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Abstract

We analyze how equilibrium housing prices are determined in the process

of economic development within an overlapping generations model with per-

fect housing and rental markets. We characterize the rent growth rate in all

equilibria. The economy exhibits a two-stage phase transition: as incomes

of home buyers rise, the equilibrium regime changes from fundamental to

bubble possibility, where fundamental and bubbly equilibria coexist. With

even higher incomes, fundamental equilibria disappear and housing bubbles

become a necessity. We also discuss extensions and refinements such as equi-

librium uniqueness, multiple savings vehicles, welfare implications, credit-

and expectation-driven bubbles, and testable implications of our theory.

Keywords: bubble, expectations, housing, phase transition, rent, un-

balanced growth.
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1 Introduction

Over the last three decades, many countries have experienced appreciation in

housing prices, with upward trends in the price-rent ratio.1 The situation is of-

ten referred to in the popular press as a housing bubble. Because fluctuations in

∗We thank seminar participants at Jönköping, Laval, McGill, Oslo, Princeton, Rochester,

Royal Holloway, Tokyo, UCSD, Waseda, and various conferences for valuable comments and

feedback.
†Department of Economics, Royal Holloway, University of London, and Research Associate at

the Center for Macroeconomics at the London School of Economics, tomohiro.hirano@rhul.ac.uk.
‡Department of Economics, Emory University, alexis.akira.toda@emory.edu.
1See, for instance, Figure 1 of Amaral et al. (2024) for 27 major agglomerations in 15 OECD

countries and U.S. Metropolitan Statistical Areas. Figure 1 of Bäcker-Peral et al. (2025), who
exploit a natural experiment from long-term lease renewal in U.K., shows a downward trend in
the housing yield.

1

ar
X

iv
:2

30
3.

11
36

5v
5 

 [
ec

on
.T

H
] 

 7
 M

ay
 2

02
5

mailto:tomohiro.hirano@rhul.ac.uk
mailto:alexis.akira.toda@emory.edu


housing prices have often been associated with macroeconomic problems, many

academics and policymakers want to understand why and how housing bubbles

emerge in the first place. However, the mechanism of the emergence of housing

bubbles is poorly understood. In addition, theoretically, it is well known that

there is a fundamental difficulty in generating asset price bubbles (existence of

speculation) in dividend-paying assets such as housing, land, and stocks (see §1.1
Related literature for details). The theory of rational bubbles attached to real as-

sets remains largely underdeveloped: at present, there is no theoretical framework

for considering whether housing prices reflect fundamentals or contain bubbles.

The primary purpose of this paper is to fill this gap and to present a theory of

rational housing bubbles. We are interested in the following questions. (i) What is

the mechanism by which equilibrium housing prices can or must be disconnected

from fundamentals in the long term, exhibiting a speculative bubble in a dynamic

general equilibrium setting in which housing rents and prices are both endoge-

nously determined? (ii) How is the disconnection related to economic conditions

such as the income or access to credit of home buyers and to the formation of

expectations about future economic conditions, namely the process of economic

development? (iii) What are the welfare properties of equilibria?

To capture how equilibrium housing prices are determined in the process of

economic development, we develop a two-period overlapping generations model

with perfect housing and rental markets. The economy is inhabited by overlap-

ping generations that live for two periods (young and old age) and consume two

commodities (consumption good and housing service). The ownership and occu-

pancy of a housing unit are separated, so there is a price for house ownership as

a financial asset (housing price) and a price for house occupancy as a commodity

(rent). All markets are competitive and frictionless. A rational expectations equi-

librium consists of a sequence of prices (housing price and rent) and allocations

(consumption good, housing stock, and housing service) such that all agents op-

timize and markets clear. An equilibrium is fundamental (bubbly) if the housing

price equals (exceeds) the present value of rents. In this model, the dividend of

housing, namely rent, is endogenous. If housing supply is inelastic, as the economy

grows and agents get richer, they increase the demand for housing, which pushes

up both the housing price and rent. Under these circumstances, it is not obvious

whether housing prices will grow faster than rents and a housing bubble emerge:

the possibility or necessity of housing bubbles becomes a nontrivial question.

We obtain three main results. First, we identify the theoretical mechanism of

generating housing bubbles, which crucially depends on the income of home buyers
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and the elasticity of substitution between consumption and housing. We prove that

the economy experiences a two-stage phase transition in the process of economic

development, which is captured by the long-run income ratio of the young (home

buyers) relative to the old (home sellers). When the income ratio is sufficiently

low, housing bubbles cannot arise and a fundamental equilibrium exists, which

we refer to as the fundamental regime. When the income ratio rises and exceeds

the first critical value, a phase transition occurs.2 Both a fundamental and a

bubbly equilibrium exist, and the equilibrium is selected by agents’ self-fulfilling

expectations. We refer to this coexistence region as the bubble possibility regime.

When the income ratio exceeds the second and still higher critical value, another

phase transition takes place to the bubble necessity regime, where fundamental

equilibria do not exist and housing bubbles become inevitable. Furthermore, we

prove the uniqueness of equilibrium under weak conditions. We show that the

fundamental equilibrium is always unique, and the bubbly equilibrium is unique

if the elasticity of intertemporal substitution is not too much below 1/2.

The intuition for this two-stage phase transition is the following. Let G > 1 be

the long-run growth rate of the economy and γ > 0 the reciprocal of the elasticity

of substitution between consumption and housing, which in the model also equals

the elasticity of rent with respect to income. Empirical estimates suggest γ < 1,3

and a theoretical argument also supports it: if γ > 1, as the economy grows and

agents get richer, the young asymptotically spend all income on housing, the price-

rent ratio converges to zero, and the interest rate diverges to infinity, which are

all pathological and counterfactual. Since γ = 1 (Cobb-Douglas) is a knife-edge

case, it is natural to focus on the case γ < 1. Under this condition, by equating

marginal utility to prices, consumption grows at rate G but the rent grows at rate

Gγ < G. Therefore, if the housing price only reflects fundamentals in the long-run

equilibrium, it must also grow at rate Gγ. Since housing price grows slower than

endowments in any fundamental equilibrium, the expenditure share of housing

2Phase transition is a technical term in natural sciences that refers to a discontinuous change
in the state as we continuously change a parameter. For instance, as we increase the temperature,
the matter (e.g., H2O) changes from solid (ice) to liquid (water) to gas (vapor). The analogy
here is appropriate because the regime of the economy abruptly changes from fundamental to
bubbly as income rises. Cole and Kehoe (2000) show in the context of debt crisis that as the
confidence parameter changes, the equilibrium regime changes from a no-crisis zone to a crisis
zone and then to a default only zone, producing phase transitions (though they do not use this
term).

3Ogaki and Reinhart (1998, Table 2) estimate the elasticity of substitution between durable
and nondurable goods using aggregate data and obtain γ = 1/1.24 = 0.81. Piazzesi et al.
(2007, Appendix C) estimate a cointegrating equation between the price and quantity of housing
service relative to consumption using aggregate data and obtain γ = 1/1.27 = 0.79. Howard and
Liebersohn (2021, Table 2) estimate γ = 0.79 using cross-sectional data on income and rents.

3



converges to zero in the long run and the interest rate R is pinned down as the

marginal rate of intertemporal substitution in the autarky allocation. If R > Gγ,

a fundamental equilibrium exists. If R < Gγ, a fundamental equilibrium cannot

exist, for otherwise the fundamental value of housing (the present value of rents)

becomes infinite, which is obviously impossible in equilibrium. Therefore, as the

young become richer and the interest rate falls below a certain threshold, the

fundamental equilibrium becomes unsustainable, and a housing bubble inevitably

emerges. Fundamental and bubbly equilibria coexist when the autarkic interest

rate satisfies Gγ < R < G, which corresponds to an intermediate range for the

income ratio of the young.

As our second main result, using the two-stage phase transition and uniqueness

of equilibrium dynamics, we present expectation-driven housing booms containing

a bubble and their collapse. In our model, because agents are forward-looking

and housing prices reflect information about future economic conditions, whether

bubbles arise or not in equilibrium depends on long-run expectations about the

income ratio of home buyers. As long as agents expect economic development and

high incomes in the future, housing prices start rising now and contain a bubble,

even if the current income of home buyers is low and the economy appears to

stay in the fundamental region. During this dynamics driven by optimistic beliefs,

the price-income ratio and the price-rent ratio simultaneously rise, and hence the

housing price dynamics may appear unsustainable because prices grow faster than

incomes. On the other hand, if these optimistic expectations do not materialize,

the bubble collapses. This expectation-driven housing bubble occurs as the unique

equilibrium outcome.

Our third main result concerns the existence of dynamic inefficiency in an econ-

omy with a productive non-reproducible asset and welfare analysis of housing bub-

bles. Take the famous Diamond (1965) model, which considers an economy with-

out a productive non-reproducible asset like land. This model shows that under

some conditions, dynamically inefficient equilibria can arise. However, McCallum

(1987) shows that the introduction of land eliminates dynamically inefficient equi-

libria, thereby resolving the concerns (over-savings problem) raised by Diamond

(1965) and restoring Pareto efficiency. Since this result, it has been widely be-

lieved that in OLG models with land, dynamically inefficient equilibria would not

arise (Mountford, 2004). We theoretically show that this commonly-accepted un-

derstanding is not necessarily true: dynamically inefficient equilibria can robustly

arise even with housing, which plays the role of a productive non-reproducible

asset. Moreover, the existence of dynamic inefficiency has a non-monotonic rela-
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tionship to the income ratio of the young (home buyers) relative to the old (home

sellers). If the income ratio is high or low enough (corresponding to the bubble

necessity and fundamental regimes, respectively), the economy exhibits dynamic

efficiency. Dynamically inefficient equilibria arise only in the intermediate range

of the income ratio (corresponding to the bubble possibility regime).

We emphasize that we obtain these results and draw new insights from what

could be called the simplest possible model of housing. We thus see our paper as

a fundamental theoretical contribution that could be used as a stepping stone for

constructing more realistic models aimed for empirical or quantitative analysis.

1.1 Related literature

Our paper is related to the literature on the valuation of housing. Unlike quanti-

tative models reviewed in Piazzesi and Schneider (2016), our primary interest is to

study conditions under which housing can or must be overvalued, in the sense that

equilibrium housing prices contain a speculative aspect. Our paper belongs to the

so-called “rational bubble literature” that studies bubbles as speculation, which

was pioneered by Samuelson (1958), Bewley (1980), Tirole (1985), Scheinkman

and Weiss (1986), Kocherlakota (1992), and Santos and Woodford (1997). Theo-

retical foundations and applications of rational bubble include Huang and Werner

(2000), Caballero and Krishnamurthy (2006), Bloise and Citanna (2019), and

Brunnermeier, Merkel, and Sannikov (2024), among others.4

It is well known in the rational bubble literature that there is a fundamental

difficulty in generating bubbles in dividend-paying assets: there is a discontinuity

in proving the existence of a bubble between zero-dividend assets (pure bubble as-

sets like fiat money or cryptocurrency) and dividend-paying assets (like housing).

