offer guidance on how to define

aggregated categories in ways that mitigate such biases.

1.1 Preview of theoretical results

To illustrate our contribution, consider a similar setup that was studied in Nevo (2001),

which involves 25 cereal brands along with an outside good that contains all other breakfast

options. Importantly, the composition of the outside good may differ across individuals in

the population. For instance, some consumers may not consider omelette a viable option

due to egg shortages resulting from bird flu, while others may rule out pancakes because

essential ingredients such as syrup are unavailable in stores.

We formalize this using two key concepts. An aggregation function X specifies the

possible underlying goods that an aggregated category may represent—for example, the

outside option may include omelettes, pancakes, or other breakfast items. A composition

distribution λ then assigns, for each menu, probabilities to these possible realizations of the

outside option. Thus, when the outside option is present, λ determines whether a consumer

1See Appendix A: Data, page 337.
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faces only omelettes, only pancakes, both, or some other combination of breakfast goods.

Importantly, analysts observe only the reduced choice frequencies over categories, not the

aggregation function or the composition distribution.

We say that the observed dataset ρ is consistent with a RUM if there exists (i) compo-

sition distribution λ with aggregation function X and (ii) a probability distribution µX over

rankings (i.e., linear orders) ≻ on the set X of the underlying alternatives (in this case, the

25 cereal brands along with other breakfast options)2, such that for all subsets D of cereals

and x ∈ D, the market share ρ(D∪ out, x) of cereal x in a market where the set D of cereals

is available equals ∑
S⊆X(out)

λD∪out(S)µX (≻| x ≻ y for all y ∈ (D \ {x}) ∪ S), (1)

where λD∪out(S) is the probability that the outside option “out” is composed of the set

S ⊆ X(out) in the context of choice set D ∪ out. This formulation is a natural extension of

the standard RUM: Equation (1) shows that the observed choice probability is a weighted

average of standard RUM probabilities, with weights λ reflecting the distribution of outside-

option compositions.

Our first question is: What are the observable implications for ρ that are consistent with

some pair (µX , λ) as described above? We show that these implications are characterized

exactly by two conditions. The first is Limited Monotonicity—that is, the choice frequencies

on menus containing only non-aggregated categories decrease when aggregated categories

are added to the choice set. The second is a condition that we call Partial RU-rationality,

that is on the subset of choice sets that do not contain any aggregated categories, choices

must be rationalizable by a standard RUM over categories. See Theorems 3.1 and 3.12 in

Section 3 for the formal statements.

Crucially, these two conditions are insufficient to guarantee the existence of an ag-

gregated random utility model (ARUM), that is, a distribution over preference rankings on

aggregated categories. This is because ARUMs require much more structure. The simplest

implication of ARUM is full monotonicity — that is, choice frequencies decrease when al-

ternatives are added to any choice set. The RU-rational choice functions may violate full

monotonicity when the choice set contains aggregated categories. This gap is especially

concerning given how commonly ARUMs are used in empirical work.

In addition to the characterization in Theorem 3.1, Theorem 3.6 provides a comple-

mentary characterization of RU-rationality focusing on the behavior of each consumer in

2We write µX to clarify that the measure is defined on rankings over the underline alternatives X , not
the aggregated categories.

3



the population. It shows that RU-rationality allows behavior ruled out by ARUM: an agent

may follow a well-defined ranking in some cases but default to the outside option in oth-

ers. This can be interpreted as menu effects, where complex or unfamiliar menus lead the

agent to choose the outside option. The result underscores that, without further restrictions,

RU-rationality does not imply ARUM.

Given these results, we next ask: under what additional conditions can RU-rational

stochastic choice functions also be rationalized by an ARUM? This question is practically

important, as it guides how aggregated categories should be defined in empirical work.

We identify two sufficient conditions. The first is the non-overlapping condition on

µX : all of the alternatives that underlie an aggregated category must occupy similar posi-

tions in consumers’ rankings. In the cereal example, this means no consumer places some

cereals between other breakfast options such as omelettes and pancakes. When overlap oc-

curs—e.g., some consumers prefer omelettes to certain cereals but not others—the condition

fails (Proposition 4.2). The second is menu independence of the composition distribution λ:

the distribution of underlying components must not vary with the choice set. In empirical

IO, where each menu corresponds to a market, this requires that λ remain constant across

markets. For instance, if eggs are scarce in one market (making omelettes unavailable) but

plentiful in another (so omelettes remain available), the condition is violated (Proposition

4.6).

1.2 Simulation results

Our results imply that when either condition—non-overlapping preferences or menu inde-

pendence—fails, the observed choice frequencies diverge from those predicted by an ARUM.

Estimating an ARUM (such as logit model over aggregated categories) can therefore gener-

ate substantial bias. Assessing this bias empirically is crucial for understanding the practical

relevance of our theory.

We examine this prediction through simulations. Starting from a logit model defined

on the underlying alternatives X , we generate the true dataset ρX assuming true utility

values. We then fix values of the composition distribution λ and an aggregation function

X and construct the reduced dataset ρ over aggregated categories. Finally, we re-estimate

utilities from ρ as if it followed a logit model over aggregated categories. When λ is menu-

independent or preferences are non-overlapping, ρ is consistent with an ARUM and bias must

be low, otherwise the bias should become large as ρ cannot be represented by an ARUM.

As our measure of bias, we examined the difference in estimated utilities between two

non-aggregated alternatives, and we also computed the geometric distance from ρ to the
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set of ARUMs. Both measures increase as λ becomes more menu-dependent or preferences

more overlapping. In some cases, the bias was substantial enough to reverse the ranking

of alternatives—for example, even when u(x) > u(y) in the true model, the estimates pro-

duced û(y) > û(x). These findings align with our theoretical predictions and underscore the

empirical importance of potential biases. Further details are provided in Section 5.

1.3 Related Literature

There is no paper studying stochastic choice focusing on the unknown composition of aggre-

gated categories. There are, however, several papers that are related in terms of mathemat-

ical setup or motivation.

The first line of research related to our paper is the recent work on random attention

models, such as Cattaneo, Ma, Masatlioglu, and Suleymanov (2020), Aguiar, Boccardi,

Kashaev, and Kim (2023), Brady and Rehbeck (2016), Manzini and Mariotti (2014),and

Horan (2019). See Strzalecki (2022) for a survey of the literature. These papers study

models in which agents do not consider the full available choice set but instead randomly

consider a subset. In particular, Horan (2019) studies the case where the choice frequency

of the outside or “default” option is not observable under the random attention model.

The resemblance is only superficial. The models of random attention assume that each

decision maker randomly attends to a subset of the alternatives. Our setting, by contrast, is

driven by aggregation-induced unobservability : the analyst sees aggregated categories whose

internal composition differ across consumers and menus. This distinction has sharp math-

ematical consequences. In our setup, when an aggregated category is present, at least one

of its underlying components is available to the consumer. The models of random attention

impose no such requirement. This constraint yields testable implications for RUM in our

paper.

Azrieli and Rehbeck (2022) studies a mathematically related model but with a different

focus. They characterize marginal stochastic choice—frequencies not conditioned on partic-

ular menus—assuming the analyst observes the distribution of menus but not within-menu

choices. By contrast, in our framework the distribution over available alternatives is un-

observed and captured by λ, while we observe reduced stochastic choice over aggregated

categories. Although Azrieli and Rehbeck (2022) also allows for endogenous menu availabil-

ity, their analysis centers on models such as Gul and Pesendorfer (2001) and Kreps (1979),

and addresses rationalizability rather than estimation bias.

Apesteguia and Ballester (2016) also study aggregation of stochastic choice data, but

with a different motivation. They examine whether aggregate choice behavior, obtained
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by combining individual choices, remains in the same class as the underlying individual

behaviors. By contrast, our model aggregates alternatives and allows for aggregation across

agents facing different choice problems.

Our companion paper Kono, Saito, and Sandroni (2025) also studies the RUM with an

outside option, but in a different setup. The paper does not analyze the case of multiple

aggregated categories. Moreover, from the perspective of the observed dataset, the key

distinction between the two papers is that the present study takes the reduced dataset ρ as

the observed object, whereas the companion paper treats the full dataset over the underlying

alternatives (with missing information) as given. In addition, the companion paper assumes

the outside option always corresponds to the full set of underlying alternatives—that is, λ

is menu-independent and degenerate. Even in this idealized case, much of the implications

of the RUM are lost. In the present paper, we extend that framework by allowing λ to be

non-degenerate or menu-dependent, and we characterize the observable implications of the

RUM under this more general specification.

A few papers in the empirical IO literature such as Brownstone and Li (2017), Stafford

(2018), and Huang and Rojas (2013) have examined potential biases arising from aggregation

and misspecification of the outside option. More recently, Zhang (2023) analyzed biases

resulting from misspecifying market size, and hence the market share of the outside good.

However, all of these papers are purely empirical in nature and do not address the issue of

unknown composition of aggregated categories or outside options.

Although less directly related, classical statistical work has developed a comprehensive

framework for making inferences from data that are partially observed or categorized. For

example, see Heitjan (1989) for a review of grouped data; Blumenthal (1968) and Nordheim

(1984) for categorized data; and Heitjan and Rubin (1990, 1991) for coarse data. In this

framework, subsets of the sample space are observed rather than exact realizations.3 A key

distinction from our setting is that, in our model, uncertainty arises from the actual choice

set an agent faces, rather than from the data collection or coarsening process.

2 Setup

2.1 Alternatives

We introduce two notations that we use throughout the paper: For any finite set Z, let

L (Z) be the set of rankings (i.e., linear orders) on Z and let ∆(Z) be the set of probability

3For example, if the sample space is the real line (e.g., blood pressure), we may only observe a random
variable taking interval values (e.g., an interval of blood pressures containing the true value).
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distributions over Z.

Let A = {a0, ...., aN} be the (finite) set categories. Let X be the set of underlying

alternatives. We assume that X is finite.4 We consider a partition {AN ,AA} of A .5 We

interpret AN as the set of nonaggregated categories; AA the set of aggregated categories.

Definition 2.1. A function X : A → 2X \ {∅} is called an aggregation function if (i)

X(ai) ∩ X(aj) = ∅ for any distinct i, j; (ii) X(a) is singleton if a ∈ AN ; (iii) X(a) is

non-singleton if a ∈ AA.

We call X an aggregation function because the function (or more precisely, its inverse)

specifies how each underlying alternative is assigned to a category. Condition (i) requires

that every underlying alternative be assigned to exactly one category. Conditions (ii) and

(iii) justify the interpretation that AN represents the set of non-aggregated categories, while

AA represents the set of aggregated categories.

In many parts of the paper, we consider the setup in which there is only one aggregated

category a0 called outside option. In the setup, we assume AN = {a0}.

Example 2.1. (Cereal Choice) Consider a similar setup to Nevo (2001), who estimates

demand over the 25 cereal brands. As mentioned in the introduction, a key feature of the

analysis is the inclusion of an outside good, representing all breakfast options not explicitly

listed among the 25 cereal brands in the dataset. In the setup, all available alternatives are

A = {Kellogg Corn Flakes, Kellogg Crispix, · · · , Quaker Life, Outside goods}.

Since the cereal brands are finely specified in A , all cereals are non-aggregated; thus we have

AN = {Kellogg Corn Flakes, · · · , Quaker Life}; and AA = {Outside goods}. For example,

X(Kellogg Corn Flakes) = {Kellogg Corn Flakes}. If the outside goods contain only two

alternatives by our assumption, then X(Outside goods) = {Omelette, Pancakes}.6

2.2 Datasets and RU-rationalities

Let D ⊆ 2A \{∅} be the set of observable choice sets. The dataset in this paper is a stochastic

choice function ρ on D . That is, the dataset is a function ρ : D × A → R+ such that for

4To ensure the existence of all aggregation functions relevant to the RUM, we assume that X contains
at least |AA|2 distinct elements.

5That is, AN ∪ AA = A and AN ∩ AA = ∅.
6In our example, we assume omelettes are unavailable when eggs are in short supply. An alternative

setup is that eggs remain available but at higher cost, so omelettes are still feasible though less attractive.
We can represent this case as “Omelette with high price,” reflecting the increased cost while keeping it as
an available alternative.
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any A ∈ D ,
∑

a∈A ρ(A, a) = 1, ρ(A, a) ≥ 0 for all a ∈ A and ρ(A, a) = 0 for all a /∈ A. Note

that the stochastic choice function is defined over menus of categories in A , not over the

underlying alternatives X . Thus, we sometimes call ρ reduced dataset.

