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Abstract

As illustrated by the Great Recession, the COVID-19 pandemic and the global decline in GDP growth
since the mid-2000s, economists need to account for sudden and deep recessions, shifts in macroeco-
nomic volatility, and longer-term fluctuations in GDP growth. This paper puts forward a Mean-Variance
Markov-Switching Dynamic Factor Model (MV-MS-DFM) that accounts for these stylised facts by allow-
ing the mean and the volatility of macroeconomic variables to switch abruptly, and trend GDP growth
to vary smoothly over time. We show that allowing for different volatility regimes improves the detection
of turning points in the U.S. business cycle, that the Great Recession and the COVID-19 pandemic only
led to temporary increases in volatility, and that the U.S. trend GDP growth has declined by around 1
percentage point since the early 2000s. Information criteria and marginal likelihood comparisons support
our model specification. The model provides a unified framework connecting the literature on turning-
point detection to the more recent literature on Growth-at-Risk in macroeconomic forecasting. While
tightening financial conditions are shown to increase the probability of falling in a recession, the model
can generate left-skewed density forecasts without including any financial variable in the information set.
The paper finally discusses how to adjust the model estimation strategy to deal with the COVID-19
period.
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1 Introduction

The sequence of major shocks that has affected the global economy since the early 2000s, including the Great
Recession of 2008-09, the COVID-19 pandemic of 2020-21 and the energy crisis in 2022, contrasts with the
two previous decades of limited macroeconomic volatility known as the Great Moderation (McConnell and
Perez-Quiros, 2000). These shocks occurred against a background of declining long-term growth in advanced
economies, often referred to as secular stagnation (Summers, 2005). Accounting for these stylised facts is
increasingly important for tracking business cycles in real time (Antolin-Diaz et al., 2024).

Our starting point is a small-scale Markov-Switching Dynamic Factor Model (MS-DFM). This type of
models is increasingly used for nowcasting, short-term forecasting, and turning point detection (Chauvet and
Potter 2013, Camacho et al. 2014, 2018). The MS-DFM was put forward by Diebold and Rudebusch (1996) to
simultaneously account for the co-movement in macroeconomic time series and the different dynamics during
expansions and recessions, as originally suggested by Burns and Mitchell (1946). Our main contribution to the
literature is to extend this MS-DFM to account for declining long-term growth and changing macroeconomic
volatility. In the following, we refer to this new model as a Mean-Variance Markov-Switching Dynamic Factor
Model (MV-MS-DFM). As argued by Antolin-Diaz et al. (2017), accounting for declining long-term growth
improves GDP forecasts even at short horizons because standard DFM forecasts tend to revert quickly to the
unconditional mean of GDP. We also provide evidence that the introduction of Markov-Switching volatility
in a standard MS-DFM is supported by statistical criteria and improves the detection of turning points in
the US economy after the mid-1980s.

As a by-product of the estimation of our model, we quantify the decline in U.S. long-run GDP growth
to be about one percentage point per year compared to the early 2000s, half of it occurring before the
Great Recession. Fernald et al. (2017) highlighted the role of total factor productivity and participation
in the labour force to explain this decline. We also show that the Great Recession did not put an end to
the Great Moderation. According to our model, the Great Recession was characterized by a temporary
increase in macroeconomic volatility, but we observe a return to a low-volatility environment after 2010, in
line with Charles et al. (2018) and Gadea-Rivas et al. (2018). This result is important for the calibration of
macroeconomic models and for anticipating future U.S. recessions.

As the model is estimated using Bayesian techniques, it can generate density forecasts that include three
sources of uncertainty: future shocks, parameter estimation, and the identification of the underlying business
cycle and volatility regimes. While accounting for two business cycle regimes (expansions and recessions) is
key to capture abrupt changes in GDP growth, accounting for the larger uncertainty in average GDP growth
during recessions than during expansions and for two volatility regimes allows the model to generate left-
skewed density forecasts, as in the Growth-at-Risk literature initiated by Adrian et al. (2019), and recenlty
extended by Loria et al. (2024). Even though our model can generate left-skewed density forecasts without
including financial variables in the information set, we show that tighter financial conditions increase the
probability of falling in a recession.

Finally, we discuss how our model estimation strategy can be adjusted to account for the COVID-19
period. In line with other authors who suggested to remove this period from the estimation sample of
macroeconomic models (Lenza and Primiceri, 2022; Baumeister and Hamilton, 2023), we show that our
model can be used during the pandemic by freezing its parameters in 2019 and letting it identify a recession
and a high-volatility regime based on the parameters estimated over the previous period. Adding post-COVID
data to the estimation sample leaves the model parameters and the recession and volatility regimes identified
over 1970-2019 hardly modified.

The paper is organized as follows. Section 2 provides a review of the related literature. Section 3 introduces
the MV-MS-DFM. Section 4 describes the data and the estimation methodology. Section 5 provides in-sample
estimation results based on U.S. data from 1970 to 2019. Section 6 evaluates the real-time out-of-sample
properties of the model, with a focus on density forecasts and Growth-at-Risk features. Section 7 discusses
the sensitivity of GDP growth to financial conditions and how our model is able to capture it. Section 8
reviews possible adjustments of the estimation strategy to deal with the COVID-19 period, and Section 9
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concludes.

2 Related literature

Initially introduced by Diebold and Rudebusch (1996), MS-DFMs have two attractive features: they account
for co-movement in macroeconomic time series and for different dynamics during expansion and recession
phases. In this paper, we put forward an extended MS-DFM that also incorporates a time-varying long-run
GDP growth rate and Markov-Switching volatility. Our model can be seen as a non-linear extension of
the model proposed by Antolin-Diaz et al. (2017), who include a time-varying long-run GDP growth rate
in a linear DFM model. Our main difference with them is the inclusion of Markov-Switching features to
distinguish expansion and recession phases, as well as high- and low-volatility regimes.

Like Marcellino et al. (2016) and Antolin-Diaz et al. (2017) , we account for time variation in macroeco-
nomic volatility, but whereas they rely on a stochastic volatility specification, we rely on a Markov-Switching
volatility specification. The evidence provided by Stock and Watson (2002) and Sensier and van Dijk (2004)
supports this specification, since they both conclude that the Great Moderation episode is better accounted
for by a sharp break in volatility rather than a gradual decline.

Our model is also closely connected to the one proposed by Eo and Kim (2016) who relax the assumption
that all recessions and expansions are alike in a univariate Markov-Switching model of the business cycle.
However, whereas Eo and Kim (2016) allow for a fully flexible evolution of the regime-specific mean growth
rates over time, we link regime-specific mean growth rates to macroeconomic volatility, as suggested by
McConnell and Perez-Quiros (2000), Giordani et al. (2007) and Bai and Wang (2011). Our MV-MS-DFM is
also connected to the model proposed by Chauvet and Su (2014), who include independent Markov-Switching
processes for the mean and the variance of GDP growth, and add a structural break in GDP growth.

