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Abstract

This paper presents an unconventional and counter-intuitive approach to improving out-

of-sample cross-sectional return prediction: deliberately introducing random noise into linear

regression models. Traditional forecasting methods, such as Ridge, Lasso, and Partial Least

Squares (PLS), often fail in high-dimensional settings where the number of predictors exceeds

the sample size, frequently yielding negative out-of-sample R2. We propose two complementary

techniques—noise injection and noise augmentation—that exploit implicit regularization to sta-

bilize coefficient estimates and enhance predictive performance. Grounded in machine learning

insights on double descent, our framework shows that adding noise acts as an implicit form

of Ridge regularization. Empirical results demonstrate that these noise-based methods consis-

tently outperform conventional regularization techniques, reinforcing the emerging preference

for dense over sparse modeling. Our findings reveal a paradoxical yet powerful insight: strate-

gically adding noise improves out-of-sample prediction, offering a new tool for high-dimensional

financial forecasting.
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1 Introduction

Cross-sectional prediction of individual stock returns out-of-sample remains a major challenge in

empirical finance.1 Despite researchers identifying hundreds of firm characteristics (“signals”) that

predict returns (e.g., Green, Hand, and Zhang, 2017; Hou, Xue, and Zhang, 2020; Gu, Kelly, and

Xiu, 2020)—many validated through rigorous replication tests (Chen and Zimmermann, 2022)—

achieving robust out-of-sample predictability remains elusive. This difficulty is particularly pro-

nounced in linear cross-sectional regression models when the number of signals (“model size” p) is

large relative to the number of stocks (“sample size,” n), or when the in-sample training period (T )

is short. Conventional ordinary least squares (OLS) estimation often yields negative out-of-sample

R2 values, even when using well-established predictors, underscoring the persistent challenge.

Traditional solutions rely on shrinkage and regularization methods—such as Ridge, Lasso, Par-

tial Least Squares (PLS), and related techniques—to mitigate overfitting by introducing bias to

reduce prediction variance. However, even these techniques frequently fail to deliver positive out-

of-sample R2.

We propose an unconventional and counter-intuitive strategy: deliberately introducing random

noise during model training. Specifically, we investigate two complementary techniques:

1. Noise Injection: Adding random noise directly to existing signals.

2. Noise Augmentation: Expanding the set of signals with purely random noise variables.

While introducing noise may seem counterproductive, prior research suggests that strategically

applied noise can enhance model generalization. For example, Matsuoka (1992), Webb (1993), and

Bishop (1995) demonstrated that training neural networks with noise-corrupted inputs improves

1As in Goyal and Welch (2008), “out-of-sample” prediction refers to forecasting returns at time t + h (h > 0;
“testing sample”) using only information available at time t (“training sample”), as the training window moves
forward with t.
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generalization. More recently, Liao, Ma, Neuhierl, and Shi (2024) found that augmenting signals

with random noise can enhance out-of-sample predictability across various economic variables, in-

cluding S&P firms’ earnings, the US equity premium, employment rates, and GDP growth—a

phenomenon they termed the “blessing of overfitting.” They attribute this effect to the “double

descent” or “benign overfitting” phenomenon identified in the machine learning and statistics lit-

erature (Belkin, Hsu, Ma, and Mandal,2019; Bartlett, Long, Lugosi, and Tsigler, 2020; Hastie,

Montanari, Rosset, and Tibshirani, 2022).

This study builds upon prior work in two key ways. First, we apply both noise injection

and noise augmentation within linear cross-sectional regressions using the minimum norm OLS

estimator (also known as the “Ridgeless” estimator) to handle high-dimensional, over-parameterized

(p > n) settings where conventional OLS is infeasible. Second, we focus specifically on the cross-

sectional predictability of US individual stock returns—a notoriously difficult forecasting problem

not addressed by Liao et al. (2024).

We interpret the benefits of noise through the lens of “implicit Ridge regularization,” as ex-

plored in recent literature.2 This mechanism may help mitigate overfitting and stabilize regression

coefficients. Specifically, we identify two ways in which random noise enhances predictive accuracy:

1. Implicit Ridge Regularization via Noise Injection: Injecting noise into existing signals

approximates explicit Ridge regularization in both under-parameterized (p < n) and over-

parameterized (p > n) settings.

2. Implicit Ridge Regularization via Noise Augmentation: Adding random noise vari-

ables creates an over-parameterized setting (p > n), allowing the minimum norm OLS esti-

mator to trigger a “double descent” effect.

2See Bartlett et al. (2020), Derezinski, Liang, and Mahoney (2020), Hastie et al. (2022), Kobak, Lomond,
and Sanchez (2020), Wu and Xu (2020), and Richards, Mourtada, and Rosasco (2022) for discussions on implicit
regularization effects in over-parameterized models. An earlier version of Zhang, Bengio, Hardt, Recht, and Vinyals
(2021) was among the first to propose implicit regularization as a key factor in the success of deep learning models.
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Empirical results show that in scenarios where conventional methods (OLS, Ridge, Lasso, and

PLS) yield negative out-of-sample R2, our noise-based approaches significantly improve perfor-

mance. Both noise injection and noise augmentation consistently achieve positive out-of-sample

R2 on average. More intensive noise injection or extensive noise augmentation (e.g., adding 5, 000

random noise variables) leads to greater improvements in out-of-sample R2.

Across various settings, noise-based methods outperform traditional regularization techniques

like Lasso, Ridge, and PLS. The paradoxical gain arises because noise induces implicit regulariza-

tion, particularly when applying minimum norm OLS to over-parameterized models. Injecting or

augmenting noise pushes the estimator toward a low-norm solution, reducing sensitivity to idiosyn-

cratic training sample features and thereby improving out-of-sample prediction.

This study makes four contributions. First, we introduce noise-based regularization—via noise

injection and noise augmentation—as a simple, flexible, and effective method for improving out-of-

sample predictability in cross-sectional return forecasting.

Second, we provide an intuitive theoretical interpretation of how noise functions as an im-

plicit form of Ridge regularization in minimum norm OLS, shrinking coefficients toward zero and

enhancing model stability.

Third, we demonstrate practical benefits of noise-based regularization, showing that adding

noise—despite being uninformative by construction—systematically enhances out-of-sample pre-

dictive accuracy.

Finally, our study contributes to the ongoing “dense” versus “sparse” modeling debate by

providing evidence that retaining all signals in cross-sectional regressions, alongside implicit regu-

larization via noise, achieves superior predictive accuracy compared to reducing predictors though

methods like Lasso and PLS. While traditional finance research has favored sparse modeling ap-

proaches focusing on selecting a small number of factors from many possible signals,3 emerging

3Methods such as Lasso, PLS, PCR (Principal Component Regression), IPCA (Instrumented Principal Component
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evidence supports dense models, which often outperform sparse approaches in economic forecasting

(e.g., Giannione, Lenza, and Primiceri, 2021; Kelly, Malamund, and Zhou, 2024; Shen and Xiu,

2024).

Our findings align with this emerging consensus: retaining all available signals and harnessing

implicit regularization through random noise yields higher predictive accuracy than conventional

dimension-reduction methods.