This difficulty follows from Santos and Woodford (1997, Theorem 3.3, Corollary

3.4), who show that, when the asset pays nonnegligible dividends relative to the

aggregate endowment, bubbles are impossible. This “Bubble Impossibility Theo-

rem” has been extended under alternative financial constraints by Kocherlakota

(2008) and Werner (2014). Due to the fundamental difficulty, the rational bub-

ble literature has almost exclusively focused on pure bubbles without dividends.

While pure bubble models are useful in describing money or cryptocurrency, as

4See Hirano and Toda (2024a) for a recent review of the rational bubble literature. Brunner-
meier and Oehmke (2013) survey the broader literature with alternative approaches including
heterogeneous beliefs (Scheinkman and Xiong, 2003; Fostel and Geanakoplos, 2012), asymmetric
information (Abreu and Brunnermeier, 2003; Barlevy, 2014; Allen et al., 2022), liquidity (Branch
et al., 2016; Lagos et al., 2017), among others. See Hirano and Toda (2025b) for a discussion of
other approaches as well as the confusion in the literature.
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Hirano and Toda (2024a, §4.7) argue, pure bubble models are subject to criticisms

such as (i) the lack of realism due to zero dividends, (ii) the lack of robustness due

to equilibrium indeterminacy (i.e., the existence of a continuum of pure bubble

equilibria), and (iii) the inability to connect to the large empirical literature that

uses dividends to test whether asset prices reflect fundamentals (Shiller, 1981;

Phillips and Shi, 2020). Our model circumvents all these issues because housing

endogenously generates positive rents in a way consistent with Santos and Wood-

ford (1997). We note that pure bubble models often consider a (hypothetical)

economy in which there is no housing or land in the first place and then show

that under some conditions (e.g., a rise in young’s income), pure bubbles can

arise (possibility), and equilibria are indeterminate. However, bubbles inevitably

emerge (necessity) if and only if we consider an economy with housing from the

beginning, and equilibria are determinate. Therefore, the economic insights are

markedly different between the cases with zero and positive rents.

Within the rational bubble literature, there are several papers that study hous-

ing bubbles, including Caballero and Krishnamurthy (2006), Kocherlakota (2009,

2013), Arce and López-Salido (2011), Zhao (2015), Chen and Wen (2017), and

Graczyk and Phan (2021). However, in these papers, either housing does not gen-

erate housing services or the rental market is missing and housing do not generate

rents, so the fundamental value of housing is zero, which is essentially the same

as pure bubbles. Furthermore, most of these papers employ logarithmic utility,

which corresponds to the case γ = 1 in our model. As we show in Appendix

C.2, under this common but knife-edge parameter specification, housing bubbles

do not arise if housing generates rents. Hence there is another discontinuity in

generating housing bubbles between the cases with zero and positive rents.

Due to the aforementioned fundamental difficulty of attaching bubbles to

dividend-paying assets, there are only a handful papers that treat this topic. Wil-

son (1981, §7) provides the first example of bubbles attached to dividend-paying

assets (see Hirano and Toda (2025a, Example 1) for more discussion of this exam-

ple). Tirole (1985, Proposition 1(c)) recognizes that, with dividend-paying assets,

bubbles could be necessary for equilibrium existence if the bubbleless interest rate

is less than the dividend growth rate. There are important differences from Tirole

(1985) and our results. (i) First, Tirole introduces a dividend-paying asset into the

Diamond (1965) OLG model and assumes exogenous and constant dividends. In

contrast, in our model housing prices and rents are both endogenous. Under this

circumstance, it is not obvious whether housing prices can or must grow faster

than rents, i.e., whether housing bubbles can or must arise. (ii) Second, and more

6



importantly, the recent paper of Pham and Toda (2025) revisits Tirole’s model

and shows that his results require some qualifications. In particular, they pro-

vide a counterexample to Tirole (1985, Proposition 1(c)) based on a closed-form

solution, in which the unique equilibrium is fundamental.

Hirano and Toda (2025a) establish the concept of the necessity of bubbles in

modern macro-finance models including OLG models and Bewley-type infinite-

horizon models. Hirano and Toda (2025c) prove a bubble necessity theorem in

economies with aggregate risk when land is used as a production factor and the

productivities and the elasticity of substitution in the production function sat-

isfy some conditions. Our results build on these earlier papers (see, for instance,

Lemma B.2) but there are important differences. (i) Although dividends are ex-

ogenous in Hirano and Toda (2025a), in our model rents are endogenous. As

noted in the introduction, this difference is significant. Nevertheless, we charac-

terize the long-run rent growth rate in all equilibria (Theorem 2), and we identify

the importance of the income ratio between the young and old and the elasticity

of substitution between consumption and housing for endogenously satisfying the

bubble necessity condition. (ii) Hirano and Toda (2025a) do not study how the

equilibria look like, but we provide a complete analysis of the long-run behavior of

equilibria using the local stable manifold theorem. (iii) Unlike Hirano and Toda

(2025c), who focus on the role of the supply side (productivities and elasticity

of substitution, both associated with the production function) for the emergence

of land price bubbles, we focus on the role of the demand side for housing in

generating housing bubbles, namely the income of home buyers and the elasticity

of substitution between consumption and housing.5 (iv) We derive a new insight

that the determination of housing prices changes significantly at different stages of

economic development. Using this insight, in §4.2, we analyze the role of expecta-
tions in the formation and bursting of housing bubbles, and then in §6, we discuss
testable implications that empirical researchers can exploit to test our theory.

Finally, from a theoretical perspective, the dynamics involving housing in the

process of economic development in our model is characterized by unbalanced

growth, which is closely related to the dynamics in the literature on structural

transformation (Baumol, 1967; Matsuyama, 1992; Acemoglu and Guerrieri, 2008;

Buera and Kaboski, 2012; Fujiwara and Matsuyama, 2024). In this literature,

there are two approaches to the factors that generate unbalanced growth: one

5In addition, Hirano and Toda (2025c) assume Cobb-Douglas utility with the old having zero
income for analytical tractability, whereas the preferences and endowments in our model are
general.
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focusing on the demand side and the other on the supply side (Acemoglu, 2009,

§21.1-2). In our model, unbalanced growth occurs due to demand factors for

housing. A critical difference from the literature is that we derive asset pricing

implications under unbalanced growth, whereas the literature abstracts away from

asset prices. To our knowledge, the present paper would be the first to simulta-

neously show unbalanced growth and the emergence of bubbles attached to real

assets due to demand factors.

2 Model

2.1 Primitives

Time is discrete and indexed by t = 0, 1, . . . . We consider a deterministic over-

lapping generations (OLG) economy in which agents live for two periods (young

and old age) and demand a consumption good and housing service. We employ an

OLG model because it allows us to capture life-cycle behaviors regarding housing

demand in a simple setting.

Commodities, asset, and endowments There are two perishable commodi-

ties (consumption good and housing service) and a durable non-reproducible asset

(housing stock) in the economy. The housing service is the right to occupy a hous-

ing unit between two periods. Every period, one unit of housing stock inelastically

produces one unit of housing service. The time t endowment of the consumption

good is eyt > 0 for the young and eot > 0 for the old. At t = 0, the housing stock

(whose aggregate supply is normalized to 1) is owned by the old.

Preferences An agent born at time t lives for two periods and has utility func-

tion U(cyt , c
o
t+1, ht), where cyt > 0 is consumption when young, cot+1 > 0 is con-

sumption when old, and ht > 0 is housing service consumed when transitioning

from young to old. As usual, we assume that U : R3
++ → R is continuously dif-

ferentiable, has strictly positive first partial derivatives, is strictly quasi-concave,

and satisfies Inada conditions to guarantee interior solutions. The initial old care

only about their consumption co0.

Markets We consider an ideal world in which the ownership and occupancy

of housing are separated and traded at competitive frictionless markets: agents
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trade housing (a financial asset) only to store value (transfer resources across time),

whereas they purchase housing service (a commodity) only to derive utility.6

Let rt be the price of housing service (rent) and Pt be the housing price (ex-

cluding current rent) quoted in units of time t consumption. Let xt denote the

demand for the housing stock. Then the budget constraints of generation t are

Young: cyt + Ptxt + rtht ≤ eyt , (2.1a)

Old: cot+1 ≤ eot+1 + (Pt+1 + rt+1)xt. (2.1b)

The budget constraint of the young (2.1a) states that the young spend income

on consumption, purchase of housing stock, and rent. The budget constraint of

the old (2.1b) states that the old consume the endowment and the income from

renting and selling housing.

Equilibrium As usual, an equilibrium is defined by individual optimization and

market clearing.

Definition 1. A rational expectations equilibrium consists of a sequence of prices

{(Pt, rt)}∞t=0 and allocations {(cyt , cot , ht, xt)}∞t=0 such that for each t, (i) (Individ-

ual optimization) the young maximize utility U(cyt , c
o
t+1, ht) subject to the budget

constraints (2.1), (ii) (Commodity market clearing) cyt + cot = eyt + eot , (iii) (Rental

market clearing) ht = 1, (iv) (Housing market clearing) xt = 1.

Note that because the old exit the economy, the young are the natural buyers

of housing, which explains the housing market clearing condition xt = 1.

2.2 Equilibrium and housing bubble

We characterize the equilibrium and define housing bubbles. Using the rental and

housing market clearing conditions ht = xt = 1 and the budget constraint (2.1),

we obtain

(cyt , c
o
t ) = (eyt − Pt − rt, e

o
t + Pt + rt) = (eyt − St, e

o
t + St), (2.2)

6Therefore, nothing prevents agents from purchasing a mansion as an investment while renting
a campsite to sleep, or vice versa. Owner-occupants can be thought of agents who rent the
houses they own to themselves. However, because in our model agents within a generation are
homogeneous, in equilibrium each young agent demands one unit of housing and one unit of
housing service, so the agents end up being owner-occupants.
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where St := Pt + rt is total expenditure on housing. Throughout the paper, we

refer to Pt as the housing price and St as the housing expenditure. Let

Rt :=
Pt+1 + rt+1

Pt

=
St+1

Pt

(2.3)

be the implied gross risk-free rate between time t and t+1. Then the two budget

constraints in (2.1) can be combined into one as

cyt +
cot+1

Rt

+ rtht ≤ eyt +
eot+1

Rt

. (2.4)

In what follows, to simplify notation, we often use (y, z) in place of (cy, co) and

hence write U(y, z, h) instead of U(cy, co, h).7 Letting λt ≥ 0 be the Lagrange

multiplier associated with the combined budget constraint (2.4), we obtain the

first-order conditions

(Uy, Uz, Uh) = λt(1, 1/Rt, rt), (2.5)

where we use the shorthand for partial derivatives Uy := ∂U/∂y, Uz := ∂U/∂z,

and Uh := ∂U/∂h, which are evaluated at

(y, z, h) = (eyt − St, e
o
t+1 + St+1, 1). (2.6)

Using (2.5), we obtain 1/Rt = Uz/Uy and rt = Uh/Uy. Combining these two

equations, the definition of Rt in (2.3), and St = Pt + rt, we obtain

St+1Uz = StUy − Uh, (2.7)

where the partial derivatives of U are evaluated at (2.6). The following theorem

establishes the existence of equilibrium and characterizes equilibrium quantities.