In this paper, we consider a larger information set than Eo and Kim (2016) or Chauvet and Su (2014) who
only used quarterly GDP. In addition to quarterly GDP, we also use the four monthly variables advocated
by the NBER Business Cycle Dating Committee. This multivariate framework also distinguishes our model
from the univariate models of McConnell and Perez-Quiros (2000), Giordani et al. (2007) and Bai and Wang
(2011). Note that our information set could be further expanded to include additional monthly or quarterly
indicators, which makes our model suitable for nowcasting GDP growth.

Table 1 summarises how our modelling strategy relates to the existing literature.

Table 1: Comparison with the existing literature

Multivariate MS mean MS volatility SV TV-Trend
Antolin-Diaz et al. (2017) × × ×
Bai and Wang (2011) × ×
Chauvet and Su (2014) × ×
Diebold and Rudebusch (1996) × ×
Eo and Kim (2016) × × ×
Giordani et al. (2007) × × ×
Marcellino et al. (2016) × ×
McConnell and Perez-Quiros (2000) × ×
This paper: MV-MS-DFM × × × ×

Note: MS = Markov switching; SV = Stochastic Volatility; TV = Time-Varying

This paper finally relates to the Growth-at-Risk literature initiated by Adrian et al. (2019). While these
authors relied on quantile regressions to capture downside risks to future GDP growth, other econometric
strategies have been proposed since then. For example, Lhuissier (2022) relied on Markov-Switching skew-
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normal models, and Carriero et al. (2024) relied on Bayesian VARs with stochastic volatility in mean.
Together with Caldara et al. (2021), our paper demonstrates that MS-DFMs can also generate left-skewed
density forecasts and capture downside risks to future GDP growth. Nevertheless, it improves over Caldara
et al. (2021) in several important dimensions. First, it does not impose that the same Markov process drives
the business cycle regime (expansion/recession) and the volatility regime. This allows capturing recessions
that are not associated with increased volatility, e.g. the 1990-91 and 2001 U.S. recessions which took
place during the Great Moderation. Second, MS features in our model impact all macroeconomic variables
simultaneously because they drive the dynamics of the underlying factor. In contrast, Caldara et al. (2021)
first extract macroeconomic and financial factors using linear DFMs and then assume that the link between
those factors and GDP growth depends on a Markov variable, leaving it unclear why GDP growth and other
macroeconomic variables are not treated in a symmetric way.

While our model can generate left-skewed density forecasts even without resorting to financial variables, it
offers two different ways to capture the information brought by financial conditions: as variables contributing
to the estimation of the underlying economic activity factor, or as variables influencing transition probabilities
between expansions and recessions. In line with Adrian et al. (2019) but using a different model, we show
that tightening financial conditions make future GDP growth more fragile by increasing the probability of
falling in a recession.

3 Econometric specification

This section describes the econometric specification of the MV-MS-DFM. We assume that both the intercept
and the volatility of the shocks in the state equation (factor dynamics) are governed by two independent
Markov-Switching processes. This specification can be thought of as a generalization of the work by Mc-
Connell and Perez-Quiros (2000) to a multivariate framework. While they used US quarterly GDP growth
as their only observable variable, we rely on the four monthly series mentioned by the NBER Business Cycle
Dating Committee (BCDC) in addition to quarterly GDP.

We first consider a general state-space model where, for the time being, all n observable variables yit,
including GDP, are available at a monthly frequency. The model is given by the following equations.

First, ∀i ∈ 1, . . . , n, a measurement equation relates the observable variables to latent variables:

∆yit = ait + γi(L)ct + uit (1)

Since all observable variables are demeaned prior to model estimation, there is no need to add constant
terms in the measurement equations.

Then, the state equations specify the dynamics of the latent variables, as follows:

ait = ai,t−1 + σai · η
ai
t , (2)

ϕ(L)ct = µSt,Vt +
√
1 + h · Vt · σc · ηct , (3)

ψi(L)uit = σi · εit, (4)

where ηa,it iid N(0, 1), ηct iid N(0, 1) and εit iid N(0, 1).

In the measurement equation (1), ct captures common fluctuations across observed variables, and ait
captures low-frequency fluctuations in the growth rate of series i.

In the state equations (2)-(4), ait are independent random walks. The common component ct follows
an autoregressive process (AR) with Markov-Switching intercept and Markov-Switching variance. The error
terms uit are modelled as independent AR processes.
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St and Vt are two independent first-order Markov-Switching processes, each with only two possible states
(0 or 1). Transition probabilities from one regime to the other are given by:

P (St = j|St−1 = i) = pij ,

P (Vt = j|Vt−1 = i) = qij .

St impacts the intercept of the state equation and is equal to 0 during recessions and to 1 during expan-
sions. Vt is equal to 0 when volatility is low, and equal to 1 when volatility is high. As a result, the variance
of ϕ(L)ct is σ2

c in the low-volatility regime and (1 + h)σ2
c in the high-volatility regime.

The intercept of state equation (3) depends on both St and Vt, as follows:

µSt,Vt
= µ00 + µ01Vt + µ10St + µ11St, (5)

where:

• µ00 is the intercept in the low-volatility recession regime

• µ00 + µ01 is the intercept in the high-volatility recession regime

• µ00 + µ10 is the intercept in the low-volatility expansion regime

• µ00 + µ01 + µ10 + µ11 is the intercept in the high-volatility expansion regime.

Thus µ01 is likely to be negative, µ10 is likely to be positive, and µ11 is also likely to be positive. Leaving
Vt influence µSt,Vt

, we follow McConnell and Perez-Quiros (2000), Bai and Wang (2011), and Chauvet et al.
(2015).

In practice, we use a mix of quarterly and monthly frequencies in our information set: GDP growth is
measured at quarterly frequency, and the growth rate of all other series is measured at monthly frequency.
The quarterly GDP growth ∆yq1t is observed once every three months, while the growth rates of the monthly
variables ∆ymjt are observed every month. This is a situation that the Kalman filter can effectively accom-
modate. The standard approach to relate quarterly GDP to the underlying monthly state variables is to
approximate the quarterly GDP growth rate as a weighted average of current and past monthly GDP growth
rates, as proposed by Mariano and Murasawa (2003). Therefore, the measurement equation for quarterly
GDP growth can be rewritten as follows.