2 Setups and Motivations

2.1 Linear Regression Model for Cross-Sectional Return Prediction

This study focuses on the following linear regression model for cross-sectional return prediction:

yi,t = x⊺i,t−1β + εi,t, i = 1, ..., n,

where yi,t is the firm i’s stock return in period t, and xi,t−1 is the vector of px known predictors

(signals) observed at t−1. εi,t represents the residual with E [εi,t] = 0. Our discussion and empirical

implementation demean individual stock returns and all signal values before each cross-sectional

regression, eliminating the need for an intercept term. We stack regressions for individual firms i

= 1, ..., n as:

Yt = Xt−1β + ϵt, (1)

where Yt := [y1,t, ..., yn,t]
⊺ and ϵt := [ε1,t, ..., εn,t]

⊺ are n-vectors and Xt−1 := [x1,t, ..., xn,t]
⊺ is an

n×px signal matrix. We use the regression model (1) as the foundation for the following discussion.

Analysis) (Kelly, Pruitt, and Su., 2020) exemplify this sparse modeling paradigm.
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2.2 Minimum Norm (and Ridgeless) Ordinary Least Squares (OLS) Estimator

The classical regression estimation problem requires the sample size to be much larger than the

model size, i.e., px < n. Most existing empirical finance research focuses on this classical under-

parameterized regime. However, modern prediction models must consider the high-dimensional

over-parameterized (px < n) setting, as the number of potential predictors can easily exceed the

number of available samples. Fortunately, we can generalize the conventional OLS estimator to

the over-parameterized (px < n) regime using a generalized inverse, such as the Moore-Penrose

universe (e.g., Ben-Israel and Greville, 2003; Campbell and Meyer, 1979).

Setting statistics aside and focusing on linear algebra for a moment, let us consider the problem

of finding solutions b for β (a px-vector) that make Yt − Xt−1β as small as possible. Specifically,

we seek to minimizes the l2 norm,

||Yt −Xt−1β||2 :=
√

(Yt −Xt−1β)⊺(Yt −Xt−1β).

A px-vector b̂ is called an ordinary least squares (OLS) solution if it minimizes ||Yt−Xt−1β||2. In the

classical under-parameterized regime, we can find a unique OLS solution, which is the conventional

OLS estimator. In the over-parameterized regime, however, infinitely many OLS solutions b̂ achieve

Yt = Xt−1b̂, that is, b̂ interpolates the data perfectly.

Now, suppose we want to find a solution that minimizes ||β||2 :=
√
β⊺β among all OLS solutions

that minimize ||Yt−Xt−1β||2. We can then uniquely define β̂ (another px-vector) as the “minimum

norm OLS” estimator if ||β̂||2 < ||b̂||2 for all other OLS solutions b̂ ̸= β̂. The unique minimum norm

OLS estimator (interpolator), or the “pseudo-OLS” estimator (Liao et al. 2024), is

β̂ = X+
t−1Yt,
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where X+
t−1 is the Moore-Penrose inverse of Xt−1 (e.g., Campbell and Meyer, 1979, Theorem

2.1.1). We can view the minimum norm OLS estimator β̂ = X†
t−1Yt as a generalization of the

conventional OLS estimator. It is well-defined for both classical under-parameterized and modern

over-parameterized regimes.

• When Xt−1 has full column rank (px ≤ n), X+
t−1 = (X⊺

t−1Xt−1)
−1X⊺

t−1 and β̂ = (X⊺
t−1Xt−1)

−1X⊺
t−1Yt.

This is the conventional OLS estimator.

• When Xt−1 has full row rank (px ≥ n), X+
t−1 = X⊺

t−1(Xt−1X
⊺
t−1)

−1 and β̂ = X⊺
t−1(Xt−1X

⊺
t−1)

−1Yt.

This minimum norm OLS estimator interpolates the training data perfectly as ||Yt −Xt−1β̂||

= 0. The literature on double descent (benign overfitting) focuses on the generalization ca-

pability (out-of-sample predictive accuracy) of this particular minimum norm solution.

β̂ = X+
t−1Y is also called the “Ridgeless” estimator (e.g., Hastie et al. 2022). This follows from

a fundamental property of the Moore-Penrose inverse (e.g., Bernstein, 2005, Fact 6.3.10):

X+
t−1 = lim

λ↓0
X⊺

t−1(Xt−1X
⊺
t−1 + λIn)−1 = lim

λ↓0
(X⊺

t−1Xt−1 + λIpx)−1X⊺
t−1,

where In and Ipx are n× n and px × px identity matrices.

It follows that the minimum norm OLS estimator provides the Ridgeless (zero regularization)

limit of the Ridge estimator, β̂ = X+
t−1Y = limλ↓0 β̂λ, where β̂λ = (X⊺

t−1Xt−1 + λI)−1X⊺
t−1 is the

Ridge estimator (Hoerl and Kennard, 1970) that minimizes ||Yt−Xt−1β||22+λ||β||22, a special case of

Tikhonov regularization. The Ridge penalty λ > 0 dictates the degree of regularization (shrinkage).

In the bias-variance tradeoff, bias increases with λ while variance decreases with λ.
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2.3 Double Descent (Benign Overfitting)

Classical textbooks on statistical learning taught us that “though it is possible to perfectly fit the

training data in the high-dimensional setting, the resulting linear model will perform extremely

poorly on an independent test set, and therefore does not constitute a useful model” (James,

Witten, Hastie, Tibshirani, 2013, p.240). However, the recent success of highly over-parameterized

machine learning models, such as deep neural networks, has drastically changed our view of over-

parameterized models in high dimensional-settings. Over-parameterized models that perfectly fit

(interpolate) the training data can actually offer superior out-of-sample predictive performance

despite the overfitting concern. This surprising phenomenon is known as “benign overfitting” or

“double descent.” The double descent phenomenon is also prevalent in classical linear regression

models implemented with minimum norm OLS estimation.

Adapted from Belkin et al. (2019), Figure 1 depicts the double descent pattern. The prediction

risk (the vertical axis) refers to the mean-squared prediction error.

Figure 1

2.3.1 “Classical” Under-parametrized Regime (px < n)

Figure 1(a) illustrates the classical under-parameterized regime, where the model size is less than

the sample size, px < n. The dotted curve shows that the in-sample prediction risk decreases as the

model size increases. However, the solid curve shows that the out-of-sample prediction risk initially

diaereses until it reaches a “sweet spot” but then increases as the model size increases—this is the

classical overfitting problem.

Figure 1(a) illustrates the bias-variance tradeoff—a fundamental concept in classical statistical

learning (e.g., Hastie, Tibshirani, and Friedman, 2009). Larger model size decreases bias but
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increases error variance. Once the model size passes a certain threshold (sweet spot), its prediction

risk increases with the model size. When the model size reaches the sample size, the regression

model fits the training data perfectly in-sample (in the training sample) but performs poorly out-

of-sample. Hastie et al., (2009, p.221) note: “a model with zero training error is overfit to the

training data and will typically generalize poorly.”

2.3.2 “Modern” Over-parameterized Regime (px > n)

Figure 1(b) shows what happens when the model size exceeds the sample size, i.e., px > n. The

model perfectly interpolates the training data (yt = Xt−1β), resulting in zero in-sample error.

Out-of-sample prediction risk is initially high when the model size is close to the sample size.