Theorem 1 (Existence and characterization of equilibrium). The following state-

ments are true.

(i) A rational expectations equilibrium exists.

(ii) An equilibrium has a one-to-one correspondence with the sequence {St}∞t=0

satisfying 0 < St < eyt and the nonlinear difference equation (2.7).

7The mnemonic is that y is the first letter of “young” and z is the next alphabet.
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(iii) The equilibrium quantities are given by

(cyt , c
o
t ) = (eyt − St, e

o
t + St), (2.8a)

Pt = St − (Uh/Uy)(e
y
t − St, e

o
t+1 + St+1, 1), (2.8b)

rt = (Uh/Uy)(e
y
t − St, e

o
t+1 + St+1, 1), (2.8c)

Rt = (Uy/Uz)(e
y
t − St, e

o
t+1 + St+1, 1). (2.8d)

Proof. The existence of equilibrium is standard (Balasko and Shell, 1980) and

follows from the same argument as the proof of Hirano and Toda (2025a, Theorem

1). The equilibrium quantities (2.8) follow from the preceding argument.

By Theorem 1, an equilibrium is fully characterized by the sequence of housing

expenditures {St}∞t=0. For this reason, we often refer to {St}∞t=0 as an equilibrium

without specifying each object in Definition 1.

Following the standard definition of rational bubbles in the literature, we say

there is a housing bubble if the housing price exceeds its fundamental value defined

by the present value of rents. (See Appendix B for a self-contained exposition.)

Let Rt > 0 be the equilibrium gross risk-free rate. Let qt > 0 be the Arrow-

Debreu price of date-t consumption in units of date-0 consumption, so q0 = 1 and

qt = 1/
∏t−1

s=0Rs. The fundamental value of housing is the present value of rents

Vt :=
1

qt

∞∑
s=t+1

qsrs. (2.9)

Definition 2. A rational expectations equilibrium is fundamental if Pt = Vt for

all t and bubbly if Pt > Vt for all t.

Appendix B shows that an equilibrium is either fundamental or bubbly.

2.3 Additional assumptions

To make qualitative predictions, we put more structure by specializing the utility

function and endowments.

Assumption 1 (Endowments). There exist G > 1, e1, e2 > 0, and T > 0 such

that the endowments are (eyt , e
o
t ) = (e1G

t, e2G
t) for t ≥ T .

Assumption 1 implies that in the long run, the economy exogenously grows

at rate G > 1 and the income ratio between the young and old is constant.
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We assume exogenous growth of endowments and fixed supply of housing as the

simplest benchmark to illustrate the key mechanism of housing bubbles.8

Assumption 2 (Utility). The utility function takes the form

U(y, z, h) = u(c(y, z)) +mu(h), (2.10)

where (i) the composite consumption c(y, z) is homogeneous of degree 1 and quasi–

concave, (ii) the utility of composite consumption/housing service is u(c) = c1−γ

1−γ

for some γ > 0 (u(c) = log c if γ = 1), and (iii) m > 0 is a marginal utility

parameter.

Assumption 2(i) implies that agents (apart from the initial old) care about

consumption (cy, co) only through the homothetic composite consumption c(cy, co),

which (together with Assumption 1) allows us to study asymptotically balanced

growth paths. Assumption 2(ii) implies that agents have constant elasticity of

substitution 1/γ > 0 between consumption and housing service.9

Throughout the main text, we focus on the case γ < 1 (so the elasticity

of substitution between consumption and housing 1/γ exceeds 1) and defer the

analysis of the case γ ≥ 1 to Appendix C. There are three reasons for doing so.

First, γ < 1 is the empirically relevant case (Footnote 3). Second, γ = 1 is a

knife-edge case. Third, as we show in Proposition C.1, the equilibrium with γ > 1

is pathological and counterfactual: the young asymptotically spend all income on

housing (purchase and rent); the price-rent ratio converges to zero; and the gross

risk-free rate diverges to infinity. Hence the case γ > 1 is economically irrelevant.

Since by Assumption 2(i) c is homogeneous of degree 1 and quasi-concave,

Theorem 11.14 of Toda (2025, p. 158) implies that c is actually concave. Because

we wish to study smooth interior solutions, we further strengthen the assumption

on utility as follows.

Assumption 3 (Composite consumption). The composite consumption c : R2
++ →

(0,∞) is homogeneous of degree 1, twice continuously differentiable, and satisfies

cy > 0, cz > 0, cyy < 0, czz < 0, cy(0, z) =∞, cz(y, 0) =∞.

8In Figure 5 of Appendix D, we document empirical evidence that economic growth is faster
than the growth of housing supply. We can extend our model to include endogenous growth,
as studied in Hirano, Jinnai, and Toda (2022), and variable housing supply by introducing the
construction of new housing.

9The functional form (2.10) implies that we first aggregate young and old consumption, and
then housing service. Our main results are not affected if we change the utility function to
U(y, z, h) = c(u−1(u(y) +mu(h)), z) so that we first aggregate young consumption and housing
service, and then old consumption.
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A typical functional form for c satisfying Assumption 3 is the constant elasticity

of substitution (CES) specification

c(y, z) =

{
((1− β)y1−σ + βz1−σ)

1
1−σ if 0 < σ ̸= 1,

y1−βzβ if σ = 1,
(2.11)

where 1/σ is the elasticity of intertemporal substitution and β ∈ (0, 1) dictates

time preference.

3 Housing prices in the long run

In this section, we study the long-run behavior of equilibrium housing prices.

3.1 Long-run properties of equilibria

We present two results that are crucial for the subsequent analysis.

Lemma 3.1 (Backward induction). Suppose Assumptions 2 and 3 hold. If ST =

{St}∞t=T is an equilibrium starting at t = T , there exists a unique equilibrium

S0 = {St}∞t=0 starting at t = 0 that agrees with ST for t ≥ T .

Lemma 3.1 shows that once we establish the existence of equilibrium starting

at t = T , we may uniquely extend the equilibrium path backward in time, which

allows us to focus on the long-run behavior of the economy and guarantees the

uniqueness of the transitional dynamics. Since by Assumption 1 the endowments

eventually grow at a constant rate G, unless otherwise stated, without loss of

generality we assume that endowments are (eyt , e
o
t ) = (e1G

t, e2G
t) for all t.

In our model, housing rents are endogenous, unlike the setting in Hirano and

Toda (2025a). To apply the Bubble Necessity Theorem (Lemma B.2), we need to

characterize the long-run rent growth rate. The following theorem, which is the

main technical contribution of this paper, exactly achieves this.

Theorem 2 (Long-run rent growth). Suppose Assumptions 1–3 hold and γ < 1.

Then in any equilibrium, the long-run rent growth rate is

Gr := lim sup
t→∞

r
1/t
t = Gγ. (3.1)

The intuition for Theorem 2 is the following. Since endowments grow at rate

G and the elasticity of substitution between consumption and housing service
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is 1/γ, the marginal rate of substitution (which equals rent) must grow at rate

Gγ. Of course, the proof is not straightforward because Theorem 2 refers to any

equilibrium.10

We next define the long-run equilibrium. By Assumption 2, the equilibrium

dynamics (2.7) becomes

St+1cz = Stcy −mcγ, (3.2)

where c, cy, cz are evaluated at (y, z) = (eyt − St, e
o
t+1 + St+1). To study asymptot-

ically balanced growth paths, let st := St/e
y
t = St/(e1G

t) be the housing expen-

diture normalized by the income of the young. Since c is homogeneous of degree

1, its partial derivatives cy, cz are homogeneous of degree 0. Therefore, dividing

both sides of (3.2) by e1G
t, we obtain

Gst+1cz = stcy −meγ−1
1 G(γ−1)tcγ, (3.3)

where c, cy, cz are evaluated at (y, z) = (1− st, G(w + st+1)) for the old to young

income ratio w := e2/e1.

When γ < 1, the difference equation (3.3) explicitly depends on time t (is non-

autonomous), which is inconvenient for analysis. To convert it to an autonomous

system, define the auxiliary variable ξt = (ξ1t, ξ2t) by ξ1t = st = St/(e1G
t) and

ξ2t = eγ−1
1 G(γ−1)t. Then the one-dimensional non-autonomous nonlinear difference

equation (3.3) reduces to the two-dimensional autonomous nonlinear difference

equation Φ(ξt, ξt+1) = 0, where

Φ1(ξ, η) = Gη1cz − ξ1cy +mcγξ2, (3.4a)

Φ2(ξ, η) = η2 −Gγ−1ξ2 (3.4b)

and c, cy, cz are evaluated at (y, z) = (1− ξ1, G(w + η1)) with w := e2/e1. We can

now define a long-run equilibrium.

Definition 3. A rational expectations equilibrium {St}∞t=0 is a long-run equilib-

rium if the sequence of auxiliary variables {ξt}∞t=0 is convergent.

If ξt → ξ, since G > 1 and γ ∈ (0, 1), we have Φ(ξ, ξ) = 0 if and only if ξ2 = 0

and ξ1(Gcz − cy) = 0, where cy, cz are evaluated at (y, z) = (1 − ξ1, G(w + ξ1)).

10For readers that are curious but do not wish to read the proof, we provide a brief explanation.
We first prove an intermediate result lim inf G−tSt < e1, implying that the young’s saving
rate is strictly positive. To prove this by contradiction, assume lim inf G−tSt ≥ e1 and hence
G−tSt → e1 (because G−tSt ≤ e1 necessarily by the budget constraint). Then we can show that
the equilibrium is simultaneously bubbly and fundamental, which is impossible. The rest of the
proof is straightforward.
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Clearly ξ∗f := (0, 0) is a steady state of Φ, which we refer to as the fundamental

steady state.11 In order for Φ to have a nontrivial (ξ1 = s > 0) steady state,

which we refer to as the bubbly steady state, it is necessary and sufficient that

Gcz − cy = 0.

3.2 (Non)existence of fundamental equilibria

As a benchmark, we start our analysis with the existence, and possibly nonex-

istence, of fundamental equilibria. By Theorem 2, the rent must asymptotically

grow at rate Gγ. Hence if the housing price equals its fundamental value (present

value of rents), it must also grow at rate Gγ. But since endowments grow faster at

rate G > Gγ, the expenditure share of housing converges to zero in the long run

and the consumption allocation becomes autarkic: (cyt , c
o
t ) ∼ (e1G

t, e2G
t). This

argument suggests that in any fundamental equilibrium, the interest rate behaves

like

Rt =
cy
cz
(cyt , c

o
t+1) ∼

cy
cz
(e1G

t, e2G
t+1) =

cy
cz
(1, Gw), (3.5)

where w := e2/e1 is the old to young income ratio and we have used the homo-

geneity of c (Assumption 2(i)). Obviously, for the fundamental value of housing

to be finite, the interest rate cannot fall below the rent growth rate Gγ in the long

run. This heuristic argument motivates the following (non)existence result.

