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1 Introduction

Implementing a desirable balance between monetary policy and financial stability is a long-standing

issue in policy circles and academia. A well-known example is the criticism about the desirability of

inflation targeting as a monetary policy framework because its focus on price stability force central

banks to neglect implications of their policy actions for financial stability, which was culminated in

the wake of the global financial crisis. A complex nature of this issue is that the first-line of defence

to secure the stable functioning of financial market is the prudential balance-sheet management

of financial intermediaries. Combining these perspectives leads to a warning principle that it is

crucial to prevent a joint occurrence of central bank’s negligence of monetary policy’s implications

for financial stability and loose balance-sheet management of financial intermediaries.

In fact, the predictability of such a warning principle is likely to be high in the actual world as

can be seen from recent US bank failures. For example, Silicon Valley Bank and Signature Bank

were bankrupt with unrealized capital losses in their asset-holdings during the monetary tightening

period of 2022-2023 reflecting that market values of long-term bonds fell as the yield curve inverted

with rapid rises in short-term interest rates. A distinguishing feature of the recent US bank failures

is bank’s inefficient exposure to interest-rate risk. But there has been little discussion of how

central bank and financial regulator carry out their policy tasks optimally in the presence of bank’s

inefficient exposure to interest-rate risk.

We incorporate Diamond-Dybvig’s financial frictions into an otherwise prototypical New Kenye-

sian model and study the optimal monetary and prudential policies in such a modified Diamond-

Dybvig model with interest-rate and run risk to address the following four issues. The first issue is

which regime between price-level targeting and inflation targeting regimes is more desirable one in

the presence of bank’s exposure to interest-rate risk. The second issue is how bank’s exposure to

interest-rate risk affects the interest-rate channel as a transmission channel of monetary policy. The

third issue is how to coordinate monetary and prudential policies optimally in response to interest

and run risk when the financial regulator is supposed to adopt a set of balance-sheet regulation

such as Value-at-Risk management, capital ratio requirement and Volcker rule. The fourth issue

is whether and how the public market information about short-term and long-term bonds affects

depositor’s run decision in the context of the Morris-Shin model.

It is well-known in the literature on the optimal monetary policy that when the social planner is

supposed to maximize the social welfare subject to only the trade-off between inflation and output

gap implied by a prototypical New Keynesian Phillips curve, the optimal monetary policy regime

is the price-level targeting together with the optimality of a zero inflation as can be confirmed

in Clarida, Gali, and Gertler (1999) and Woodford (2003). But this result does not necessarily
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hold when the social planner is supposed to maximize the social welfare subject to both the trade-

off between inflation and output gap and the trade-off between current-period and next-period

consumptions due to the financial frictions of Diamond-Dybvig model. The reason for this argument

is that the trade-off between current-period and next-period consumptions is determined by the

nominal interest rate and the nominal interest rate can be expressed as the sum of real interest

rate and expected inflation. It means that the social planner can adjust the expected inflation of

households and thus the nominal interest rate in the presence of a commitment mechanism about

future inflation.

If the social planner chooses to use such a commitment mechanism about future inflation, the

price-level targeting should be no longer the optimal monetary policy regime together with the

sub-optimality of a zero inflation. In particular, since the introduction of the Diamond-Dybvig’s

financial frictions into an otherwise prototypical New Kenyesian model lowers the maximum attain-

able level of the social welfare, the social planner has incentive to increase the current output by

its commitment for a positive future inflation.

Turning to the second issue, two additional features augment prototypical New Keynesian mod-

els that comprise of three equations: IS curve, Phillips curve and central bank’s interest-rate rule.

The first additional feature is the distinction between the central bank’s policy rate and the short-

term nominal interest rate. The addition of this feature to the model reflects the distinction between

the cost of bank’s reserves to meet early withdrawals and the opportunity cost associated with the

trade-off between early and late withdrawals.

The second additional feature is the wealth effect of monetary policy on household’s labor

supply and consumption, which arises because commercial banks hold long-term bonds. The IS and

Phillips curves therefore contain new additional variables that reflect the wealth effect of changes

in commercial bank’s portfolios, while the wealth effect acts as an endogenous supply shock in

the Phillips curve. The wealth effect also can be regarded as a channel through which a severe

disruption of financial market can affect inflation and output gap. As a result, the equilibrium

determination of inflation and output gap is affected by monetary and prudential polices, which in

turn motivates the analysis of optimal monetary and prudential policies in this paper.

The focus of the third issue is how to implement the optimal allocation at decentralized markets

while the social planner’s optimal solution contains the prescription for commercial bank’s holdings

of long-term bonds. The resolution of this issue is associated with how to model commercial banks.

In this regard, we model commercial banks as arbitrageurs subject to Value-at-Risk(hereafter VaR)

constraint can be compared with that of Adrian and Shin (2014) to model banks as active investors

subject to VaR constraint for an appropriate level of capital cushion.

In the presence of the VaR constraint, commercial banks face a trade-off between meeting the
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VaR constraint and buying more long-term bonds to exploit a higher net interest margin during

a high interest period. In this regard, commercial banks can be regarded as both arbitrageurs

and preferred-habitat investors in long-term bonds markets. Hence balance-sheets of commercial

banks are affected by monetary and prudential polices, which in turn leads to the issue of how to

coordinate monetary and prudential policies optimally in response to interest and run risk.

The final issue is the identification of conditions under which a lot of depositors choose to

withdraw at the same time and thus bank runs occur. In this part, it would be worthwhile to

mention the recent empirical result of Correia, Luck, and Verner (2025) in favor of the solvency

view of bank failures that banks are more likely to fail when poor fundamentals such as realized

credit risk, interest-rate risk or fraud trigger insolvency. The solvency view is in contrast with the

bank run view that depositors collectively withdraw from otherwise either solvent banks or troubled

but solvent banks, while the Diamond-Dybvig model has been used to explain the bank run view.

The solvency view is reflected in the model of Gertler and Kiyotaki (2015) where the occurrence of

bank runs depends solely on the insolvency of banks.

The model of this paper is in line with the solvency view in the sense that depositors determine

whether to choose bank run depending on their private noisy signals about bank’s net-worth. In

addition, depositors are assumed to have public information about market and liquidation prices of

long-term bonds on the ground that the information about the impact of the central bank’s policy

rate on market prices of long-term bonds is publicly available. Given such an information structure,

depositors choose bank runs only when the message of the public information is mutually consistent

with their private signals.

The rest of this paper is organized as follows. The next section reviews the related literature.

Section 3 presents the benchmark model without bank run where banks are subject to interest-rate

risk. Section 4 studies the optimal monetary and prudential policies for the benchmark model of

section 3. Section 5 extends the benchmark model to allow for bank run and studies the optimal

monetary and prudential policies with expected bank run. Section 6 concludes.

2 Related Literature

The first issue in the literature review is the discussion of whether the paper’s focus on interest-rate

risk and market-risk of commercial banks is an important one. The reason behind this statement

is the traditional view of banks that depicts banks as deposit-taking institutions to perform the

predominant role of lending their funds to households and firms. In this view, interest-rate risk

or market risk can be regarded as a secondary risk, not a primary risk. But while credit risk can

be the primary risk for commercial banks, it should also be mentioned that the business model

3



of banks has changed substantially. For example, while loan provision is still the most important

role of commercial banks, banks themselves sell over 50% of their loans instead of holding them on

their balance sheet by using a variety of securitization techniques as discussed in Buchak, Matvos,

Piskorski, and Seru (2024). While loan sale reflects the advance of financial engineering, another

one comes with the digitization of bank services associated with deposits and loans. The impact

of digitization on banks can be reflected in the following three aspects: lower access costs of bank

services, facilitation of relocation between usual demand deposit and interest-bearing funds such as

MMF, and reduction of marginal production cost of deposit services. Koont, Santos, and Zingales

(2025) show that digitization increases the outflows or walk of deposits when the federal funds rate

increases and also raises the sensitivity of bank deposit rates to changes in the federal funds rate.

The recent episodes of U.S. bank runs also point to the importance of interest-rate risk as

follows. Rajan and Acharya (2023) identify four causes of 2023 bankruptcies of Silicon Valley Bank

and Signature Bank as can be seen below. First, over 90 percent of their deposit liabilities were

uninsured. Second, the two banks held significant amounts of long-term bonds. Third, the Fed’s

rapid swing from a ZLB with QE to a high interest-rate stance decreased market prices of long-

term bonds. Four, many supervisors were not aware of the rising interest-rate exposure of banks

or unable to force banks to reduce it. Seru (2023) explains bankruptcies of Silicon Valley Bank

and Signature Bank by using a model of solvency runs where interest-rate increases initially lead

to runs on banks whose assets are fully liquid and then become widespread self-fulfilling solvency

runs as uninsured depositors pull their funds in the belief that others will do the same, generating

strong incentives for runs among depositors. He also argues that banks are fragile when they have

high ratios of uninsured deposits to assets and market values of their assets are far lower than

corresponding book values.

The second issue in this literature review is the nature of bank run. Table 2.1 contains a set of

selected papers that can be compared with the model of this paper as can be seen below. First, bank

run can occur as a result of self-fulfilling expectations about non-fundamentals as in the original

Diamond-Dybvig model. Second, bank run can occur if and only if fundamentals of the economy

are below some threshold level as can be seen in Goldstein and Pauzner (2005, GP), Gertler and

Kiyotaki (2015, GK), and Kashyap, Tsomocos, and Vardoulakis (2024, KTV). In the model of

Gertler and Kiyotaki (2015), a bank run equilibrium exists if the realized rate of return on bank

assets is sufficiently low relative to the gross interest rate on deposits and the leverage multiple is

sufficiently high. In the model of Kashyap, Tsomocos, and Vardoulakis (2024), a bank run occurs

when patient savers receive the private signals about liquidation value of bank assets whose values

are lower than a unique threshold value. In the model of Goldstein and Pauzner (2005), each agent

receives a private signal regarding fundamentals of the economy. This information is regarded as
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Table 2.1: Information and Bank Run
GP (2005) GK (2015) KTV (2024) SSY (2025)

Signal Long-Term Return Bank Liquidation Value Bank Net Worth
Variable of Bank Assets Net Worth of Bank Assets and Bond Price

(One Variable) (One Variable) (One Variable) (Two Variables)

Model Finite Period Infinite Period Finite Period Infinite Period
Set-Up and Risky and Asymmetric and Asymmetric and Interest

Long-Term Information Information Rate Risk of
Public Investment between Band E between Band E Long-Term Bonds

Run Threshold Value Recovery Rate Threshold Value Threshold Values
Strategy of Economic Less than One of Bank Assets of Net Worth

State at Liquidation and Bond Price

Unanticipated Unanticipated Adverse Shock Adverse Shock Large
Bank Run Adverse to Productivity to Liquidation Rapid Hikes

Economic State of Banks Value of Policy Rate
Note: The recovery rate in the GK is defined as the ratio of bank’s asset value to its deposit repayment

evaluated at the state of liquidation. B means bank and E means entrepreneur.

the agent’s private information about long-term return on the investment project. In this model,

a unique equilibrium exists where patient agents run if their private signals are below a unique

threshold value and do not run otherwise.