∆yq1t =(
1

3
aq1,t +

2

3
aq1,t−1 + aq1,t−2 +

2

3
aq1,t−3 +

1

3
aq1,t−4) (6)

+γq1(L)(
1

3
ct +

2

3
ct−1 + ct−2 +

2

3
ct−3 +

1

3
ct−4)

+(
1

3
uq1,t +

2

3
uq1,t−1 + uq1,t−2 +

2

3
uq1,t−3 +

1

3
uq1,t−4)

The measurement equation of each monthly variable takes the following form:

∆ymit = amit + γmi ct + umit (7)

We assume an AR(1) dynamics for the idiosyncratic shocks and the underlying factor, as in Chauvet and
Hamilton (2005):

Ψq
1(L) = 1− ψq

11L
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Ψm
1 (L) = 1− ψm

j1L for all j = 1 . . . n

ϕ(L) = 1− ϕ1L

In practice, GDP growth is the only observed series for which we allow ait ̸= 0, and this should only
be considered as a convenient modelling trick to capture the long-term decline in U.S. GDP growth. Only
accounting for the low-frequency fluctuations of the main variable of interest (GDP growth) usefully limits
the number of state variables in the model. Antolin-Diaz et al. (2017) follow a similar modelling strategy
and conduct simulation experiments showing that not including a time-varying trend in the dynamics of the
other variables is harmless for the estimation of the GDP trend, as long as persistence is allowed for in the
idiosyncratic components of all variables. This is precisely the role of the Ψm

i (L) polynomials in our model,
for which we do not rule out the possibility to have unit roots. Alternatively, Stock and Watson (2012)
subtract a local mean to U.S. GDP growth before including it in their model. In our case, this adjustment
is made within the model.

We finally assume that quarterly GDP growth and the first three monthly variables (industrial production,
real manufacturing and trade sales, and real personal income excluding transfer payments) are linked only
contemporaneously to the business cycle (i.e. to the underlying factor). In other words, we assume γq1(L) =
γq10 and γmj (L) = γmj0 for j = 1, 2, 3. For the fourth monthly variable (non-agricultural civilian employment),
we include a richer lag structure to take into account that employment may be lagging, as in Stock and
Watson (1989), that is: γm4 (L) = γm40+γ

m
41L+γm42L

2+γm43L
3. As in any factor model, we also have to impose

an identifying restriction (otherwise, the factor would be defined up to a multiplicative constant). Here, we
impose the following restriction: γq10 = 1.

Additional details on the state-space representation of the model can be found in Appendix A.

4 Data and estimation strategy

Our information set contains five variables: quarterly real GDP and four monthly variables (industrial pro-
duction, real manufacturing and trade sales, real personal income excluding transfer payments, and non-
agricultural civilian employment). These variables are advocated by the NBER Business Cycle Dating Com-
mittee. Following Chauvet and Hamilton (2005), we prefer to rely on civilian employment rather than payroll
employment.1 The U.S. quarterly, real and seasonally adjusted GDP is extracted from the ALFRED database
maintained by the St.Louis FED. The corresponding quarterly vintages are available from December 1991
onwards. The four monthly series in the information set are extracted from the FRED-MD database, also
maintained by the St.Louis FED (McCracken and Ng, 2016). All of these monthly series are seasonally
adjusted. The corresponding monthly vintages are available from August 1999 onwards. In the FRED-MD
database available for month M, industrial production and non-agricultural civilian employment are typically
available up to month (M-1), real personal income excluding transfer payments up to month (M-1) or (M-2),
and real manufacturing trade and sales up to month (M-2) or (M-3).

Following Kim and Nelson (1998), we estimate the model using a Bayesian approach and rely on Gibbs
sampling. The Bayesian estimation strategy has several important advantages. First, it is a modular estima-
tion technique, allowing to add or remove building blocks in the model and facilitating comparisons between
different model specifications. Second, it simplifies inference on the Markov-Switching variables St and Vt by
allowing to condition on the underlying factor and treating it as if it were an observed monthly variable. In
this way, the inclusion of both quarterly and monthly variables in the information set does not complicate
inference on St and Vt. This is a key advantage compared to Camacho et al. (2018) who directly rely on the

1Payroll employment is based on a survey of business establishments whereas civilian employment is based on a household
survey. As noted by Chauvet and Hamilton (2005), payroll employment only includes job creation and destruction with a lag
and does not include self-employment or off-the-book employment, which can delay the detection of a recovery. Moreover, it
double counts jobs if a person changes job within a payroll survey reference period, which can overestimate employment around
peaks. Lastly, payroll employment undergoes substantial revisions over time whereas civilian employment does not get revised.
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variables in the information set to estimate the underlying Markov-Switching variables. When the variables
in the information set have different frequencies, their distribution potentially depends on many lags of the
Markov-Switching variables, thus generating a curse of dimensionality problem that they solve at the cost
of approximations. None of these approximations is needed here. Finally, the Bayesian estimation strategy
allows accounting for three sources of uncertainty at the same time (future shocks, parameter estimation,
and the identification of the underlying business cycle and volatility regimes), which is key for producing
meaningful density forecasts (Section 7).

Our Gibbs sampling algorithm consists of four main blocks, which are sequentially iterated until conver-
gence. Subsequently, we use the following notation for all time series: α̃1...T = (α1, . . . , αT ).

Block 1: Draw the state vector α̃1...T conditional on ∆̃y∗1...T , S̃1...T and Ṽ1...T and the model parameters,
based on the sequential Kalman filter with diffuse initialization of Koopman and Durbin (2000, 2003) and the
simulation smoother of Durbin and Koopman (2002). The sequential Kalman filter considers the series in the
information set one by one when updating estimates of the state vector. Beyond saving some computing time,
it simplifies diffuse initialization compared to the multivariate Kalman filter. Moreover, both the Kalman
filter and the simulation smoother efficiently deal with missing observations, which is crucial in the present
context where the variables in the information set are released at different dates (ragged-edge sample) and
have different frequencies.

Block 2: Draw S̃1...T conditional on α̃1...T , Ṽ1...T and model parameters, based on Hamilton’s (1989) filter.

Block 3: Draw Ṽ1...T conditional on α̃1...T , S̃1...T and model parameters, based on Hamilton’s (1989) filter.

Block 4: Sequentially draw the various model parameters, conditional on ∆̃y∗1...T , α̃1...T , S̃1...T , Ṽ1...T ,
and the other model parameters.

Additional details on the estimation strategy are available in Appendix A.

5 In-sample results (1970-2019)

This section presents our in-sample results based on data from January 1970 to November 2019. It focuses
on the two features that we have added to the standard MS-DFM: high- and low-volatility regimes, and a
time-varying long-term GDP growth rate.

5.1 Identifying volatility regimes

The inclusion of different volatility regimes in the state equations of the model allows distinguishing different
phases since 1970 (Figure 1): high volatility from 1970 to 1984, during which oil price shocks impacted the
U.S. economy; low volatility from 1984 to 2007 (the period known as the Great Moderation); a volatility spike
during the Great Recession (2007-09); and low volatility from 2009 to 2019. Examining the probability of
being in a high-volatility regime, the transitions between the four periods are quite sharp. Based on these
results, the increase in volatility during the Great Recession was only temporary and did not signal the end
of the Great Moderation, which aligns with other empirical findings such as those reported by Gadea Rivas et
al. (2018) and Charles et al. (2018). The model also identifies minor fluctuations in the probability of being
in a high-volatility state during the first period (1970-1984), something also pointed out by Antolin-Diaz et
al. (2017) who rely on a stochastic volatility specification.
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Figure 1: Probability of being in a high-volatility regime

Note: Estimation sample: 1970M01-2019M11. Data vintage: 2019M12. Estimation based on 15000 draws of the Gibbs sampler,
from which the first 5000 are discarded. Shaded areas correspond to NBER recessions.