Remark 2.2. For simplicity, we assume that ρ is defined on all subsets of A . However this

assumption is not necessary for our main results. After we present our theorems, we provide

a remark in which we specify a weaker domain assumption. (See Remark 3.4 for Theorem

3.1, Remark 3.11 for Theorem 3.6, and Remark 3.13 for Theorem 3.12.)

As mentioned in the introduction, in discrete choice analysis, the standard method in the

presence of aggregated categories is to assume aggregated random utility models (ARUMs),

which is a probability distribution over rankings over A .

Definition 2.3. A stochastic choice function ρ is aggregated random utility (ARU)-rational

if there exists µA ∈ ∆(L (A )) such that for any a ∈ A ∈ D ,7

ρ(A, a) = µA ( ≻∈ L (A ) |a ≻ b for all b ∈ A \ a). (2)

In our framework, preferences are defined on the set X of underlying primitive alterna-

tives rather than on their aggregates. The components of an aggregate category may differ

substantially—for example, across versions of the RAV4 or within a heterogeneous outside

option—and these differences matter to agents. Accordingly, the relevant random utility

model should be formulated over X .

To connect these two levels of analysis, we introduce a formal mapping called a com-

position distribution which links the aggregated categories to the underlying alternatives in

their composition. Given an aggregation function, this mapping λ captures the distribution

of available underlying alternatives faced by agents in the population, which may not be

observable to the analyst.

Definition 2.4. Given an aggregation function X, a set of functions (λA)A⊆A is called a

composition distribution if for any A ∈ D ,

• λA((Sa)a∈A) ≥ 0 for any (Sa)a∈A ∈
∏

a∈A(2
X(a) \ {∅}),

•
∑

(Sa)a∈A∈
∏

a∈A(2X(a)\{∅}) λA((Sa)a∈A) = 1.

The value of the composition distribution λA((Sa)a∈A) represents the frequency with

which each aggregated category a is composed of the subset Sa ⊆ X(a) within the choice

7We write µA to clarify that the measure is defined over rankings over A , not on the set X of underlying
alternatives.
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set A ⊆ A . We allow λ to depend on the choice set A, since the availability of underlying

alternatives may vary across markets—for example, it may depend on which stores consumers

can access. In Example 2.1, eggs may be unavailable in one market (e.g., due to a bird flu

outbreak), making omelettes infeasible, while pancake ingredients remain widely available.

In this case, λA would assign higher probability to Sout containing pancakes than to sets

including omelettes.

We now define RU-rationality in the presence of aggregated categories whose composi-

tions are unknown to the analyst. To motivate the definition, return to the cereal example

and consider a distribution µX over the underlying alternatives (the cereals and other break-

fast options). Let D be the set of cereals available in a store and let x ∈ D denote one such

cereal. For a subpopulation of consumers whose outside option consists only of omelettes

and pancakes, the market share of x is µX (≻| x ≻ y for all y ∈ D ∪ {omelette, pancakes}).
Analogous expressions arise for other possible compositions of the outside option. Aggre-

gating across these compositions using λA yields equation (1). The following extends this

construction to the case with multiple aggregated categories:

Definition 2.5. A stochastic choice function ρ is RU-rational if there exist µX ∈ ∆(L (X )),

an aggregation function X, and a composition distribution λ such that for any a ∈ A ∈ D ,

ρ(A, a) =
∑

(Sb)b∈A∈
∏
b∈A

(2X(b)\{∅})

λA((Sb)b∈A)µX (≻∈ L (X )|∃x ∈ Sa, ∀y ∈ ∪
b∈A\a

Sb, x ≻ y).

(3)

We say that the pair (µX , λ) rationalizes ρ.8

Note that the term µX (· · · ) on the right-hand side of equation (3) represents the total

market share of category a from menu A within the subpopulation of consumers for whom

each aggregated alternative b corresponds to the subset Sb ⊆ X(b). The term λA((Sa)a∈A)

denotes the proportion of such consumers in the overall population. Thus, the right-hand

side of equation (3) is the weighted average of these market shares, with weights given by λ.

Remark 2.6. Definition 2.5 assumes independence between the distribution µX over pref-

erence rankings and the composition distribution λ over underlying alternatives. While one

could consider a more general framework allowing dependence between these components,

such a model may lack testable implications, since the joint distribution could vary with the

menu as λ does. In particular, if the agent’s preferences may depend on composition, such

8Strictly speaking, we should write (µX , X, λ) rationalizes ρ. However, since the role of X is implicit in
λ, we will simply write (µX , λ).
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dependence would allow the distribution over rankings to vary with the menu, rendering the

model unfalsifiable. If, however, we only allow the composition distribution λ to depend on

the preferences, the characterization remains the same. See Remark 3.3 for more details.

Remark 2.7. ARU-rationality implies RU-rationality. To see why suppose ρ is rationalized

by µA over categories A . Choose an aggregation function X so that X(a) is a singleton for

all a ∈ A . Label the sole element of X(a) by xa. Then for each ≻ in the support of µA

define ≻′ by xa ≻′ xb whenever a ≻ b and define all other comparisons arbitrary. By setting

µX (≻′) = µA (≻) for all ≻ in the support of µA , it is apparent that (µX , λ) rationalizes ρ.

We define one more concept of rationality.

Definition 2.8. A stochastic choice function ρ is partially RU-rational if there exists µ ∈
∆(L (AN)) such that for any a ∈ A ⊆ AN such that A ∈ D ,

ρ(A, a) = µ(≻∈ L (AN)|a ≻ b for all b ∈ A \ a). (4)

Remark 2.9. RU-rationality implies the partial RU-rationality. When the menu contains

only non-aggregated categories, each category maps to a single primitive alternative, so the

RU-representation collapses to a standard RUM on the set of non-aggregated categories,

which corresponds to the partial RU rationality; λ terms disappear because there is no com-

positional uncertainty on such menus.

Remark 2.10. Summarizing the relationship between the three rationality concepts, we have

ARU (2) =⇒ RU (3) =⇒ Partial RU (4).

As mentioned earlier, ARU-rationality is the standard assumption in much of the empirical

literature. RU-rationality notion introduced in this paper is a natural refinement that accounts

for the unknown composition of aggregated categories.

In the next section, we characterize RU-rationality and show precisely how it is weaker

than ARU-rationality. The characterization is derived by bridging the gap between RU-

rationality and partial RU-rationality.

3 Characterization

In this section, we consider the outside option setup in which there exists only one aggregated

category a0 ∈ A . Formally, we set AA = {a0} and AN = A \ {a0}. We call a0 the outside

option.
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This case is useful for two reasons. First, it reflects the common modeling practice of

including an outside option—an aggregated category that captures unobserved or unlisted

choices—frequently used in empirical applications. Although empirical models often involve

more than one aggregated category, the outside option is particularly prominent. Second,

this simplified setting serves as a foundation for analyzing the more general case with multiple

aggregated categories in Section 3.2.

Theorem 3.1. Consider the outside option setup (i.e., AA = {a0}). A stochastic choice

function ρ is RU-rational if and only if ρ satisfies the following two conditions:

(i) (Limited Monotonicity): if b ∈ D ⊆ AN then ρ(D, b) ≥ ρ(D ∪ {a0}, b),

(ii) (Partial RU-rationality) ρ is partially RU rational.

The necessity of (i) and (ii) is immediate. The sufficiency part of the proof is constructive

and nontrivial: given a stochatsic chioce function ρ that satisfies the two conditions (i)

and (ii), we need to construct an aggregation function, a composition distribution and a

distribution over linear orders on X that satisfies (3). The proof is in the appendix.

The theorem makes precise the weakness of RU-rationality relative to ARU-rationality:

RU-rationality is substantially weaker. To see this, note that Limited Monotonicity requires

only that adding the outside option does not increase the choice frequencies of non-aggregated

categories. In particular, it does not require the monotonicity condition with respect to menus

containing aggregated categories. To see this, consider a choice set D such that a0 ∈ D and

b /∈ D. The theorem shows that under RU-rationality, it is possible to observe

ρ(D, a0) < ρ(D ∪ {b}, a0),

which violates the standard monotonicity condition. This may arise because, in the expanded

set D ∪ b, the outside option a0 may become more desirable than it was in D. For example,

in the context of cereal choice, the presence of a fancy, expensive cereal brand may signal

that the market corresponds to a high-income area leading to a change in the interpretation

or attractiveness of the outside good: the outside goods may contain more appealing options

such as smoked salmon or quiche. By contrast, the meanings of non-aggregated categories

remain the same when a0 is added to a choice set with only non-aggregated categories; thus

the limited monotonicity condition holds.

ARU-rationality, by contrast, imposes much stronger restrictions including full mono-

tonicity and beyond. When ρ is observed on all subsets of A (i.e., D = 2A \ {∅}), ARU-
rationality is equivalent to the non-negativity of all Block-Marschak (BM) polynomials.
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Among these, monotonicity is one of the simplest and most intuitive implications. However,

as Theorem 3.1 shows, RU-rationality only implies monotonicity on limited choice sets.

This result highlights the substantial gap between RU-rationality and ARU-rationality.

In Section 4, we examine the specific conditions on the underlying distributions µ and λ

under which RU-rational stochastic choice functions are also compatible with an ARUM.

Two more technical remarks are in order:

Remark 3.2. In our discussion, we focus on Limited Monotonicity rather than on par-

tial RU-rationality. The reason is straightforward: partial RU-rationality is simply RU-

rationality restricted to menus consisting only of non-aggregated categories, and under the

full domain assumption (i.e., D = 2A \ {∅}) it can be characterized by the non-negativity

of Block–Marschak (BM) polynomials defined over sets composed solely of non-aggregated

categories.

Remark 3.3. In our notion of RU rationalizability, we assume that the composition of

categories and the agent’s preferences are independent. A natural extension is to allow

the composition distribution to depend on the agent’s preferences. That is, a composition

distribution λ≻,A is a distribution over
∏

a∈A(2
X(a) \ {∅}) that may jointly depend on the

available categories A and the agent’s preference ≻∈ L (X ). In this case, we say that ρ is

General RU rationalizable if there exists (µX , λ≻,A) such that,

ρ(A, a) =
∑

(Sb)b∈A∈
∏
b∈A

(2X(b)\{∅})

∑
≻∈L (X )

1(∃x ∈ Sa, ∀y ∈ ∪
b∈A\{a}

Sb, x ≻ y))λ≻,A((Sb)b∈A)µX (≻).

(5)

Since this model includes the independent case, RU rationality implies General RU ratio-

nality. Furthermore, it can be shown that General RU rationalizability implies both Limited

Monotonicity and Partial RU. Thus RU rationalizability and General RU rationalizability

are equivalent.

Remark 3.4. For the theorem, in order to make sense of Limited Monotonicity, we need the

following domain assumption on which choice probabilities are observable: if ρ is observable

on (D ∪ {a0}, ·), then ρ is observable on (D, ·) (i.e., if D ∪ {a0} ∈ D , then D ∈ D). In this

case, Limited Monotonicity should be defined as: for all D ⊆ AN such that D ∪ {a0} ∈ D , ρ

satisfies ρ(D, a) ≥ ρ(D ∪ {a0}, a) for all a ∈ D. In the next section (Section 3.1), we omit

the assumption and provide an alternative characterization of RU rationality.
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3.1 Vertex representation

In this section, we characterize admissible consumer behaviors under RU-rationality and

show that many such behaviors are not ARU-rational. No assumption on the domain is re-

quired. However, to simplify exposition, we impose that every observable choice set contains

the outside option a0 (i.e., a0 ∈ D for all D ∈ D), consistent with the common view that a

status quo alternative is always available. (Even without this assumption, the main message

of the section remains unchanged; see Remark 3.11 for details.)

We first introduce a notation: for each ≻∈ L (A ) and E ⊆ D , define a function denoted

by c≻E over D as follows: for all D ∈ D ,

c≻E (D) =

maxD ≻ if D ∈ E ,

a0 if D ̸∈ E .