Surprisingly, as the model size increases even further, out-of-sample prediction risk starts decreasing

again—this is the “double descent” curve proposed by Belkin et al. (2019), underpinning the success

of modern over-parameterized deep learning models.

In proposing the double descent risk curve, Belkin et al. (2019) assumes the minimum norm OLS

solution in the training sample, among many other solutions that interpolate the data perfectly.

The use of minimum norm OLS solutions is crucial for exploiting the double descent effect. Other

interpolation solutions would not yield similar double descent effects. For instance, in describing

Belkin et al.’s (2019) double descent risk curve, Strang, Hiranabe, and Fernandes (2024, p. 12) note:

“among many solutions, a good one is chosen: the ‘minimum norm least squares solution.’ The

last fact justified the success of ‘deep learning,’ with thousands or even millions of free parameters.

Ordinary Lagrange interpolation would be a disaster.”
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2.4 Noise and Implicit Ridge Regularization

2.4.1 Noise Injection and Implicit Ridge Regularization

Injecting noise into existing signals is equivalent to introducing implicit Ridge regularization. Re-

searchers have long recognized that injecting noise into inputs is equivalent to Tikhonov (Ridge)

regularization (e.g., Matsuoka, 1992; Webb, 1994; Bishop, 1995). Consider the following noise in-

jection: XI,t−1 = Xt−1 + aZI,t−1, where ZI,t−1 is an n × px matrix of independent random noise

and a > 0 controls the intensity of noise injection. Since our empirical implementation standardizes

signals to zero mean and unit variance, a > 1 indicates that the inject noise has higher variance

than the signals. Replacing Xt−1 with XI,t−1, the regression (1) model becomes

Yt = XI,t−1βI + ϵI,t.

Now consider the minimum norm OLS estimator β̂I = X+
I,t−1Yt. In the classical under-parameterized

regime, β̂I equals a conventional OLS estimator but approximates a Ridge estimator:

β̂I = (X⊺
I,t−1XI,t−1)

−1X⊺
I,t−1Yt

p→ (X⊺
t−1Xt−1 + a2nIpx)−1X⊺

t−1Yt.

In the high-dimensional over-parameterized regime, we obtain an estimator that involves Ridge

regularization:

β̂I = X⊺
I,t−1(XI,t−1X

⊺
I,t−1)

−1Yt

p→ X⊺
t−1(Xt−1X

⊺
t−1 + a2pxIn)−1Yt.

In both regimes, we can view β̂I as an implicit Ridge estimator approximating an explicit Ridge
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estimator where the squared noise intensity a2 controls the degree of regularization.

Hoerl and Kennard (1970) proved in the classical n > px regime that, in explicit Ridge re-

gression, there always exists a positive regularization parameter that yields lower prediction risk

than OLS estimation. By invoking an implicit Ridge (Tikhonov) regularization, noise injection can

enhance the out-of-sample predictability of a linear regression (1) by approximating explicit Ridge

regression.

2.4.2 Noise Augmentation and Implicit Ridge Regularization

Augmenting existing signals with noise variables is equivalent to implicit Ridge regularization in

the over-parameterized regime. Even when the number of signals is less than the number of ob-

servations, px < n, we can augment the signal matrix with additional noise variables to transform

the regression model into an over-parameterized regime. Let XA,t−1 := [Xt−1, Zt−1] be a noise-

augmented signal matrix, where Zt−1 is an n× pz matrix of random noise, ensuring (px + pz) > n.

In the over-parameterization regime, the regression becomes and interpolation problem:

Yt = Xt−1βA + Zt−1γA. (2)

To obtain the minimum norm OLS estimator for (2), we solve:

min

∥∥∥∥βAγA
∥∥∥∥
2

subject to Yt = Xt−1βA + Zt−1γA.

The solution is [
β̂A
γ̂A

]
= X+

A,t−1Yt.
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When n < (px + pz) , the minimum norm OLS estimator β̂A is

β̂A = X⊺
t−1

(
Xt−1X

⊺
t−1 + Zt−1Z

⊺
t−1

)−1
Yt (3)

p→ X⊺
t−1

(
Xt−1X

⊺
t−1 + pzIn

)−1
Yt.

With noise augmentation, the minimum norm OLS estimator β̂A approximates a Ridge esti-

mator, where including more noise variables (increasing pz) strengthens the regularization effect.

However, estimator β̂A differs from the conventional Ridge estimator because it operates within a

model containing a much larger number of signals—including numerous additional noise variables.

2.5 Relationship between Two Noise-Based Regularization Strategies:

Noise Injection and Noise Augmentation

Practical applications of noise injection and noise augmentation often involve a situation where the

number of stocks exceeds the number of signals (px < n) but we augment the signals with numerous

noise variables to create an over-parameterized setting, px + pz > n.

This section discusses how the OLS estimator with noise injection (β̂I) and the minimum norm

OLS estimator with noise augmentation (β̂A) are related. To examine the approximate relationship

between β̂I and β̂A, let us temporarily drop the time subscript t− 1 and write

β̂I ≈ (X⊺X + a2nIpx)−1X⊺Y.

β̂A ≈ X⊺ (XX⊺ + pzIn)−1 Y.

We assume X has a full column rank, rank (X) = px.and px + pz > n.
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Consider a singular value decomposition of X,

X = [Ux, U0]

[
S

0(n−px)×px

]
V ⊺

where Ux is an n × px orthogonal matrix satisfying U⊺
xUx = Ipx . U0 is an n × (n − px) orthogonal

matrix with U⊺
0U0 = In−px . Ux and U0 are orthogonal: U⊺

xU0 = 0px×(n−px) and U⊺
xU0 = 0(n−px)×px .

V is a px × px orthogonal matrix with V ⊺V = Ipx . S := diag(s1, ..., spx) is an px × px diagonal

matrix of singular values, s1 ≥ ... ≥ spx > 0. Since none of the signals are redundant, all px singular

values are positive.

Then, we can express the fitted values Xβ̂I and Xβ̂A as follows:

Xβ̂I ≈ UxSV
⊺(V S2V ⊺ + a2nIpx)−1V SU⊺

xY

= UxS
(
S2 + a2nIpx

)−1
SU⊺

xY

= Ux · diag

(
s21

s21 + a2n
, ...,

s2px
s2px + a2n

)
· U⊺

xY

Xβ̂A ≈ UxSV
⊺V SU⊺

x · [Ux, U0]

 (S2 + pzIpx
)−1

0

0 (pzIn−px)−1


 U⊺

x

U⊺
0

Y

= UxS
2
(
S2 + pzIpx

)−1
U⊺
xY

= Ux · diag

(
s21

s21 + pz
, ...,

s2px
s2px + pz

)
· U⊺

xY

This shows that the two model fitted-values, Xβ̂I and Xβ̂A, are approximately equal when a2n =

pz or a =
√
pz/n. The intensity parameter a is approximately equivalent to the ratio of the number

of additional random variables to the sample size.