5.2 Dating recessions

Figure 2 shows that allowing for two volatility regimes, along with different expansion and recession charac-
teristics depending on volatility (blue line), helps to identify U.S. recessions compared to a standard MS-DFM
where only the mean growth rate can switch (red line). In particular, this specification enhances the ability
to capture the two recessions that occurred during the Great Moderation, in 1990-91 and following the burst
of the Internet bubble in 2001. This is in line with the results of McConnell and Perez-Quiros (2000) based
on a univariate MS model with switching volatility and mean growth rate. Here, we extend their findings by
allowing for a multivariate framework and updating their sample.

For the MV-MS-DFM, Table 2 indicates that volatility is associated with deeper recessions but matters less
for growth during expansions. More specifically, the discrepancy between high- and low-volatility recessions
is twice larger than between high- and low-volatility expansions. This asymmetry in the estimated impact
of volatility on economic growth is consistent with the vulnerable growth dynamics put forward by Adrian
et al. (2019) where deteriorating financial conditions lead to increased volatility and a decline in the lower
quantiles of future GDP growth, while the upper quantiles remain broadly stable. Furthermore, Figure 2
in their paper illustrates that financial conditions were tighter during periods when our model identifies a
high-volatility regime, i.e. prior to the Great Moderation and during the Great Recession.

At the same time, Table 2 demonstrates that, for the MS-DFM with constant volatility, the average growth
rate during recessions is estimated with greater uncertainty than the average growth rate during expansions.
This discrepancy contributes to larger forecasting uncertainty during recessions than during expansions and
aligns with the concept of Growth-at-Risk (GaR). Section 6.3 on density forecasts further elaborates on this
issue.
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Table 2: Intercept of the state equation driving factor dynamics, depending on growth and volatility regimes

Intercept

MV-MS-DFM

High-volatility recession -0.77
[-1.07 ; -0.42]

Low-volatility recession -0.25
[-0.39 ; -0.09]

Low-volatility expansion 0.03
[0.00 ; 0.06]

High-volatility expansion 0.23
[0.08 ; 0.37]

MS-DFM Recession -0.50
[-0.76 ; -0.33]

Expansion 0.03
[0.01 ; 0.05]

Note: Values in squared brackets represent 95% probability intervals. Estimation sample: 1970M01-2019M11. Data vintage:
2019M12.

Figure 2: Probability of being in a recession: MV-MS-DFM and MS-DFM with constant volatility

Note: Estimation sample: 1970M01-2019M11. Data vintage: 2019M12. Estimation based on 15000 draws of the Gibbs sampler,
from which the first 5000 are discarded. Shaded areas correspond to NBER recessions.

5.3 Declining long-term GDP growth

We identify a rebound in U.S. long-term GDP growth in the second half of the 1990s, which coincides with a
well-documented surge in productivity related to an information and communication technology (ICT) shock
(Jorgenson et al. 2008). Long-term GDP growth then began to decline in the early 2000s, prior to the Great
Recession, and continued to do so thereafter (Figure 3). This observation is consistent with the view that
the Great Recession exerted a negative impact on U.S. potential growth by reinforcing pre-existing factors.
According to our model estimates, U.S. long-term GDP growth was approximately one percentage point (pp)
lower in the early 2010s compared to 2000. A subsequent rebound reduced this gap to 0.7 pp in the late
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2010s. These findings align with those obtained by Antolin-Diaz et al. (2017) based on a linear DFM with a
time-varying trend.

Figure 3: Estimated U.S. long-run GDP growth

Note: Estimation sample: 1970M01-2019M11. Data vintage: 2019M12. Estimation based on 15000 draws of the Gibbs
sampler, from which the first 5000 are discarded. Annualised quarter-on-quarter GDP growth in percentage points. Dotted
lines correspond to the 68% credibility interval. Shaded areas correspond to NBER recessions.

5.4 Comparison of specifications based on DICs and marginal likelihoods

The two refinements to the standard MS-DFM introduced in this paper are supported not only by their
ability to capture changes in long-term GDP growth and to enhance turning point detection, but also by
statistical criteria.

We first rely on the Deviance Information Criterion (DIC) to compare model specifications. This criterion
has been specifically designed to compare complex hierarchical models, such as those presented in our paper
(Spiegelhalter et al., 2002). It is also used by Eo and Kim (2016). Like other information criteria, the DIC
includes two parts: one captures model fit, while the other is a penalty for model complexity:

DIC =Eθ̃,S̃,Ṽ |Y [−2 log f(∆̃y1...T |θ̃, S̃1...T , Ṽ1...T )] (8)

+Eθ̃,S̃,Ṽ |Y [−2 log f(∆̃y1...T |θ̃, S̃1...T , Ṽ1...T )] + 2 log f(∆̃y1...T |θ̃∗, S̃∗
1...T , Ṽ

∗
1...T )

In equation (8), θ̃ corresponds to a vector of model parameters (e.g. autoregressive parameters), θ̃∗ to their
posterior mean, and f(∆̃y1...T |θ̃, S̃1...T , Ṽ1...T ) to the model conditional likelihood. The first term increases
when the model fit improves, whereas the other two capture the penalty for model complexity. The best model
is the one that minimizes the DIC. This information criterion is relatively easy to compute when model estima-
tion is based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, like Gibbs Sampling. Nevertheless,
the literature indicates that the DIC is all the more accurate that the number of parameters in the conditioning
set of the log-likelihood is limited (Chan and Grant, 2016). Here, we compute the conditional log-likelihood
from the Kalman filter step of the Gibbs Sampler. In summary, the Kalman filter estimates the expectation
and variance of the model’s state vector, conditional on past observations and other model variables and pa-
rameters, which then allows estimating log f(∆yt| ˜∆y1...t−1, θ̃, S̃1...T , Ṽ1...T ) for each date t.2 In this case, the

2Given the structure of the model, the following equality applies: f(∆yt| ˜∆y1...t−1, θ̃, S̃1...T , Ṽ1...T ) =
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conditioning set includes the two Markov variables S̃1...T and Ṽ1...T and all constant model parameters, but not
the large state vector α̃1...T . Summing these log-predictive likelihoods over time and averaging over posterior
draws of the Gibbs Sampler ultimately provides an estimate of Eθ̃,S̃,Ṽ |Y [−2 log f(∆̃y1...T |θ̃, S̃1...T , Ṽ1...T )].
First averaging over the posterior draws of the Gibbs Sampler and then computing the predictive log-
likelihoods with the Kalman filter, allows estimating log f(∆̃y1...T |θ̃∗, S̃∗

1...T , Ṽ
∗
1...T ).