It should be noted that a bank’s long-term investment return is a random variable in GP model

and that the short-term liquidation value of a bank asset is a random variable in KTV model.

The common feature of these two models is that agents receive private signals about fundamentals

and thus their behaviors depend on the values of their private signals. Specifically, there exists a

threshold value of private signals that splits out between “run on bank deposits” and “no run on

bank deposits”.

In this paper, depositors have noisy signals about the future return on a bank’s asset (hence

bank’s future net-worth) and update their forecast about it. The difference of this paper from the

two papers (GP and KTV) is that agents have public signal about bank’s future net-worth. Given

this information, they compute the threshold value of the bank’s future net-worth for bank run.

The threshold value of net worth is used for the run strategy of depositors, which is different from

the GK model whose threshold variable is the bank’s recovery rate as specified in the table below

The third issue in this literature review is the market structure of long-term bond markets. In

the model of this paper, commercial banks issue demand deposits to invest in long-term government

bonds. In this regard, commercial banks can be regarded as arbitrageurs in long-term bond markets,

while they are supposed to hold long-term bonds with specific maturity segments in their portfolios.

But their demands for zero-coupon long-term bonds are restricted by their market-risk management

on the basis of Value-at-Risk techniques. Banks holding a large amount of long-term bonds will
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Table 2.2: Bond Market Specification
DS (2002) VV (2021) SSY (2025)

No Preferred-Habit Investors Preferred-Habitat Investors Bank as both Arbitrageur
(affine model) and Arbitrageurs and

(affine model) Preferred-Habitat Investor
(non-linear model)

No Arbitrage Profit with No Arbitrage Profit No Arbitrage Profit
Stochastic Discount Factor with Market-Clearing with Market-Clearing
and Market Price of Risk Condition Condition

Banks Issue Short-Term
Debt and Hold Long-Term
Bonds with VaR Constraint

for Interest-Rate Risk

need to reduce their holdings of such bonds when they face a sharp increase in long-term bond

yields to avoid hitting the VaR constraint. That is, there is a trade-off between meeting the VaR

constraint and pursuing a higher net interest margin from buying long-term bond yields during

a high interest period, which may explain why banks do not increase their holdings of long-term

bonds quickly in a high interest rate environment.1 Hence, commercial banks can be regarded as

preferred-habitat investors in long-term bond markets.

The first question is whether commercial banks are important participants in long-term bond

markets. Unless their trades have significant impacts on market prices of long-term bonds, their

trades can be ignored in the determination of equilibrium prices of long-term bonds by omitting

them in the market clearing conditions of long-term bonds. In addition, usual examples of preferred-

habitat investors in long-term bonds are pension funds and insurance companies as discussed in

Vayanos and Vila (2021). Pension funds prefer long-term bonds to match durations of their assets

and liabilities, while insurance companies demand intermediate and long-term bonds to match

durations of their liabilities and insurance products. In addition, Domanski, Shin, and Sushko

(2017) point out that Solvency II classifies European government bonds in domestic currency as

risk-free, creating an incentive for insurance firms to overweigh them in their portfolios. But one

might wonder if there are such simple scenarios for commercial banks to hold long-term bonds. In

particular, this skepticism might reflect the fact that it is difficult to reconcile the main business

model of commercial banks with their incentives to hold long-term bonds. For example, before its

collapse, Silicon Valley Bank held government debt to invest its surge of customer deposits from

the tech boom in seemingly safe, long-term assets, seeking a higher yield than shorter-term bonds

offered. By investing in US Treasuries and agency mortgage-backed securities, the bank aimed

1In reality, banks are subject to IRRBB (interest rate risk on banking book) standards which are similar to the
VaR constraint.
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Table 2.3: DSGE Model with Explicit Bond Markets
RS (2008,2012) MSS (2023) SSY (2025)

No Arbitrage Condition No Arbitrage Condition No Arbitrage Profit
for Bond Market for Bond Market with Market-Clearing

Condition

Geometric Structure Geometric Structure No Geometric Structure
for Maturities for Maturities for Maturities

of Long-Term Bonds of Long-Term Bonds of Long-Term Bonds

to generate earnings in a period of low interest rates. This behavior of banks can be viewed as

the usual practice of arbitrageurs in bond markets. In addition, banks have incentives to purchase

long-term government bonds for the diversification of their portfolios of long-term bonds when their

loans can be regarded as corporate long-term bonds. For this reason, banks are arbitrageurs and

preferred-habitat investors in bond markets as can be seen in Table 2.2.

The second question is how to model demands of commercial banks for long-term government

bonds. Eren, Schrimpf and Xia (2023) report that demands of commercial banks, foreign private

investors, pension funds, investment funds, and insurance companies for long-term bonds are very

sensitive to changes in long-term yields, but to varying degrees in advanced countries including

US, EU, UK, and Japan. This empirical result is consistent with the model of Vayanos and Vila

(2021) where demands of preferred-habitat investors for long-term bonds are price-elastic. But

this empirical result does not mean that commercial banks can be regarded as preferred-habitat

investors. In the real world, commercial banks can be in between arbitrageurs and preferred-habitat

investors.

The third question is whether the demand of preferred-habitat investors for long-term bonds

increases or decreases in response to an increase in the short-term rate.2 In particular, this one

is associated with whether the demand of preferred-habitat commercial banks for long-term bonds

increases with an increase in the central bank’s policy rate. If commercial banks are regarded

as preferred-habitat investors, commercial banks usually reduce their holdings of long-term bonds

when the central bank raises its policy rate. For this reason, demands of commercial banks for

long-term bonds decrease with increases in the policy rate.

2For banks holding long-term bonds, the most important interest rate is the long-term bond yield. If an increase
in the short-term (policy) rate leads to an increase in the long-term bond yield, then we can consider the impact of
monetary policy. By contrast, if an increase in the short-term rate does not entail an increase in the long-term bond
yield for some reason, then there is no concern for market risk associated with long-term bonds. This point is related
to the conflicting views of Hanson and Stein (2015) and Vayanos and Vila (2021) about the relationship between
short-term interest rates and preferred habitat investors’ demand for long-term bonds as discussed in Carboni and
Ellison (2022). The positive correlation between the short-term interest rate and the demand for long-term bonds
is line with the one of preferred-habitat investors assumed in Vayanos and Vila (2021). But Carboni and Ellison
(2022) and Domanski, Shin and Sushko (2017) point out that the correlation would work in the opposite direction if
insurance companies and pension funds adopt immunization strategies of interest-rate risks.
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Table 2.4: Impact of Financial Regulation on Bank’s Bond Holdings in the Model
IRRBB CAR Volcker Rule LCR

Weight of Long-Term Bonds Decrease Decrease Decrease Increase

Regulation Constraints v̄t ≤ v̄∗t ωt ≤ ω∗
t ωt ≤ ω∗

t ωt ≥ ω∗
t

c̄t ≥ c̄∗t

Note: ωt is the ratio of the value of long-term government bonds held by banks to the amount of
household’s deposits net of reserves for early withdrawals, v̄t is the potential maximum loss from
interest-rate shock of holding long-term government bonds for one period, c̄t is the confidence
interval. In addition, v̄∗t , c̄

∗
t , and ω̄∗

t represent target levels of the financial regulator. IRRBB is
the interest rate risk in the banking book, CAR is the capital adequacy ratio, and LCR is the
liquidity coverage ratio.

Table 2.3 summarizes a pair of recent works that analyze DSGE models with explicit bond

markets. Miao, Shen and Su (2023, forthcoming in AEJ: Macro) extends the GK model into a New

Keynesian DSGE model with banking sector for the analysis of the following four issues. What is

the role of bank’s holdings of long-term securities in banking crises? Can interest rate hikes cause

a banking crisis? What are the underlying economic mechanisms? What policies can prevent or

mitigate banking crises? In this regard, our research idea is very close to their research idea. The

difference of ours from MSS (2023) lies in the specification of bond market and the relation between

bank’s demand for bond-holdings and risk-management especially for market risk as can be seen

above.

The bond premium is determined by the covariance between the stochastic discount factor and

future maturity yield (or future bond price). In order to allow for time-varying bond premium

in numerical solutions of DGSE models, Rudebusch and Swanson (2008, 2012) adopt third-order

nonlinear approximation to equilibrium conditions of their models with Epstein-Zin preferences.

Miao, Shen and Su (2023, forthcoming in AEJ: Macro) also adopt non-linear approximation to

equilibrium conditions of their models. The common issue facing RS (2008, 2021) and MSS (2023)

is how to deal with the potential impact of changes in the maturity structure on the aggregate

economy due to the failure of the Ricardian equivalence in the presence of economic frictions when

the government issues a portfolio of nominal zero-coupon bonds of different maturities. In order to

get around this problem, they adopt the specification of Cochrane (2001) and Woodford (2001) for

the maturity structure of government bonds: maturities of government bonds follow a geometric

structure.3

Table 2.4 shows how different types of financial regulations such as VaR regulation for interest

3In their models, one unit of government bond’s portfolio at period t is assumed to pay υk−1 in nominal unit of
account at period (t+ k) with 0 < υ < 1.
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rate risk (IRRBB), captal adequacy ratio regulation (CAR), Volcker rule, and liquidity ratio regu-

lation (LCR) can affect bank’s holdings of long-term government bonds in the model of this paper.