The function c≻E is a choice function that maximizes ≻ when D ∈ E and otherwise chooses

a0. Now define a degenerate stochastic choice function ρ≻E that corresponds to c≻E . That is,

for all D ∈ D and a ∈ D,

ρ≻E (D, a) = 1(c≻E (D) = a). (6)

Remark 3.5. ρ≻E is RU-rational for all ≻∈ L (A ) and E ⊆ D .9

We can interpret ρ≻E as follows. The set E represents the collection of choice sets in

which the agent makes decisions according to the linear order ≻. Outside this collection

(i.e., on E c), the agent always selects the outside option a0. This behavior is natural: E

can be viewed as the domain on which the consumer behaves rationally according to ≻,

while outside E , menu effects lead the agent to default to a0. For example, in marketing

experiments consumers may follow a stable ranking when choosing among familiar products,

but when faced with an unfamiliar or unusually large assortment, they often revert to the

default option a0.

We now show the main results of this section:

Theorem 3.6. Consider the outside option setup (i.e., AA = {a0}). A stochastic choice

9To see this, fix ≻∈ L (A ) and E ⊆ D . Choose any two elements of X(a0) denoted by x and x. Consider
the following ranking ≻′∈ L (X ) such that (i) ≻ and ≻′ coincide on AN (i.e., a ≻ b if and only if x ≻′ y for
all a, b ∈ AN , where X(a) = {x} and X(b) = {y}); (ii) for any y ∈ AN , x ≻′ y ≻′ x. For all D ∈ D , define
λD({x}) = 1 for any D ̸∈ E ; and λD({x}) = 1 for any D ∈ E . It is easy to see that (δ≻′ , λ) RU- rationalizes
ρ≻E . Note that this construction only relies on |X(a0)| ≥ 2 which is implied by the outside option approach,
thus Remark 3.5 does not depend on X(a0).
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function ρ is RU-rational if and only if

ρ ∈ co.{ρ≻E |≻∈ L (A ) and E ⊆ D}.

We refer to this set as the RU polytope. Moreover, each ρ≻E is a vertex of the RU polytope.

Mathematically, the theorem provides a vertex characterization of RU-rational stochas-

tic choice functions, whereas Theorem 3.1 offers a hyperplane characterization. The vertex

characterization shows that RU-rationality permits a type of behavior excluded under ARU-

rationality: the agent may sometimes choose the outside option (the default option) a0,

possibly due to menu effects, while in other cases adhering to a rational ranking.

To explicitly compare the RU polytope and the set of stochastic choice fictions that are

ARU-rational, we first define the latter set as follows denoted by PA :

Definition 3.7.

PA =

ρ : ρ(A, a) =
∑

≻∈L (A )

µA (≻)ρ≻D(A, a) for all A ∈ D , a ∈ A, with µA ∈ ∆(L(A ))

 ,

where ∆(L(A )) is the set of probability distributions over L(A ) and ρ≻D is defined by (6).

Remark 3.8. The set PA is a polytope with vertices ρ≻D , or

PA = co.{ρ≻D | ≻∈ L (A )}.

We refer to this set as the ARU polytope.

Corollary 3.9. The RU polytope contains the ARU polytope PA as a subpolytope.10

Theorem 3.6 and Corollary 3.9 together show that the ARU polytope is strictly smaller

than the RU polytope: it is a subpolytope whose vertices form only a small subset of the

much larger collection of RU vertices. Specifically, the vertices of the RU polytope are given

by ρ≻E for all ≻∈ L (A ) and E ⊆ D , while the vertices of the ARU polytope are given by ρ≻D
for all ≻∈ L (A ). Thus, ARU vertices vary only with the ranking ≻, whereas RU vertices

vary with both ≻ and the choice of E . See Figure 4 in Section 5.3 for an illustration. The

remark quantifies this gap:

Remark 3.10. The number of vertices (i.e., the number of ρ≻E ) of the RU polytope is double-

exponentially larger than the number of vertices of the ARU polytope (i.e., the number of

10A subpolytope is a polytope obtained by taking a subset of the vertices of the original polytope and
forming their convex hull.
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ρ≻
2A ), provided that D is sufficiently rich. For example, if D contains all sets that include

a0, then the ratio of the number of vertices in the RU polytope to the number in the ARU

polytope is at least

2(2
n−(n2)−1)

n+ 1
,

where |AN | = n. Since the dominant term in the numerator is double exponential, the ratio

grows extremely rapidly. In fact, when n ≥ 6, the ratio already exceeds 22
n−1

.

The next remark shows that as the number of non-aggregated categories n increases, the

number of RU vertices grows at a double-exponential rate, whereas the ARU polytope grows

much more slowly. This stark contrast highlights that RU-rationality imposes far weaker

restrictions than ARU-rationality.

Remark 3.11. As mentioned, the main result of this section (Theorem 3.6) does not require

the domain assumption that a0 ∈ D for all D ∈ D . The theorem continues to hold with a

slight modification of the definition of c≻E . The adjustment is needed because a set D may

fail to contain a0 even when D /∈ E . The generalized definition is:

c≻E (D) =

maxD ≻ if a0 /∈ D or if D ∈ E ,

a0 otherwise.

This is the same as before, except that c≻E is now defined for menus that do not contain a0.

With this modification, Theorem 3.6 holds without change.

3.2 Multiple aggregated categories

In this section, we consider the case in which there exist multiple aggregated categories as

well non-aggregated categories. The main results from the single aggregated category case

continue to hold in essentially the same form, as we show below:

Theorem 3.12. A stochastic choice function ρ is RU-rational if and only if ρ satisfies the

following two conditions:

(i) (Limited Monotonicity): if b ∈ D ⊆ AN and E ⊆ AA then ρ(D, b) ≥ ρ(D ∪ E, b),

(ii) (Partial RU-rationality) ρ is partially RU rational.

The only substantive difference from Theorem 3.1 is that the condition (i) becomes

stronger. In the earlier theorem, the condition (i) required monotonicity with respect to

the addition of a single aggregated category—namely, the outside option a0. In the current
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theorem, where multiple aggregated categories are present, the condition (i) instead requires

monotonicity with respect to the addition of arbitrary subsets E of the aggregated categories.

This is a natural extension of Theorem 3.1: Theorem 3.1 corresponds to the case in which

AA is singleton {a0}. Therefore, all of the implications of Theorem 3.1, as explained in the

previous section hold with Theorem 3.12.

The proof is constructive and more involved as we need to define a composition distri-

bution, or the distribution function defined on the product space
∏

a∈AA
(2X(a) \ {∅}), not

just on 2X(a0) \ {∅}. We provide the formal proof is in the appendix.

Remark 3.13. In line with the single aggregated category case, the only domain assumption

required for Theorem 3.12 to hold is that if D ∪ E ∈ D for D ⊆ AN and E ⊆ AA, then

D ∈ D . This assumption is only needed in order to define Limited Monotonicity and plays

no conceptual role beyond that.

4 Conditions Restoring ARUM

This section investigates the conditions under which RU-rationality implies ARU-rationality.

These results are especially relevant given the widespread use of ARUMs in empirical IO

and the common assumption that the data-generating process satisfies RU-rationality. They

provide concrete guidance on how to define aggregated categories in a way that justifies the

use of ARUMs.

In particular, we provide sufficient restrictions on the underlying preference distribu-

tion µX and the composition distribution λ that ensure RU-rationality and ARU-rationality

coincide on the observed choice domain A . The two conditions we introduce are indepen-

dent: one applies to µX (Section 4.1) and the other to λ (Section 4.2).

4.1 Condition on µX : non-overlappingness

In this section we provide a restriction on the distribution of preferences that recovers the

implications of ARUM. The restriction says for each aggregated category a, the underlying

alternatives in X(a) are similar in utility.

Definition 4.1. Given an aggregation function X, a distribution µX ∈ ∆(L (X )) is non-

overlapping if for any ≻∈ supp(µX ), a ∈ AA, and y, z ∈ X(a),

y ≻ x ≻ z =⇒ x ∈ X(a).
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The definition says that any preference in the support of µX has the property that each

X(a) does not overlap with other aggregated categories in terms of preference ranking.11

Proposition 4.2. A stochastic choice function ρ is RU rational with a non-overlapping µX

if and only if ρ is ARU rational.

Proposition 4.2 shows that, without any assumptions on λ, the use of ARUM is valid

when the alternatives grouped within each aggregate occupy similar positions in agents’

preference rankings. Consequently, when constructing an aggregated data set, alternatives

with closely related characteristics should not be assigned to different aggregates. A similar

observation has been made empirically by Stafford (2018) using a dataset of lobster fishing.

In particular, she demonstrated that classifying crab-fishing sites as part of the outside option

leads to biased coefficient estimates. Because lobster and crab fishing are close substitutes,

an excellent lobster site is preferred to a poor crab site and vice-versa, their rankings overlap,

thereby violating the non-overlapping condition specified in Proposition 4.2.

4.2 Condition on λ: menu-independence

The second condition that we discuss is that the distribution of aggregated categories is the

same across choice sets, or markets.

Definition 4.3. Given an aggregation function X, a composition distribution λ is said to

be menu independent if there exists λ ∈ ∆
(∏

a∈A (2X(a) \ {∅})
)
such that for any B ⊆ A

and (Sa)a∈B ∈
∏

a∈B(2
X(a) \ {∅}),

λB((Sa)a∈B) = λ
(∏

a∈B

(Sa)×
∏

a∈A \B

(2X(a) \ {∅})
)
.12 (7)

Remark 4.4.

• To explain the meaning of our condition, consider a stronger condition as follows:

there exists λa ∈ ∆(2X(a) \ {∅}) for each a ∈ A such that for any B ⊆ A and

(Sa)a∈B ∈
∏

a∈B(2
X(a) \ {∅}),

λB((Sa)a∈B) =
∏
a∈B

λa(Sa). (8)

11It is possible to weaken the definition as follows but we keep this condition for simplicity: A distribution
µX ∈ ∆(L (X )) is almost non-overlapping if for any ≻∈ supp(µX ), there exists b, c ∈ A such that (i)
y ≻ x for all x ∈ X(b) ∪X(c) and y ∈ X \ (X(b) ∪X(c)) and (ii) for all a ∈ AA \ {b, c}, and y, z ∈ X(a),
y ≻ x ≻ z =⇒ x ∈ X(a).

12The right hand side can be written simply as follows λ
(
(Sa)a∈B , (2

X(a) \ {∅})A \B

)
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The condition (7) says that there exists a joint distribution that works across choice

sets.13 (7) is weaker than condition (8) in the sense that it allows correlation across

aggregated categories. The two conditions coincide when there is a single aggregated

category. In that case, both reduce to menu-independent aggregation: λD = λE for all

D,E ⊆ A .

• By the finiteness and the additivity, for any B ⊆ A and (Sa)a∈B ∈
∏

a∈B(2
X(a) \ {∅}),

the menu independence implies

λB((Sa)a∈B) =
∑

(Sc)a∈Bc∈
∏

c∈Bc (2X(c)\{∅})

λ((Sa)a∈B, (Sc)c∈Bc).

When λ is independent, representation (3) in Definition 2.5 can be simplified as in the

following lemma.

Lemma 4.5. Given µX ∈ ∆(L (X )) and a menu independent composition distribution λ,

we have for all A ⊆ A and a ∈ A

ρ(A, a) =
∑

(Sb)b∈A

λ((Sb)b∈A )ρX (∪b∈ASb, Sa),

where ρX (∪b∈ASb, Sa) = µX (≻∈ L (X )|∃x ∈ Sa, ∀y ∈ ∪b∈A\aSb, x ≻ y)

Lemma 4.5 means that the aggregated stochastic choice function ρ is a convex combi-

nation of ρX for each composition of the aggregated categories. If ρX is RUM, then ρ is

also a RUM. This intuition is formalized in the following proposition.

Proposition 4.6. A stochastic choice function ρ is RU rational with menu independent λ

if and only if ρ is ARU rational.

Proposition 4.6 shows that if the composition distribution λ is menu independent, then

each aggregated category can be treated as a single good. Whether this assumption holds

depends on the setting. In some markets, λ may indeed be menu independent. A natural

example is automobiles: when alternatives are aggregated by brand, the distribution of

models within a brand is relatively stable, conditional on that brand being available, and

thus invariant to which other brands are offered. In other markets, however, λ is menu

13For example, consider a, b ∈ AA and let X(a) = {x1, y1} and X(b) = {x2, y2}. Definition 2.5 allows
the situation that a means alternative x1 (y1) if and only if b means alternative x2 (y2, respectively); and
a means x1 and y1 equally likely. In this example, the probability that a means x1 and b means y2 is zero,
which is not allowed in (8).