As an alternative to DICs, which may be sensitive to the inclusion of high-dimensional variables in the
conditioning set, we also compute marginal log-likelihoods for different model specifications. In this case,
the preferred specification is the one with the highest marginal log-likelihood. As before, we take advantage
of the fact that, conditional on the two Markov variables, the MS-DFM is a linear Gaussian state-space
model. Therefore, we can use the Kalman filter to compute f(∆yt| ˜∆y1...t−1, θ̃

∗, S̃1...t, Ṽ1...t) for each date.
The most challenging part of the marginal log-likelihood computation for this class of models is the numerical
integration over S̃1...t and Ṽ1...t in f(∆yt| ˜∆y1...t−1, θ̃

∗, S̃1...t, Ṽ1...t). To accomplish this, we rely on a particle
filter, which provides a sample of N independent particles S̃1...T

n
and Ṽ1...T

n
(n = 1, . . . , N). The idea is

to draw S̃1...t

n
and Ṽ1...t

n
, conditional on ˜∆y1...t−1 and θ̃∗ using an importance sampling distribution that

approximates the true but unknown distribution of these variables. The particle filter draws S̃1...t

n
and Ṽ1...t

n

recursively, based on S̃1...t−1

n
and Ṽ1...t−1

n
. The functioning of the particle filter and key issues such as the

choice of the importance sampling distribution and the weighting of the particles are explained in detail in
Appendix B.

This previous step gives f(∆yt| ˜∆y1...t−1, θ̃
∗) for each date, from which we compute log f(∆̃y1...T |θ̃∗).

We ultimately rely on Chib’s (1995) formula to estimate the marginal log-likelihood log f(∆̃y1...T ) of each
specification, as follows:

log f(∆̃y1...T ) = log f(∆̃y1...T |θ̃∗) + log ϕ(θ̃∗)− log ϕ(θ̃∗|∆̃y1...T )

θ̃∗ is the vector of constant model parameters evaluated at their posterior mean. log ϕ(θ̃∗) and log ϕ(θ̃∗|∆̃y1...T )
are the log-prior and log-posterior densities of these parameters, respectively. Note that the use of a particle
filter to reduce the dimension of the conditioning set prior to the use of Chib’s (1995) formula is key to ensure
accurate results, as shown by Frühwirth-Schnatter and Wagner (2008).

To the best of our knowledge, Kaufmann (2000) is the only other paper in the literature that computes the
marginal likelihood of MS-DFMs. However, our framework is more complex because we need to account for
Markov-Switching volatility and time-varying growth rates. Therefore, the marginal likelihood computation
method described in Appendix B can be considered as an additional contribution of the present paper to the
literature.

Table 3 compares the DICs and marginal log-likelihoods of four model specifications: a linear DFM, a
MS-DFM in which only the intercept of the state equation governing factor dynamics can switch, a MS-DFM
in which both the intercept and the volatility can switch in the state equation, and the MV-MS-DFM. All
models use the same five observable variables (see Section 4). Both Markov-Switching features reduce the
DIC compared to the linear DFM. This reduction is particularly pronounced for Markov-Switching volatility.
Allowing for a time-varying long-term GDP growth rate slightly deteriorates the DIC and the marginal log-
likelihood, although not to a point that allows for a clear-cut conclusion. It seems prudent to consider that
the last two model specifications cannot be distinguished based on these statistical criteria. The fact that
quarterly GDP is only one of the five observed variables, and observed only once every three months, may
help to explain this result. In any case, the time-varying long-term GDP growth rate is an important feature
to account for the limited rebound in economic activity after the Great Recession.

f(∆yt| ˜∆y1...t−1, θ̃, S̃1...t, Ṽ1...t).
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Table 3: Comparison of model specifications based on DICs and marginal log-likelihoods

Specification DIC Marginal Log-Lik
Linear DFM 3883.1 -1978.3
MS-DFM: MS on intercept only 3822.2 -1963.4
MS-DFM: MS on intercept and volatility 3720.9 -1934.7
MS-DFM: MS on intercept and volatility + TV trend 3728.6 -1937.4

Note: The posterior mean of model parameters is estimated based on 15000 draws of the Gibbs sampler, from which the first 5000
are discarded. In addition, 500 particles are used for marginal log-likelihood computations (see Appendix B for details). Sample:
1970M01-2019M11. Data vintage: 2019M12. The preferred specification is the one minimising the DIC and maximising the
marginal log-likelihood. In each case, this specification is indicated in bold.

6 Real-time performance of the MV-MS-DFM

In this section, we conduct a real-time assessment of the MV-MS-DFM using data vintages available from
January 2007 to December 2019. This assessment includes the real-time estimation of long-run GDP growth,
the real-time identification of the Great Recession, and real-time density forecasts of GDP growth at a
six-month horizon.

6.1 Real-time estimation of U.S. long-term GDP growth

Figure 4 illustrates how the MV-MS-DFM uncovers the decline in U.S. long-term GDP growth during the
2000s in real time. As expected, the model requires some time to determine that the decline in GDP
growth during this period is not attributable to business cycle developments but to factors influencing long-
term growth. Until 2010, estimated long-run growth remains above 3%, but it progressively decreases as
subsequent data vintages become available (dashed curves). It is noteworthy that the professional forecasters
surveyed by the Philadelphia FED revised their long-term growth expectations by a similar amount over the
same period, and that both estimates converge at the end of the sample.3 Nevertheless, the MV-MS-DFM
identifies the decline in long-term GDP growth more rapidly than the Survey of Professional Forecasters
(SPF).

3We rely on variable RGDP10 in the SPF, which corresponds to average GDP growth projections over the next 10 years.
This question is only asked once a year in January, which is why we compare the SPF with our model using data vintages that
are made available in January each year.
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Figure 4: U.S. long-run GDP growth estimated in real time

Note: Data vintages: 2007M01 to 2019M01. Estimation based on 15000 draws of the Gibbs sampler, from
which the first 5000 are discarded. Shaded areas correspond to NBER recessions.

6.2 Real-time detection of the Great Recession

We now rely on real-time data vintages to assess when the model detects the onset and the end of the Great
Recession.

There is no consensus in the literature regarding the timing of announcements for the onset and the end
of a recession, based on recession probabilities estimated using Markov-Switching models. Here, we rely on a
decision rule that is similar to those used by Chauvet and Piger (2008) and Hamilton (2011).4 Concretely, we
consider that a recession has begun when the recession probability exceeds 0.7 and stays above this threshold
for three consecutive months, and we identify the onset of the recession as the first month for which the
probability of recession exceeds 0.5. Conversely, we announce that a recession is over when the probability of
recession declines below 0.3 and remains below this threshold for three consecutive months, and we identify
the end of the recession as the last month for which the probability is above 0.5.