For example, when we include pz = 5, 000 (or 10, 000) noise variables in the noise augmentation

strategy, β̂A becomes approximately equal to β̂I from a noise injection strategy when we set the noise
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integration intensity at a =
√

5, 000/1000 ≒ 2.24 (or a =
√

10, 000/1000 ≒ 3.16). Alternatively,

choosing a noise injection intensity of a = 2 (or 3) is approximately equivalent to including pz =

22 × 1, 000 = 4, 000 (or 32 × 1, 000 = 9, 000) noise variables in the data augmentation strategy

2.6 Minimum Norm OLS, Implicit Ridge Regularization, and Double Descent:

A Discussion

The double descent (or benign overfitting) phenomenon has attracted significant attention in the

machine learning and statistics community. Many studies have theoretically identified conditions

under which extreme overfitting can improve a model’s generalization (out-of-sample prediction)

performance using random matrix theories. One key discussion topic is whether explicit Ridge

regularization helps improve out-of-sample prediction of over-parameterized models beyond the

minimum norm (and Ridgeless) OLS estimation.

Notably, Kobak et al. (2020), Wu and Xu (2020), and Richards et al. (2022), among others,

emphasize the crucial role of implicit Ridge regularization in driving double descent. While this

discussion does not directly involve noise injection or noise augmentation, the topic remains relevant

because noise augmentation may effectively exploit descent through implicit Ridge regularization.

This view aligns with Kobak et al. (2020, Abstract), who show that “augmenting any linear

model with random covariates and using minimum norm estimator is asymptotically equivalent to

adding the ridge penalty.” Wu and Xu (2020) suggest that over-parameterization may not result

in overfitting due to the implicit regularization of the minimum norm OLS estimator.

In high-dimensional setting (p > n), the signal matrix may contain weak or redundant signals

that act similarly to random noise variables. For example, suppose we partition a signal matrix

Xt−1 into two sub-matrices, Xt−1 = [Xs,t−1, Xw,t−1] , where Xs,t−1 contains ps strong signals while

Xw,t−1 contains pw weak (or redundant) signals that provide no incremental information about

Yt beyond what’s in Xs,t−1. The number of both strong and weak signals exceeds the number of
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samples, ps + pw > n, so we are considering an interpolation problem: Yt = Xs,t−1βs + Xw,t−1βw.

For simplicity, suppose Xw,t−1 are orthogonal to the strong signals X1,t−1. Then, the weak

(or redundant) signal matrix Xw,t−1 resembles the noise matrix Zt−1 in the interpolation model

with random noise (2). It follows that the minimum-norm (and Ridgeless) OLS solution for the

coefficients on Xs,t−1, β̂s, takes the following form similar to β̂A in (3):

β̂s = X⊺
s,t−1

(
Xs,t−1X

⊺
s,t−1 + Xw,t−1X

⊺
w,t−1

)−1
Yt (4)

p→ X⊺
s,t−1

(
Xs,t−1X

⊺
s,t−1 + pwΣw

)−1
Yt

where Σw := E
[
Xw,t−1X

⊺
w,t−1

]
is an n × n weight matrix. If Σw is approximately diagonal (i.e.,

when weak signals in Xw,t−1 are not strongly correlated), the Ridgeless OLS estimator β̂s in (4)

involves implicit regularization approximating an weighted Ridge (Tikhonov) regularization with

weight matrix Σw. The number of weak signals pw affects the strength of regularization.

Despite being “Ridgeless,” a minimum norm OLS estimator may embody implicit Ridge regu-

larization when the number of weak (or redundant) signals is large and weak signals are not strongly

correlated. When the implicit regularization effect in the minimum norm OLS estimator is already

strong, explicit Ridge (Tikhonov) regularization may not help—or may even harm—the model’s

out-of-sample predictive accuracy.4

3 Methodology

3.1 Data and Sample

We draw on well-established return-predicting signals compiled by Chen and Zimmermann (2022),

who replicated 319 cross-sectional return predictors (signals) from the academic literature. Their

4Even negative regularization may become optimal in explicit Ridge (Tikhonov) regularization. See Kobak et al.
(2020), Wu and Xu (2020), and Richards et al. (2022) for more rigorous discussions.
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replication generally confirms the original studies’ reported t-values. Of these, Andrew Chen pub-

licly released firm-level signal values for 209 signals via openassetpricing.com,5 which we access

from the October 2024 release. To these, we add three additional signals constructed directly from

CRSP, bringing the total number of signals to 212.

We collect signal values annually at the end of June from 1963 to 2022 and corresponding one–

year ahead stock returns from June 1964 to June 2023. Because our rolling training windows span

up to 10 years, our out-of-sample testing begins in July 1973 and ends in June 2023—covering a

50 year period.

Not all firms have valid data for every signal in each year. In any given year, we exclude signals

with fewer than 25% valid observations across firms. This results in between 140 and 182 usable

signals, with an average of 168.7, per year. Except for binary indicators, all signals are winsorized

at the 2nd and 98th percentiles and standardized to have zero mean and unit variance in each

annual cross section.

Our sample consists of US publicly-traded firms excluding financials (SIC codes 6000-6999).

As predictive power tends to deteriorate in samples dominated by large-cap stocks, we exclude

the 300 largest firms by market capitalization at each June. We then construct sample of size

n = 100, 250 or 1, 000 by selecting the next largest firms.6 The smallest sample (n = 100)

reflects an over-parameterized regime even without noise. Our noise-based strategies also create

over-para+meterization intentionally.

We work with log returns rather than arithmetic returns to mitigate the influence of extreme

values. Our focus is not on portfolio performance, but on cross-sectional out-of-sample predictive

accuracy, as measured by out-of-sample R2.

5We thank Andrew Chen for making the data publicly available.
6Section 4.6 will discuss the case when we retain the largest 300 firms in our samples.
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3.2 Data Preparation for Rolling Training and Out-of-Sample Testing

We adopt a rolling-window framework for in-sample training and out-of-sample testing from June

1974 to June 2023. In each year t, we collect log annual stock returns Yt for n firms, and construct

an n × px signal matrix Xt−1 (firm signals from the previous June).. We then demean Yt and

each column of Xt−1 and standardize all signals to mean zero and unit variance before running

cross-sectional regressions.

The number of stocks (n) is fixed at 100, 250, or 1, 000, while the number of available signals

(px) varies over time between 140 and 182 (mean= 168.7).

3.3 Estimation Strategies

3.3.1 Noise Injection Strategies

We create 10 random noise matrices with dimension n× px, Z
(j)
t−1 (j = 1, ..., 10), with each element

drawn independently from N (0, 1). We then inject this noise into the signal matrix as:

X
(j)
I,t−1 = Xt−1 + aZ

(j)
I,t−1; j = 1, ..., 10,

where a = {1, 2, 3, 4, 5} controls noise intensity.

For each noise-injected matrix, we compute OLS estimates, β̂
(j)
I,t = (X

(j)⊺
I,t−1X

(j)
I,t−1)

−1X
(j)⊺
I,t−1Yt.

(j = 1, ..., 10).and average them:

β̂I,t =
1

10

10∑
j=1

β̂
(j)
I,t .
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3.3.2 Noise Augmentation Strategies

We simulate 10 random noise matrices Z
(j)
t−1 (j = 1, ..., 10).with dimension n × pz, again drawing

elements independently from N (0, 1) . We then augment the signal matrix via:

X
(j)
A,t−1 = [Xt−1, Z

(j)
t−1]

for j = 1, ..., 10, pz ∈ {100, 500, 1, 000, 5, 000, 10, 000}.