Hence an advantage of the VaR specification facilitates the analysis of impacts of various financial

regulations on balance sheets of commercial banks and thus the financial stability. In addition, the

set of prudential policies in Table 2.4 is also different from that of Miao, Shen and Su (2023) whose

focus is how the imposition of a permanent tax (and its relaxation) on bank’s investment return of

long-term bonds affects bank run.

3 Model

A representative household consists of a continuum of ex-ante homogeneous consumers whose mea-

sure is equal to one. A liquidity shock hits a fraction of consumers, θ, in the first-half of each period,

which in turn lead them to make immediate consumption expenditures in the similar way as is done

for early consumers in the Diamond-Dybvig model. The other fraction of consumers, 1−θ, are sup-

posed to consume in the second-half of each period in the similar way as is done for late consumers

in the Diamond-Dybvig model. The division of a prototypical one-period of discrete-time models

into two subperiods is motivated by the incorporation of the Diamond-Dybvig’s demand-deposit

contract into the usual set-up of DSGE models with infinitely-lived households as shown below.

An important feature of the model of this paper is that a partial segmentation of bonds markets

exists. While households can trade equities of firms, short-term government bonds, and long-term

government bonds, there is a subset of long-term bonds where households do not participate directly

but banks trade as their delegates. Banks trade federal funds with the central bank and one-period

government bonds. In addition, bank have incentives to hold long-term bonds for the following

reasons.

By investing in US Treasuries and agency mortgage-backed securities, banks generate earnings

in a period of low interest rates as can be seen in the recent bank runs of Silicon Valley Bank

and Signature Bank. Banks hold long-term government bonds for the diversification of their bond

portfolios when their loans are regarded as corporate long-term bonds. For this reason, banks can

be in between arbitrageurs and preferred-habitat investors in a subset of long-term bonds.

3.1 Households

Each period, transactions between households and firms for consumption goods proceed as follows.

Firms set nominal product prices in advance before transactions take place with the restriction of

nominal price of C1,t = nominal price of C2,t in each period where C1,t represents early consumer’s

consumption and C2,t is late consumer’s consumption. In other words, firms set nominal product
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Figure 3.1: Household’s Consumption and Discount Factor

1st Half 2nd Half 1st Half 2nd Half

Period 𝑡 Period 𝑡 + 1

Early Consumers Late Consumers Late ConsumersEarly Consumers

Intra-temporal Discount Factor: 𝛿
Central Bank’s Policy Rate: 𝐹𝑡

Inter-temporal Discount Factor: 𝛽
One-Period Short-term Interest Rate: 1+𝑖𝑡

Intra-temporal Discount Factor: 𝛿
Central Bank’s Policy Rate: 𝐹𝑡+1

𝐶1,𝑡 𝐶2,𝑡 𝐶1,𝑡+1 𝐶2,𝑡+1

prices in advance before transactions take place without price differentiation between early and

late consumers. Hence firms set the same price for C1,t and C2,t. In addition, early and late

consumers can use the same payment system but are subject to different timings of spending

consumption expenditures. For example, consumption expenditures of early consumers C1,t should

be paid immediately on the occurrence of a liquidity shock. But consumption expenditures of late

consumers C2,t are settled at the beginning of period t+ 1 by transferring money from their bank

accounts to sellers’ bank accounts.4 Figure 3.1 also demonstrates that early consumers consume in

the first-half of each period and late consumers consume in the second-half of each period.

Early consumers and late consumers have the same utility function. Specifically, u(C1,t) rep-

resents the concave and differentiable utility function of early consumers and u(C2,t) corresponds

to the concave and differentiable utility function of late consumers. In addition, v(Ht) is the

household’ dis-utility function of labor that is convex and differentiable in its argument. The

intra-period discount factor (= δ) is also used to compute the beginning-of-period utility value

of late consumers who consume in the second-half period. Each period, therefore, the beginning-

of-period expected utility function for ex-ante homogeneous households can be written as follows:

(θu(C1,t) + (1 − θ)δu(C2,t) − v(Ht)) where Ht is the number of hours worked at period t. As a

4If early consumers are required to use cash for their payments, C1,t is regarded as cash goods and C2,t is regarded
as credit goods following the distinction of Lucas and Stokey (1987) because payment for C2,t is settled at the
beginning of period t+1 by bank’s transferring money from household’s bank account to firm’s bank account.
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result, the preferences at period 0 of the representative household can be expressed as follows.

∞∑
t=0

βtE0[Zt(θu(C1,t) + (1− θ)δu(C2,t)− v(Ht))] (3.1)

where Zt represents an exogenous preference shock, β denotes the inter-period discount factor and

δ is the intra-period discount factor. Figure 3.1 illustrates different roles of these two discount

factors.

Households can trade a complete set of state-contingent claims. But the existence of a complete

set of state-contingent claims is not helpful for individual consumers to attain the equality between

C1,t and C2,t. The reason for this feature reflects the fact that the occurrence of liquidity shock

cannot be publicly verified in the same way as is done in the Diamond-Dybvig Model (1983). Each

member of the representative household receives the same wage rate (= wt) in return for its labor

services to firms (= Ht) and dividend incomes for individual firms giving their profits as dividends

for stock owners (= πf,t), while ex-ante identical consumers have the same level of demand deposits

in their bank accounts (= Dt). The representative household’s consolidated budget constraint is

therefore given by the following equation.

Dt + Et[Qt,t+1At+1] = wtHt +At + πf,t +GH,t (3.2)

where At+1 represents their demands at period t for contingent claims that give one unit of con-

sumption goods conditional on states at period t+1 and Qt,t+1 is the stochastic discount factor that

is used to compute the value at period t of one unit of consumption goods at period t+1 and GH,t

is the real value of the household’s government account that includes its holdings of government

bonds and net subsidies (taxes minus subsidies).

3.2 Banks

Figure 3.2 shows how individual banks determine their portfolios after households make deposits

(= Dt). Banks divide deposits into two parts. One is reserves for early withdrawals (= Xt) and

the other is the bank’s lending in the federal funds market (= Dt - Xt) whose gross nominal return

is Ft. The total withdrawals from early consumers is θ(1 + i1,t)Dt in the first-half of each period

and total withdrawals of late consumers is (1− θ)(1 + i2,t)Dt in the second-half of each period. In

sum, the bank’s profit flow from its deposit services is

πb,t = Ft(Dt −Xt)− (1− θ)(1 + i2,t) + (Xt − θ(1 + i1,t)Dt) (3.3)

where πb,t is the bank’s profit flow from its deposit services at period t. The cash flows specified in

equation (3.3) can be interpreted as profit flows of bank’s deposit services. The upper part of the
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Figure 3.2: Bank’s Portfolio Decision and Net Worth

Deposit 
Balance
𝐷𝑡

Bank 
ATM Reserves

𝑋𝑡

Early Withdrawal
𝑋𝑡 ≥

𝜃 1 + 𝑖1,𝑡 𝐷𝑡

Lending in the Federal Funds Market
(𝐷𝑡−𝑋𝑡)

Bank Net Worth at the Beginning of Period 𝑡 + 1
𝑁𝑏,𝑡+1 = 𝜔𝑡(𝑅𝑡+1 − 𝐹𝑡)(𝐷𝑡−𝑋𝑡) + 𝜋𝑏,𝑡 + 𝑁𝑏,𝑡 + (𝑄𝑏,𝑡+1 − 𝑄𝑏,𝑡)𝑆𝑏,𝑡

Borrowing in the Federal Funds Market
and Investing in Long-Term Bonds

𝜔𝑡(𝐷𝑡−𝑋𝑡)

Late Withdrawal and Bank Profit from 
Demand Deposit Services

𝜋𝑏,𝑡 = 𝐹𝑡(𝐷𝑡−𝑋𝑡) − (1 − 𝜃)(1 + 𝑖2,𝑡)𝐷𝑡
+ (𝑋𝑡 − 𝜃 1 + 𝑖1,𝑡 𝐷𝑡)

Realized Investment Return 
from Holding Long-Term Bonds

𝜔𝑡(𝑅𝑡+1 − 𝐹𝑡)(𝐷𝑡−𝑋𝑡)

Bank Run View 

Solvency View 

blue dotted line of Figure 3.2 can be described by the word of “Bank Run View” because equation

(3.3) mimics the profit flows of the Diamond-Dybvig model. In this case, depositors can collectively

withdraw from otherwise solvent banks even without having any stochastic returns from bank’s

assets.

The lower part of the blue dotted line of Figure 3.2 can be described by the word of “Solvency

View” because it allows for the possibility that banks can suffer severe investment losses enough

to completely deplete their net worths. In order to incorporate the solvency view into the model,

banks are supposed to borrow funds from the federal funds market to invest in long-term bonds, so

that banks act as arbitrageurs in markets of long-term bonds. Hence the bank’s net worth evolves

over time according to the following equation

Nb,t+1 = ωt(Rt+1 − Ft)(Dt −Xt) + πb,t + (Nb,t − (Qb,t+1 −Qb,t)Sb,t) (3.4)

where Nb,t+1 is the bank’s net worth at the beginning of period t + 1, Rt+1 is the realized gross

return from one-period holdings of long-term bonds, the amount of bank’s borrowing in the federal

funds market is ωt(Dt −Xt), Qb,t is the nominal price at period t of bank’s share and Rt+1 is the

realized gross return from one-period holdings of long-term government bonds. The parenthesis

at the end of the right-hand side of equation (3.4) reflects changes in the market value of bank’s

net-worth between periods t and t + 1. In addition, changes in the value of ωt lead to changes

in the amount of bank’s borrowing in the federal funds market. The inclusion of ωt in equation

(3.4) is motivated by the fact that the bank’s risk-management tends to adjust the size of potential
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Figure 3.3: Optimal Demand Deposit Contract

1

Nominal Value of
Late Consumer
Withdrawal

0 (1 + 𝑖2,𝑡)𝐷𝑡

(1 + 𝑖𝑖,𝑡)𝐷𝑡

Indifference Curve of
Household’s Ex-ante Utility

Iso-Profit Line of
Commercial Bank’s 
Ex-ante Zero Profit Condition

Contract Point

Nominal Value of
Early Consumer
Withdrawal

investment loss relative to that of deposit (net of reserves) as will seen later.