Results are reported in Table 4. The dates of the Great Recession identified by the MV-MS-DFM are
in close agreement with those published by the NBER. Nevertheless, the model identifies the start and the
end of the recession respectively two and eleven months prior to the NBER’s official announcement. This
demonstrates that the model is capable of providing reliable forecasts of business cycle turning points in a
timely manner.

4Hamilton (2011) suggests the following decision rule when relying on quarterly GDP data (with his notations St = 1 during
recessions and St = 0 during expansions): “When the one-quarter ahead smoothed inference P (St = 1|yt+1, yt, . . . , y1; θ̂t+1)
first exceeds 0.65, declare that a recession has started, and at that time assign a probable starting point for the recession as
the beginning of the most recent set of observations for which P (St−j = 1|yt+1, yt, . . . , y1; θ̂t+1) exceeds 0.5.” Using only the
four NBER monthly series to infer recession probabilities, Chauvet and Piger (2008) require that the probability of recession
moves from below to above 0.8 and remains above 0.8 for three consecutive months before announcing a recession. Similarly to
Hamilton (2011), they identify the start of the recession as the first month for which the probability exceeds 0.5.
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Table 4: Real-time dating of the Great Recession by the NBER and the MV-MS-DFM

Business cycle peak
Date Announcement

NBER MV-MS-DFM NBER MV-MS-DFM
2008 M01 2007 M11 2008 M12 2008 M10

Business cycle trough
Date Announcement

NBER MV-MS-DFM NBER MV-MS-DFM
2009 M06 2009 M06 2010 M09 2009 M10

6.3 Real-time density forecasts and Growth-at-Risk

We now focus on the real-time density forecasts produced by linear DFMs, two different specifications of
the MS-DFM (with and without Markov-Switching volatility), and we discuss how our results relate to the
Growth-at-Risk literature.

Since the seminal work of Adrian et al. (2019) who relied on quantile regressions to capture macroeconomic
tail risks, other econometric specifications, including Bayesian VARs (Carriero et al., 2024) and Markov-
Switching models (Doz et al., 2020 ; Caldara et al., 2021) have been proposed to account for asymmetric
predictive densities. While Caldara et al. (2021) first extract macroeconomic and financial factors using linear
DFMs and then assert that the link between those factors and GDP growth depends on a Markov-Switching
state variable, our approach treats GDP and the other macroeconomic variables in a similar way. As both
GDP and macroeconomic variables, such as industrial production and sales, ultimately measure economic
activity, albeit at different frequencies and from different perspectives, their underlying dynamics are unlikely
to differ. For example, Loria et al. (2024) show that quarterly real GDP and monthly industrial production
are both subject to similar tail risks. This finding supports our econometric specification, wherein Markov
Switching underlies the dynamics of all variables.

GDP forecasts for the current and upcoming quarters can be generated at the end of each month. However,
the analysis in this paper concentrates on forecasts produced six months ahead of the quarterly GDP release
date by the US Bureau of Economic Analysis (BEA). Given that quarterly GDP for quarter Q is released at
the end of the first month of quarter (Q + 1), these forecasts are produced at the end of the first month of
quarter (Q−1). Since all models presented in this paper are estimated using a Bayesian approach, uncertainty
can arise from three sources: future shocks, parameter estimation, and the identification of the underlying
business cycle and volatility regimes.

Both MS-DFM specifications, with and without Markov-Switching volatility, generate left-skewed pre-
dictive densities, indicating an increase in the probability of low GDP growth during recessions while the
probability of high GDP growth remains broadly constant over time, in line with the findings of Adrian et al.
(2019). This is a key difference with linear DFM specifications, with or without TV-Trend, where uncertainty
is centered around long-term GDP growth and similar in all phases of the business cycle (Figure 5). It should
be stressed that the Growth-at-Risk features of the MS-DFM specifications are obtained by only including
the four real variables advocated by the NBER Business Cycle Dating Committee in the information set,
i.e. without any financial variable. Possible ways to account for financial conditions will be explored in more
detail in the next section.
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Figure 5: Real-time density forecast (6-month horizon): Linear DFM

Note: Expanding estimation sample starting in 1970M01. 6-month ahead density forecasts are produced for each quarter from
2007Q2 to 2019Q4. All density forecasts are based on 7500 draws of the Gibbs sampler, from which the first 2500 are discarded.
GDP growth is the first release of the non-annualised quarter-on-quarter U.S. GDP growth rate.

With the MS-DFM specification, where only the mean growth rate can switch (Figure 6), the asymmetry
of the predictive distribution is related to the fact that the average GDP growth during recessions is estimated
with greater uncertainty than the average GDP growth during expansions (Table 2). This phenomenon can
be attributed to the limited number of recessions and the substantial variation in the depth of recessions over
the estimation sample. Without increased uncertainty surrounding average GDP growth during recessions,
all quantiles would shift in parallel, resulting in a downward shift of the entire distribution during recessions,
without any asymmetry.

Figure 6: Real-time density forecast (6-month horizon): MS-DFM with constant volatility

Note: Expanding estimation sample starting in 1970M01. 6-month ahead density forecasts are produced for each quarter from
2007Q2 to 2019Q4. All density forecasts are based on 7500 draws of the Gibbs sampler, from which the first 2500 are discarded.
GDP growth is the first release of the non-annualised quarter-on-quarter U.S. GDP growth rate.

With the MV-MS-DFM, time-varying volatility also contributes to the asymmetry of the predictive distri-
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bution (Figure 7). Even if average GDP growth in expansion and recession states were estimated without any
uncertainty, the combination of lower average growth and higher volatility during certain recessions would
generate asymmetric predictive distributions, as highlighted by Carriero et al. (2024). Indeed, the effects of
increased volatility and lower average GDP growth tend to compensate each other in the upper part of the
distribution, while they cumulate in the lower part of the distribution.

Figure 7: Real-time density forecast (6-month horizon): MV-MS-DFM

Note: Expanding estimation sample starting in 1970M01. 6-month ahead density forecasts are produced for each quarter from
2007Q2 to 2019Q4. All density forecasts are based on 7500 draws of the Gibbs sampler, from which the first 2500 are discarded.
GDP growth is the first release of the non-annualised quarter-on-quarter U.S. GDP growth rate.

We consider three metrics to assess the quality of the predictive densities of the linear DFMs and of the
MS-DFM where only the mean growth rate can switch, compared to the MV-MS-DFM, with a focus on
downside risks: the 5% and 10% quantile scores (Giacomini and Komunjer, 2005) and the left-tail focused
quantile-weighted continuous ranked probability score (qw-CRPS-L) (Gneiting and Ranjan, 2011).5

From 2007Q2 to 2019Q4, the MV-MS-DFM outperforms the alternative models (Table 5). While the
MS-DFM where only the mean growth rate can switch generates left-skewed predictive densities during the
Great Recession, it exaggerates the downside risk to the same extent that linear DFMs underestimate it,
which is why their lower quantile scores are comparable in the end.