Theorem 3 ((Non)existence of fundamental equilibria). Suppose Assumptions

1–3 hold, γ < 1, and let w = e2/e1. Then the following statements are true.

(i) There exists a unique w∗
f > 0 satisfying

cy
cz
(1, Gw∗

f ) = Gγ. (3.6)

(ii) If w > w∗
f , there exists a fundamental long-run equilibrium. The equilibrium

11The terminology “steady state” is subtle. The steady state ξ∗ corresponds to the detrended
system Φ(ξt, ξt+1) = 0, not the original economy. The long-run equilibrium in the original
economy is an asymptotically balanced growth path that corresponds to a particular sequence
{ξt}∞t=0 ⊂ R2

++ converging to ξ∗ that is consistent with the initial conditions and the equilibrium
condition Φ(ξt, ξt+1) = 0.
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objects have the order of magnitude

(cyt , c
o
t ) ∼ (e1G

t, e2G
t), (3.7a)

(Pt, rt) ∼
(
meγ1

Gγcz
cy −Gγcz

cγ

cy
Gγt,meγ1

cγ

cy
Gγt

)
, (3.7b)

Rt ∼
cy
cz

> Gγ, (3.7c)

where c, cy, cz are evaluated at (y, z) = (1, Gw).

(iii) If w < w∗
f , there exist no fundamental equilibria. All equilibria are bubbly

with lim inft→∞ G−tPt > 0.

Although the conclusion that fundamental equilibria may fail to exist (unlike

in pure bubble models, in which fundamental equilibria always exist) is surprising,

its intuition is actually straightforward. As discussed above, in any fundamental

equilibrium, the consumption allocation is asymptotically autarkic and the interest

rate is pinned down as the marginal rate of intertemporal substitution evaluated

at the autarkic allocation. Hence the order of magnitude (3.7) immediately fol-

lows from the general analysis in Theorem 1. Because both the housing price and

rent grow at rate Gγ, the interest rate (which equals the return on housing by no-

arbitrage) must exceed Gγ as in (3.7c). Hence, the no-bubble condition holds and

the housing price just reflects the fundamentals. As the young to old income ratio

1/w = e1/e2 rises, the autarkic interest rate falls. But it cannot fall below the

rent growth rate Gγ, for otherwise the fundamental value would become infinite,

which is impossible in equilibrium. Therefore, there cannot be any fundamental

equilibria if the young are sufficiently rich. The threshold for the nonexistence of

fundamental equilibria is determined by equating the marginal rate of intertem-

poral substitution to the rent growth rate Gγ, which is precisely the condition

(3.6).

It is important to recognize the differences in statements (ii) and (iii). All

statement (ii) claims is that there exists a fundamental long-run equilibrium sat-

isfying the order of magnitude (3.7). It does not rule out the possibility that there

are other equilibria that are potentially cyclic or chaotic. In contrast, statement

(iii) is much stronger. Under the condition w < w∗
f , it claims that no fundamental

equilibria can exist at all, regardless of the asymptotic behavior such as conver-

gent, cyclic, or chaotic. The proof of Theorem 3(iii) is an application of the Bubble

Necessity Theorem (Lemma B.2), where the long-run rent growth rate established

in Theorem 2 plays a crucial role.
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3.3 Existence of bubbly equilibria

Theorem 3 establishes a necessary and sufficient condition for the existence of

a fundamental equilibrium. In particular, if the young are sufficiently rich and

w < w∗
f , fundamental equilibria do not exist and hence bubbles are inevitable. The

following theorem provides a necessary and sufficient condition for the existence

of a bubbly long-run equilibrium.

Theorem 4 (Existence of bubbly long-run equilibrium). Suppose Assumptions

1–3 hold, γ < 1, and let w = e2/e1. Then the following statements are true.

(i) There exists a unique w∗
b > w∗

f satisfying

cy
cz
(1, Gw∗

b ) = G, (3.8)

which depends only on G and c. A bubbly steady state of the system (3.4)

exists if and only if w < w∗
b , which is uniquely given by ξ∗b = (s∗, 0) with

s∗ =
w∗

b−w

w∗
b+1

.

(ii) For generic G > 1 and w < w∗
b , there exists a bubbly long-run equilibrium.

The equilibrium objects have the order of magnitude

(cyt , c
o
t ) ∼ ((1− s∗)e1G

t, (w + s∗)e1G
t), (3.9a)

(Pt, rt) ∼
(
s∗e1G

t,meγ1
cγ

cy
Gγt

)
, (3.9b)

Rt ∼ G, (3.9c)

where c, cy are evaluated at (y, z) = (1− s∗, G(w + s∗)).

We explain the intuition for the following points: (i) Why does the bubbly

equilibrium interest rate R equal the economic growth rate G? (ii) Why do the

young need to be sufficiently rich for the emergence of bubbles? (iii) Why is the

condition γ < 1 important for the emergence of bubbles? The intuition for (i) is

the following. In order for a housing bubble to exist in the long run, housing price

must asymptotically grow at the same rate G as the economy as in (3.9b): clearly

housing price cannot grow faster than G (otherwise the young cannot afford hous-

ing); if it grows at a lower rate than G, housing becomes asymptotically irrelevant.

Because housing price grows at rate G but the rent grows at rate Gγ < G, the

interest rate (2.3) must converge to G as in (3.9c). The intuition for (ii) is the

following. With bubbles, we know R = G. Because the young are saving through
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the purchase of housing, the lowest possible interest rate in the economy is the

autarkic interest rate. Therefore, for the emergence of bubbles, the autarkic inter-

est rate must be lower than the economic growth rate, or equivalently the young

must be sufficiently rich. The condition (3.8), which equates the marginal rate of

intertemporal substitution to the growth rate (long-run interest rate), determines

the income ratio threshold for which such a situation is possible. The intuition for

(iii) is the following. With bubbles, we know R = G and the housing price grows

at the same rate. Then the no-arbitrage condition (2.3) forces the rents relative

to the prices to be negligible (grow slower), for otherwise the interest rate will

exceed the housing price growth rate and there will be no bubbles. Thus for the

emergence of bubbles, we need G > Gγ and hence γ < 1.

In this bubbly equilibrium, the housing expenditure St and rent rt asymptot-

ically grow at rates G and Gγ < G, respectively. On the other hand, since the

gross risk-free rate (3.9c) converges to G and the rent grows at rate Gγ < G, the

present value of rents—the fundamental value of housing Vt in (2.9)—is finite and

grows at rate Gγ. Then the ratio St/Vt grows at rate G1−γ > 1, so the housing

price eventually exceeds the fundamental value and there is a bubble. Moreover,

from a backward induction argument, we will have housing bubbles at all dates.

In the bubbly equilibrium, the housing price grows faster than the rent and

is disconnected from fundamentals in the sense that the housing price is asymp-

totically independent of the preferences for housing. To see this, note that the

threshold w∗
b in (3.8) depends only on the growth rate G and the utility of con-

sumption c. Then the steady state s∗ depends only on G, c, and incomes (e1, e2),

and so does the asymptotic housing price in (3.9b). In particular, the housing

price is asymptotically independent of the marginal utility of housing m as well as

the elasticity of substitution 1/γ between consumption and housing. In contrast,

the rent in (3.9b) does depend on these parameters.

3.4 Uniqueness of equilibria

Although it is natural to focus on equilibria converging to steady states (i.e., long-

run equilibria), there may be other equilibria. In general, an equilibrium is called

locally determinate if there are no other equilibria in a neighborhood of the given

equilibrium. If a model does not make determinate predictions, its value as a tool

for economic analysis is severely limited (Kehoe and Levine, 1985). Therefore,

local determinacy of equilibrium is crucial for applications.

It is well known that equilibria in Arrow-Debreu economies are generically
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locally determinate (Debreu, 1970) but not necessarily so in OLG models (Gale,

1973; Geanakoplos and Polemarchakis, 1991). In our context, local determinacy

means that there are no other equilibria converging to the same steady state.

However, we already know the uniqueness of steady states, and we also know

that Lemma 3.1 allows us to establish global properties of equilibrium. Thus

in our model, local determinacy implies equilibrium uniqueness, which justifies

comparative statics and dynamics.

The local determinacy of a dynamic general equilibrium model often depends

on the elasticity of intertemporal substitution (EIS) defined by

ε(y, z) = −
(
d log(cy/cz)

d log(y/z)

)−1

; (3.10)

see the discussion in Flynn et al. (2023). When c is homogeneous of degree 1,

we can show that ε = cycz
ccyz

(Lemma A.1). The following proposition provides a

sufficient condition for the uniqueness of equilibria.

Proposition 3.1 (Uniqueness of equilibria). Suppose Assumptions 1–3 hold and

γ < 1. Let w = e2/e1 and w∗
f , w

∗
b be as in (3.6) and (3.8). Then the following

statements are true.

(i) If w > w∗
f , there exists a unique fundamental long-run equilibrium.

(ii) If w < w∗
b and the elasticity of intertemporal substitution (3.10) satisfies

1− w∗
b

2

1− w/w∗
b

1 + w
< ε(y, z) ̸= 1− w/w∗

b

1 + w
(3.11)

at (y, z) = (1 − s∗, G(w + s∗)) with s∗ =
w∗

b−w

w∗
b+1

, then there exists a unique

bubbly long-run equilibrium.

Theorem 3(ii) shows that all fundamental long-run equilibria are asymptot-

ically equivalent. Proposition 3.1(i) shows that the fundamental equilibrium is

actually unique. The right-hand side of (3.11) is less than 1 because 0 < w < w∗
b .

Therefore, the left-hand side of (3.11) is less than 1/2. Proposition 3.1(ii) thus

states that the bubbly equilibrium in Theorem 4(ii) is locally determinate as long

as the elasticity of intertemporal substitution (EIS) is not too much below 1/2.12

The intuition for Proposition 3.1 is as follows. Whether the bubbly equilibrium

is locally determinate or not depends on the stability of linearized system around

12In general equilibrium theory, it is well known that multiple equilibria are possible if the
elasticity is low; see Toda and Walsh (2017) for concrete examples and Toda and Walsh (2024)
for a recent review.
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the steady state ξ∗b . It turns out that one eigenvalue is λ2 := Gγ−1 < 1, which

is stable. The other eigenvalue λ1 could be greater than 1 in modulus (unstable)

or less (stable), depending on the model parameters. We find that as long as the

EIS is not too much below 1/2 (namely the left inequality of (3.11) holds) and

is distinct from the special value in the right-hand side of (3.11) (in which case

linearization is inapplicable due to a singularity), then |λ1| > 1 (unstable). Since

the dynamics has one endogenous initial condition (because ξ0 = (s0, e
γ−1
1 ) and

the initial young income e1 is exogenous), the equilibrium is locally determinate:

there exists a unique equilibrium path converging to the steady state if e1 is large

enough. Then the existence and uniqueness of equilibrium with arbitrary e1 follows

from the backward induction argument in Lemma 3.1. The same argument applies

to the fundamental equilibrium, although in this case we have λ1 > 1 regardless

of the EIS.