For each noise-augmented signal matrix X
(j)
A,t−1, we solve for the minimum norm coefficients

β̂
(j)
A,t using

β̂
(j)
A,t = X⊺

t−1

(
Xt−1X

⊺
t−1 + Z

(j)
t−1Z

(j)⊺
t−1

)−1
Yt.

The final coefficients are averaged over simulations:

β̂A,t =
1

10

10∑
j=1

β̂
(j)
A,t.

3.3.3 Conventional Regularization Methods Without Noise

We implement traditional regularization techniques for comparison.

Lasso and Ridge: We estimate Lasso and Ridge regressions each year by solving:

β̂Lasso,t = arg min
β

|||Yt −Xt−1β||22 subject to ||β||1 ≤ cLasso,

β̂Ridge,t = arg min
β

|||Yt −Xt−1β||22 subject to ||β||22 ≤ cRidge,

where ||β||1 and ||β||2 are l1 and l2 norms of β. Optimal constraint values cRidge and cLasso are

chosen via cross-validation.
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Partial Least Squares (PLS): We also apply PLS as a 3-factor model through iterative

marginal regressions. We select 3 factors as including more factors decreased out-of-sample R2.:

1. First factor

• Run marginal regressions of Yt on ξk,t−1, the k-th signal (i.e., the k-th column of Xt−1), k

= 1, ..., px, to obtain the OLS estimate γ̂k,t. Form the first factor: φ̂1,t =
∑px

k=1 ξk,t−1γ̂k,t

• Regress Yt on φ̂1,t to get coefficient η̂1,t. Ŷt (φ̂1,t) := φ̂1,tη̂1,t is the predicted Yt using the

first factor.

2. Second factor:

• Regress residuals Yt − φ̂1,tη̂1,t on ξk,t−1, k = 1, ..., px, to obtain the OLS estimate γ̂k,t to

form the second factor φ̂2,t and coefficient η̂2,t.

3. Third factor:

• Repeat with residual Yt − φ̂1,tη̂1,t − φ̂2,tη̂2,t.

Through these iterative steps—known as the boosted marginal regression approach—PLS con-

structs a lower-dimensional representation of the predictors that optimally captures their covari-

ance with Yt. The final regression model remains linear in Xt−1. We use β̂PLS,t to denote estimated

PLS coefficients.

We can obtain β̂Lasso,t, β̂Ridge,t, and β̂PLS,t both in under-parameterized (px < n) and over-

parameterized (px > n) regimes. When px < n, we also obtain a conventional OLS estimate, β̂OLS,t.

In over-parameterized (px > n) settings, we use the minimum norm OLS estimate for β̂OLS,t.
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3.4 In-Sample Training

For each year t, we consider a T -year training window: (Yt, Xt−1), (Yt−1, Xt−2), ... , (Yt+1−TR
2
t+1, Xt−T ).

Let β̂t+1−τ be the px-vector of cross-sectional regression coefficients estimated from (Yt+1−τ , Xt−τ )

for τ = 1, ..., T. Using Fama and MacBeth’s (“FMB”) (1973) approach, we average past T years of

regression coefficients:7

β̂
(T )
t :=

1

T

T∑
τ=1

β̂t+1−τ .

We apply this FMB-style averaging to all estimation strategies: noise injection (β̂I,t), noise augmen-

tation (β̂A,t), Lasso, Ridge, PLS, and OLS. We explore training period lengths: T ∈ {1, 3, 5, 10}.

We then form the out-of-sample predicted return as

Ŷ
(T )
t+1 = Xtβ̂

(T )
t .

3.5 Out-of-Sample Testing

For each strategy, we calculate the out-of-sample R2 in period t + 1 as:

R2
t+1 = 1 − ||Yt+1 −Xtβ̂

(T )
t ||22

||Yt+1||22
, (5)

where ||Yt+1−Xtβ̂
(T )
t ||22 := (Yt+1−Xtβ̂

(T )
t )⊺(Yt+1−Xtβ̂

(T )
t ) and ||Yt+1||22 := Y ⊺

t+1Yt+1. Note that all

variables are demeaned in each cross-section. For each strategy, we report time-series averages of

yearly out-of-sample R2, as defined in (5), calculated over the full sample period (R2
t+1 from 1974

to 2023). Higher positive values indicate greater predictive accuracy.

7We require at least T/2 years of data for the time average calculation.
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4 Evidence

We present and discuss out-of-sample R2 of different estimation strategies using the full sample

period spanning 50 years. Empirical implementation of our noise-based regularization strategies—

noise injection and noise-augmentation—use simulations to generate noise and average over simu-

lated coefficients. Therefore, our results may vary slightly in each empirical run. Our Lasso and

Ridge regression results may also vary in each test, because we choose regularization parameters

with cross-validation.

4.1 Out-of-Sample R2: Conventional Estimation Without Noise

Table 1 summarizes out-of-sample R2 values from conventional estimation methods (OLS, Minimum-

norm OLS, Lasso, Ridge, and PLS) across n = 100, 250, 1, 000 and training lengths T = 1, 3, 5,

10. Shading indicates positive out-of-sample R2, with darker shades for higher values.

Results indicate that OLS is infeasible for n = 100 and unstable for n = 250, yielding large

negative out-of-sample R2 values. Minimum norm OLS also produces negative out-of-sample R2.

Without explicit regularizations, (minimum) OLS estimation is damaging rather than helpful.

However, regularization methods, such as Ridge, and PLS, reduce predictive harm and can yield

positive out-of-sample R2 with larger n and longer T . Among the three conventional regularization

methods, Ridge generally outperforms Lasso and PLS. PLS shows the least effectiveness among

the three conventional regularization methods. Even with regularization, positive out-of-sample

R2 values only appear with large samples (n = 1, 000) and longer training periods (T = 10). The

highest out-of-sample R2 (2.15%) comes from Ridge with n = 1, 000 and T = 10.

Table 1
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4.2 Out-of-Sample R2: Noise Injection Strategies

Table 2 presents results from noise injection strategies at noise intensities a ∈ {1, 2, 3, 4, 5}.

We highlight the following results. First of all, noise injection significantly improves out-of-

sample R2.Noise injection performance is comparable or superior to Ridge regression. For small n

or short T , higher noise intensity (a) works better. High-intensity noise injections (e.g., a = 3, 4, 5)

create positive out-of-sample R2 even when conventional regularization methods fail. With T =

10, noise injection with a = 2 achieves the highest out-of-sample R2 of 2.42% (n = 1, 000).

Table 2

4.3 Out-of-Sample R2: Noise Augmentation Strategies

Table 3 shows the performance of noise augmentation with varying pz ∈ {100, 500, 1, 000, 5, 000, 10, 000} .

Our results reveal that adding thousands of random noise variables (e.g., pz = 5, 000, 10, 000)

significantly improves out-of-sample R2, even when n is small or T is short. Performance resembles

the double descent phenomenon: more over-parameterization with including more noise variables

generally helps improve out-of-sample forecasting performance. In our analysis, augmenting existing

signals with pz = 5, 000 noise variables achieves strong results. With T = 10, augmenting with

1, 000 or more noise variables achieves out-of-sample R2 matches or exceeds Ridge, especially at

pz = 5, 000 or 10, 000. In particular, the highest out-of-sample R2 of 2.42% is achieved with pz =

5, 000 noise variables when n = 1, 000.