5The α% quantile score of the predictive density at horizon h is calculated as:

QSα,h =
1

N + 1

t0+N∑
t=t0

(
yt+h −Qα,t+h

)
·
(
α− 1yt+h≤Qα,t+h

)
where yt+h is the first release of the quarterly GDP growth at date (t + h) and Qα,t+h is the α% quantile of the predictive
density at date (t + h). t0 and (t0 + N) are the first and the last dates at which forecasts at horizon h are produced. N = 50
for the 2007Q2–2019Q4 sample.

The quantile-weighted continuous ranked probability score is a weighted average across quantile scores, with larger weights
for lower quantiles:

qwCRPSLh =
2

J − 1

J−1∑
j=1

[ναj ·QSαj ,h]

where αj = j · 10% and ναj = (1− αj)
2 is the corresponding weight.
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Table 5: Relative predictive density accuracy over 2007Q2–2019Q4, compared to the MV-MS-DFM

5% quantile score 10% quantile score qw-CRPS-L

Linear DFM 0.86* 0.84 0.98

Linear DFM with TV-Trend 0.82* 0.79** 0.95

MS-DFM where only the mean
growth rate can switch 0.87 0.83*** 0.95**

Note: A ratio below 1 indicates that the predictive density of the MV-MS-DFM is more accurate than the alternative. *, ** and
*** indicate the statistical significance of differences in quantile scores and continuous ranked probability scores at the 10%, 5%
and 1% levels, respectively. While limiting distributions in Gneiting and Ranjan (2011) are obtained for fixed-length estimation
samples, their relative accuracy test is here applied to estimation samples expanding from 1970-2007 to 1970-2019.

7 Vulnerability of GDP growth to financial conditions

The way financial conditions influence future GDP growth and how to take it into account for macroeconomic
forecasting is still being debated. While Adrian et al. (2019) and Adrian et al. (2022) explicitly link
downside risks to U.S. GDP growth to tighter financial conditions, Huang et al. (2024) highlight that
financial conditions comove with macroeconomic uncertainty, and that the way uncertainty varies over time
plays a key role in shaping the distribution of future growth by itself. In a similar vein, Plagborg-Møller et al.
(2020) show that the information provided by financial variables for forecasting the distribution of future GDP
growth is significantly reduced once past and current macroeconomic conditions are already accounted for.
This does not imply that financial shocks are irrelevant in explaining macroeconomic developments and GDP
growth. Actually, Huang et al. (2024) show that structural financial shocks tightening financial conditions
shift the entire distribution of future GDP growth downwards, and increase macroeconomic uncertainty,
which in turn widens the distribution of future GDP growth. As a result, the upper quantiles of future GDP
growth remain broadly unchanged while the lower quantiles decrease significantly, which is consistent with
the findings of Adrian et al. (2019). The main question is more about the marginal informational content of
financial variables and how to use it in practice for macroeconomic forecasting.

We now rely on a standard MS-DFM where only the mean growth rate can switch. In this model, a
variable summarising financial conditions can be used in two distinct ways: (1) as a variable akin to industrial
production or employment, from which a useful signal on economic activity can be extracted, similarly to
what Adrian et al. (2019) do in a quantile regression framework, and (2) as a variable indicating that GDP
growth is becoming more or less vulnerable over time, along the lines of Adrian et al. (2022). We assess both
options simultaneously in the following, with the MS-DFM specification where only the mean growth rate
can switch.6

Following Adrian et al. (2019), we use the Chicago FED’s National Financial Condition Index (NFCI) as
our measure of financial conditions in the U.S.. We first include it in the model information set, along with
the macroeconomic variables used by the NBER Business Cycle Dating Committee. In addition, the model
is extended to allow for time-varying transition probabilities between expansions and recessions. Following
the seminal work of Filardo and Gordon (1998), this is done with a Probit specification where the probability
of switching from a Markov state to another depends on the current state and financial conditions.

The Probit model is specified as follows:

P (St = 0 | St−1, NFCIt−1) = P (S∗
t < 0 | St−1, NFCIt−1) (9)

6With simulated data where the number and length of recessions and high-volatility episodes are similar to the U.S. evidence,
all attempts to estimate an MV-MS-DFM where financial conditions can influence both P (St = j|St−1 = i) and P (Vt = j|Vt−1 =
i) proved unsuccessful. This may be due to the fact that the sample does not include enough transitions between high- and
low-volatility regimes to properly identify the impact of financial conditions on P (Vt = j|Vt−1 = i).
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where
S∗
t = βS

0 + βS
1 St−1 + βS

2 NFCIt−1 + ut ; ut ∼ i.i.d. N(0, 1) (10)

While the NFCI is only weakly related to the underlying economic activity factor (the posterior distri-
bution of γm5 does not significantly deviate from zero), tightening financial conditions significantly increase
the probability of entering and staying in a recession, as shown by the posterior distribution of βS

2 (Table 6,
Figure 8). This confirms that tighter financial conditions make growth more fragile, in line with Adrian et
al. (2019) but relying on a different model. Assessing which specific financial variables are the most relevant
and whether their information content is sufficient to significantly improve macroeconomic forecasts in real
time is left for future research.

Table 6: Estimated Factor loadings and Probit parameters in a MS-DFM with financial conditions
Parameter Prior distribution Posterior distribution - 95% Credibility Interval
γm1 N(0, 1) [1.81; 2.36]
γm2 N(0, 1) [1.72; 2.23]
γm3 N(0, 1) [0.60; 0.96]
γm4,0 N(0, 1) [0.17; 0.38]
γm4,1 N(0, 1) [−0.05; 0.22]
γm4,2 N(0, 1) [−0.05; 0.21]
γm4,3 N(0, 1) [0.06; 0.27]
γm5 N(0, 1) [−0.11; 0.06]

βS
0 N(βS,prior

0 , 0.01) with Φ[βS,prior
0 ] = 7

83 [−1.95;−1.63]

βS
1 N(βS,prior

1 , 0.01) with Φ[βS,prior
0 + βS,prior

1 ] = 511
517 [3.27; 3.63]

βS
2 N(0, 0.01) [−0.30;−0.06]

Note: The means of the prior distributions for βS
0 and βS

1 reflect the number of recessions identified by the NBER and
their average length over 1970-2019. There were 7 recessions spanning 83 months during this period. Assuming that financial
conditions do not play a role, the prior mean of βS

0 is set so that the probability of exiting a recession is 7
83

. As already noticed
by Filardo and Gordon (1998), the priors of the Probit specification need to be relatively tight to achieve convergence. Although
the prior distribution of βS

0 is tightly centered around zero, its posterior distribution significantly deviates from zero, which
means that the data is informative about the role played by financial conditions. Φ is the cumulative distribution function of
the standard normal distribution.
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Figure 8: Probability of falling in a recession

Note: Estimation sample: 1970M01-2019M12. Data vintage: 2024M09. Estimation based on 15000 draws of the Gibbs
sampler, from which the first 5000 are discarded. The above displayed probability of falling in a recession corresponds to
P (St = 0|St−1 = 1, NFCIt−1). It should not be confused with the probability of being in a recession P (St = 0|∆̃y1...T ) that is
estimated by the Kalman smoother and displayed in Figure 2. Shaded areas correspond to NBER recessions.