4 Possibility, necessity, and phase transition

Having established the existence and determinacy of equilibria, in this section

we further develop the intuition, discuss expectation-driven housing bubbles, and

present comparative dynamics exercises using a numerical example.

4.1 Two-stage phase transition along economic develop-

ment

Theorems 3 and 4 imply that, as the young (more precisely, home buyers) become

richer, the economy experiences two phase transitions in the process of economic

development, as illustrated in Figure 1, which shows how the elasticity of sub-

stitution between consumption and housing service 1/γ and young to old income

ratio 1/w = e1/e2 affect the equilibrium housing price regimes. (The case 1/γ ≤ 1

is treated in Appendix C.) We capture economic development with changes in

the long-run income ratio of the young (home buyers) relative to the old (home

sellers).

When the young to old income ratio 1/w = e1/e2 is below the bubbly equilib-

rium threshold 1/w∗
b , the young do not have sufficient purchasing power to drive

up the housing price and only fundamental equilibria exist (Theorem 3(ii)). In

this fundamental regime, the housing price grows at rate Gγ, which is lower than

both the interest rate R and the economic growth rate G. In the long run, the

expenditure share of housing converges to zero and the consumption allocation
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1/γ
Elasticity of substitution

1/w = e1/e2
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1/w∗
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1/w∗
b
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Fundamental regime(Thm. 3)

Bubble possibility regime

Bubble necessity regime(Thm. 4)

Young

rich

poor

Figure 1: Phase transition of equilibrium housing price regimes.

Note: 1/w = e1/e2 is the young to old income ratio and w∗
f , w

∗
b are the thresholds for the bubble

necessity and possibility regimes defined by (3.6) and (3.8), respectively. The figure corresponds
to the CES utility (2.11) with β = 1/2, σ = 1, and G = 1.5.

becomes autarkic (see (3.7a)).

When the income ratio of the young exceeds the first critical value 1/w∗
b , the

economy transitions to the bubble possibility regime in which fundamental and

bubbly equilibria coexist (Theorem 4). In this regime, although each equilibria are

determinate, which equilibrium will be selected depends on agents’ expectations.

When the income ratio of the young exceeds the second and still higher critical

value 1/w∗
f , fundamental equilibria cease to exist and all equilibria become bub-

bly (Theorem 3(iii)). Bubbles are necessary for the existence of equilibrium and

the bubble necessity regime emerges. In this regime, the housing price is asymp-

totically determined only by the economic growth rate G and the preference for

consumption goods c, and thus the housing price inevitably becomes disconnected

from fundamentals.

The intuition for the necessity of housing bubbles when the young are suffi-

ciently rich is the following. As discussed above, in any fundamental equilibrium,

the expenditure share of housing converges to zero and the consumption alloca-

tion becomes autarkic. However, as the young get richer (the young to old income

ratio 1/w increases), the interest rate R = (cy/cz)(1, Gw) falls (Figure 2). If R

gets lower than a critical value, the economy enters the bubble possibility regime.

21



Hence, housing bubbles driven by optimistic expectations may be possible. As the

income ratio increases further, the fundamental equilibrium interest rate becomes

lower than the rent growth rate Gγ. If the economy enters that situation, the only

possible equilibrium is one that features a housing bubble.

1/w = e1/e2

R

0 1/w∗
b 1/w∗

f

poor ← Young → rich

Bubbly equilibrium
G

Fundamental equilibriumGγ

Fundamental Possibility Bubble necessity

Figure 2: Housing price regimes and equilibrium interest rate.

Note: see Figure 1 for explanation of parameters.

Furthermore, we emphasize that once the state of the economy changes to the

housing bubble economy, whether by expectations or by necessity, the determina-

tion of housing prices becomes purely demand-driven: the housing price continues

to rise due to sustained demand growth arising from income growth of the young

(home buyers). In contrast, when housing prices reflect fundamentals, it equals

the present value of housing rents and hence its determination is supply-driven.

The demand-driven housing price dynamics is a distinctive feature of the housing

bubble economy.

We would like to add an important remark concerning the knife-edge case with

γ = 1, i.e., the Cobb-Douglas case, which is often employed in housing models

or macroeconomic analyses (Kocherlakota, 2009; Arce and López-Salido, 2011).

When γ = 1, steady-state (balanced) growth emerges, in which case housing rents

and prices grow at the same rate and therefore housing bubbles are impossible.

This result has critically important implications for the method of macroeconomic

modeling. As long as we construct a model so that only steady-state growth with

stationarity emerges, by model construction, housing bubbles can never occur.
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What our analyses show is that once we deviate from the knife-edge restriction,13

asset pricing implications become markedly different. This implies that the essence

of housing bubbles is nonstationarity. (See also the introduction and concluding

remarks in Hirano and Toda (2024a).)

4.2 Expectation-driven housing bubbles along economic

development

We illustrate the preceding analysis and the role of expectations with a numerical

example. Suppose the composite consumption takes the CES form (2.11). A

straightforward calculation yields

cy = (1− β)(y/c)−σ and cz = β(z/c)−σ. (4.1)

Using (3.6), (3.8), and (4.1), we can solve for the critical values for the existence

of fundamental and bubbly equilibria as

1− β

β
(Gw∗

f )
σ = Gγ ⇐⇒ w∗

f =

(
β

1− β
Gγ−σ

)1/σ

, (4.2a)

1− β

β
(Gw∗

b )
σ = G ⇐⇒ w∗

b =

(
β

1− β
G1−σ

)1/σ

. (4.2b)

Substituting (4.1) into (3.2), we obtain

βSt+1z
−σ = (1− β)Sty

−σ −mcγ−σ, (4.3)

where (y, z) = (eyt − St, e
o
t+1 + St+1). To solve for the equilibrium numerically, we

can take a large enough T , set ST = s∗eyT with steady state value s∗ defined by

s∗ =

0 if fundamental equilibrium,
w∗

b−w

w∗
b+1

if bubbly equilibrium,

and solve the nonlinear equation (4.3) backwards for ST−1, . . . , S0. Note that the

backward calculations of {St}Tt=0 are always possible by Lemma 3.1.

As a numerical example, we set β = 1/2, σ = 1, γ = 1/2, m = 0.1, and

G = 1.1. The income ratio threshold for the bubble possibility regime (4.2b)

13As is well known as the “Uzawa steady-state (balanced) growth theorem” (Uzawa, 1961), any
growth model that produces a balanced growth path is a knife-edge theory. Indeed, Grossman,
Helpman, Oberfield, and Sampson (2017, p. 1306) clearly note “As with any model that generates
balanced growth, knife-edge restrictions are required to maintain the balance”.
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is then w∗
b = 1. Figure 3a shows the equilibrium housing price dynamics when

(e1, e2) = (95, 105) so that e2/e1 > w∗
b and hence only a fundamental equilibrium

exists. The housing price and rent asymptotically grow at the same rate Gγ, which

is lower than the endowment growth rate G. Furthermore, the distance in semilog

scale between the housing price and rent converges, suggesting that the price-rent

ratio converges. These observations are consistent with Theorem 3.

0 20 40 60 80 100

Time

102

104

106 Aggregate endowment
Housing price
Rent

(a) Fundamental equilibrium.

0 20 40 60 80 100

Time

102

104

106 Aggregate endowment
Housing price
Rent

(b) Bubbly equilibrium.

Figure 3: Equilibrium housing price dynamics.

Figure 3b repeats the same exercise for (e1, e2) = (105, 95) so that e2/e1 < w∗
b

and a bubbly equilibrium exists. The housing price asymptotically grows at the

same rate as endowments, while the rent grows at a slower rate. Consequently,

the price-rent ratio increases. These observations are consistent with Theorem 4.

We next study how expectations about economic development and incomes

in the future affect the current housing price. In Figure 4a, we consider phase

transitions between the fundamental and bubbly regimes. The economy starts

with (ey0, e
o
0) = (95, 105) and agents believe that the endowments grow at rate G

and the income ratio eot/e
y
t is constant at 105/95. At t = 40, the income ratio

eot/e
y
t unexpectedly changes to 95/105 and agents believe that this new ratio will

persist. Thus the economy takes off to the bubbly regime. Finally, at t = 80 the

income ratio eot/e
y
t unexpectedly reverts to the original value 105/95. Note that as

the economy enters the bubbly regime, rents are hardly affected but the housing

price increases and grows at a faster rate, generating a housing bubble.

Figure 4b repeats the same exercise except that the income changes are antic-

ipated. Specifically, agents learn at t = 30 that the income ratio will change to

95/105 (so the young will be relatively rich) starting at t = 40 and will remain

so forever. Similarly, agents learn at t = 70 that the income ratio will revert to
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(a) Unexpected income change.
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(b) Expected income change.

Figure 4: Phase transition between fundamental and bubbly regimes.

105/95 (so the young will be relatively poor) starting at t = 80 and will remain

so forever. In this case, the economy takes off to the bubbly regime at t = 30

and reenters the fundamental regime at t = 70 due to rational expectations. We

can see that the housing price jumps up at t = 30 and grows fast even before

the fundamentals change. The housing price already contains a bubble, even if

the current income of the young is relatively low and appears to be incapable of

generating bubbles. This is due to a backward induction argument: if there is

a bubble in the future (so (B.3) holds with strict inequality and the no-bubble

condition fails), there is a bubble in every period. Once the young become rela-

tively rich at t = 40, the housing price increases at the same rate as endowments,

consistent with Theorem 4. The housing bubble collapses at t = 70 when agents

learn that the young will be relatively poor in the future, even though the young

remain relatively rich until t = 80.

From this analysis, we can draw an interesting implication. During expectation-

driven housing bubbles, housing prices grow faster than rents. The price-income

ratio continues to rise and hence the dynamics may appear unsustainable. More-

over, the greater the time gap between when news of rising incomes arrives (t = 30)

and when incomes actually start to rise (t = 40), the longer the duration of the

seemingly unsustainable dynamics. This expectation-driven housing bubbles and

their collapse may capture realistic transitional dynamics. For instance, Miles

and Monro (2021) emphasize that the decline in the real interest rate has pro-

duced large effects on the evolution of housing prices in the U.K. In our model,

the (real) interest rate is endogenously determined and is closely related to the

income of home buyers. As their income rises and the interest rate falls below the
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rent growth rate, a housing bubble necessarily emerges. Mankiw and Weil (1989)

and Kiyotaki, Michaelides, and Nikolov (2011, 2024) stress the importance of ex-

pectation formation of long-run aggregate income growth and the interest rate

to account for the fluctuations in housing prices. Our expectation-driven hous-

ing bubbles and their collapse show that even small changes in incomes of home

buyers or the expectation thereof could produce large swings in housing prices. A

critical difference is that housing prices in their papers reflect fundamentals, while

our main focus is to identify the economic conditions under which housing prices

reflect fundamentals or contain bubbles and to study expectation-driven housing

price bubbles.