18



dependent. As discussed, the outside option often varies across markets (e.g., with income,

store access, or local amenities), so its composition—and hence λA—changes with the menu

A.

5 Simulation

The theoretical results from the previous section show that, in general, the implications of

RU-rationality for the observed dataset ρ are too weak to guarantee ARU-rationality except

under two special conditions: when the composition distribution λ is menu independent, or

when the underlying preference structure is non-overlapping.

These results motivate the following conjecture: As the composition distribution λ de-

parts from menu independence, or as preferences depart from the non-overlapping condition,

the likelihood that ρ can be rationalized by an ARUM diminishes. Consequently, estimation

based on an ARUM, such as the logit model, is expected to yield increasingly biased utility

estimates. This section empirically investigates this conjecture through simulation analysis

and also examines how large such biases can be, an important practical question.

Specifically, we generate true unobservable choice data ρX defined over the set X of

underlying alternatives using a logit model with fixed utilities. Given ρX and a specified

composition distribution λ as well as an aggregation function X, we construct the observed

dataset ρ on the set A of categories. We then estimate utility parameters from ρ using a

logit specification and measure the resulting estimation bias. In addition, we compute the

distance from ρ to the set of ARUMs (i.e., the ARU polytope) to evaluate the extent of

rationality loss.

Our analysis is organized around the following conjectures:

(A) As λ becomes more menu dependent or preferences more overlapping, ρ is increasingly

unlikely to be rationalized by an ARUM, let alone by a logit model defined over A .

This leads to larger estimation biases (see Section 5.2).

(B) The reason for Conjecture (A) is that the distance from ρ to the ARU polytope grows

with greater menu dependence or preference overlap (see Section 5.3).

We first confirm Conjecture (A). In particular, we demonstrate that the resulting biases

are often substantial enough not only to distort estimated utility levels but also to overturn

inferred preference orderings. We then demonstrate that Conjecture (B) explains why this

occurs.
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To establish these conjectures, we fix certain parameter values that are not the main

focus of the analysis. Section B of the online appendix reports simulations using alternative

parameter values.

5.1 Setup

Consider three alternatives x, y, a0, where x, y are non-aggregated categories14; a0 is an

aggregated category (the outside option). The outside option can mean good z or w. That

is, X(a0) = {z, w}. Given fixed utility values u(x), u(y), u(z), and u(w), we generate the

true dataset ρX over the set X of underlying alternatives by assuming the logit model: for

all D ⊆ {x, y, z, w} and i ∈ D,

ρX (D, i) =
exp(u(i))∑

j∈D exp(u(j))
.

We examine three distinct markets, each represented by one of the following choice sets:

{x, a0}, {y, a0}, and {x, y, a0}. Importantly, the composition of the aggregated category a0

varies across these markets; that is, λ{x,a0}, λ{y,a0}, and λ{x,y,a0} over {{w}, {z}, {w, z}} are

allowed to differ. With ρX and λ, we construct the observable reduced dataset ρ over the

set A of aggregated categories. That is for any D ⊆ {x, y} and i ∈ D, we define ρ(D∪ a0, i)

as

λD∪a0({w})ρX (D ∪ {w}, i) + λD∪a0({z})ρX (D ∪ {z}, i) + λD∪a0({z, w})ρX (D ∪ {z, w}, i).

Given the observed aggregated dataset ρ, we estimate the utility parameters û(x) and û(y)

under the assumption that ρ follows a multinomial logit model defined over A and that the

utility of the outside option is zero, i.e., exp(u(a0)) = 1. Note that in this setup

• The composition distribution λ becomes more menu dependent as λ{x,a0}, λ{y,a0}, and

λ{x,y,a0} become more distinct.

• Fixing the true utilities of u(x) and u(y)—say, u(x) > u(y)—the preference structure

becomes more overlapping as max{u(z), u(w)} exceeds u(x) and min{u(z), u(w)} falls

below u(y).

14For simplcity, we abuse the notation x and y to denote both the non-aggregated categories and their
respective underlying alternatives.
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5.2 Estimation Bias from ARUM Misspecification

To confirm Conjecture (A), we quantify the estimation bias using the following measure:

(û(x)− û(y))− (u(x)− u(y)), (9)

where û(x) and û(y) denote the maximum-likelihood estimates of u(x) and u(y), respec-

tively. This measure captures the distortion in relative utilities between alternatives x and

y. Remember that in our setup the values of u(x) and u(y) are fixed say u(x) = 2 and

u(y) = 1. We are interested in the values of the measure as well as the sign of the measure.

When the measure is less than −1 it means that in the estimate we have û(y) > û(x), even

though in the true data we have u(x) > u(y). This means that bias affects not only the

estimated utility levels but also the inferred preference orderings.

The values of the measure are also meaningful. To see this, consider the case in which

û(x)− û(y) > u(x)− u(y). Then, by taking the exponential of the measure, we have

exp(û(x))

exp(û(y))

/exp(u(x))

exp(u(y))
,

which represents the ratio of the estimated odds ratio to the true odds ratio of choosing x

over y. A deviation in this ratio reflects how the estimated utilities—and thus predicted

behavior—diverges from the true underlying model.

5.2.1 Effect of composition distribution λ on bias

In the first simulation, we test Conjecture (A) focusing on the role of λ: the bias defined in

(9) becomes larger as λ becomes more menu dependent (i.e., as λ changes across choice sets

{x, a0}, {y, a0}, {x, y, a0}). As the preference structure is not the focus of the analysis, we

fixed the values u(x) = 2, u(y) = 1, u(z) = 3, u(w) = 0.
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Figure 1: Heatmap of biases across values of λ{x,a0}, with λ{y,a0} and λ{x,y,a0} fixed at
(0.8, 0.1, 0.1) and utilities fixed at u(x) = 2, u(y) = 1, u(z) = 3, u(w) = 0. The hori-
zontal axis reports λ{x,a0}({z}), the vertical axis reports λ{x,a0}({w}), and color intensity
represents the magnitude of the bias defined in (9). The blue-outlined cell marks the inde-
pendent case, where λ{x,a0} = λ{y,a0} = λ{x,y,a0}; cells farther from the blue cell correspond
to more menu-dependent cases, where the bias is larger.

First, we construct a heatmap to visualize the sensitivity of bias to deviations from the

independence case. In Figure 1, we vary the values of λ{x,a0} while equating and holding

λ{x,y,a0} and λ{y,a0} fixed at (0.8, 0.1, 0.1), where the first, second, and third entries represent

the probabilities assigned to {z}, {w}, and {z, w}, respectively. Note that the horizontal

axis measures λ{x,a0}({z}), while the vertical axis measures λ{x,a0}({w}). (Note that the

numbers λ{x,a0}({z}) and λ{x,a0}({w}) determine λ{x,a0} uniquely as λ{x,a0}({z, w}) = 1 −
λ{x,a0}({w})−λ{x,a0}({z}).) Each grid point in the heatmap represents a specific assignment

of λ{x,a0}; the bias is computed at each grid point. The blue-outlined cell corresponds to

the independent case, in which λ{x,a0}({z}) = 0.8 and λ{x,a0}({w}) = 0.1, implying that

λ{x,a0} = λ{y,a0} = λ{x,y,a0}.

The heatmap supports Conjecture (A): bias grows as λ becomes more menu depen-

dent—that is, as the cell moves further away from the independent case. The mechanism is

straightforward: positive bias arises when x is overvalued relative to a0 in the menu {x, a0},
while negative bias arises when x is undervalued relative to a0 in the menu {x, a0}. When

a0 consists of {w}, it is relatively unattractive, whereas when it consists of {z} or {z, w}, it
is more attractive, since in our setup u(z) is high and u(w) is low. Hence, the large positive
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bias in the figure occurs when a0 is composed of w more often in the menu {x, a0} (e.g.,

when λ{x,a0}({w}) = 1). Conversely, the negative bias arises when a0 is composed of {z} or

{z, w} (e.g., when λ{x,a0}({w}) = 0).

5.2.2 Maximum and minimum biases and the independent case

To construct Figure 1, we assumed λ{y,a0} = λ{x,y,a0}. In this section, we relax this assumption

and vary the values of λ{y,a0} and λ{x,y,a0} and report the resulting maximum and minimum

biases in Figure 2. Each point in the figure corresponds to four possible bias measures,

evaluated at nonnegative values of λ{x,y,a0}({w}) and λ{x,y,a0}({z}) satisfying λ{x,y,a0}({w})+
λ{x,y,a0}({z}) ≤ 1:

• (1) Maximum positive bias, obtained by varying all values of λ{x,a0} and λ{y,a0} (red)

• (2) Maximum negative bias, obtained by varying all values of λ{x,a0} and λ{y,a0} (purple)

• (3) Minimum absolute bias, obtained by varying all values of λ{x,a0} and λ{y,a0} (blue)

• (4) Independent case, where λ{x,y,a0} = λ{x,a0} = λ{y,a0} (green)

Figure 2: Maximum positive bias (red), maximum negative bias (purple), minimum absolute
bias (blue), and bias under independent λ (green), plotted across values of λ{x,y,a0}. The hor-
izontal axis reports λ{x,y,a0}({w}) and the vertical axis reports λ{x,y,a0}({z}). The maximum
and minimum biases are obtained by optimizing over all admissible values of λ{x,a0} and
λ{y,a0}.
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The figure illustrates that, in the independent case, the biases are significantly smaller

than the maximum biases and are often close to the minimum biases.15 Notably, both the

maximum positive and negative biases can be substantial in magnitude. Specifically, the bias

can exceed 2 or fall below −3. As mentioned, when the bias (û(x) − û(y)) − (u(x) − u(y))

is less than −1, it implies that the estimated utilities satisfy û(x) < û(y), despite the

true ordering being u(x) > u(y). Moreover, the difference is large enough that y appears

substantially better than x in the estimates. This demonstrates that bias distorts not only

the estimated utility levels but also the inferred preference orderings, potentially leading to

incorrect conclusions and decisions.

Conversely, when the bias exceeds 2, we obtain û(x)− û(y) > 3, indicating a substantial

overstatement of the utility difference. In terms of odds ratios, this implies

exp(û(x))

exp(û(y))
> e2 · exp(u(x))

exp(u(y))
.

In other words, the estimated odds ratio overstates the true odds ratio by a factor greater

than e2 ≈ 7. Such distortions in relative odds can result in highly inaccurate predictions of

choice probabilities.

5.2.3 Effect of preference structure on bias

In the last simulation on biases, we vary the preference structure to evaluate how overlapping

preferences affect bias. We assume that the true unobservable dataset ρX is generated by

logit models with u(x) = 2, u(y) = 1, and various values of u(z) and u(w) on a uniform grid

over [−5, 5]. The composition distributions λ are fixed to be non-independent, since λ is not

the focus of this analysis. Specifically, we set λ{x,y,a0} = (0.8, 0.1, 0.1), λ{x,a0} = (0.8, 0.1, 0.1),

and λ{y,a0} = (0.1, 0.8, 0.1), where the three coordinates represent the probabilities of {z},
{w}, and {z, w}, respectively.

For each pair (u(z), u(w)), we compute the bias defined in (9). Since u(x) = 2 and

u(y) = 1, violations of the non-overlapping condition are more likely when u(z) and u(w)

are far apart, with max{u(z), u(w)} > 2 and min{u(z), u(w)} < 1.

Figure 3 displays the resulting heatmap, with u(z) and u(w) on the axes. Red indicates

positive bias at the top left corner and blue indicates negative bias at the bottom right

corner, with color intensity reflecting the magnitude. The figure confirms our Conjecture

(A): bias is largest when the preference structure is highly overlapping. In particular, as

u(z) and u(w) move farther apart, cells lie farther from the diagonal, and the magnitude of

15In fact, when λ{x,y,a0}({w}) = 1 or λ{x,y,a0}({w}) = 0, the blue points and the green points coincide.
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bias increases. Conversely, when both u(z) and u(w) are either very high or very low, the

bias decreases.