3.3 Demand Deposit Contract and Household’s Utility Maximization

Each period, banks and households are supposed to make demand deposit contracts before liquidity

shocks take place in the same way as is done in the Diamond-Dybvig model. The ex-ante demand

deposit contract between banks and households is determined as the result of the maximization of

household’s ex-ate expected utility subject to a zero expected profit condition of banks for their

deposit services. The zero expected profit condition of banks can be regarded as a participation

constraint of perfectly competitive markets of deposit services.5

Figure 3.3 demonstrates that the demand deposit contract is determined at the point which the

zero-profit line of banks is tangent to the household’s ex-ate indifference curve. The blue dotted

curve represents the household’s ex-ante indifference curve. The blue solid line is the zero ex-

ante profit line of banks. The brown box of contract point marks the tangent point of the bank’s

zero-profit line to the household’s ex-ate indifference curve. The ex-ante instantaneous utility can

be regarded as the instantaneous social welfare function in the absence of bank runs. Hence the

contract point of Figure 3.2 can be regarded as the optimal contract between banks and households

5A consequence of this condition is to make interest rates of demand deposits such as checking accounts lower
than the federal funds rate. In actual data, the national rate of checking accounts in the US tends to be lower the
federal funds rate. For example, the national deposit rate of checking account is 0.07% (as of September 15, 2025 at
the FDIC home-page, https://www.fdic.gov/national-rates-and-rate-caps), while the target of the federal funds rate
is a range of 4.00-4.25%.
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that maximizes the social welfare in the absence of bank runs. The optimal demand deposit contract

can be written as follows.

max{i1,t,i2,t} θu((1 + i1,t)Dt) + (1− θ)δu((1 + i2,t)Dt)

subject to πb,t = 0 → θ(1 + i1,t) + (1− θ)(
1+i2,t
Ft

) = 1
(3.5)

The optimal condition of the demand deposit contract can be derived as follows. First, the

ex-ante marginal rate of substitution between early consumption and late consumption is

∆C2,t

∆C1,t
= − u′(C1,t)

δu′(C2,t)

This equation can be interpreted as the social planner’s valuation of the opportunity cost of with-

drawals of early consumers compared with those of late consumers. Second, the slope of the iso-profit

curve obtained from the ex-ante zero profit condition is

∆C2,t

∆C1,t
= −Ft

This equation can be interpreted as the market evaluation of the opportunity cost of withdrawals

of early consumers compared with those of late consumers. Hence the equality between subjective

and objective evaluations of the opportunity cost of withdrawals of early consumers compared with

those of late consumers leads to the following optimal condition for the demand deposit contract

specified in equation (3.5).
δu′(C2,t)

u′(C1,t)
Ft = 1 (3.6)

Having described the demand deposit contract between banks and households, the next discus-

sion turns to the optimization conditions of households. The substitution of πb,t = 0 and Xt =

θC1,t into the household’s budget constraint leads to the following equation:

θC1,t + (1− θ)
C2,t

Ft
+ Et[Qt,t+1At+1] = wtHt +At + πf,t +GH,t (3.7)

Hence the representative household maximizes the life-time utility function (3.1) subject to a series

of the following period-by-period budget constraint (3.7) taking {GH,t}∞t=0 as given. The first-order

conditions of the representative household’s utility maximization problem can be summarized as

follows. The first-order condition for early consumer’s consumption is

Ztu
′(C1,t) = Λt (3.8)

The first-order condition for late consumer’s consumption is

ZtδFtu
′(C2,t) = Λt (3.9)
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The first-order condition for labor supply condition equates the marginal rate of substitution be-

tween consumption and leisure to the real wage as follows.

Ztv
′(Ht) = Λtwt (3.10)

The first-order condition for At+1 gives the following relation between the stochastic discount factor

and the inter-temporal marginal rate of substitution.

Qt,t+1 = βΛt+1/Λt (3.11)

It should be noted that dividing both sides of equation (3.9) by corresponding sides of (3.8) leads

to the optimal condition for demand deposit contract (3.6). The rest of optimization conditions are

binding budget constraints for consumption expenditures as can be seen below.

C1,t = (1 + i1,t)Dt

C2,t = (1 + i2,t)Dt

Dt = wtHt + πf,t +GH,t

Dt = θC1,t + (1− θ)(C2,t/Ft)

(3.12)

The next discussion is the derivation of the equilibrium relation between intra-period risk-free

(gross) interest rate (= Ft) and inter-period risk-free (gross) interest rate (= 1+ it). The first point

is that since the inter-period risk-free gross interest rate is the inverse of the price of one-period

government bond whose face value is one unit of account, the absence of arbitrage profit leads to

the following equation.

1 = βEt[
Λt+1Pt

ΛtPt+1
](1 + it). (3.13)

where Pt is the aggregate price index at period t. The second point is that even if households cannot

participate in the federal funds market, commercial banks can sell risk-free short-term bonds whose

payoffs mimic payoffs of securities traded in the intra-asset market. In particular, when such assets

are available for late consumers in the second-half subperiod, the absence of arbitrage profit leads

to the following condition.
Ztδu

′(C2,t)

Pt
= βEt[

Λt+1

Pt+1
]Ft

where both sides of this equation are evaluated in terms of utilities of early consumers. The left-

hand side of this condition is the utility cost of one unit of nominal account that is invested at period

t. The right-hand side is the expected discounted utility benefit of holding the risk-free short-term

bonds whose payoffs mimic payoffs of securities traded in the intra-asset market. Dividing both

sides of this equation by Λt leads to the following representation.

Ztδu
′(C2,t)

Λt
= βEt[

Λt+1Pt

ΛtPt+1
]Ft → Ztδu

′(C2,t)

Λt
=

Ft

1 + it

15



The right equation of the arrow shown above is derived by substituting equation (3.13) into left

equation of the arrow. The substitution of equation (3.6) into the equation of the arrow shown above

the equilibrium relation between intra-period risk-free (gross) interest rate (= Ft) and inter-period

risk-free (gross) interest rate (= 1 + it).

1 + it = F 2
t (3.14)

The final discussion of this subsection is the determination of equilibrium prices of government

bonds. Since households do not hold a subset of government bonds, a partial segmentation exists

for government bonds. The equilibrium price of long-term bonds whose market is not available

for households are determined by equating demands of commercial banks to corresponding market

supplies as will discussed later. But the equilibrium price of long-term bonds whose market is

available for households is determined by the following condition.

P
(k)
t = βEt[

Λt+1P
(k−1)
t+1

ΛtΠt+1
] (3.15)

where P
(k)
t is the nominal price at period t of government bonds whose remaining maturity is k

and P
(0)
t+1 = 1 .

3.4 VaR and Bank’s Demands for Long-Term Government Bonds

The aim of this subsection is the derivation of bank’s demand function for long-term bonds under

the assumption that banks adopt VaR to control exposures of their portfolios to interest-rate risk.

The important assumption of this subsection is that banks have a target maturity of long-term

bonds as preferred habitat investors where τ is the target maturity at period t of long-term bonds

held by banks. Recall from equation (3.4) that bank’s demands for long-term bonds can be written

as follows.

D
(τ)
t = ωt(Dt −Xt) (3.16)

where D
(τ)
t is the nominal value at period t of long-term bonds held by banks.

Now the derivation of bank’s demand function for long-term bonds proceeds with the analysis

of relation between VaR and ωt with the emphasis of the following three points. First, P
(τ)
t is not

determined by the equilibrium condition for bonds prices specified in equation (3.15). Second, P
(τ)
t

is determined by the market clearing condition of long-term bonds whose remaining maturity is τ

at period t as will be confirmed below. Third, bank’s adoption of VaR is associated with financial

regulation, while it also can be rationalized by the contract-based approach of Adrian and Shin

(2008, 2014).6

6It would be helpful to quote the following statement of the BIS’s IRRBB document, “Interest rate risk in the
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Figure 3.4: VaR Confidence Interval

A B

In order to incorporate VaR into bank’s investment decision for long-term bonds, banks are

assumed to know the probability distribution of their expectation errors about one-period holding

returns of long-term bonds. The confidence interval can be then written in terms of the expected

excess premium of one-period holdings of long-term bonds. The portfolio ratio for long-term bonds

(= ωt) becomes a function of VaR parameters such as the maximum potential loss and confidence

interval.

The determination of portfolio ratio for long-term bonds (= ωt) goes through the following three

steps. The first step is the specification of the VaR constraint facing individual banks:

(Ft −Rt+1)ωt ≤ v̄t → (Rt+1 −Re
t+1) ≥ −(ξt + ω−1

t v̄t)

where ξt = Re
t+1−Ft and bank’s investment return is measured in terms of nominal unit of account:

Rt+1 = P
(τ−1)
t+1 /P

(τ)
t . The right side of the arrow shown above means that VaR generates a lower

bound on bank’s expectation error about its investment return on long-term bonds. The second

step is the determination of the associated confidence interval:

c̄t = 1− Φ(−(ξt + ω−1
t v̄t)) (3.17)

The third step is to get the inverse function of the cumulative distribution function Φ to express the

banking book (IRRBB) is part of the Basel capital framework’s Pillar 2 (Supervisory Review Process) and subject
to the Committee’s guidance set out in the 2004 Principles for the management and supervision of interest rate risk
(henceforth, the IRR Principles)” In addition, this document gives an explicit account of VaR as follows. “Economic
value at risk (EVaR) measures the expected maximum reduction of market value that can be incurred under normal
market circumstances over a given time horizon or holding period and subject to a given confidence level.”

17



bond weight in terms of both the expected excess return of bond investment and VaR parameters.

As a result, the portfolio ratio of long-term bonds becomes a function of the two parameters of VaR

such as maximum potential loss and confidence interval as well as expected excess return as can be

seen below.