When the sample size is n = 1, 000, we can achieve the highest out-of-sample R2 when pz =

5, 000 (when T = 10) and 10, 000 (when T = 5) in Table 3. As the section 2.5 discusses, pz = 5, 000

and 10, 000 approximately correspond to a ≒ 2.24 and 3.16, respectively. In Table 2, a = 2 and a =

3 achieves the highest out-of-sample R2 when T = 10 and T = 5, respectively. This confirms that
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the relationship between the two noise-based regularization strategies—noise injection and noise

augmentation—can be summarized by a simple approximate relationship: a ≈
√

pz/n.

Table 3

4.4 Out-of-Sample R2: Practical Implications

Our results demonstrate that noise injection and noise augmentation significantly improve out-of-

sample predictive performance when applied to well-established return predicting signals. These

benefits are especially pronounced in settings with smaller cross-sectional sample sizes (n) or shorter

training periods (T ).

Importantly, the frequent occurrence of negative out-of-sample R2 values does not imply that

the 212 well-established signals fail to predict stock returns. On the contrary, each signal is a

robust and statistically significant cross-sectional return predictor (Chen and Zimmermann, 2022).

Rather, these negative out-of-sample R2 values highlight the difficulty of dynamically combining

these signals into effective predictive models.

That said, we find that the maximum out-of-sample R2 of 2.42% is encouraging. This value is

attained with both a noise injection strategy (a = 2, n = 1, 000, T = 10) and a noise augmentation

strategy (pz = 5, 000, n = 1, 000, T = 10).

From a practitioner’s perspective, out-of-sample R2 corresponds to the squared information

coefficient (IC2) (Grinold and Kahn, 2000). Since IC =
√
R2, and out-of-sample R2 of 2.42%

translates to IC = 0.156. Grinold and Kahn (2000, p.272) provide a helpful benchmark:

“A good forecaster has IC = 0.05, a great forecaster has IC = 0.10, and a world-class

forecaster has IC = 0.15. An IC higher than 0.20 usually signals a faulty backtest or

imminent investigation for insider dealing.”
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Thus, achieving IC = 0.156 suggests world-class forecasting performance—a striking result

given it is obtained by injecting or augmenting established signal with random noise variables.

4.5 Noise Augmentation and Stability of Regression Coefficients

Because noise injection and noise augmentation introduce implicit Ridge regularization, they help

reduce overfitting and stabilize regression coefficients. To evaluate this regularization (shrinkage)

effect, we examine the time-series variability of estimated coefficients, focusing on noise augmenta-

tion strategies with n = 1, 000 stocks.

We concentration signals from the valuation and profitability categories—those with the strongest

historical predictive performance. According to Chen and Zimmermann (2022), these categories

contain up to 17 and 8 signals, respectively.

Table 4 reports out-of-sample R2 of regression models using either the valuation or profitability

signals alone. Adding 100, 500, or even 1, 000 random noise variables does not improve out-of-

sample prediction. Out-of-sample R2 values remain largely negative. While Lasso. Ridge, and PLS

help reduce harm from overfitting, only extensive noise augmentation—with 5, 000 or 10, 000 noise

variables—makes out-of-sample R2 values positive, even with short training periods (e.g., T ≤ 5).

Table 4

4.5.1 Coefficient Stability Analysis

We then analyze how noise augmentation affects the stability of signal coefficients over time. Specif-

ically, we examine regression coefficients on the B/M (book-to-market) and cash-based operating

profitability (Ball, Gerakos, Linnainmaa, and Nikolaev, 2016) signals.

We compare Ridge, PLS, and minimum norm OLS estimation under noise augmentation with
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pz = 5, 000 noise variables.

Panels A-B of Figure 2 show the time-series of B/M coefficients for T = 1 and T = 5. At T = 1

(Panel A), Ridge and PLS coefficients vary wildly, frequently switching signs, suggesting unstable

forecasts and likely negative out-of-ample R2. With noise augmentation, the coefficients are more

tightly shrunk toward zero and substantially more stable. At T = 5 (Panel B), Ridge and PLS

coefficients are smoothed over time, yet still exhibit significant fluctuations. Noise augmentation

continues to deliver more stable coefficient estimates, reflecting stronger regularization.

Panels C-D show similar patterns for the cash-based operating profitability signal. Noise-

augmented coefficients are consistently more stable than those from Ridge and PLS regularizations.

Figure 2

4.5.2 Double Descent and Over-parameterization

Figure 3 illustrates how the number of noise variables (pz) in noise augmentation strategies affects

the standard deviation of the B/M coefficient (Panel A), and the out-of-sample R2 (Panel B) using

n = 1, 000 and T = 1.

As the number of noise variables increases: Standard deviation spikes when n ≈ px + pz, i.e.,

when the model is at or near the interpolation threshold. Beyond this threshold, as we enter

the over-parameterization regime, further increases in noise variables lead to reduced coefficient

variability and improved out-of-sample R2, albeit still negative or close to zero at T = 1.

These patterns exemplify the double descent phenomenon, where increasing model size eventu-

ally improves generalization (out-of-sample predictive accuracy) though implicit regularization.

Figure 3
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4.6 Out-of-Sample Stock Return Predictability of the Largest US Firms

So far, our empirical analysis has excluded the 300 largest firms, constructing samples of size n

= 100, 250 or 1, 000 by selecting the next largest firms in the US. This exclusion was intentional,

as our focus is on proposing a new return prediction approach and highlighting the benefits of

noise-based regularization methods. Predicting returns for the largest 300 stocks is particularly

challenging in the US.

In Table 5, we report out-of-sample R2 values for Lasso, Ridge, PLS, and noise augmentation

with varying pz ∈ {500, 1, 000, 5, 000} for samples including the largest 300 stocks. When these

300 largest stocks are included, most out-of-sample R2 values are negative, particularly in smaller

samples (n = 100 and 250). However, positive out-of-sample R2 is observed only when existing

signals are augmented with pz = 5, 000 random noise variables and the training period is T = 10

years.

For n = 1, 000, both Lasso and Ridge regularization achieve positive out-of-sample R2 when

the training period is T = 10 years, with Ridge outperforming lasso (1.21% vs. 0.71%). However,

noise augmentation with pz = 5, 000 yields an even higher out-of-sample R2 of 1.47% when T = 10.

Furthermore, noise augmentation with pz = 5, 000 achieves positive out-of-sample R2 even with a

shorter training period (T = 5), where other methods fail to deliver positive out-of-sample R2.

These findings underscore the difficulty of out-of-sample return prediction for the largest US

stocks. Nevertheless, extensive noise augmentation strategies—such as augmenting with pz = 5, 000

additional noise variables—can significantly enhance out-of-sample return predictability, outper-

forming conventional regularization methods.

Table 5

25



5 Conclusion

This study demonstrates that deliberately introducing random noise into prediction models can

significantly improve the out-of-sample cross-sectional predictability of individual stock returns.

By employing noise injection and noise augmentation techniques, we achieve positive out-of-sample

R2 values in scenarios where traditional regularization methods—such as Ridge, Lasso, PLS—

consistently fail.