5 Discussion and extensions

5.1 Multiple savings vehicles

By Theorem 1, an equilibrium always exists. By Theorem 3(iii), fundamental

equilibria do not exist when w < w∗
f . Therefore, under this condition all equilibria

are bubbly. In our model, housing is the only financial asset. A natural question

would be what happens with multiple savings vehicles. To address this issue,

take any (bubbly) equilibrium with housing price Pt = Vt + Bt, where Vt is the

fundamental value (2.9) and Bt := Pt − Vt ≥ 0 is the bubble component. By the

definitions of the interest rate (2.3) and the fundamental value (2.9), we obtain

Pt =
1

Rt

(Pt+1 + rt+1), Vt =
1

Rt

(Vt+1 + rt+1).

Taking the difference, we obtain Bt+1 = RtBt, so the bubble component grows

at the rate of interest, as is well known. Now, take any θ ∈ [0, 1] and define an

alternative housing price by P ′
t = Vt + (1 − θ)Bt. Then we can easily construct

an equilibrium in which the housing price is P ′
t and there is an additional pure

bubble asset (intrinsically worthless asset that pays no dividends) with market

capitalization θBt. This argument (which is the same as the “bubble substitution”

argument in Tirole (1985, §5)) shows that once there are multiple assets, the size

of the bubble attached to each individual asset may become indeterminate (here

parametrized by θ ∈ [0, 1]) because all assets are perfect substitute. However, the

total size of the bubble is determinate (equal to Bt) and hence the consumption

allocation as well as all macroeconomic implications are identical regardless of
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θ.14 Hence, from a macroeconomic perspective, this indeterminacy is unimportant.

This result is different from standard pure bubble models, where equilibria exhibit

real indeterminacy (Gale, 1973; Hirano and Toda, 2024b).

5.2 Welfare implications

In §3, we saw that housing bubbles can or must emerge as the young get richer. A

natural question is whether housing bubbles are socially desirable or not. In this

section we discuss the welfare implications of housing bubbles.

Let {(cyt , cot , ht)}∞t=0 be an arbitrary allocation with cyt , c
o
t > 0 and cyt +cot = eyt +

eot . Since only the young have preference for housing service, which is perishable, it

is obviously efficient to assign all housing service to the young. Using Assumption

2, the utility of generation t becomes U(cyt , c
o
t+1, 1) = u(c(cyt , c

o
t+1))+mu(1), which

is a monotonic transformation of c(cyt , c
o
t+1). Therefore, the welfare analysis (in

terms of Pareto efficiency) reduces to that of an endowment economy without

housing and with utility function c(y, z) for goods.

Let Gt = eyt+1/e
y
t be the growth rate of young income and wt = eot/e

y
t be the

old to young income ratio at time t. Let st = 1− cyt /e
y
t be the saving rate. Then

the utility of generation t becomes

c(cyt , c
o
t+1) = c(eyt (1− st), e

y
t+1(wt+1 + st+1)) = eyt c(1− st, Gt(wt+1 + st+1)),

which is a monotonic transformation of c(1− st, Gt(wt+1 + st+1)). This argument

shows that the welfare analysis reduces to the case in which the time t aggregate

endowment is 1 + wt, the utility function of generation t is ut(y, z) := c(y,Gtz),

and the proposed allocation is (yt, zt) = (1 − st, wt + st). Since Assumption 1

implies that wt = eot/e
y
t is constant for t ≥ T , we can apply the characterization of

Pareto efficiency in OLG models with bounded endowments provided by Balasko

and Shell (1980). We thus obtain the following proposition.

Proposition 5.1 (Characterization of equilibrium efficiency). Suppose Assump-

tions 1–3 hold, γ < 1, and let w = e2/e1. Then the following statements are

true.

(i) If w ≥ w∗
b , any equilibrium is efficient.

14Although the model is rather different, Hirano, Jinnai, and Toda (2022) develop a macro-
finance model in which there are multiple savings vehicles including capital, land, and bonds,
and show that land price bubbles necessarily emerge when the financial leverage gets sufficiently
high.
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(ii) If w < w∗
b , any bubbly long-run equilibrium is efficient.

(iii) If w < w∗
b , any fundamental long-run equilibrium is inefficient.

Recalling that w < w∗
b implies R < G in the fundamental equilibrium (Figure

2), fundamental equilibria are inefficient whenever R < G. Therefore, in Figure

2, all equilibria in the green region (including the boundary) are efficient, whereas

all equilibria in the gray region (excluding the boundary) are inefficient.

The intuition for the Pareto inefficiency of fundamental equilibria when w < w∗
b

is the following. In equilibrium, since endowments grow at rate G and rents grow

at rate Gγ (Theorem 2), if the housing price equals its fundamental value, it must

also grow at rate Gγ. Since Gγ < G, the housing price is asymptotically negligible

relative to endowments, so the equilibrium consumption becomes autarkic. Now

when w < w∗
b , the young are richer, so the interest rate becomes so low that it is

below the economic growth rate (see (3.8)). Housing prices are too low to absorb

savings desired by the young. In other words, housing is not serving as a means of

savings with enough returns. In this situation if we consider a social contrivance

such that for each large enough t the young at time t gives the old ϵGt of the

good (hence the old at time t+1 receives ϵGt+1 of the good), it is as if agents are

able to save at rate G higher than the interest rate, which improves welfare. Since

this argument holds for all large enough t, we have a Pareto improvement, which

implies the inefficiency of the fundamental equilibrium.

While the statements in Proposition 5.1(i)(ii) are hardly surprising given the

results of Diamond (1965) and Tirole (1985), we note that statement (iii) that

fundamental equilibria are inefficient in the bubble possibility regime may not be

entirely obvious. In fact, as noted in the introduction, the well-known result of

McCallum (1987) shows that the introduction of a productive non-reproducible

asset eliminates dynamic inefficiency in OLG models. Contrary to common un-

derstandings, this result is not necessarily true. This apparent conflict is due to

the fact that McCallum (1987) implicitly assumes steady state growth (see his

discussion around Endnotes 20 and 21), which holds only for the knife-edge Cobb-

Douglas case (which corresponds to γ = 1 in our model, treated in Appendix C.2).

Once we consider the global parameter space with respect to γ, the region with

dynamically inefficient equilibria always exists when γ < 1 (the gray region in

Figure 2). Furthermore, inefficient equilibria arise only in the intermediate region

of the income ratio e2/e1, so there is a non-monotonic relationship between the

income ratio and the existence of dynamically inefficient equilibria.

It is fair to say that there are diverse views on the welfare implications of asset
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price bubbles.15 Although these are anecdotal, it is often noted that in Russia,

people do not trust banks and government bonds because of the experience of

the collapse of the Soviet Union and the default of Russian government bonds in

1998. Similarly, in the United Kingdom, there are concerns about the sustain-

ability of pensions. These circumstances imply that there are not enough savings

vehicles with high returns and instead, housing is an effective means of saving.

In these situations, welfare would improve if the housing bubble raises housing

yields. Proposition 5.1 captures the positive aspects of these housing bubbles.

5.3 Credit-driven housing bubbles

In our model, because the young are homogeneous and the old exit the economy,

there cannot be any borrowing or lending in equilibrium. In reality, housing is

usually purchased using credit. To study the role of credit in generating housing

bubbles in the simplest setting, we consider an open economy in which an exter-

nal banking sector (e.g., foreign investors in mortgage-backed securities) provides

exogenous credit.

To construct such a model, let {(ẽyt , ẽot )}
∞
t=0 be the endowment of some (closed)

economy with corresponding equilibrium risk-free rate and housing expenditure

{(Rt, St)}∞t=0. Take any sequence {ℓt}∞t=0 such that ℓt ∈ [0, ẽyt ) and define eo0 =

ẽo0 and (eyt , e
o
t+1) = (ẽyt − ℓt, ẽ

o
t+1 + Rtℓt) for t ≥ 0. Then we can construct an

equilibrium in which the endowment is (eyt , e
o
t ), the interest rate is Rt, the housing

expenditure is St, and the external banking sector provides loan ℓt to the young

at time t. We can see this as follows. At time t, the available funds of the young

is eyt + ℓt = ẽyt . At time t + 1, because the old repay Rtℓt, the available funds is

eot+1 − Rtℓt = ẽot+1. Therefore, given the available funds and the interest rate Rt,

it is optimal for the young to spend St on housing, so we have an equilibrium.

Combining this argument with the analysis in §3, even if the income share of

the young eyt /e
o
t is low and a bubbly equilibrium may not exist, if the young have

access to sufficient credit, a housing bubble may emerge.

15In our model, both the housing and rental markets are frictionless. Even if the rental
market was missing, because agents are homogeneous, they end up being owner-occupants.
In reality, rental markets could have frictions perhaps due to moral hazard issues. Then the
welfare implications could change when agents are heterogeneous. For instance, Graczyk and
Phan (2021) consider an OLG model with housing, missing rental markets, and agents with
heterogeneous incomes and find that housing bubbles hurt poor agents because they are priced
out of the housing market. As such, welfare implications of housing bubbles may depend on the
model details but the existence of the positive effect would survive even if we consider various
extensions.
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Proposition 5.2. Let everything be as in Theorem 4 and suppose the banking

sector is willing to lend ℓt = ℓGt to the young. If the loan to income ratio satisfies

w > λ :=
ℓ

e1
>

w − w∗
b

w∗
b + 1

, (5.1)

then there exists a bubbly long-run equilibrium. Under this condition, the housing

price has order of magnitude

Pt ∼ e1

(
w∗

b − w

w∗
b + 1

+ λ

)
Gt = s∗e1G

t + ℓt, (5.2)

so credit increases the housing price one-for-one.

Proposition 5.2 has two implications. First, the fact that external credit may

drive housing bubbles is at least consistent with some narratives during the U.S.

housing boom in the early 2000s, including the famous remarks by Bernanke (2005)

on the “global saving glut”. Bertaut et al. (2012) document that a substantial

fraction of mortgages were financed through mortgage-backed securities purchased

by European investors (“external banking sector”). Barlevy and Fisher (2021)

document that the share of interest-only mortgages is correlated with the housing

price growth rates across regions. Second, using (5.2) and Gγ < G, by a similar

calculation as in (3.9a), the consumption of the young has the order of magnitude

cyt = eyt + ℓt − Pt − rt ∼ e1G
t + ℓt − (s∗e1G

t + ℓt) = (1− s∗)e1G
t,

which is independent of credit ℓt. Therefore, once home buyers have access to

sufficient credit such that a housing bubble emerges, increasing credit further

ends up raising the housing price one-for-one with no real effect on the long-run

consumption allocation and hence welfare. Note that in reality there are financing

costs, so a housing bubble driven by excessive credit could hurt welfare. (See

Barlevy (2018) for a discussion of policy issues regarding bubbles.)