Figure 3: Heatmap of biases across values of u(z) and u(w), with u(x) = 2, u(y) = 1,
and composition distributions fixed at λ{x,y,a0} = (0.8, 0.1, 0.1), λ{x,a0} = (0.8, 0.1, 0.1), and
λ{y,a0} = (0.1, 0.8, 0.1). The horizontal axis reports u(z), the vertical axis reports u(w), and
color intensity indicates the magnitude of the bias defined in (9) (red for positive bias, blue
for negative bias). Biases are largest when preferences overlap strongly, i.e., when u(z) and
u(w) straddle u(x) = 2 and u(y) = 1.

The intuition is as follows. In this setup, a0 is likely to be composed of z in both

{x, y, a0} and {x, a0}, since λ{x,y,a0}({z}) = λ{x,a0}({z}) is high, whereas a0 is likely to be

composed of w in {y, a0}, given that λ{y,a0}({w}) is high. Consequently, when u(w) > u(z),

the relative attractiveness of x in {x, a0} and {x, y, a0} is high, leading to the overestimation

of û(x); and the relative attractiveness of y in {y, a0} is low, leading to an underestimation

of û(y) and thus a positive bias in the top-left corner. Conversely, when u(z) > u(w), the

relative attractiveness of x in {x, y, a0} and {x, a0} is low, leading to an underestimation of

û(x); and the relative attractiveness of y in {y, a0} is high, leading to an overestimation of

û(y). This results in a negative bias in the bottom-right corner.

5.3 Distance to the ARU Polytope

The previous subsection confirmed Conjecture (A), namely that estimation biases increase as

the composition distribution λ becomes more menu dependent and the preference structure

becomes more overlapping. The purpose of this subsection is to explain why it holds. Our
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explanation is provided by Conjecture (B), which states that the distance from the observed

dataset ρ to the ARU polytope grows as the composition distribution λ becomes more menu

dependent or as the underlying preferences become more overlapping.

To quantify the deviation of the observable dataset ρ from ARU-rationality, we calculate

the minimum distance between ρ and the set PA of ARUMs (i.e., the ARU polytope). (See

Definition 3.7 in Section 3.1 for the definition.) Recall that a dataset ρ belongs to PA if and

only if it is ARU rational. Hence, the minimal distance from ρ to PA provides a natural

metric for assessing the extent of violation of the ARU rationality. The minimum distance

is defined as follows:

min
ρ′∈PA

∥ρ− ρ′∥. (10)

Figure 4 shows a point ρ that is RU rational but not ARU rational. The line from ρ to the

red triangle shows the minimal Euclidean distance from ρ to the ARU polytope PA which

is given by the orthogonal projection.

ρ≻2
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E3

ρ≻4
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ρ≻5
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ρ≻8
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ρ≻18
E18

ρ≻19
E19

ρ≻20
E20

ρ≻1

D

ρ≻2

D ρ≻3

D

ρ

Figure 4: Random utility polytope (blue) and aggregated random utility polytope PA (red).
The orthogonal projection illustrates the distance from ρ to PA

To see how the minimum distance can be calculated in our setup, remember that we have

three alternatives x, y, a0. Thus the number of linear orders is 6; the number of coordinates

of ρ (i.e., (D, i) such that i ∈ D ⊆ {x, y, a0}) is 12. Then, the distance (10) can be calculated

as follows: given ρ ∈ R12,

min
µ∈∆5

∥∥∥∥∥ρ−
6∑

i=1

µiρ
≻i

D

∥∥∥∥∥
2

2

, (11)
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where the norm is the Euclidean norm and ρ≻i

D is defined by equation (6). Here, ∆5 is the five

dimensional simplex and an element of the simplex satisfies µ ∈ R6, µi ≥ 0, and
∑

i µi = 1.

5.3.1 Effect of composition distribution λ on distance

Figure 5: Heatmap of the distance defined in (11) across values of λ{x,a0}, with λ{y,a0} and
λ{x,y,a0} fixed at (0.8, 0.1, 0.1) and utilities fixed at u(x) = 2, u(y) = 1, u(z) = 3, and
u(w) = 0. The horizontal axis reports λ{x,a0}({z}), the vertical axis reports λ{x,a0}({w}),
and color intensity indicates the magnitude of the distance. The blue-outlined cell marks the
independent case (λ{x,a0} = λ{y,a0} = λ{x,y,a0}); cells farther from the blue cell correspond to
more menu-dependent cases, where the distance is larger.

In this simulation, we examine how the distance defined in (11) varies with λ while holding

utility values fixed. We use the same utility and λ specifications as in Subsection 5.2.1.

Specifically, we vary λ{x,a0} while fixing λ{x,y,a0} and λ{y,a0}.

We compute the distance at each grid point. Figure 5 reports the resulting heatmap.

Consistent with Proposition 4.6, the distance is zero in the independent case (blue-outlined

cell). As λ moves farther from the menu independence, the distance increases, confirming

Conjecture (B).

To understand the figures, recall that we consider three alternatives x, y, and a0. Thus,

it can be shown that ρ is ARUM if and only if it satisfies the standard monotonicity condition

for all menus. Since ρ is RU-rational, it satisfies Limited Monotonicity, that is monotonicity
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on {x, y} with respect to adding a0. Also, since λ{y,a0} = λ{x,y,a0}, monotonicity is satisfied on

menu {y, a0} with respect to adding x. Thus the only possible ways to violate monotonicity

are (i) ρ({x, y, a0}, a0) > ρ({x, a0}, a0) and (ii) ρ({x, y, a0}, a0) > ρ({y, a0}, a0). The first

occurs when a0 is less attractive on {x, a0} than on {x, y, a0} and the second occurs when

a0 is more attractive on {x, a0} than on {x, y, a0}. Since u(z) is high and u(w) is low, the

first case occurs when a0 is more likely to be {w} (e.g., λ{x,a0}({w}) = 1); the second case

occurs when a0 is more likely to be {z} or {z, w} (e.g., λ{x,a0}({w}) = 0). These are two

cases where the distance is large in Figure 5.

5.3.2 Effect of preference structure on distance

Finally, we examine how the distance varies with the preference structure while keeping λ

fixed. The simulation setup follows Subsection 5.2.3: we fix u(x) = 2 and u(y) = 1, and vary

u(z) and u(w) over a uniform grid.

We produced a heatmap with axes corresponding to u(z) and u(w) and color intensity

represents the magnitude of the distance. Figure 6 shows that the distance is largest in

the lower-right corner, where the preference structure exhibits strong overlap, and smallest

along the diagonal, where preferences are closer to non-overlapping, which is consistent with

Proposition 4.2 and Conjecture (B).

Figure 6: Heatmap of the distance defined in (11) across values of u(z) and u(w), with
u(x) = 2, u(y) = 1, and composition distributions fixed at λ{x,y,a0} = (0.8, 0.1, 0.1), λ{x,a0} =
(0.8, 0.1, 0.1), and λ{y,a0} = (0.1, 0.8, 0.1). The horizontal axis reports u(z), the vertical axis
reports u(w), and color intensity indicates the magnitude of the distance. The distance is
largest in the lower-right corner and smaller along the diagonal.
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The intuition behind the figure is as follows. As in the previous example, ARUM is

characterized by monotonicity, so we can interpret the figure by identifying the parameters

that generate the largest violations of monotonicity. Because λ{x,y,a0} = λ{x,a0}, monotonicity

violations only occur when comparing {x, y, a0} and {y, a0}.
When u(z) is high and u(w) is low, a0 is relatively more attractive in {x, y, a0} than in

{y, a0}. This is because a0 is more often composed of z in {x, y, a0}, whereas it is more often

composed of w in {y, a0}. This implies ρ({x, y, a0}, a0) > ρ({y, a0}, a0), producing a large

violation of monotonicity in the bottom-right corner. By contrast, when u(w) is high and

u(z) is low, a0 becomes relatively less attractive in {x, y, a0} than in {y, a0}. As a result,

y is more attractive in {y, a0}, so that ρ({x, y, a0}, y) > ρ({y, a0}, y)—again a violation of

monotonicity. However, because y is much less attractive than x (i.e., u(x) > u(y)), the size

of this violation is considerably smaller than in the previous case. This explains why the

distances in the top-left corner are smaller than those in the bottom-right.

6 Summary

We study discrete choice with aggregated categories whose compositions are unobserved

and show that RU-rationality imposes only limited implications for the observed dataset ρ:

(i) Limited Monotonicty (adding aggregated categories to a menu of non-aggregated cate-

gories decreases choice probabilites) (ii) Partial RU-rationality (standard RUM consistency

on menus that do not contain aggregated categories). We also characterize the admissible

behaviors of consumers under RU-rationality and show that the characterization includes

various irrational behaviors under ARU-rationality.

These results imply that RU-rationality alone is too weak to justify ARUMs (distribu-

tions over rankings on aggregated categories) commonly assumed in empirical work. Given

this, we identify two conditions under which RU-rationality implies ARU-rationality: (i)

menu-independence of λ and (ii) a non-overlapping preference structure. The following fig-

ure summarizes our theoretical results:

ARU
Remark 2.7

+ menu independent λ or
non-overlapping µX

RU
By definition

+ Limited Monotonicity

Partial RU.

To assess empirical relevance, we conduct simulations. We first generate “true” logit

data ρX on the underlying alternatives using the true utilities. Then, fixing a composition

distribution λ, we construct the observable reduced data ρ on categories. From ρ, we estimate

utilities and evaluate (i) the bias (û(x) − û(y)) − (u(x) − u(y)) and (ii) the distance from
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ρ to the ARU polytope PA . The results are stark: greater menu dependence and greater

preference overlap both increase bias and distance. Bias magnitudes can be large enough

to flip the inferred ranking of x and y, showing how misspecified aggregation distorts both

utility levels and orderings.
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A Proofs

For ease of notation, we will assume throughout this section that each category a ∈ AN is

composed of itself, that is X(a) contains only a. Thus by abuse of notation, we may iden-

tify the non-aggregated categories AN and the corresponding set of underlying alternatives

∪a∈AN
X(a).

A.1 Proof of Theorem 3.1

The necessity is trivial. We prove the sufficiency. Assume the two conditions and fix an

aggregation function X such that |X(a0)| = |AN |+ 1.

By Partial-RU, there exists µ̃ ∈ ∆(L (AN)) that rationalizes ρ on 2AN \ {∅}. For each
y ∈ AN , choose an element of X(a0) denoted by x0(y). We will also fix a unobservable

alternative x that plays a special role in the following. Note that such alternatives exist

because |X(a0)| = |AN |+ 1.
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For any ranking ≻̃ on AN that belongs to the support of µ̃, we extend ≻̃ and define a

ranking ≻ on X as follows. First, for each y ∈ AN , place x0(y) ∈ X(a0) just above y and

x at the bottom for all ≻̃ ∈ supp(µ̃). For example, if the ranking y1 ≻̃ y2 ≻̃ y3 is in the

support then we extend ≻̃ to ≻ on X as follows

x0(y1) ≻ y1 ≻ x0(y2) ≻ y2 ≻ x0(y3) ≻ y3 ≻ x.

Finally, we define µX ∈ ∆(L (X )) as follows: for each extended ranking ≻ defined above,

we let µX (≻) = µ̃(≻̃).

Let ρX be a random utility model that is rationalized by µX . Now fix D ⊆ AN . In the

following, we will construct λ ∈
∏

b∈D∪a0(2
X(b) \ {∅}) to establish the following equality for

all b ∈ D ∪ a0: ∑
(Sb)b∈D∪a0

⊆
∏

b∈D∪a0
(2X(b)\{∅})

λ((Sb)b∈D∪a0)ρX (∪b∈D∪a0Sb, Sb) = ρ(D ∪ a0, b).

Since D ⊆ X̃, for all b ∈ D, there exists yb such that X(b) = {yb}.
Thus, for any (Sb)b∈D∪a0 ⊆

∏
b∈D∪a0(2

X(b) \ {∅}), Sb is determined as {yb} for all b ∈ D.