ωt =
v̄t

G(c̄t)− ξt
; G(c̄t) = −Φ−1(1− c̄t) (3.18)

The important features of equation (3.18) can be summarized as follows. First, portfolio ratio

of long-term bonds is an increasing function of the expected excess investment return of long-term

bonds. Second, portfolio ratio of long-term bonds is an increasing function of the maximum potential

loss. Third, portfolio ratio of long-term bonds is a decreasing function of confidence interval. In

relation to the third feature, Figure 3.4 demonstrates that G(c̄t) is an increasing function of c̄t.

Panel A of Figure 3.4 shows how the inverse of cumulative distribution function of expectation

errors is affect by confidence interval. Panel A corresponds to the graph of Φ−1(1− c̄t). Panel B of

Figure 3.4 illustrates the graph of G(c̄t) that is obtained by using the graph of Φ−1(1− c̄t).

In sum, it follows from the substitution of equation (3.18) into equation (3.16) that individual

banks have a downward-sloping demand curve for long-term bonds.

P
(τ)
t =

Et[P
(τ−1)
t+1 ]

Ft +G(c̄t)− v̄t(Dt −Xt)(D
(τ)
t )−1

(3.19)

The bank’s demand curve for long-term bonds shifts upward as the expected value of next-period’s

bond price rises, while it shifts downward as the policy rate decreases. In addition, bank’s tough

risk-management also shifts downward its demand curve for long-term bonds.

3.5 Household’s Holdings of Government Bonds and Government Budget Con-
straint

It would be worthwhile to discuss some issues of GH,t in the household’s budget constraint where

GH,t is called the household’s government account. The real value of household’s government

account is defined as after-tax net-revenue of its bond portfolio as follows.

GH,t = −TH,t +
B

(1)
H,t +

∑K
k=2 P

(k)
t B

(k−1)
H,t

Pt
−

∑K
k=1 P

(k)
t B

(k)
H,t+1

Pt

where B
(k)
H,t+1 is the number of bonds with maturity k held by the household, P

(k)
t is the correspond-

ing nominal bond price at period t, Pt is the aggregate price index and TH,t is the net lump-sum tax

for households. In this representation, it should be noted that household’s participation restriction

for bonds whose maturity is τ leads to B
(τ)
H,t+1 = 0.

In particular, a non-zero value of GH,t is associated with the failure of Ricardian equivalence.

Specifically, unless households hold all government bonds, a change in the maturity structure of
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government debt can affect the household’s flow budget constraint through its impact on the value

of GH,t. For this reason, a non-zero value of GH,t (i.e. GH,t ̸= 0) raises the possibility that

household’s consumption demand can be affected by government’s choice between lump-sum tax

and debt for a given level of its spending. In relation with this issue, Cochrane (2001), Woodford

(2001), Rudebusch and Swanson (2008, 2012), and Miao, Shen and SU (2023) adopt the assumption

that maturities of government bonds follow a geometric structure with no-arbitrage pricing for

bonds. The model of this paper abstracts from this assumption and proceeds with the imposition

of a lump-sum transfer to set GH,t = 0.

Government issues only zero coupon bonds whose face values are one nominal unit of account

with the maximum maturity K (> 1). Given a set of new issues (measured as real values at period

t) of government bonds {N (k)
t }Kk=1, the government flow budget constraint at period t is

K∑
k=1

P
(k)
t N

(k)
t

Pt
+ Tt =

B
(1)
t

Pt
+Gt

where Tt is the aggregate tax revenue and Gt is the aggregate government expenditures. The

outstanding stocks of government bonds evolve over time as follows.

B
(k)
t+1 = N

(k)
t +B

(k+1)
t

for k = 1, · · · , K − 1 and B
(K)
t+1 = N

(K)
t .

Turning to the market supplies of long-term government bonds, the following equation describes

market supplies of government long-term bonds that the central bank and households do not hold

in their balance sheets.

S
(τ)
t = B

(τ+1)
t +N

(τ)
t

where τ is a positive integer greater than one but less than K with S
(K)
t = N

(K)
t . The central

bank’s quantitative easing can affect market supplies of government bonds as can be seen below.

S
(τ)
t = (B

(τ+1)
t −B

(τ+1)
F,t ) + (N

(τ)
t −B

(τ)
F,t+1)

where B
(k)
F,t represents the central bank’s demands for long-term bonds whose maturity is k.

3.6 Firms

A continuum of monopolistically competitive firms are in charge of the production of differentiated

goods using a linear production function:

Yt(i) = AtHt(i)
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where Yt(i) is the output of firm i, Ht(i) is the amount of labor input, and At is the productivity

level at period t. Following the Dixit-Stiglitz model, the demand curve of firm i whose nominal

product price is Pt(i) is given by

Yt(i) = (
Pt(i)

Pt
)−ϵYt

where Yt is the aggregate output, Pt is the aggregate price index, and ϵ is a positive constant. The

aggregation condition of (PtYt =
∫ i=1
i=0 Pt(i)Yt(i)di) implies that the aggregate price level (= Pt) is

defined as a non-linear sum of individual nominal prices (= Pt(i)).

Pt = (

∫ i=1

i=0
Pt(i)

1−ϵdi)
1

1−ϵ

Each period, a fraction of firms 1−α set a new nominal product price P ∗
t but the other fraction

α do not change prices following the Calvo model. In this case, the aggregate price index (= Pt) is

determined as follows.

P ∗
t = (1− α)(P ∗

t )
1−ϵ + αP 1−ϵ

t−1

The profit maximization problem of firms that reset their prices can be written as follows.

max
P ∗
t

∞∑
k=0

(αβ)kEt[
Λt+k+1

Λt+k
((

P ∗
t

Pt+k
)1−ϵ −mct+k(

P ∗
t

Pt+k
)−ϵ)Yt+k]

where mct is the real marginal cost of production. The corresponding optimization condition is

also summarized as follows.

Kt = Yt + αβEt[
Λt+1

Λt
Πϵ−1

t+1Kt+1]

Jt =
ϵmctYt
(ϵ−1) + αβEt[

Λt+1

Λt
Πϵ

t+1Jt+1]

1 = (1− α)( Jt
Kt

)1−ϵ + αΠϵ−1
t

(3.20)

The first and second lines of equation (3.20) are derived from the profit maximization conditions

of firms. The third line of equation (3.20) reflects the definition of the aggregate price index. The

tree lines of equation (3.20) can be solved for three variables such as Kt, Jt, and Πt given a set of

values Λt and mct. In addition, a long-linear approximation of equation (3.20) leads to a linearized

Phillips curve equation as will be seen later.

3.7 Collection of Equilibrium Conditions

Before proceeding to the collection of the equilibrium conditions, it would be helpful to discuss

macroeconomic impacts of prudential policy measures. In order to do so, it would be necessary

to discuss what prudential policy measures are included in the model of this paper. In this light,

it should be mentioned that the two parameters of the VaR can be regarded as prudential policy

measures on the basis of the view that financial regulation is responsible for the bank’s adoption of
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Table 3.1: Impact of Financial Regulation on Γt

IRRBB CAR Volcker Rule LCR

Response of ωt Decrease Decrease Decrease Increase

Response of Γt Increase Increase Increase Decrease

Regulation Constraints v̄t ≤ v̄∗t ωt ≤ ω̄t ωt ≤ ω̄t ωt ≥ ω̄t

c̄t ≥ c̄∗t

Note: c̄t, v̄∗t , and ω̄t represent target levels of the financial regulator. The impact of
each financial regulation on the value of Γt occurs when the corresponding regulation
constraint is binding. IRRBB is the interest rate risk in the banking book, CAR is the
capital adequacy ratio, and LCR is the liquidity coverage ratio.

the VaR as a tool of its risk management as can be seen in the discussion of the IRRBB. Specifically,

the financial regulator can require that banks should not deviate from specific ranges for values of

the two VaR parameters in an effort to control their holdings of long-term bonds. The target

variable of this kind of financial regulation is the fraction of long-term bonds in the bank’s balance

sheet. On top of this one, the financial regulator can require that the amount of risky assets held

by banks should not exceed a certain fraction of their deposits in an effort to secure repayments of

deposits in line with the well-known BIS requirement of the capital adequacy ratio for commercial

banks.

In order to see how these policy measures of the financial regulator affect bank’s investment in

long-term bonds in the model of this paper, it should be noted that the IRRB regulation affects ωt

and the CAR or CARR regulation affects the ratio of bank’s investment to its deposits is D
(τ)
t /Dt.

Moreover, Γt contains impacts of these two financial regulatory measures in the model of this paper

reflecting its definition of Γt = D
(τ)
t /(ωtDt). It should be also noted that Γt summarizes impacts

of financial regulatory measures in the aggregate equilibrium conditions because it is the only one

variable that shows up in the aggregate equilibrium conditions.

In order to facilitate the analysis of equilibrium solution to the model described above, this

section is focused on a self-sufficient set of equilibrium conditions. In this subsection, 10 equilibrium

conditions are collected for 10 endogenous variables of Kt, Jt, Πt, Yt, ∆t, Ft, (1 + it), Λt, mct, Γt

given two exogenous fundamental shocks such as productivity and preference shocks At and Zt as
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can be seen below.
Kt = Yt + αβEt[

Λt+1

Λt
Πϵ−1

t+1Kt+1]

Jt =
ϵmctYt
(ϵ−1) + αβEt[

Λt+1

Λt
Πϵ

t+1Jt+1]

1 = (1− α)( Jt
Kt

)1−ϵ + αΠϵ−1
t

mct =
v′(Yt∆t/At)

Atu′(θ−1(1−Γt)Yt)

1 + it = F 2
t

Λt = Ztu
′(θ−1(1− Γt)Yt)

βEt[
Λt+1

ΛtΠt+1
](1 + it) = 1

∆t = (1− α)(
1−αΠϵ−1

t
1−α )

ϵ
ϵ−1 + αΠϵ

t∆t−1

Determination of Γt: Prudential Policy Variable

Determination of Ft: Monetary Policy Variable

(3.21)

In the last two lines of equation (3.21), we do not present concrete specifications of relevant

equations. It would be thus worthwhile to discuss how these two equations are determined. First,

the central bank controls the value of Ft on the basis of an interest rate rule that connects the

central bank’s policy rate to deviations of inflation and output from their targets. Second, the

equilibrium value of Γt is set equal to Γt = S
(τ)
t /(ω̄tYt) with two equilibrium conditions of Dt = Yt

and D
(τ)
t = S

(τ)
t when financial regulation constraints in Table 3.1 are binding. In this case, Γt is

directly affected by changes of prudential policies given S
(τ)
t and Yt. For this reason, Γt is regarded

as a policy tool of financial regulation in this section as will be seen below.