6 Concluding remarks

The theory of housing bubbles remains largely underdeveloped due to the fun-

damental difficulty of attaching bubbles to dividend-paying assets (Santos and

Woodford, 1997). In this paper, we have taken the first step towards building

a theory of rational housing bubbles. We have presented a bare-bones model of

housing bubbles with phase transitions that can be used as a stepping stone for a
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variety of applications. In concluding our article, we discuss directions for future

research.

To analyze how equilibrium housing prices are determined in the process of

economic development in a tractable way, we based our analysis on the classical

overlapping generations model. However, a variety of generalizations are possible,

including Bewley-type models with infinitely-lived agents as in Hirano and Toda

(2025a, §5). We hope that our bare-bones model of housing bubbles will lead to

a variety of extensions both in theoretical and quantitative analyses.

Our theoretical analysis also provides testable implications. First, from the

analysis on the long-run behavior, housing bubbles are more likely to emerge if

the incomes (or available funds through credit) of home buyers are higher or ex-

pected to be higher in the process of economic development. If the incomes of home

buyers rise as economic development progresses, housing bubbles may naturally

arise first by optimistic expectations, and then inevitably emerge as the optimistic

fundamentals materialize. There is some empirical evidence consistent with this

narrative. Gyourko et al. (2013) document that an increase in the high-income

population in a metropolitan area is associated with high housing appreciation.

The demographic structure could also be exploited to test our theory (e.g., im-

proved longevity or early retirement make the old “poorer”). Second, if there is

a housing bubble on the long-run trend, rents grow at rate Gγ, whereas housing

prices grow at rate G, implying that the price-rent ratio will rise. Hence, an up-

ward trend in the price-rent ratio could be an indicator for housing bubbles. The

findings of Amaral et al. (2024, Fig. 1) and Bäcker-Peral et al. (2025, Fig. 1) are

consistent with this narrative, and the bubble detection literature (Phillips and

Shi, 2020) could be applied. We hope that our theoretical framework may be

useful for empirical researchers to investigate these issues further.

A Proofs

A.1 Proof of lemmas

The following lemma lists a few implications of Assumption 3 that will be repeat-

edly used.

Lemma A.1. Suppose Assumption 3 holds and let g(x) := c(x, 1). Then the

following statements are true.
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(i) The first partial derivatives of c are given by

cy(y, z) = g′(y/z) > 0, (A.1a)

cz(y, z) = g(y/z)− (y/z)g′(y/z) > 0 (A.1b)

and are homogeneous of degree 0.

(ii) The second partial derivatives are given by

cyy(y, z) =
1

z
g′′(y/z) < 0, (A.2a)

cyz(y, z) = −
y

z2
g′′(y/z) > 0, (A.2b)

czz(y, z) =
y2

z3
g′′(y/z) < 0. (A.2c)

(iii) Fixing z > 0, the marginal rate of substitution cy/cz is continuously differ-

entiable and strictly decreasing in y and has range (0,∞).

(iv) The elasticity of intertemporal substitution is ε(y, z) = cycz
ccyz

> 0.

Proof. By definition, g(x) = c(x, 1). Therefore, g′(x) = cy(x, 1) > 0 and g′′(x) =

cyy(x, 1) < 0 by Assumption 3. Since c is homogeneous of degree 1, we have

c(y, z) = zc(y/z, 1) = zg(y/z). Then (A.1) and (A.2) are immediate by direct

calculation.

Fixing z > 0, define the marginal rate of substitution M(y) = (cy/cz)(y, z).

ThenM is continuously differentiable because c is twice continuously differentiable

and cy, cz > 0. Since cy, cz are homogeneous of degree 0, we have

M(y) =
cy(y, z)

cz(y, z)
=

cy(y/z, 1)

cz(1, z/y)
. (A.3)

Since cy, cz > 0 and cyy, czz < 0, the numerator (denominator) is positive and

strictly decreasing (increasing) in y. Therefore, M is strictly decreasing. Further-

more, since cy(0, z) = cz(y, 0) = ∞, letting y ↓ 0 and y ↑ ∞ in (A.3), we obtain

M(0) =∞ and M(∞) = 0, so M has range (0,∞).

Finally, we derive the elasticity of intertemporal substitution (EIS) ε. Since

c is homogeneous of degree 1, we have c(λy, λz) = λc(y, z). Differentiating both

sides with respect to λ and setting λ = 1, we obtain

ycy + zcz = c. (A.4)
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Letting σ = 1/ε and x = y/z, by the chain rule we obtain

σ = −∂ log(cy/cz)(xz, z)

∂ log x
= −xcz

cy

zcyycz − cyzcyz
c2z

= y
cycyz − czcyy

cycz
=

(ycy + zcz)cyz
cycz

=
ccyz
cycz

,

where the last line uses (A.2) and (A.4).

Proof of Lemma 3.1. Let ST = {St}∞t=T be an equilibrium starting at t = T . Set

t = T − 1 and define the function f : [0, eyT−1)→ R by f(S) = ST cz − Scy +mcγ,

where c, cy, cz are evaluated at (y, z) = (eyT−1 − S, bT + ST ). Then

f ′(S) = −ST cyz − cy + Scyy −mγcγ−1cy < 0

by Lemma A.1. Clearly f(0) = ST cz +mcγ > 0. Define

ũ(y, z) := u(c(y, z)) =


1

1−γ
c(y, z)1−γ if γ ̸= 1,

log(c(y, z)) if γ = 1.
(A.5)

Take any ȳ > 0 and let 0 < y < ȳ. Using the chain rule and the monotonicity of

c, we obtain

ũy(y, z) = c(y, z)−γcy(y, z) > c(ȳ, z)−γcy(y, z)→∞ (A.6)

as y ↓ 0 by Assumption 3. Using the definition of f , we obtain f(S)c−γ = ST ũz −
Sũy + m. Letting S ↑ eyT−1 and using (A.6), we obtain f(S)c−γ → −∞. Hence

by the intermediate value theorem, there exists a unique ST−1 ∈ (0, eyT−1) such

that f(ST−1) = 0. Therefore, there exists a unique equilibrium ST−1 = {St}∞t=T−1

starting at t = T − 1 that agrees with ST for t ≥ T . The claim follows from

backward induction.

A.2 Proof of Theorem 2

Take any equilibrium {St}∞t=0. Using (2.8c) and Assumption 2, the rent is

rt = m
cγ

cy
(e1G

t − St, e2G
t+1 + St+1). (A.7)

We first show

lim sup
t→∞

r
1/t
t ≤ Gγ. (A.8)
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Using the trivial bound 0 ≤ St ≤ e1G
t, noting that c is increasing in both ar-

guments and cy is decreasing (increasing) in y (z) by Lemma A.1, and using the

homogeneity of c and cy, it follows from (A.7) that

rt ≤ m
c(e1G

t, (e1 + e2)G
t+1)γ

cy(e1Gt, e2Gt+1)
= meγ1

c(1, G(1 + w))γ

cy(1, Gw)
Gγt =: r̄Gγt.

Taking the 1/t-th power, we obtain r
1/t
t ≤ Gγ r̄1/t for all t. Letting t → ∞, we

obtain (A.8).

We next show

lim inf
t→∞

G−tSt < e1. (A.9)

Suppose to the contrary that lim inft→∞G−tSt ≥ e1. Using the trivial bound

St ≤ e1G
t, we obtain limt→∞G−tSt = e1. Take ϵ > 0 such that G−tSt > e1 − ϵ for

large enough t. Then

rt
Pt

=
rt

St − rt
≤ r̄Gγt

(e1 − ϵ)Gt − r̄Gγt
∼ r̄

e1 − ϵ
G(γ−1)t

as t → ∞, so
∑∞

t=1 rt/Pt < ∞ because γ < 1. By the Bubble Characterization

Lemma B.1, there is a bubble. Using (2.8d), the homogeneity of c, and Assumption

3, the equilibrium interest rate satisfies

Rt =
cy
cz
(eyt − St, e

o
t+1 + St+1)

=
cy
cz
(e1 −G−tSt, G(e2 +G−t−1St+1))→

cy
cz
(0, G(e1 + e2)) =∞

as t → ∞. Therefore, for any R > G, we can take T > 0 such that Rt ≥ R > G

for t ≥ T . Letting qt > 0 be the Arrow-Debreu price, it follows that

qtPt =

(
qT/

t−1∏
s=T

Rs

)
Pt ≤ qTR

T−te1G
t = e1qTR

T (G/R)t → 0

as t → ∞, so the no-bubble condition holds and there is no bubble, which is a

contradiction.

Finally, we show

lim sup
t→∞

r
1/t
t ≥ Gγ. (A.10)

Since (A.9) holds, we can take s̄ < 1 such that St/e
y
t ≤ s̄ infinitely often. For such
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a subsequence, by a similar argument for proving (A.8), we obtain

rt ≥ m
c((1− s̄)e1G

t, e2G
t+1)γ

cy((1− s̄)e1Gt, (e1 + e2)Gt+1)
= meγ1

c(1− s̄, Gw)γ

cy(1− s̄, G(1 + w))
Gγt =: r

¯
Gγt.

Taking the 1/t-th power, we obtain r
1/t
t ≥ Gγr

¯
1/t. Letting t → ∞, we obtain

(A.8). The long-run rent growth rate (3.1) follows from (A.8) and (A.10).

A.3 Proof of Theorem 3

Proof of Theorem 3(i). By Lemma A.1, (cy/cz)(y,G) is strictly decreasing in y

and has range (0,∞). Therefore, there exists a unique y satisfying (cy/cz)(y,G) =

Gγ. Since by Lemma A.1 cy, cz are homogeneous of degree 0, we have (cy/cz)(1, G/y) =

Gγ, so w∗
f = 1/y uniquely satisfies (3.6).

Proof of Theorem 3(ii). We divide the proof into several steps.

Step 1. Derivation of an autonomous nonlinear difference equation.

By (3.7b), if a fundamental long-run equilibrium exists, then St = Pt + rt

asymptotically grows at rate Gγ. Define the detrended variable st := St/(e
γ
1G

γt).

Using the homogeneity of c, cy, cz, (3.2) implies

eγ1st+1G
γ(t+1)cz − eγ1stG

γtcy +meγ1G
γtcγ, (A.11)

where c, cy, cz are evaluated at

(y, z) = (1− ste
γ−1
1 G(γ−1)t, G(w + st+1e

γ−1
1 G(γ−1)(t+1))).

Dividing (A.11) by eγ1G
γt and defining the auxiliary variable ξt = (ξ1t, ξ2t) =

(st, e
γ−1
1 G(γ−1)t), it follows that (3.2) can be rewritten as Φ(ξt, ξt+1) = 0, where

Φ : R4 → R2 is given by

Φ1(ξ, η) = Gγη1cz − ξ1cy +mcγ, (A.12a)

Φ2(ξ, η) = η2 −Gγ−1ξ2 (A.12b)

and c, cy, cz are evaluated at (y, z) = (1− ξ1tξ2t, G(w + ξ1,t+1ξ2,t+1)).
16

Step 2. Existence and uniqueness of a fundamental steady state.