Thus, for simplicity, we will focus on the marginal distribution of λ on 2X(a0)\{∅} and obtain

the following equality:∑
S⊆X(a0)

λ(S)ρX ({yb|b ∈ D} ∪ S, yb) = ρ(D ∪ a0, b) for all b ∈ D (12)

and ∑
S⊆X(a0)

λ(S)ρX ({yb|b ∈ D} ∪ S, S) = ρ(D ∪ a0, a0). (13)

Note that (13) is implied by (14) by the fact that the probability must sum to one. The

purpose of our proof is, thus, to show the existence of λ on 2X(a0) \ {∅} that satisfies the

following equality for all y ∈ D ⊆ AN ,
16

∑
S⊆X(a0)

λ(S)ρX (D ∪ S, y) = ρ(D ∪ a0, y). (14)

Now we will define λ recursively. We first label elements of D by yi so that ρ(D∪a0,y0)
ρ(D,y0)

is

16Remember that this λ is a composition distribution for the choice set D ∪ {a0}. For another choice set
E ∪ {a0}, one can construct a desirable composition distribution in the same way.
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maximum among ρ(D∪a0,yi)
ρ(D,yi)

. Define

λ0(x) =
ρ(D ∪ a0, y0)

ρ(D, y0)
, λ0(X(a0)) = 1− λ0(x)

and all other values are zero. Then λ0 is a probability measure because λ0(x) ≤ 1 by Limited

Monotonicity. Moreover, the chance that y0 is chosen is equal to ρ(D ∪ a0, y0) as desired:∑
S⊆X(a0)

λ0(S)ρX (D ∪ S, y0) = λ0(x)ρX (D ∪ {x}, y0) + λ0(X(a0))ρX (D ∪X(a0), y0)

= λ0(x)ρX (D ∪ {x}, y0) (∵ x(y0) ≻ y0 for all ≻∈ supp(µX ))

= λ0(x)ρX (D, y0) (∵ y0 ≻ x for all ≻∈ supp(µX ))

= λ0(x)ρ(D, y0)

= ρ(D ∪ a0, y0),

where the fourth equality holds because ρX (D, y0) = ρ(D, y0) because all elements in D are

non-aggregated categories.

Given λ0, we will define λ1 that satisfies (14) for y0 and y1. First remember that since
ρ(D∪a0,y0)
ρ(D,y0)

is maximum among ρ(D∪a0,yi)
ρ(D,yi)

, we have

λ0(x) ≡
ρ(D ∪ a0, y0)

ρ(D, y0)
≥ ρ(D ∪ a0, yi)

ρ(D, yi)
=

ρ(D ∪ a0, yi)

ρX (D, yi)
=

ρ(D ∪ a0, yi)

ρX (D ∪ {x}, yi)
,

where the second to the last equality holds because ρX (D, yi) = ρ(D, yi); and the last equality

holds because x is the worst alternative for any ≻∈ supp(µX ). Thus λ0(x)ρX (D∪{x}, yi) ≥
ρ(D ∪ a0, yi). By using this inequality, we have∑

S⊆X(a0)

λ0(S)ρX (D ∪ S, yi) = λ0(x)ρX (D ∪ {x}, yi) + λ0(X(a0))ρX (D ∪X(a0), yi)

= λ0(x)ρX (D ∪ {x}, yi)

≥ ρ(D ∪ a0, yi).

This inequality suggests that we should decrease the value of λ0(x) to have the desired

equality for i > 0. Given the observation, we define λ1 given λ0 as follows. The idea is to

move probability from λ0(x) to λ0(x, x0(y1)) so that the chance that y1 is chosen decreases
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to ρ(D ∪ a0, y1) as desired. More precisely, we define λ1 as follows:

λ1(x) =
ρ(D ∪ a0, y1)

ρ(D, y1)
, λ1(x, x0(y1)) = λ0(x)− λ1(x), λ1(X(a0)) = λ0(X(a0)).

To see that λ1 is a probability measure, notice that λ1(x, x0(y1)) ≥ 0 because ρ(D∪a0,y0)
ρ(D,y0)

≥
ρ(D∪a0,y1)
ρ(D,y1)

. Moreover, we have the desired equalities for y1 and y0 as follows:

∑
S⊆X(a0)

λ1(S)ρX (D ∪ S, y1)

= λ1(x)ρX (D ∪ {x}, y1) + λ1(x, x0(y1))ρX (D ∪ {x, x0(y1)}, y1) + λ1(X(a0))ρX (D ∪X(a0), y1)

= λ1(x)ρX (D ∪ {x}, y1) (∵ x0(y1) ≻ y1 for all ≻∈ supp(µ))

= λ1(x)ρX (D, y1) (∵ y1 ≻ x for all ≻∈ supp(µ))

= λ1(x)ρ(D, y1)

= ρ(D ∪ a0, y1)

and∑
S⊆X(a0)

λ1(S)ρX (D ∪ S, y0)

= λ1(x)ρX (D ∪ {x}, y0) + λ1(x, x0(y1))ρX (D ∪ {x, x0(y1)}, y0) + λ1(X(a0))ρX (D ∪X(a0), y0)

=
(
λ1(x) + λ1(x, x0(y1))

)
ρX (D ∪ {x}, y0) + λ1(X(a0))ρX (D ∪X(a0), y0) (15)

= λ0(x)ρX (D ∪ {x}, y0) + λ0(X(a0))ρX (D ∪X(a0), y0)

= λ0(x)ρX (D ∪ {x}, y0)

= ρ(D ∪ a0, y0), (∵ Definition of λ0)

where the second equality holds because for all ≻∈ supp(µX ), x0(y1) is the immediate

predecessor of y1 so adding x0(y1) changes the only the probability of choice frequency of y0,

thus ρX (D ∪ {x}, y0) = ρX (D ∪ {x, x0(y1)}, y0).
In general, at nth step, given λn−1 that satisfy (14) for all y ∈ {y1, . . . , yn−1}, we will

define λn that satisfy (14) for all y ∈ {y1, . . . , yn−1, yn}. First define

cn =
ρ(D ∪ a0, yn)

ρ(D, yn)λ0(x)
.

Note 0 ≤ cn ≤ 1 because ρ(D∪a0,y0)
ρ(D,y0)

is maximum among ρ(D∪a0,yi)
ρ(D,yi)

. Let λn(X(a0)) = λ0(X(a0))
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and for each S in the support of λn−1 except X(a0)

λn(S) = cnλn−1(S), λn(S ∪ x0(yn)) = λn−1(S)− λn(S).

Note first that λn is a probability measure given that λn−1 is a probability measure. Note

also this modification of λn from λn−1 does not change the chance that yi is chosen for any

i ≤ n − 1; this only changes the chance that yn is chosen because adding x0(yn) changes

only the choice frequency of yn as in (15). Moreover, we obtain the desired equalities for the

choice frequency of yn as follows:∑
S⊆X(a0)

λn(S)ρX (D ∪ S, yn)

= λn−1(X(a0))ρX (D ∪X(a0), yn)+∑
S∈supp(λn−1)\{X(a0)}

cnλn−1(S)ρX (D ∪ S, yn) + (1− cn)λn−1(S)ρX (D ∪ S ∪ x0(yn), yn)

=
∑

S∈supp(λn−1)\{X(a0)}

cnλn−1(S)ρX (D ∪ S, yn) (∵ x0(yn) ≻ yn for all ≻∈ supp(µX ))

=
∑

S∈supp(λn−1)\{X(a0)}

cnλn−1(S)ρX (D, yn)

= cn
∑

S∈supp(λn−1)\{X(a0)}

λn−1(S)ρ(D, yn) (∵ ρ(D, yn) = ρX (D, yn))

= cnλ0(x)ρ(D, yn) (∵
∑

S∈supp(λn−1)\{X(a0)}

λn−1(S) = 1− λn−1(X(a0)) = 1− λ0(X(a0)) = λ0({x}))

= ρ(D ∪ a0, yn),

where the last equality holds by the definition of cn; the fourth to the last equality holds

because yn is the maximum element among D with respect to ≻ if and only if yn is the

maximum element among D∪S with respect to ≻ since S ⊆ {x0(yi)|i < n}∪{x} and x0(yi)

is the immediate predecessor of yi for all ≻∈ supp(µX ).

A.2 Proof of Theorem 3.12

The necessity is trivial. We show the sufficiency. Fix an aggregation function X such that

|X(a)| = |AN |+2 for all a ∈ AA. For each a ∈ AA and y ∈ AN , choose an element of X(a),

denoted by xa(y). We also fix two alternatives xa, xa ∈ X(a). Note that there exist such

alternatives under the assumption that |X(a)| = |AN | + 2 for all a ∈ AA. We again abuse

notation and assume that each category a ∈ AN is composed of itself, that is X(a) = {a}.
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By Partial RU- rationality, there exists a distribution µ̃ over linear orders ≻̃ on AN that

rationalizes ρ on subsets of AN . Based on this distribution, we will construct a RUM ρ on

the entire set X of the underlying alternatives as follows. For each ranking on AN in the

support of µ̃, we construct ranking on X : we place xa(y) right above y, xa and xa at the

bottom with xas above xas. The order among aggregated categories is arbitrarily fixed. For

example, let {a0, a1} = AA and fix an order by index. Also let AN = {y0, y1} and y0 ≻̃ y1.

Then, we define ≻ on X as follows:

x0(y0) ≻ x1(y0) ≻ y0 ≻ x0(y1) ≻ x1(y1) ≻ y1 ≻ x0 ≻ x1 ≻ x0 ≻ x1.

Fix D ⊆ AN and E ⊆ AA. In the following, we will construct λ ∈
∏

b∈D∪E(2
X(b) \ {∅})

to establish the following equality for all b ∈ D ∪ E:∑
(Sb)b∈D∪E⊆

∏
b∈D∪E(2X(b)\{∅})

λ((Sb)b∈D∪E)ρX (∪b∈D∪ESb, Sb) = ρ(D ∪ E, b).

With using the same simplified notation and the reasoning in the proof of Theorem 3.1, the

purpose of the proof is to show the existence of a probability distribution λ on
∏

b∈E(2
X(b) \

{∅}) that satisfies∑
(Sb)b∈E∈

∏
b∈E(2X(b)\{∅})

λ((Sb)b∈E)ρX (D ∪ (∪b∈ESb), y) = ρ(D ∪ E, y) for all y ∈ D, (16)

and ∑
(Sb)b∈E∈

∏
b∈E(2X(b)\{∅})

λ((Sb)b∈E)ρX (D ∪ (∪b∈ESb), Sb) = ρ(D ∪ E, b) for all b ∈ E. (17)

The proof consists of two steps. At the first step, for each a ∈ E we will construct a λa

in the same way as the single outside option case (i.e., Theorem 3.1) except replace x with

xa and add xa to all the sets. Given λa, in the second step, by taking a convex combination

of λa, we will obtain the desired λ that satisfy (16) and (17) for the given D and E.

Step 1: We first label elements of D by yi so that ρ(D∪E,y0)
ρ(D,y0)

is maximum among
ρ(D∪E,yi)
ρ(D,yi)

. We will construct a probability distribution λa on
∏

b∈E(2
X(b) \ {∅}) recursively.

Initially, we define λa
0 by

λa
0(xa, (x)E\a) =

ρ(D ∪ E, y0)

ρ(D, y0)
, λa

0((X(b))b∈E) = 1− λa
0(xa, (x)E\a) (18)
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and all other lambdas are zero. By Limited Monotonicity, we have λa
0(xa, (x)E\a) ≤ 1, thus

λa
0 is a probability measure. Moreover, the probability that y0 is chosen equals ρ(D ∪E, y0)

as desired:∑
(Sb)b∈E∈

∏
b∈E(2X(b)\{∅})

λa
0((Sb)b∈E)ρX (D ∪ (∪b∈ESb), y0)

= λa
0(xa, (x)E\a)ρX (D ∪ {xa, (x)E\a}, y0) + λa

0((X(b))b∈E)ρX (D ∪ (∪b∈EX(b)), y0)

= λa
0(xa, (x)E\a)ρX (D ∪ {xa, (x)E\a}, y0) (∵ xa(y0) ≻ y0 for all ≻∈ supp(µX ))

= λa
0(xa, (xa)E\a)ρ(D, y0) (∵ y0 ≻ xa, xb for all b ∈ E \ a and ≻∈ supp(µX ))

= ρ(D ∪ E, y0).

Next we define λa
1 based on λa

0 to satisfy the equality for ρ(D ∪E, y1). In general at the nth

step to obtain the desired equality for ρ(D ∪ E, yn), let

cn =
ρ(D ∪ E, yn)

ρ(D, yn)λa
0(xa, (x)E\a)

.