3.8 Inflation and Output Effects of Financial Regulation

The aim of this subsection is to compare a log-linearized small-scale model of this paper with the

prototypical New Keynesian model of three equations such as the Phillips curve, the IS curve and

the interest rate rule. The difference between these two models is two-fold. One is the addition of

Γt to the set of equilibrium conditions. The other is the change in the indeterminacy region for

numerical values of feedback parameters of inflation and output gaps that is associated with the

Taylor principle.

The log-linear approximation to the profit-maximization condition of price-adjusting firms (first

tree equations of equation (3.21) around the deterministic steady state with a zero inflation together

with the definition of the aggregate price index) leads to the following Phillips curve equation.7

πt = βEt[πt+1] + κxt − κΓγt (3.22)

where the slope of Phillips curve is κ = (σ+χ)(1−α)(1−αβ)/α and κΓ = Γκx/(1−Γ) with 0 < Γ

< 1. The log-linear approximation to the Euler equation (sixth line of equation (3.21) around the

7The log-linearized variables are represented by small characters, whereas non-linear original variables are repre-
sented by large characters. In addition, the household’s utility function for consumption is u(c) = (c1−σ − 1)/(1− σ)
and the dis-utility function for hours is v(H) = H1+χ/(1 + χ) where both σ and χ are positive.
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deterministic steady state with a zero inflation together with the definition of the aggregate price

index) leads to the following IS curve equation.

xt = Et[xt+1]− σ−1(it − r∗t − Et[πt+1]) + σΓ(γt − Et[γt+1]) (3.23)

where i∗t is the natural rate of interest, σ is the inverse of the inter-temporal elasticity of substitution

and σΓ = Γ/(σ(1− Γ)). The central bank’s interest rate rule leads to the following specification

it = r∗t + ϕππt + ϕxxt + et (3.24)

where coefficients ϕπ and ϕx all positive and et is an exogenous interest-rate shock.

The apparent difference of this paper from the prototypical New Keynesian model is that equa-

tions (3.22) and (3.23) include the log-linearized variable of Γt (= γt) as mentioned before. Specif-

ically, the Phillips curve shifts downward as the value of γt decreases. A loose financial regulation

leads to increase in ωt and thus a decrease in the value of Γt as can be seen in Table 3.1. Hence

a decrease in γt can be regarded as a result of a loose financial regulation. Hence equation (3.22)

indicates that a loose financial regulation acts as an endogenous supply shock to raise the aggregate

inflation rate.

Smets (2014) also emphasizes that this feature can play an important role in the analysis of the

optimal financial regulation with a different channel through which financial regulation affects the

Phillips curve. The mechanism behind this result in the model of this paper is income effect channel

of financial regulation. The financial regulation generates an income effect on the household’s labor

supply, which shifts the labor supply curve in the labor market. Specifically, being other things

equal, the real wage decreases when Γt increases reflecting its impact on labor supply curve. Hence

the equilibrium real wage rises with a loose financial regulation.

Turning to the second topic of this subsection, it should be noted that the log-linear relation of ft

= (1/2) it leads to a change in the indeterminacy region for numerical values of feedback parameters

of inflation and output gaps that is associated with the Taylor principle when the central bank is

supposed to adjust its policy rate according to the following equation.8

ft = f∗
t + ϕ̂ππt + ϕ̂xxt + êt (3.25)

where f∗
t is the neutral level of federal funds rate, coefficients ϕ̂π and ϕ̂x all positive and êt is an

exogenous shock to the federal funds rate. Comparing equation (3.24) with equation (3.25),

i∗t = 2f∗
t , ϕπ = 2ϕ̂π ϕx = 2ϕ̂x.

8The equation of ft = (1/2) it can be obtained by taking log-differences between current-period and steady-state
values to both sides of equation (3.14).
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The Taylor principle should be applied to values of ϕπ and ϕx in the model of this paper to secure

the determinacy of equilibrium solutions, whereas the Taylor principle is applied to values of ϕ̂π

and ϕ̂x in the prototypical New Keynesian model where it = ft. Specifically, the model of this

paper does not need the principle of ϕ̂π > 1 to secure the determinacy of equilibrium solutions.

4 Optimal Monetary and Prudential Policies

In this section, we begin with the characterization of an instantaneous social welfare function. The

first step is the use of the ex-ante zero profit condition of banks πb,t = 0 to derive the household’s

ex-ante present-value budget constraint of the following form:

θC1,t + (1− θ)
C2,t

Ft
= Dt.

The second step is to express consumptions of early and late consumers as functions of Dt, Γt and

Ft as follows.

Γt = 1− Xt

Dt
→ Xt = (1− Γt)Dt → C1,t =

(1− Γt)Dt

θ
→ C2,t =

ΓtDtFt

1− θ

The third step is to derive the equality of Dt = Yt from the representative household’s budget

constraint evaluated at the equilibrium. Hence the substitution of this relation into this equation

implies that consumptions of early and late consumers become functions of Yt, Γt and (1 + it) as

follows.
C1,t =

(1−Γt)Dt

θ

C2,t =
ΓtDt(1+it)1/2

1−θ

As a result, the instantaneous social welfare function can be expressed in terms of the aggregate

output, prudential policy measure (= Γt), relative price distortion (= ∆t), and short-term (gross)

nominal interest rate as follows.

U(Yt,Γt,∆t, 1 + it) = θu(
(1− Γt)Yt

θ
) + (1− θ)u(

ΓtYtQ(1 + it)

1− θ
)− v(

Yt∆t

At
)

where Q(1 + it) = (1 + it)
1/2 is a monotonically increasing and differentiable function of 1 + it.

Having derived the social planner’s objective function, the next topic is the characterization

of constraints facing the social planner. In fact, there are two constraints for the social planner’s

optimization problem. The first one is the evolution equation of relative price distortion. The second

one is the Euler equation that corresponds to the household’s holdings of short-term government

bonds. The reason why the second constraint is included is that the social planner’s objective

function is directly affected by the short-term nominal interest rate. In fact, this result reflects the

important feature of the Diamond-Dybvig model where there are distinction between early and late

consumers.
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In sum, the social planner’s optimization problem can be formulated as follows.

max
∞∑
t=0

βtE0[U(Yt,Γt,∆t, 1 + it)− Λ(Yt,Γt)(
Ξt

1 + it
− Ξt−1

Πt
) + Ψt(∆t −∆(Πt,∆t−1))] (4.1)

where Ξt is the Lagrange multiplier of the Euler equation and Ψt is the Lagrange multiplier of

relative price distortion. The social planner’s optimization problem (4.1) deserves a couple of points.

The first point is that the choice variables of the social planner’s problem are five variables such

as (Yt, Πt, Γt, ∆t, 1 + it). In this light, this optimal policy problem can be regarded an extended

nonlinear version of New Keynesian optimal policy problem that minimizes an weighted sum of

output-gap variability and inflation variability given the Phillips curve equation. The second point

is that this optimal policy problem allows for the timeless perspective of Benigno and Woodford

(2012).

The social planner’s optimization conditions can be written as follows.

UY (Yt,Γt,∆t, 1 + it) = ΛY (Yt,Γt)(
Ξt

1+it
− Ξt−1

Πt
)

UΓ(Yt,Γt,∆t, 1 + it) = ΛΓ(Yt,Γt)(
Ξt

1+it
− Ξt−1

Πt
)

U(1+i)(Yt,Γt,∆t, 1 + it) = −ΞtΛ(Yt,Γt,1+it)
(1+it)2

U∆(Yt,Γt,∆t, 1 + it) = −(Ψt − αβEt[Π
ϵ
t+1Ψt+1])

∆Π(Πt,∆t−1)Ψt = −Λ(Yt,Γt)
Ξt−1

Π2
t

(4.2)

where each function’s subscripts represent partial derivatives of corresponding variables. The first

line is the first-order condition for output. The second line is the first order condition for Γt. The

third line is the first-order condition for nominal interest rate. The fourth line is the first order

condition for relative price distortion. The fifth equation is the first order condition for inflation.

It should be noted that the social planner’s optimization problem of this paper from that of

prototypical New Kenyesian model is the inclusion of the Euler equation into the set of constraints

of the social planner’s problem, which in turn alters the prescription of the social planner’s opti-

mization problem for both the optimal inflation target and the optimal monetary policy regime.

The main reason for such a difference is that the inclusion of the Euler equation into the set of

constraints of the social planner’s problem creates a commitment value for future inflation that can

affect the real value of future payoff of one-period holding of government bonds.

More precisely, the social planner can face a trade-off between the minimization of relative

price distortion and the maximization of the commitment value for future inflation that helps to

increase the social welfare. For this reason, the social planner can deviate from a zero inflation

(that minimizes relative price distortion) in order to obtain the welfare benefit that is associated

with the commitment value of future inflation discussed above.

We now turn to the implication for optimal inflation under discretion can be summarized as

follows. In the absence of commitment, the inclusion of the Euler equation into the set of constraints
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Figure 4.1: Optimal Inflation: Numerical Result

of the social planner’s problem does not create a commitment value for future inflation that can

affect the real value of future payoff of one-period holding of government bonds. The reason for

this statement is that the social planner lose the power to control the public’s expectation about

future inflation. Under discretion, the social planner does not deviate from a zero inflation that

minimizes relative price distortion.

Turning to the optimization condition for the prudential policy measure Γt, the two optimization

conditions for the aggregate output and the prudential policy measure can be used to produce a

tangent condition for two curves.