8 Dealing with the COVID-19 period

The economic lockdown during the COVID-19 pandemic triggered a deep recession in most advanced coun-
tries, which, according to the NBER Business Cycle Dating Committee, lasted from February 2020 (peak)
to April 2020 (trough) in the U.S. This event was exceptional in many aspects and led to a truly unusual
behaviour of economic time series, characterized by substantial fluctuations and volatility over a relatively
short period. Although our MV-MS-DFM has been designed to handle high volatility periods, it cannot
adequately address this very specific period without a targeted treatment for the COVID-19 period.

Two main approaches have been proposed in the literature to address the specific features of the COVID-
19 period. First, some authors explicitly model time-varying volatility and outliers. For instance, Carriero
et al. (2024) rely on different BVARs with stochastic volatility (SV) and outliers, while Antolin-Diaz et
al. (2024) rely on a DFM that integrates stochastic volatility, fat tails and outliers. Second, other authors
suggest to simply drop the COVID-19 period from the estimation sample, especially when the focus is not on
this specific period. This is what Lenza and Primiceri (2022) do for estimating a BVAR with time-varying
volatility. Maroz, Stock and Watson (2021) add a specific “COVID factor” in an otherwise standard DFM but
also recommend excluding the COVID-19 period when the focus is not on this specific period. Schorfheide
and Song (2021) and Baumeister and Hamilton (2023) similarly exclude the COVID-19 period from their
econometric estimates.

Although the MV-MS-DFM introduced in the present paper includes two volatility regimes and accounts
for deeper recessions when volatility is high, it is not suitably equipped to address the unusually large recession
and volatility observed during the COVID-19 pandemic. Including this period in the sample without any
further refinement would result in a situation where the only high-volatility episode identified by the model
would be the COVID-19 period, leading most previous recessions to go unnoticed by the model.

In this paper, we consider two approaches that ultimately very similar results for the post-COVID-19
period (Figures 10 and 9), suggesting that both approaches are relevant.

19



The first approach consists in skipping the COVID-19 period, as proposed in the aforementioned literature.
Here, we choose to omit the years 2020 and 2021 and to estimate the model from 1970 to 2024, without these
two years. The resulting probability of recession (red line in Figure 9) captures all past recessions, but is
not available during the COVID-19 period, by construction. When excluding 2020 and 2021, the recession
probability remains low since 2015, despite some minor fluctuations. Similarly, the probability of being in a
high-volatility regime (red line in Figure 10) displays a clear historical pattern, consistent with the historical
narrative we previously discussed, but remains at zero since the end of the Great Recession.

In the second approach, we allow the model to go through the COVID-19 period, but without re-estimating
its parameters. More precisely, the parameters are estimated over 1970-2019 and then frozen. After 2019,
we simply update the estimation of the underlying factor and of the probabilities of being in a recession
and a high-volatility regime.7 In this case, the model identifies a high-volatility regime from January 2020
to August 2021 (blue line in Figure 10) and a recession from January to April 2020 (blue line in Figure 9).
The recession probability peaks again in February 2021, which seems related to a temporary decline in real
manufacturing and trade sales and real personal income, but this peak is too short-lived to consider that a
new recession has started, according to the criteria we put forward in section 6.2.

Figure 9: Probability of being in a recession

Note: Data vintage: 2024M09. Estimation based on 15000 draws of the Gibbs sampler, from which the first 5000 are discarded.
Shaded areas correspond to NBER recessions.

7More precisely, Kalman and Hamilton smoothers are run over the full sample to estimate the underlying factor tracking
economic activity, long-run GDP growth, and probabilities of being in a recession and a high-volatility regime over 1970M01-
2024M09, but all other parameters are drawn in posterior distributions estimated over 1970M01-2019M12 to avoid distortions
related to the COVID-19 period.
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Figure 10: Probability of being in a high-volatility regime

Note: Data vintage: 2024M09. Estimation based on 15000 draws of the Gibbs sampler, from which the first 5000 are discarded.
Shaded areas correspond to NBER recessions.

While further research would help refine the specific period to be removed from the estimation sample
in order to prevent the COVID-19 period from permanently distorting model estimates, removing the years
2020 and 2021 entirely appears to be a transparent and straightforward solution to this issue.

9 Conclusion

This paper extends the standard Markov-Switching Dynamic Factor Model (MS-DFM) to account for abrupt
changes in macroeconomic volatility and longer-term fluctuations in long-run GDP growth, two important
characteristics of the U.S. economy that are also prevalent in other advanced economies. We refer to this
model as the Mean-Variance Markov-Switching Dynamic Factor Model (MV-MS-DFM).

The MV-MS-DFM identifies a continuous decline in U.S. long-term GDP growth that began in the early
2000s, consistent with the existing literature, and quantifies this decline at 0.7 percentage points (pp) between
2000 and 2019. While long-term growth declined by 0.5 pp before 2008, this decline persisted after the Great
Recession, reaching 1 pp by 2012, and has slightly narrowed since then.

The introduction of Markov-Switching volatility into the standard MS-DFM framework is supported
by statistical criteria (DICs and marginal likelihoods) and improves the detection of turning points in the
U.S. business cycle during the Great Moderation. The model provides evidence indicating that the Great
Moderation, which began in the mid-1980s, was only temporarily interrupted by the Great Recession of
2008-09 and the COVID-19 pandemic of 2020-21. Therefore, the ability to detect recessions in both high-
and low-volatility environments is relevant for the detection of future recessions.

As the model is estimated using Bayesian techniques, it can generate density forecasts that encompass
three sources of uncertainty: future shocks, parameter estimation, and the identification of the underlying
business cycle and volatility regimes. While accounting for two business cycle regimes (expansions and
recessions) is key to capture abrupt changes in GDP growth, accounting for the larger uncertainty in average
GDP growth during recessions than expansions, as well as for two volatility regimes, allows the model to
generate left-skewed density forecasts, as advocated in the Growth-at-Risk literature initiated by Adrian et
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al. (2019). Our model can generate left-skewed density forecasts without including financial variables in the
information set, but we show that tighter financial conditions make future GDP growth more fragile and
increase the probability of falling in a recession.

While the model may not adequately capture the exceptionally large recession and the huge increase in
volatility during the COVID-19 pandemic without further refinements, freezing its parameters during this
period provides a transparent and straightforward solution to this issue. In this case, the model identifies a
short-lived recession in early 2020 and an increase in volatility until mid-2021.
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