Grounded in the machine learning literature on benign overfitting and double descent, our theo-

retical framework reveals that noise-based approaches serve as implicit Ridge regularization mech-

anisms. When combined with minimum-norm OLS estimation, random noise shrinks coefficient

vectors toward zero, stabilizing estimates and improving out-of-sample forecasting performance,

even in over-parameterized settings.

Empirical findings strongly support three key conclusions. First, noise-based regularization

offers a simple yet powerful alternative to conventional shrinkage methods, particularly in low signal-

to-noise ratio environments or when training samples are limited. Second, the counter-intuitive

success of adding uninformative variables highlights the crucial role of implicit regularization effects

in high-dimensional financial modeling. Third, dense modeling approaches outperform traditional

sparse methods in out-of-sample prediction tasks, reinforcing the emerging consensus that retaining

all signals—rather than focusing on a strict signal or factor selection—enhances predictive accuracy.

These insights carry important implications for both practitioners and researchers. Instead of

prioritizing signal (or factor) selection or model parsimony, our findings suggest that retaining a

comprehensive set of signals while leveraging implicit regularization through strategic noise addition

can yield superior predictive performance. This shift from sparse to dense modeling, coupled with

noise-based regularization, opens new avenues for advancing high-dimensional financial forecasting.
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Tables and Figures

Figure 1: Prediction risk (mean squared prediction error) vs model size

Notes: This figure illustrates the relationship between prediction risk (measured as mean squared

prediction error) and model size (i.e., the number of predictors or parameters). It is adapted from

Belkin et al.’s (2019) Figure 1, with a few modifications.
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Table 1: Out-of-Sample R2 for Conventional Estimation Methods Without Noise

100 1 N/A ­251.81% ­13.81% ­8.07% ­49.45%
3 N/A ­97.82% ­4.24% ­2.12% ­17.17%
5 N/A ­61.47% ­2.19% ­0.43% ­9.10%

10 N/A ­35.55% ­0.35% 0.63% ­3.81%
250 1 ­292.68% ­292.68% ­11.77% ­7.77% ­36.87%

3 ­136.02% ­136.02% ­3.08% ­1.27% ­10.58%
5 ­92.37% ­92.37% ­0.85% ­0.25% ­7.02%

10 ­48.09% ­48.09% 0.65% 1.13% ­2.26%
1,000 1 ­41.40% ­41.40% ­11.15% ­8.54% ­19.09%

3 ­12.19% ­12.19% ­1.72% ­0.89% ­3.96%
5 ­6.24% ­6.24% 0.20% 0.69% ­1.44%

10 ­1.58% ­1.58% 1.85% 2.15% 1.25%

Min­norm
OLS PLS

Number of
stocks (n)

Training period
Length (T) OLS Lasso Ridge

2
2

2
2

Notes: This table reports the out-of-sample R2 of cross-sectional regressions of stock returns on 

approximately 200 established signals (from Chen and Zimmermann 2022), evaluated across varying 

model sizes (n), training period lengths (T ) for conventional estimation methods: OLS, Minimum-

Norm OLS, Lasso, Ridge, and PLS. It presents time-series averages of yearly out-of-sample R2,

defied as:Rt2+1 = 1 − (||Y t+1 − Xtβ̂t
(T )|| /||Yt+1|| ), calculated over the full sample period (t + 1 

spanning from 1974 and 2023). Shaded cells indicate positive average out-of-sample R2 values.
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Table 2: Out-of-Sample R2: Noise Injection Strategies

a = 1 2 3 4 5

100 1 ­13.81% ­8.07% ­49.45% ­28.00% ­9.65% ­5.06% ­2.19% ­0.83%
3 ­4.24% ­2.12% ­17.17% ­9.35% ­1.86% ­0.64% ­0.10% ­0.09%
5 ­2.19% ­0.43% ­9.10% ­4.83% ­0.75% 0.45% 0.76% 0.39%

10 ­0.35% 0.63% ­3.81% ­1.76% 0.56% 0.75% 0.75% 0.62%
250 1 ­11.77% ­7.77% ­36.87% ­26.5% ­10.72% ­4.75% ­3.17% ­1.60%

3 ­3.08% ­1.27% ­10.58% ­7.5% ­2.12% ­0.44% 0.01% 0.32%
5 ­0.85% ­0.25% ­7.02% ­4.42% ­0.89% 0.38% 0.53% 0.62%

10 0.65% 1.13% ­2.26% ­0.77% 0.87% 1.10% 1.07% 0.98%
1,000 1 ­11.15% ­8.54% ­19.09% ­9.10% ­2.86% ­0.71% 0.30% 0.69%

3 ­1.72% ­0.89% ­3.96% ­0.86% 0.94% 1.35% 1.49% 1.37%
5 0.20% 0.69% ­1.44% 0.74% 1.73% 1.83% 1.73% 1.50%

10 1.85% 2.15% 1.25% 2.18% 2.42% 2.14% 1.88% 1.55%

Lasso Ridge PLS
Noise Injection Strategies (Min­Norm OLS)Number of

stocks (n)
Training period

Length (T)

Notes: This table reports the out-of-sample R2 of cross-sectional regressions of stock returns on

approximately 200 established signals (from Chen and Zimmermann 2022), evaluated across varying

model sizes (n), training period lengths (T ) for minimum OLS estimation methods with noise

injection strategies. Each year (at the end of June), we exclude the 300 largest firms and construct

samples of size n = 100, 250 or 1, 000 by selecting the next largest firms. We examine noise

injection intensity parameter of a = 1, 2, 3, 4, 5. The table presents time-series averages of yearly

out-of-sample R2, defied as:R2t+1 = 1− (||Yt+1−Xtβ̂
(T )
t ||22/||Yt+1||22), calculated over the full sample

period (t + 1 spanning from 1974 and 2023). Shaded cells indicate positive average out-of-sample

R2 values.
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Table 3: Out-of-Sample R2: Noise Augmentation Strategies

100 500 1,000 5,000 10,000

100 1 ­15.36% ­7.77% ­49.45% ­41.78% ­10.64% ­5.27% ­0.32% 0.06%
3 ­4.81% ­1.89% ­17.17% ­13.45% ­2.74% ­0.95% 0.38% 0.32%
5 ­2.68% ­0.27% ­9.10% ­7.05% ­0.60% 0.28% 0.61% 0.42%

10 ­0.37% 0.74% ­3.81% ­2.93% 0.55% 0.89% 0.67% 0.43%
250 1 ­11.54% ­7.80% ­36.87% ­301.6% ­17.06% ­9.12% ­1.12% ­0.10%

3 ­3.21% ­1.21% ­10.58% ­119.3% ­3.87% ­1.26% 0.58% 0.62%
5 ­1.05% ­0.16% ­7.02% ­76.33% ­2.12% ­0.26% 0.86% 0.74%

10 0.53% 1.13% ­2.26% ­39.45% 0.12% 1.05% 1.15% 0.85%
1,000 1 ­11.34% ­8.30% ­19.09% ­41.45% ­43.57% ­26.80% ­2.81% ­0.48%

3 ­1.79% ­0.85% ­3.96% ­12.30% ­13.19% ­6.19% 0.99% 1.46%
5 0.07% 0.69% ­1.44% ­6.33% ­6.61% ­2.33% 1.75% 1.86%

10 1.82% 2.14% 1.25% ­1.61% ­1.45% 0.93% 2.42% 2.18%

Noise Augmentation Strategies (Min­Norm OLS)Number of
stocks (n)

Training period
Length (T) Lasso Ridge PLS

Notes: This table reports the out-of-sample R2 of cross-sectional regressions of stock returns on

approximately 200 established signals (from Chen and Zimmermann 2022), evaluated across varying

model sizes (n), training period lengths (T ) for minimum OLS estimation methods with noise

augmentation strategies. Each year (at the end of June), we exclude the 300 largest firms and

construct samples of size n = 100, 250 or 1, 000 by selecting the next largest firms. We examine

noise augmentations with pz = 100, 500, 1000, 5, 000, and 10, 000 additional noise variables. The

table presents time-series averages of yearly out-of-sample R2, defied as: R2t+1 = 1 − (||Yt+1 −

Xtβ̂
(T )
t ||22/||Yt+1||22), calculated over the full sample period (t + 1 spanning from 1974 and 2023).