UY (Yt,Γt,∆t, 1 + it)

UΓ(Yt,Γt,∆t, 1 + it)
=

ΛY (Yt,Γt, 1 + it)

ΛΓ(Yt,Γt, 1 + it)

The left-hand side of this equation corresponds to the marginal rate of substitution between output

and prudential measure from the social planner’s indifference curve. The right-hand side of this

equation corresponds to the marginal rate of substitution between output and prudential measure

from the marginal utility of consumption that is used for the stochastic discount factor in asset

markets. This condition demonstrates the trade-off between the aggregate output and prudential

policy measure facing the benevolent social planner.

The policy prescription of the social planner’s optimization problem (4.1) can be summarized as

follows. First, the optimal inflation rate is positive under commitment for the timeless perspective.

Second, the price-level targeting is the solution to the social planner’s problem under discretion,

which is different from the result of existing works on the optimal monetary policy. The reason for
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this difference is that the social planer’s problem of this paper includes two independent constraints

such as the Phillips curve and the Euler equations, whereas the social planner’s problem of typical

New Keynesian models includes only one constraint namely the Phillips curve equation. If the

Euler equation is included as the constraint for the social planner’s problem, the social planner’s

has power to control the expected real interest rate by making commitment on future inflation,

which is absent in the case of the social planner’s problem with only one constraint of the Phillips

curve equation.

Figure 4 shows a numerical solution to the social planner’s optimization conditions (4.2) that

can be obtained under a set of plausible parameter values. Panel A is the graph of relative price

distortion where x-axis is quarterly gross inflation and y-axis is relative price distortion. The slope

of relative price distortion corresponds to the left-hand side of the fifth line in equation (4.2). The

straight line with a positive slope corresponds to the right-hand side of the fifth line in equation

(4.2). Panel A thus illustrates that the optimal inflation is determined at the point where the

straight line is tangent to the graph of relative price distortion. Panel B demonstrates how the

difference between the right-hand and left-hand sides of the fifth line in equation (4.2) changes as

steady-state gross inflation rises where x-axis is quarterly gross inflation and y-axis is the difference

between between the right-hand and left-hand sides of the fifth line. Panel B thus shows that the

optimal steady-state gross inflation is determined at the point where the difference becomes zero.

In each panel, the optimal inflation is marked by a vertical line. Panels A and B confirm that

vertical lines mark the same optimal inflation. In sum, Figure 4 indicates that the optimal (yearly)

steady-state inflation rate is 3.4% which is higher than the actual inflation target set by central

banks of advanced countries, while it should be admitted that numerical results for the optimal

inflation target are sensitive to changes in parameter values.9

5 Bank Run

In this section, we now turn to a bank-run model that reflects the solvency view of bank failures

emphasized by a series of recent works including Gertler and Kiyotaki (2015) and Correia, Luck

and Verner (2025) and e.t.c. An important feature of the model in this section is that households

receive noisy signals about bank’s net-worth at the end of each period. The motivation of this

assumption is to make household’s behavior in the model consistent with the observed behavior of

depositors in the recent episode of Silicon Valley Bank and Signature Bank. The other important

feature is that individual depositors refer to two information variables such as bank’s net-worth and

market bond price (or yield) at the same time when they choose to run on banks. The introduction

9The parameter values used for the numerical result in this section are σ = 1, χ = 0, α = 0.60, β = 0.995 and ϵ
= 11. The graph of relative price distortion is taken from its recursive specification presented in Yun (2005).
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of this feature into the model is also motivated by the recent failures of Silicon Valley Bank and

Signature Bank.

5.1 Bank Run and Liquidation of Bank’s Assets

Each bank can retrieve cash from its asset investments when an emergency state breaks out. In

fact, each bank owns its emergency fund at period t (= Eb,t) that is defined to be the sum of funds

retrieved from lending in the federal funds market and net revenue from selling long-term bonds as

can be seen below.

Eb,t = Dt −Xt︸ ︷︷ ︸
Federl Funds Market

+ (P
(τ)
t − 1)ωt(Dt −Xt)︸ ︷︷ ︸

Net Revenue from Selling Bonds

(5.1)

Each bank uses its own emergency fund when ATM reserves is short of withdrawals of early con-

sumers as can be seen below.

Xt < ϕt(1 + i1,t)Dt (5.2)

where ϕt(> θ) is the measure of depositors who withdraw in the first-half subperiod of period t. It

should be noted that equation (5.2) corresponds to the violation of sequential service constraint in

the Diamond-Dybvig model. The difference of the model of this paper from the Diamond-Dybvig

model is that even when the condition of equation (5.2) is satisfied, bank runs do not take places.

The reason for this argument is that individual banks can quickly retrieve cash from selling their

assets and thus prepare their own emergency funds as defined in equation (5.1). Instead of equation

(5.2), bank runs take place when the following condition holds.

Xt + Eb,t < ϕt(1 + i1,t)Dt

Nb,t < (1− ϕt)(1 + i2,t)Dt
(5.3)

The left-hand side of the second line of equation (5.3) includes bank’s beginning-of-period net-worth

(= Nb,t) in order to allow for the possibility that banks can sell their own shares in the stock market

and thus raise funds to meet withdrawals of late consumers. It should be noted that when bank

runs take place, the bank’s net-worth can be written as

Nb,t+1 = Xt + Eb,t +Nb,t − (ϕt(1 + i1,t)Dt + (1− ϕt)(1 + i2,t)Dt) (5.4)

It follows from equation (5.4) that banks are insolvent when the two inequalities of equation (5.3)

are met. In this light, equation (5.2) corresponds to the bank run view, whereas equation (5.3)

corresponds to the solvency view. The scenario of failing banks in the model of this paper requires

both of the two equations (5.2) and (5.3) in the following sense. When the condition of (5.2) holds,

depositors begin to line up at withdrawal services of banks. But it does not immediately lead to

failures of banks until the condition of (5.3) is met.
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The next discussion turns to the determination of the liquidation price of long-term bonds.

The determination of the liquidation price of long-term bonds is associated with the liquidation

condition of long-term bonds held by banks. The liquidation condition of long-term bonds is the

first-line of equation (5.3). The liquidation price of long-term bonds is defined to be the market price

of long-term bonds that satisfies the equality of Xt + Eb,t = ϕt(1 + i1,t)Dt. Hence the liquidation

price of long-term bonds (= P
(τ)
t ) satisfies the following condition.

1− ωt(1− P
(τ)
t )(1− Xt

Dt
) = ϕt(1 + i1,t) → P

(τ)
t = 1− 1− (Γ−1

t − 1)(ϕt/θ − 1)

ωt
(5.5)

given a positive value of ϕt less than one and where a sufficient condition for the liquidation price

of long-term bonds to be less than one is ϕt < θ/(1−Γt). The liquidation price of long-term bonds

is then used to determine if the aggregate economy falls onto the state of bank run. The aggregate

economy falls onto the state of bank run depending on the following condition.

Bank Run if P
(τ)
t < P

(τ)
t

No Bank Run if P
(τ)
t ≥ P

(τ)
t

(5.6)

5.2 Household’s Information about Bank’s Net Worth

A noisy signal about bank’s net worth hits the information set of households in the second-half of

each period. The noisy signal (= Sb,t+1) is defined as the sum of the true value of next-period’s

bank net worth (= Nb,t+1) and a noise (= ϵt).

Sb,t+1 = Nb,t+1 + ϵt (5.7)

The noisy signal about bank’s net worth is not the same across households. The measure of

households for each noise value ϵt is determined by a probability distribution whose cumulative

distribution function is F(ϵt) with probability density function f(ϵt).

The expected solvency constraint is E(Nb,t+1|Sb,t+1) ≥ 0 for a household whose noisy signal

about bank’s net-worth is Sb,t+1. It means that there is a threshold value of the noisy signal about

bank’s net worth at which bank’s expected solvency constraint is binding: E[Nb,t+1|Sb,t+1] = 0. The

threshold value of the noisy signal (= Sb,t+1) about bank’s net worth can be obtained as follows.

The household’s ex-post forecast of bank’s net worth is

E[Nb,t+1|Sb,t+1] = E[Nb,t+1|It] + βH,t(Sb,t+1 − E[Nb,t+1|It])
βH,t =

V AR(Nb,t+1|It)
V AR(Nb,t+1|It)+V AR(ϵt)

(5.8)

where βH,t is the household’s adjustment coefficient to its expectation errors evaluated on the basis

of its signal with 0 < βH,t < 1. It follows from the first line of equation (5.8) that E[Nb,t+1|Sb,t+1]

= 0 leads to the following representation of the threshold value of the noisy signal about bank’s net

worth.

Sb,t+1 = −
(1− βH,t)E[Nb,t+1|It]

βH,t
(5.9)
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5.3 Equilibrium Aggregate Withdrawal Function

Each household determines whether to withdraw on the basis of his or her information about bank’s

net-worth given that the household has a noisy signal about bank’s net worth discussed above. How

many late consumers do forecast that banks are insolvent on the basis of their noisy signals about

bank’s net-worth? In order to answer this question, one should find the level of forecast error

that corresponds to the threshold value of the noisy signal about bank’s net-worth. It follows from

equation (5.7) that ϵt = Sb,t+1 - Nb,t+1. If ϵt ≤ ϵt, then households forecast that banks are insolvent.

Hence the fraction of late consumers who forecast that banks are insolvent is F(Sb,t+1 − Nb,t+1).

In the meanwhile, it follows from equations (5.3) and (5.4) that the liquidation price of long-term

bonds is the market price of long-term bonds when strict inequalities are replaced by equalities in

equation (5.3). It means that Nb,t+1 = 0 when bank runs take place, which is consistent with the

solvency view. Hence the fraction of late consumers who forecast that banks are insolvent can be

rewritten as F(Sb,t+1). In sum, the aggregate withdrawal function can be written as follows.

ϕt = θ + (1− θ)F(Sb,t+1)I[P (τ)
t <P

(τ)
t ]

(5.10)

where I
[P

(τ)
t <P

(τ)
t ]

is an indicator function whose value is equal to one only when P
(τ)
t < P

(τ)
t and

zero otherwise.