Note 0 ≤ cn ≤ 1 by our choice of y0. We define λa
n by λa

n((X(b))b∈E) = λa
0((X(b))b∈E) and

for all (Sb)b∈E ∈ supp(λa
n−1) \ (X(b))b∈E

λa
n((Sb)b∈E) = cnλ

a
n−1((Sb)b∈E), λa

n(Sa ∪ xa(yn) , (Sb)b∈E\a) = (1− cn)λ
a
n−1((Sb)b∈E).

Note first that λa
n is a probability measure given that λa

n−1 is a probability measure. Note

also this modification of λa
n from λa

n−1 does not change the chance that yi is chosen for any

i ≤ n − 1; this only changes the chance that yn is chosen because adding xa(yn) changes

only the choice frequency of yn. Moreover, we obtain the desired equalities for the choice
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frequency of yn as follows:∑
(Sb)b∈E∈

∏
b∈E(2X(b)\{∅})

λa
n((Sb)b∈E)ρX (D ∪ (∪b∈ESb), yn)

= λa
0((X(b))b∈E)ρX (D ∪ (∪b∈EX(b)), yn)

+
∑

(Sb)b∈E∈supp(λa
n−1)\(X(b))b∈E

[
cnλ

a
n−1((Sb)b∈E)ρX (D ∪ (∪b∈ESb), yn)

+ (1− cn)λ
a
n−1((Sb)b∈E)ρX (D ∪ (∪b∈ESb) ∪ xa(yn), yn)

]
=

∑
(Sb)b∈E∈supp(λa

n−1)\(X(b))b∈E

cnλ
a
n−1((Sb)b∈E)ρX (D ∪ (∪b∈ESb), yn)

=
∑

(Sb)b∈E∈supp(λa
n−1)\(X(b))b∈E

cnλ
a
n−1((Sb)b∈E)ρ(D, yn)

= cnλ
a
0(xa, (x)E\a)ρ(D, yn)

= ρ(D ∪ E, yn),

where the second equality holds because xa(yn) ≻ yn for all ≻∈ supp(µX ); the second to the

last equality holds because
∑

(Sb)b∈E∈supp(λa
n−1)\(X(b))b∈E

λa
n−1((Sb)b∈E) = 1−λa

n−1((X(b))b∈E) =

1 − λa
0((X(b))b∈E) = λa

0(xa, (x)E\a); and finally the third to the last equality holds because

yn is a maximum element among D with respect to ≻ if and only if yn is a maximum

element among D ∪ (∪b∈ESb) with respect to ≻ (Note hat this equivalence holds because

Sb ⊆ {xb(yi)|i < n} ∪ {xb, xb|b ∈ AA} and xb(yi) is the immediate predecessor of yi for all

≻∈ supp(µX )). It follows that λa satisfies (16) as desired: for all y ∈ D∑
(Sb)b∈E∈

∏
b∈E(2X(b)\{∅})

λa((Sb)b∈E)ρX (D ∪ (∪b∈ESb), y) = ρ(D ∪ E, y). (19)

Step 2: In the following, given (λa)a∈AA
, we will construct λ that satisfies (17) as well

as (16). First observe that for all a ∈ AA,

∑
(Sb)b∈E∈

∏
b∈E(2X(b)\{∅})

λa((Sb)b∈E)ρX (D ∪ (∪b∈ESb), Sb) =

{
1−

∑
y∈D ρ(D ∪ E, y) if b = a,

0 if b ̸= a.
(20)

We denote the left hand side of the above equation as ρa(D ∪ E, b). Define

λ =
∑
a∈E

λa

(
ρ(D ∪ E, a)

1−
∑

y∈D ρ(D ∪ E, y)

)
.
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Since
∑

a∈E ρ(D ∪ E, a) = 1 −
∑

y∈D ρ(D ∪ E, y) and each λa is a probability distribution

on
∏

a∈E 2X(a) \ {∅}, so is λ. Moreover, we have the desired equalities for choice frequency

of each aggregated category b ∈ E as follows:∑
(Sb)b∈E∈

∏
b∈E(2X(b)\{∅})

λ((Sb)b∈E)ρX (D ∪ (∪b∈ESb), Sb)

=
∑

(Sb)b∈E∈
∏

b∈E(2X(b)\{∅})

(∑
a∈E

λa((Sb)b∈E)
ρ(D ∪ E, a)

1−
∑

y∈D ρ(D ∪ E, y)

)
ρX (D ∪ (∪b∈ESb), Sb)

=
∑
a∈E

(
ρ(D ∪ E, a)

1−
∑

y∈D ρ(D ∪ E, y)

) ∑
(Sb)b∈E∈

∏
b∈E(2X(b)\{∅})

λa((Sb)b∈E)ρX (D ∪ (∪b∈ESb), Sb)

=
∑
a∈E

(
ρ(D ∪ E, a)

1−
∑

y∈D ρ(D ∪ E, y)

)
ρa(D ∪ E, b) (∵ Definition of ρa(D ∪ E, b))

=

(
ρ(D ∪ E, b)

1−
∑

y∈D ρ(D ∪ E, y)

)
ρb(D ∪ E, b) +

( ∑
a∈E\b

ρ(D ∪ E, a)

1−
∑

y∈D ρ(D ∪ E, y)

)
ρa(D ∪ E, b)

= ρ(D ∪ E, b). (∵ (20))

Thus, λ satisfies (17). Finally, to show that λ satisfies (16), choose z ∈ D. Then, we have∑
(Sb)b∈E∈

∏
b∈E(2X(b)\{∅})

λ((Sb)b∈E)ρX (D ∪ (∪b∈ESb), z)

=
∑

(Sb)b∈E∈
∏

b∈E(2X(b)\{∅})

(∑
a∈E

λa((Sb)b∈E)
ρ(D ∪ E, a)

1−
∑

y∈D ρ(D ∪ E, y)

)
ρX (D ∪ (∪b∈ESb), z)

=
∑
a∈E

(
ρ(D ∪ E, a)

1−
∑

y∈D ρ(D ∪ E, y)

) ∑
(Sb)b∈E∈

∏
b∈E(2X(b)\{∅})

λa((Sb)b∈E)ρX (D ∪ (∪b∈ESb), z)

=
∑
a∈E

(
ρ(D ∪ E, a)

1−
∑

y∈D ρ(D ∪ E, y)

)
ρ(D ∪ E, z) (∵ (19))

= ρ(D ∪ E, z),

where the last equality holds because
∑

a∈E ρ(D ∪ E, a) = 1−
∑

y∈D ρ(D ∪ E, y).
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A.3 Proof of Theorem 3.6 and Remark 3.10

A.3.1 Proof of Theorem 3.6

First we prove that the set of RU rational choice functions coincides with co.{ρ≻E |≻∈
L (A ) and E ⊆ D}.

Fix ≻∈ L (AN ∪ X(a0)). For each A ∈ D , fix (Sa)a∈A ∈
∏

a∈A(2
X(a) \ {∅}). For each

collection ((Sa)a∈A)A∈D , we define ρ≻((Sa)a∈A)A∈D
as follows. To make the notation simple, we

write ((Sa)a∈A)A∈D as (SA)A∈D . For each b ∈ B ∈ D ,

ρ≻(SA)A∈D
(B, b) = 1

(
∃x ∈ Sb∀y ∈ ∪a∈B\bSa[x ≻ y]

)
.

Step 1: For each ≻∈ L (AN ∪X(a0)) and each collection (SA)A∈D , there exists ≻′∈ L (A )

and E ⊆ D such that ρ≻(SA)A∈D
= ρ≻

′

E .

Proof. Fix each ≻∈ L (AN ∪X(a0)) and each collection (SA)A∈D , define

F =

{
D ∈ D

∣∣∣∣∣ ∀y ∈
⋃

b∈D\a0

X(b) [x∗ ≻ y]

}
,

where x∗ = maxSa0
≻. That is, F consists of all choice sets D such that the ≻-best element

lies in Sa0 and is preferred to every element contained in
⋃

b∈D\a0 X(b). Define E = D \ F .

Define ≻′∈ L (AN) such that a ≻′ b if and only if x ≻ y for any a, b ∈ AN , where

{x} = X(a) and {y} = X(b). For any D ∈ D , if D ∈ E c ≡ F , the maximum elements of ≻
over D belongs to X(a0), thus ρ

≻
(SA)A∈D

(D, ·) = ρ≻
′

E (D, ·). Moreover, if D ∈ E , the maximum

elements of ≻ and ≻′ over D coincide; thus ρ≻(SA)A∈D
(D, ·) = ρ≻

′

E (D, ·).

Given Step 1, it suffices to show that any RU-rational ρ can be expressed as a convex

combination of terms of the form ρ≻(SA)A∈D
. Assume that ρ is rationalized by (µX , λ). We

first establish this in the degenerate case where the rationalizing measure µX is a point mass

in Step 2.17 In particular, we show that ρ can be represented as a convex combination of

ρ≻(SA)A∈D
, with weights α((SA)A∈D) defined by

α
(
(SA)A∈D

)
≡
∏
A∈D

λA(SA).

Since each λA is a probability distribution over SA, the product measure α is also a proba-

bility distribution over the entire collection (SA)A∈D .

17The general case is proved in Step 3
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Step 2: Suppose that ρ is RU-rationalized by (δ≻, λ). For each (B, b) such that b ∈ B ∈ D ,

ρ(B, b) =
∑

(SA)A∈D∈
∏

A∈D supp λA

α((SA)A∈D)ρ
≻
(SA)A∈D

(B, b).

Proof. For each (B, b) such that b ∈ B ∈ D , the left hand side equals

ρ(B, b) =
∑

(Sb)b∈B∈
∏

b∈B(2X(b)\{∅})

λB((Sb)b∈B)1(∃x ∈ Sb∀y ∈ ∪a∈B\bSa[x ≻ y]).

As for the right hand side∑
(SA)A∈D∈

∏
A∈D supp λA

α((SA)A∈D)ρ
≻
(SA)A∈D

(B, b)

=
∑

(SA)A∈D∈
∏

A∈D supp λA

( ∏
A∈D

λA(SA)
)
ρ≻(SA)A∈D

(B, b)

=
∑

SB∈ supp λB

λB(SB)ρ
≻
(SA)A∈D

(B, b)×
∑

(SA)A∈D\B∈
∏

A∈D\B supp λA

( ∏
A∈D\B

λA(SA)
)

(∵ ρ≻(SA)A∈D
(B, b) depends only on SB)

=
∑

SB∈ supp λB

λB(SB)ρ
≻
(SA)A∈D

(B, b) (∵ the second term is 1)

=
∑

(Sb)b∈B∈
∏

b∈B(2X(b)\{∅})

λB(SB)1(∃x ∈ Sb∀y ∈ ∪a∈B\bSa[x ≻ y]).

Given Step 2, the general case follows. To see this suppose that ρ is RU-rationalized by

(µX , λ). Observe that for any (A, a) such that a ∈ A ∈ D ,

ρ(A, a) =
∑

≻∈L (AN∪X(a0))

µX (≻)
∑

(Sa)a∈A∈
∏

a∈A(2X(a)\{∅})

λA((Sa)a∈A)1(∃x ∈ Sa∀y ∈ ∪b∈A\aSb[x ≻ y])

︸ ︷︷ ︸
(∗)

.

(21)

Step 2 shows that each term (∗) in equation (21) can be written as a convex combination

of elements of the form ρ≻(SA)A∈D
. Hence, the entire right-hand side of (21) is itself a convex

combination of such terms with µX .

We have just shown that the set of RU-rational choice functions is a subset of co.{ρ≻E | ≻∈
L (A ) and E ⊆ 2A }.18

18This holds regardless of the size of X(a0).

41



Now we show the other inclusion. By Theorem 3.1, it can be shown that the set of

RU-rational choice functions is convex since . Since ρ≻E is RU-rational for all ≻∈ L (A )

and E ∈ D (see Remark 3.5), thus its convex combination is also RU rational; thus the set

co.{ρ≻E | ≻∈ L (A ) and E ⊆ 2A } is contained by the set of RU-rational choice functions.

Therefore, the RU rational set coincides with co.{ρ≻E | ≻∈ L (A ) and E ⊆ 2A }.
To finish the proof of Theorem 3.6, we must show that each ρ≻E is a vertex. Notice

that ρ≻E cannot be represented as a convex combination of the other RU rational ρs as the

values of the vector ρ≻E are all 0 and 1 and all RU rational vectors are nonnegative. This

means that all ρ≻E are vertices of RU rational polytope. The fact that the RU rational set is

co.{ρ≻E | ≻∈ L (A ) and E ⊆ 2A } imply that there are no other vertices. This concludes the

proof of statement (ii).