Shaded cells indicate positive average out-of-sample R2 values.
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Table 4: Out-of-Sample R2 of Regressions with Valuation or Profitability Signals.

100 500 1,000 5,000 10,000
Valuation 1 ­6.55% ­6.26% ­8.68% ­9.17% ­9.14% ­19.84% ­0.18% 0.25%

3 ­2.14% ­1.97% ­2.77% ­3.12% ­3.12% ­8.03% 0.53% 0.51%
5 ­0.83% ­0.75% ­1.41% ­1.54% ­1.54% ­4.51% 0.71% 0.59%
10 0.34% 0.37% 0.04% 0.01% ­0.01% ­1.58% 0.78% 0.59%

Profitability 1 ­3.46% ­3.01% ­4.76% ­4.8% ­5.01% ­12.41% 0.67% 0.57%
3 ­1.98% ­1.66% ­2.39% ­2.4% ­2.51% ­7.30% 0.47% 0.41%
5 ­0.92% ­0.71% ­1.22% ­1.19% ­1.28% ­4.62% 0.49% 0.38%
10 ­0.13% 0.01% ­0.25% ­0.25% ­0.27% ­2.12% 0.51% 0.36%

Signal
Categories

Training period
Length (T) Lasso Ridge PLS

Noise Augmentation Strategies (Min­Norm OLS)

Notes: This table reports the out-of-sample R2 of cross-sectional regressions of stock returns on

valuation signals (17 or less during the sample period) and profitability signals (8 or less during the

sample period), based on Chen and Zimmermann’s (2022) signal categorization, evaluated for n

= 1, 000 stocks and across varying training period lengths (T ) for minimum norm OLS estimation

methods with noise augmentation strategies. Each year (at the end of June), we exclude the 300

largest firms and construct samples of size n = 100, 250 or 1, 000 by selecting the next largest

firms. We examine noise augmentations with pz = 100, 500, 1000, 5, 000, and 10, 000 additional

noise variables. The table presents time-series averages of yearly out-of-sample R2, defied as:R2t+1

= 1− (||Yt+1−Xtβ̂
(T )
t ||22/||Yt+1||22), calculated over the full sample period (t+1 spanning from 1974

and 2023). Shaded cells indicate positive average out-of-sample R2 values.
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Figure 2: Time Variations of Coeffi cients on Selected Signals

Panel A: Coeffi cients on the B/M Signal: T = 1,

n = 1, 000.Ridge, PLS, and Minimum Norm OLS

with Noise Augmentation (pz = 5, 000).

Panel B: Coeffi cients on the B/M Signal: T = 5,

n = 1, 000.Ridge, PLS, and Minimum Norm OLS

with Noise Augmentation (pz = 5, 000).

Panel C: Coeffi cients on the Cash-based Operating

Profitability Signal: T = 1, n = 1, 000.Ridge, PLS,

and Minimum Norm OLS with Noisee

Augmentation (pz = 5, 000).

Panel D: Coeffi cients on the Cash-based Operating

Profitability Signal: T = 5, n = 1, 000.Ridge, PLS,

and Minimum Norm OLS with Noisee

Augmentation (pz = 5, 000).
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Figure 3: Relationship between Time-Series Properties of B/M Coeffi cients and the

Number of Additional Noise Variables

Panel A: Standard Deviation of the B/M Coeffi cient

vs. Number of Noise Variables

Panel B: Average Out-of-Sample R2vs. Number of

Noise Variables

Notes to Figure 2: Panels A-D show the time-variation of regression coeffi cients for the B/M signal

(Panels A-B) and the cash-based operating profitability signal (Panels C-D), estimated using Ridge,

PLS, and minimum norm OLS with noise augmentation (pz = 5, 000 additional noise variables).

Panels A and C present results for T = 1, while Panels B and D illustrate the T = 5 case.

Notes to Figure 3 : Panel A illustrates how the time-series standard deviation of the B/M signal

coeffi cient varies with the number of noise variables (pz) included in the noise augmentation strategy.

Panel B presents the out-of-sample R2 of a cross-sectional regression using established signals. For

both panels, we set n = 1, 000 and T = 1.
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Table 5: Out-of-Sample R2 for Samples Including the 300 Largest Stocks

500 1,000 5,000
100 1 ­22.21% ­11.11% ­55.53% ­15.27% ­8.39% ­1.11%

3 ­8.07% ­3.72% ­18.97% ­4.92% ­2.68% ­0.33%
5 ­4.79% ­1.80% ­12.09% ­2.65% ­1.31% ­0.03%

10 ­1.54% ­0.40% ­5.17% ­0.82% ­0.23% 0.21%
500 1 ­18.46% ­14.23% ­34.92% ­40.48% ­19.18% ­4.89%

3 ­5.29% ­4.15% ­10.72% ­13.05% ­5.68% ­1.19%
5 ­2.93% ­2.59% ­6.82% ­8.35% ­3.55% ­0.43%

10 ­0.65% ­0.16% ­2.24% ­2.57% ­0.64% 0.48%
1,000 1 ­14.61% ­11.86% ­24.37% ­53.92% ­34.76% ­5.61%

3 ­2.99% ­1.75% ­5.38% ­17.54% ­8.89% ­0.25%
5 ­1.29% ­0.53% ­2.97% ­10.52% ­4.86% 0.50%

10 0.71% 1.21% ­0.04% ­4.13% ­1.16% 1.47%

Number of
stocks (n)

Training period
Length (T) Lasso Ridge PLS

Noise Augmentation (Min­Norm OLS)

Notes: This table reports the out-of-sample R2 of cross-sectional regressions of stock returns on

approximately 200 established signals (from Chen and Zimmermann 2022), evaluated across varying

model sizes (n), training period lengths (T ) for minimum OLS estimation methods with noise

augmentation strategies. Each year (at the end of June), we construct samples of size n = 100, 250

or 1, 000 by selecting the largest firms, including the largest 300. We examine noise augmentations

with pz = 500, 1000, and 5, 000 additional noise variables. The table presents time-series averages

of yearly out-of-sample R2, defied as: R2t+1 = 1− (||Yt+1 −Xtβ̂
(T )
t ||22/||Yt+1||22), calculated over the

full sample period (t + 1 spanning from 1974 and 2023). Shaded cells indicate positive average

out-of-sample R2 values.
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