It would be now helpful to explain the motivation of the inclusion of two information variables in

equation (5.10) as the trigger of household’s run on bank. More banks should sell long-term bonds

as more households choose to run on banks. It means that an increase (a decrease) in the level of

Sb,t+1 leads to a decrease (an increase) in the level of P
(τ)
t , which in turn leads to a decrease (an

increase) in the level of bank’s fund available for its deposit repayment to households who choose to

withdraw. Knowing the presence of such interaction described above, households at an equilibrium

determine whether to run on banks on the basis of two information variables Sb,t+1 and P
(τ)
t .

The aggregate withdrawal function specified in equation (5.10) implies that both of private and

public signals are used for households to determine their behaviors in the model of this paper.

Specifically, individual households observe Sb,t+1, Sb,t+1, P
(τ)
t , and P

(τ)
t but not Nb,t+1 before they

choose whether to run on bank. The market price of long-term bonds is determined as a market

equilibrium outcome. In this context, Sb,t+1 is a private signal and (P
(τ)
t , P

(τ)
t ) is interpreted as a

two-dimensional public signal for individual households. In the case of conflicting messages between

private and public signals, households do not choose to run on bank. Households choose to run on

bank only when both private and public signals produce consistent messages about the aggregate

bank run.
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5.4 Impact of Bank Run on the Aggregate Consumption Demand

The main topic of this subsection is the impact of bank runs on the aggregate consumption demand.

The main result of this subsection is that CN,t > CR,t where CN,t and CR,t denote the aggregate

consumption demand without and with bank runs respectively. The reason for this result is that

the aggregate consumption demand under bank run is affected by liquidation values of bank’s assets

that are lower than their normal market values.

In order to show this result, the starting point is the substitution of Nb,t+1 = 0 as the condition

for bank runs discussed above into equation (5.4) to obtain the following relation.

Nb,t+1 = 0 → Xt + Eb,t +Nb,t = ϕt(1 + i1,t)Dt + ϕ̂t(1 + i2,t)Dt

where ϕt + ϕ̂t ≤ 1. The left-hand side of the equation after the arrow is bank’s liquidation value

at the time of bank runs, while the right-hand side of the equation after the arrow is depositor’s

withdrawals from banks at the time of bank runs. In the case of ϕ̂t < 1−ϕt, a fraction of depositors

do not have paybacks of their deposits even with the liquidation of all bank’s assets including bank’s

own shares.

The realized aggregate consumption under bank runs does not include the amount of bank’s

funds raised from the sale of bank’s own shares because it takes time for a bank to sell all of its own

shares in the stock market. For this reason, CR,t = Xt + Eb,t reflecting that the realized aggregate

consumption demand under bank runs is equal to the total amount of withdrawals from banks at

the time of bank runs. Hence the aggregate consumption demand under bank run is affected by

liquidation values of bank’s assets.

CR,t = Xt + Eb,t → CR,t = Dt(1− ωt(1− P
(τ)
t )Γt)

CR,t

CN,t
= (1− ωt(1− P

(τ)
t )Γt)

(5.11)

The second line of equation (5.11) reflects the fact that the aggregate consumption demand in

normal times is equal to the amount of deposit (CN,t = Dt). As a result, the ratio of the aggregate

consumption demand (= CR,t) under bank run to the aggregate consumption demand (= CN,t) in

normal times is less than one if and only if 0 < ωt < 1, 0 < P
(τ)
t < 1 and 0 < Γt < 1.

5.5 Expected Bank Run and Bond Prices

In each period t, all agents expect that the aggregate bank run breaks out in the next period with a

probability of pt. The household’s anticipation about next-period’s bank run should be consistent

with the aggregate withdrawal function specified in equation (5.10). The aggregate withdrawal

function implies that bank run breaks out when ϕt > θ. In addition, equation (5.10) implies that

ϕt > θ if and only if F(Sb,t+1) > 0. The household’s anticipation at period t about the possibility
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of bank run at period t + 1 should be consistent with the condition that ϕt+1 > θ if and only if

F(Sb,t+2) > 0. For this reason, households at period t are supposed to believe that a bank run can

happen at period t+ 1 with a probability of pt where pt is defined as follows.

pt = Et[F(Sb,t+2)I[P (τ)
t+1<P

(τ)
t+1]

] (5.12)

The expected bank run can affect market prices of all assets. For example, the stochastic

discount factor can be defined as a weighted average of the inter-temporal marginal rates of substi-

tution under bank run and in normal times. The no-arbitrage conditions for equilibrium prices of

bonds at normal times and under bank run are symmetric so that the following condition holds.

P
(k)
t = βEt[(pt

ΛR,t+1

ΛN,tΠR,t+1
+ (1− pt)

ΛN,t+1P
(k−1)
N,t+1

ΛN,tΠN,t+1
)P

(k−1)
t+1 ]

P
(τ)
t =

Et[P
(τ−1)
t+1 ]

Ft+G(ct−vt(Dt−Xt)/S
(τ)
t )

(5.13)

for k = 1,2 · · · but k ̸= τ .

5.6 Optimal Monetary and Prudential Policies with Expected Bank Runs

The analysis of this subsection adopts a dynamic programming approach for the analysis of the

optimal policy from the timeless perspective in the spirit of Benigno and Woodford (2012). In this

framework, the distinction between commitment and discretion determines whether the value func-

tion is affected by the lagged values of lagrange multipliers of constraints that includes expectations

of private agents.

In the absence of bank runs, the social planner’s problem can be rewritten as follows. The first

step is to define the Lagrangian of the social planner’s problem as follows.

L(Yt,Γt,∆t,∆t−1, 1 + it,Πt,Ψt,Ξt,Ξt−1) = U(Yt,Γt,∆t, 1 + it)− Λ(Yt,Γt)(
Ξt

1+it
− Ξt−1

Πt
)

+ Ψt(∆t −∆(Πt,∆t−1))

In this Lagrangian of the social planner’s problem, lagged values of the lagrange multiplier of

the nonlinear IS curve equation and relative price distortion are included. The second step is to

formulate a Bellman equation for the value function that is defined as the expected discounted sum

of the current and future values of the Lagrangian defined above. The Bellman equation for the

optimal policy without bank run can be written as follows.

vt(∆t−1,Ξt−1) = max{L(Yt,Γt,∆t,∆t−1, 1 + it,Πt,Ψt,Ξt,Ξt−1) + βEt[vt+1(∆t,Ξt)]}

where vt(∆t−1,Ξt−1) represents the value function at period t.

The next discussion moves onto the social planner’s problem with expected bank run. In order

to distinguish between states with and without bank run, st is used to mark the state without
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bank run as st = 1 and the state with bank run as st = 2. Given the definition of st, the Bellman

equation for the optimal policy problem with bank run can be written as follows.

vk,t(∆t−1,Ξt−1) = max{Lk(Yt,Γt,∆t,∆t−1, 1 + it,Πt,Ψt,Ξt,Ξt−1) + βEt[
2∑

k=1

pk,tvk,t+1(∆t,Ξt)]}

where Lk(Yt,Γt,∆t,∆t−1, 1+it,Πt,Ψt,Ξt,Ξt−1) = Lk(Yt,Γt,∆t,∆t−1, 1+it,Πt,Ψt,Ξt,Ξt−1, st = k),

vk,t(∆t−1,Ξt−1) = vt(∆t−1,Ξt−1, st = k) and pk,t = pt(st+1 = k) for k = 1 and 2.

Comparing these the two Bellman equations with and without expected bank runs, the difference

between them is whether to include st = k for k = 1 and 2 in the Bellman equation of the social

planner’s optimization problem with expected bank runs. Specifically, the optimization conditions

of the social planner’s optimization problem with expected bank runs can be summarized as follows.

UY (Yt,Γt,∆t, 1 + it) = ΛY (Yt,Γt)(
Ξt

1+it
− Ξt−1

Πt
)

UΓ(Yt,Γt,∆t, 1 + it) = ΛΓ(Yt,Γt)(
Ξt

1+it
− Ξt−1

Πt
)

U(1+i)(Yt,Γt,∆t,1+it)

Λ(Yt,Γt)
= − Ξt

(1+it)2

U∆(Yt,Γt,∆t, 1 + it) = −(Ψt − αβEt[
2∑

k=1

p(st+1 = k)Πt+1(st+1 = k)ϵΨt+1(st+1 = k)])

∆Π(Πt,∆t−1)Ψt = Λ(Yt,Γt)
Ξt−1

Π2
t

It follows from this equation that the social planner’s commitment about future inflation is

affected by the inclusion of expected bank runs. The set of optimization conditions summarized

above also implies that the incorporation of expected bank runs into the model is not likely to

change the optimality of a positive inflation target shown in the previous section.

6 Conclusion

It has been shown in this paper that the introduction of the Diamond-Dybvig’s financial frictions

into an otherwise prototypical New Keynesian model can break down the divine coincidence of

pursuing a zero inflation because the social planner strikes the balance between two distinct trade-

offs. One is the trade-off between inflation and output gap and the other is the trade-off between

current-period and next-period consumptions.

The concluding part of this paper summarizes its implication for potential desirability of co-

ordination between prudential and public policies in a broad sense. The analysis of this paper

opens the possibility that if the government’s fiscal policies and the central bank’s unconventional

monetary policies can affect market supplies of long-term government bonds held by commercial

banks, such public policies can have unintended impacts on financial stability. It would be thus

potentially desirable to incorporate this channel into forecasts about the aggregate consequences

of public policies that are followed by changes in market supplies of long-term government bonds.
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Recent episodes of US bank failures also indicate that this channel is likely to have more profound

impacts especially when financial intermediaries heavily rely on interest earnings of long-term bonds

and thus their balance sheets are relatively more sensitive to changes in the yield curve.

An important motivation of this paper is that balance sheets of financial intermediaries can

deteriorate severely and quickly with their excessive exposures to the interest rate risk. On top

of this issue, balance sheets of central banks in advanced countries are likely to possess similar

perils of the interest rate risk because of large-scale holdings of long-term bonds. In this vein, it

would be possible to argue that the interest rate risk can be a crucial ingredient of financial cycles

in advanced countries through its impacts on balance sheets of financial intermediaries and even

central banks. A related future research topic would be thus the analysis of welfare consequences

of unconventional monetary policies to take into account both social costs of central bank balance

sheet’s exposure to the interest rate shock and social benefits of the stabilization of inflation and

output.
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