A.3.2 Proof of Remark 3.10

We obtain the lower bound of the number of vertices. Fix E that contains all subsets of A

that contains a0. Note that there are 2(2
|AN |−(|AN |

2 )−1) distinct such collection E . Let C be

the collection of such E s. Let L ′ be the set of linear orders on A such that a0 is the worst

alternative. There are |AN |! distinct such linear orders.

It can be shown that for any E ,E ′ ∈ C and ≻,≻′∈ L ′ such that (≻,E ) ̸= (≻′,E ′), we

have ρ≻E ̸= ρ≻
′

E ′ . Thus, the number of distinct vertices is at least

|AN |!× 2(2
|AN |−(|AN |

2 )−1).

Finally we show ρ≻E ̸= ρ≻
′

E ′ if (≻,E ) ̸= (≻′,E ′). To see this suppose by way of contradiction

that ρ≻E = ρ≻
′

E ′ . Since ≻,≻′∈ L ′, the worst elements of ≻ and ≻′ are a0. Moreover, both E

and E ′ contain the sets of the form {a, b, a0} for all {a, b} ⊆ AN . Thus, ρ≻E = ρ≻
′

E ′ implies

that ≻ and ≻′ coincide binary comparison of any a, b ∈ AN . It follows that ≻=≻′, which in

turn implies E = E ′ given ρ≻E = ρ≻
′

E ′ and the fact that E contains all sets containing a0.
19

A.4 Proofs for Section 4

To prove Proposition 4.2, we first provide a lemma:

Lemma A.1. Let ρ be a stochastic choice function.

(a) Suppose that (µX , λ) rationalizes ρ and µX is non-overlapping. Then for any compo-

sition distribution λ′, (µX , λ′) rationalizes ρ.

19There are many redundant vertices. For example, for any E , fix two linear orders ≻ and ≻′ such that
a1 ≻ · · · ≻ a|AN | ≻ a0 and a1 ≻′ · · · ≻′ a|AN |−1 ≻′ a0 ≻′ a|AN |. Then we have ρ≻E = ρ≻

′

E .
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(b) Suppose that there is no non-overlapping µX such that (µX , λ) rationalizes ρ for some

λ. Then, for any composition distribution λ′, there does not exist non-overlapping µ′
X

such that (µ′
X , λ′) rationalizes ρ.

Proof. Statement (a) follows from the fact that if µX is non-overlapping then for all (Sa)a∈A ∈∏
a∈A(2

X(a)\{∅}) and (S ′
a)a∈A ∈

∏
a∈A(2

X(a)\{∅}) we have that ρX (∪a∈ASa, Sb) = ρX (∪a∈AS
′
a, S

′
b)

for all for all b ∈ A where ρX is the underlying stochastic choice function on X rationalized

by µ ∈ ∆(L (AN ∪X(a0))). Fix (S∗
a)a∈A. Then for all b ∈ A, we have∑

(Sa)a∈A∈
∏

a∈A(2X(a)\{∅})

λA((Sa)a∈A)ρX (∪a∈ASa, Sb)

= ρX (∪a∈AS
∗
a, S

∗
b )

∑
(Sa)a∈A∈

∏
a∈A(2X(a)\{∅})

λA((Sa)a∈A)

= ρX (∪a∈AS
∗
a, S

∗
b )

= µX (≻ |∃x ∈ S∗
b , ∀y ∈ ∪a∈A\bSa, x ≻ y).

Thus every λ produces the same choice function. Thus, by the definition of rationalization

(Definition 2.5), we established statement (a).

To prove statement (b), assume there is no non-overlapping µX that RU rationalizes

ρ. By way of contradiction assume that there exist λ′ and non-overlapping µ′
X such that

(µ′
X , λ′) that rationalizes ρ. Given this, statement (a) implies a contradiction.

A.4.1 Proof of Proposition 4.2

Only if direction: It suffices to show this for the case where µX is deterministic. Suppose

µX is non-overlapping and µX (≻) = 1 for some ≻∈ L (X ) and fix λ. Label the elements

of A as a1, a2, ...a|A | in such a way that if i < j then x ≻ y for all x ∈ X(ai) and y ∈ X(aj).

This labeling is possible by the almost non-overlapping condition.

Let ≻A be defined such that

a1 ≻A a2 ≻A · · · ≻A a|A |.

It is easy to see that if D ⊆ A contains any element of A then ρ puts probability 1 on the

ai with the largest index. Thus, µA rationalizes ρ.

If direction: There exists µA ∈ ∆(L (A )) that rationalizes ρ. For each ≻∈ supp µA

consider a ranking ≻′∈ L(X ) that extends ≻ by

x ≻′ y if x ∈ X(a) and y ∈ X(b) for some a ≻ b
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and fill the order among X(a) arbitrarily for all a; then define µX (≻′) = µA (≻). Also define

λ arbitrarily. Since µX is non-overlapping, it follows from statement (b) of Lemma A.1 that

(µX , λ) rationalizes ρ.

A.4.2 Proof of Lemma 4.5

Fix A ⊆ A and a ∈ A. Then,

ρ(A, a) =
∑

(Sb)b∈A∈
∏

b∈A(2X(b)\{∅})

λA ((Sb)b∈A) ρX (∪b∈ASb, Sa)

=
∑

(Sb)b∈A∈
∏

b∈A(2X(b)\{∅})

λ
(∏

b∈A

(Sb)×
∏

b∈A \A

(2X(b) \ {∅})
)
ρX (∪b∈ASb, Sa)

=
∑

(Sb)b∈A∈
∏

b∈A(2X(b)\{∅})

∑
(Sc)a∈Bc∈

∏
c∈Bc(2X(c)\{∅})

λ((Sa)a∈B, (Sc)c∈Bc)ρX (∪b∈ASb, Sa)

=
∑

(Sb)b∈A ∈
∏

b∈A (2X(b)\{∅})

λ ((Sb)b∈A ) ρX (∪b∈BSb, Sa).

A.4.3 Proof of Proposition 4.6

If direction: If ρ is rationalizable by a random utility model µA over A , then as we showed

in Proposition 4.2 that there exists (µX , λ) that rationalizes ρ and µX is non-overlapping.

Moreover, as proved in Lemma A.1 (a), for non-overlapping representation any λ works; so

we can choose an independent λ as desired.

Only if direction: Suppose that ρ is RU rationalizable with (µX , λ), where λ is inde-

pendent. Let ρX be the random utility function associated with µX . Given (Sa)a∈A ⊆∏
a∈A X(a), for each (B, b) such that b ∈ B ⊆ A define ρ(Sa)a∈A

(B, b) = ρX (∪a∈BSa, Sb).
20

Given (Sa)a∈A ⊆
∏

a∈A 2X(a) \{∅}, for each ≻∈ L(X ) define ≻(Sa)a∈A
by a ≻(Sa)a∈A

b if and

only if there exists x ∈ Sa such that x ≻ y for all y ∈ Sb. Note that ≻(Sa)a∈A
is a linear order

on A . Now we define a probability measure µ(Sa)a∈A
over linear orders on A as follows: for

any linear order ≻′ on A , define µ(Sa)a∈A
(≻′) = µX (≻∈ L (X )| ≻(Sa)a∈A

=≻′).

Note that, by definition, µ(Sa)a∈A
RU rationalizes ρ(Sa)a∈A

, that is for any (A, a) such

that a ∈ A ⊆ A , ρ(Sa)a∈A
(A, a) = µ(Sa)a∈A

(≻′∈ L (A )|a ≻′ b, for all b ∈ A \ a). Now let

20Note that ρ(Sa)a∈A
is a data set where a always means Sa.
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µA =
∑

(Sa)a∈A
λ((Sa)a∈A )µ(Sa)a∈A

. Then

ρ(B, a) =
∑

(Sa)a∈A

λ((Sa)a∈A )ρX (∪a∈BSa, Sa) (∵ Lemma 4.5)

=
∑

(Sa)a∈A

λ((Sa)a∈A )µ(Sa)a∈A
(≻′∈ L (A )|a ≻′ b, for all b ∈ A \ a)

= µA (≻′∈ L (A )|a ≻′ b, for all b ∈ A \ a).

Thus µA rationalizes ρ.
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B Online Appendix: Supplementary Simulation Results–

Bias and Distance

B.1 Estimation Bias

B.1.1 Effect of composition distributions λ

In this section, we replicate the simulation in Subsection 5.2.1 using different parameter val-

ues. Overall, the results are qualitatively similar: biases are smaller in the menu-independent

cases, and as we move away from independence, the biases tend to increase.

There are, however, some exceptions. Consider the two heatmaps of biases across

λ{x,y,a0}. In these heatmaps, the pattern differs slightly. The blue cell (the independent

case) does not necessarily correspond to the smallest bias, and cells farther from indepen-

dence do not always correspond to larger biases. This finding can be explained by the fact

that these two heatmaps are generated by varying the values of λ{x,y,a0}, which in turn

changes the meaning of a0 in the choice set {x, y, a0}. In this choice set, both x and y are

present, so changes in the interpretation of a0 affect the relative desirability of x and y sym-

metrically. As a result, such changes do not substantially affect the bias, which is defined as

the difference in utilities between x and y.

By contrast, when we vary the values of λ{x,a0} or λ{y,a0}, the effect is asymmetric:

changes in λ{x,a0} affect only x, while changes in λ{y,a0} affect only y. These changes directly

influence the relative evaluation of x and y, thereby producing larger estimation biases, as

expected.
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Heatmap of Biases across λ{x,a0}.

Heatmap of Biases across λ{x,y,a0}. Heatmap of Biases across λ{y,a0}.
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Heatmap of Biases across λ{x,a0}.

Heatmap of Biases across λ{x,y,a0}. Heatmap of Biases across λ{y,a0}.

B.1.2 Maximum/Minimum, and independent case

In this section, we replicate the simulation in Subsection 5.2.2 under different parameter

values. The setup is the same as in Figure 2, except that we use alternative utility levels

and different axes. The overall patterns are consistent with those reported in the main body
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of the paper.
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B.2 Effect of preference structure on bias

In this section, we repeat the simulation in Subsection 5.2.3 with different parameter values.

The setup is the same as in Figure 3 but with different values of λ.

The figures show the biases across utility values of z and w. In general, the bias is largest

when overlappingness is most likely (the top left and bottom right corners of each square)

and smallest when overlappingness is less likely (the top right and bottom left corners of

each square), consistent with Conjecture (B) and Figure 3.
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B.3 Distance to the ARU Polytope

B.3.1 Effect of composition distribution λ on distance

In this section, we repeat the simulation in Subsection 5.3.1 with different parameter values.

The setup is the same as in Figure 5 but with different values of λ.

The figures show the distance across values of λ. The resutls are the same as in Sub-

section 5.3.1: consistent with Proposition 4.6, the distance is zero in the independent case

(blue-outlined cell). As λ moves farther from the menu independence, the distance increases,

confirming Conjecture (B).

Heatmap of Distance across λ{x,a0}.
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Heatmap of Distance across λ{x,y,a0}. Heatmap of Distance across λ{y,a0}.

Heatmap of Distance across λ{x,a0}.
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Heatmap of Distance across λ{x,y,a0}. Heatmap of Distance across λ{y,a0}.

B.3.2 Effect of preference structure on distance

Finally we repeat the simulation in Section 5.3.2. These four figures are the same as Figure 6

with different values of λ — they show the distance from the ARUM polytope across across

utility values of z and w.

In general, the distance is largest when overlappingness is most likely (the top left and

bottom right corners of each square) and smallest when overlappingness is less likely (the

top right and bottom left corners of each square), consistent with Conjecture (B) and the

results obtained in the body of the paper.

In the first figure (λ{x,y,a0} = λ{y,a0} = (0.1, 0.4, 0.5) and λ{x,a0} = (0.2, 0.3, 0.5) and the

third figure (λ{x,y,a0} = λ{x,a0} = λ{y,a0} = (0.1, 0.4, 0.5)), the distances are close to zero since

λ is either menu-independent as in the third figure or close to menu-independent as in the

first figure. In particular, when λ is menu-independent the distance is always zero which is

consistent with Proposition 4.6.
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