16Obviously, (A.12) and (3.4) are different because they correspond to the fundamental and
bubbly equilibria, respectively.
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If a steady state ξ∗f of (A.12) exists, it must be ξ2 = 0. Then the steady state

condition is

Gγscz − scy +mcγ ⇐⇒ s = m
cγ

cy −Gγcz
,

where c, cy, cz are evaluated at (y, z) = (1, Gw). For s > 0, it is necessary and

sufficient that cy/cz > Gγ at (y, z) = (1, Gw). Since by Lemma A.1 cy, cz are

homogeneous of degree 0 and cy/cz is strictly increasing in z, there exists a fun-

damental steady state if and only if w > w∗
f .

Step 3. Existence and local determinacy of equilibrium.

Define Φ by (A.12) and write s = s∗ to simplify notation. Noting that ξ∗f =

(s∗, 0), a straightforward calculation yields

DξΦ(ξ
∗
f , ξ

∗
f ) =

[
−cy −Gγs2cyz + s2cyy − smγcγ−1cy

0 −Gγ−1

]
,

DηΦ(ξ
∗
f , ξ

∗
f ) =

[
Gγcz Gγ+1s2czz −Gs2cyz +Gsmγcγ−1cz

0 1

]
,

where all functions are evaluated at (y, z) = (1, Gw). Since DηΦ is invertible,

we may apply the implicit function theorem to solve Φ(ξ, η) = 0 around (ξ, η) =

(ξ∗f , ξ
∗
f ) as η = ϕ(ξ), where

Dϕ(ξ∗f ) = −[DηΦ]
−1DξΦ =

[
cy

Gγcz
ϕ12

0 Gγ−1

]

and ϕ12 is unimportant. Since cy > Gγcz, the eigenvalues of Dϕ are λ1 =

cy/(G
γcz) > 1 and λ2 = Gγ−1 ∈ (0, 1). Therefore, the steady state ξ∗f is a hy-

perbolic fixed point and the local stable manifold theorem (Toda, 2025, Theorem

8.9) implies that for any sufficiently large e1 > 0 (so that ξ20 = eγ−1
1 is close to the

steady state value 0), there exists a unique orbit {ξt}∞t=0 converging to the steady

state ξ∗f . However, by Assumption 1, choosing a large enough e1 > 0 is equivalent

to starting the economy at large enough t = T . Lemma 3.1 then implies that there

exists a unique equilibrium converging to the steady state regardless of the early

endowments {(eyt , eot )}
T−1
t=0 .

Step 4. The equilibrium objects have the order of magnitude in (3.7) and the hous-

ing price equals its fundamental value.

The order of magnitude (3.7) is obvious from limt→∞G−tSt = 0, the homo-

geneity of c, and Theorem 1. In equilibrium, both the housing price Pt and rent rt
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asymptotically grow at rate Gγ. Therefore,
∑∞

t=1 rt/Pt =∞, so there is no bubble

by Lemma B.1.

Proof of Theorem 3(iii). Take any equilibrium. Because ht = 1 in equilibrium, in

which case the utility U(y, z, 1) = u(c(y, z))+mu(1) is a monotonic transformation

of c(y, z), we can construct an equilibrium of an endowment economy without

housing service in which agents have utility c(y, z), the income of the young is

at := eyt − rt, the income of the old is bt := eot , and the asset pays dividend rt.

Condition (i) of Lemma B.2 follows from Assumptions 2 and 3. Condition (ii) of

Lemma B.2 follows from Assumption 1, Theorem 2, and γ < 1. By (3.1), the long-

run rent growth rate is Gr := Gγ. Finally, since by Lemma A.1 cy/cz is strictly

decreasing in y (hence strictly increasing in z), if w < w∗
f , the autarky interest

rate satisfies

R =
cy
cz
(e1, e2) =

cy
cz
(1, Gw) <

cy
cz
(1, Gw∗

f ) = Gγ = Gr < G,

which is the bubble necessity condition (B.5). Therefore, all assumptions of

Lemma B.2 are satisfied and the claim holds.

A.4 Proof of Theorem 4

We divide the proof into several steps.

Step 1. Existence and uniqueness of a bubbly steady state.

The proof of the existence and uniqueness of w∗
b satisfying (3.8) is identical to

Theorem 3(i). Since G > 1 and γ < 1, it follows from (3.6) and (3.8) that

(cy/cz)(1, Gw∗
f ) = Gγ < G = (cy/cz)(1, Gw∗

b ).

Since cy/cz is strictly increasing in z, we obtain w∗
f < w∗

b .

The steady state condition is Gcz − cy = 0, where cy, cz are evaluated at

(y, z) = (1 − s,G(w + s)). Using the homogeneity of cy, cz, this condition is

equivalent to (cy/cz)(y,G) = G for y = 1−s
w+s

, so the bubbly steady state is uniquely

determined by
1− s

w + s
=

1

w∗
b

⇐⇒ s =
w∗

b − w

w∗
b + 1

. (A.13)

Since s ∈ (0, 1), a necessary and sufficient condition for the existence of a bubbly

steady state is w < w∗
b .
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Step 2. Order of magnitude of equilibrium objects and asset pricing implications.

In any equilibrium converging to the bubbly steady state, by definition we have

St ∼ se1G
t, where s = s∗ is the bubbly steady state. Therefore, (3.9a) follows

from (2.8a). Using (2.8c) and Assumption 2, the rent is

rt =
mu′(1)

u′(c)cy
= m

c(eyt − St, e
o
t+1 + st+1)

γ

cy(e
y
t − St, eot+1 + st+1)

. (A.14)

Substituting (3.9a) into (A.14) and using the fact that c is homogeneous of degree

1 and cy is homogeneous of degree 0, we obtain

rt ∼ meγ1
c(1− s,G(w + s))γ

cy(1− s,G(w + s))
Gγt.

Since rt asymptotically grows at rate Gγ < G because γ < 1, we have rt/St → 0,

so Pt = St−rt ∼ St and (3.9b) holds. Finally, (3.9c) follows from (2.3) and (3.9b).

Since the housing price Pt and rent rt asymptotically grow at rates G and Gγ <

G, respectively, the rent-price ratio rt/Pt decays geometrically at rate Gγ−1 < 1.

Therefore,
∑∞

t=1 rt/Pt <∞, so there is a housing bubble by Lemma B.1.

Step 3. Generic existence of equilibrium.

Define Φ by (3.4) and write s = s∗ to simplify notation. Noting that ξ∗b =

(s∗, 0), a straightforward calculation yields

DξΦ(ξ
∗
b , ξ

∗
b ) =

[
−Gscyz − cy + scyy mcγ

0 −Gγ−1

]
,

DηΦ(ξ
∗
b , ξ

∗
b ) =

[
Gcz +G2sczz −Gscyz 0

0 1

]
,

where all functions are evaluated at (y, z) = (1−s,G(w+s)). If DηΦ is invertible,

we may apply the implicit function theorem to solve Φ(ξ, η) = 0 around (ξ, η) =

(ξ∗b , ξ
∗
b ) as η = ϕ(ξ), where

Dϕ(ξ∗b ) = −[DηΦ]
−1DξΦ =

[
ϕ11 ϕ12

0 Gγ−1

]

with

ϕ11 =
Gscyz + cy − scyy

Gcz +G2sczz −Gscyz
=:

n

d
(A.15)
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and ϕ12 is unimportant. Therefore, Dϕ(ξ∗b ) has two real eigenvalues; one is λ1 :=

ϕ11 and the other is λ2 := Gγ−1 ∈ (0, 1) because G > 1 and γ ∈ (0, 1).

Let us estimate λ1. Using (A.2), the numerator of (A.15) is

n = cy + s(Gcyz − cyy) = cy + s

(
−G y

z2
g′′ − 1

z
g′′
)

= cy − s
Gy + z

z2
g′′ = cy −

s(1 + w)

G(w + s)2
g′′,

where we have used (y, z) = (1− s,G(w + s)). Similarly, the denominator is

d = Gcz +Gs(Gczz − cyz) = Gcz +Gs

(
G
y2

z3
g′′ +

y

z2
g′′
)

= Gcz +Gs
y(Gy + z)

z3
g′′ = Gcz +

s(1− s)(1 + w)

G(w + s)3
g′′.

At the steady state, we have Gcz = cy = g′, so

n = g′ − s(1 + w)

G(w + s)2
g′′, d = g′ +

s(1− s)(1 + w)

G(w + s)3
g′′. (A.16)

Since s ∈ (0, 1) and g′′ < 0, clearly n > d.

We now study each case by the magnitude of the denominator d.

Case 1: d > 0. If d > 0, then 0 < d < n and hence λ1 = n/d > 1. Since

λ1 > 1 > λ2 > 0, the steady state ξ∗b is a saddle point. The existence and

uniqueness of an equilibrium path converging to the steady state ξ∗b follows by the

same argument as in the proof of Theorem 3.

Case 2: d = 0. If d = 0, the implicit function theorem is inapplicable and we

cannot study the local dynamics by linearization.

Case 3: d ∈ (−n, 0). If −n < d < 0, then λ1 = n/d < −1. Therefore, ξ∗b is

a saddle point and there exists a unique equilibrium by the same argument as in

the case d > 0.

Case 4: d = −n. If d = −n, then λ1 = n/d = −1, the fixed point is not

hyperbolic, and the local stable manifold theorem is inapplicable.

Case 5: d < −n. If d < −n, then λ1 = n/d ∈ (−1, 0). Therefore, ξ∗b is a sink

and there exist a continuum of equilibria by the same argument as in the case

d > 0.
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In summary, there exists an equilibrium converging to the bubbly steady state

except when d = 0 or d = −n. Therefore, for generic G and w, there exists an

equilibrium.

A.5 Proof of Proposition 3.1

We have already proved the uniqueness of the fundamental long-run equilibrium

if w > w∗
f in the proof of Theorem 3.

Suppose w < w∗
b . Let s =

w∗
b−w

w∗
b+1

be the bubbly steady state and (y, z) =

(1 − s,G(w + s)). By the proof of Theorem 4, there exists a unique equilibrium

converging to the bubbly steady state if d ∈ (−n, 0) ∪ (0,∞), where d, n are the

denominator and numerator in (A.16). We rewrite this condition using the EIS

defined by ε = cycz
ccyz

. Using (A.1), (A.2), (A.4), and Gcz = cy at the steady state,

we obtain

ε =
cycz

(ycy + zcz)cyz
=

cy
(Gy + z)cyz

= − g′

g′′
G(w + s)2

(1− s)(1 + w)
.

Therefore, (A.16) can be rewritten as

n =

(
1 +

1

ε

s

1− s

)
g′, d =

(
1− 1

ε

s

w + s

)
g′. (A.17)

Since g′ > 0, we have

d = 0 ⇐⇒ ε =
s

w + s
=

1− w/w∗
b

1 + w
,

n+ d > 0 ⇐⇒ ε >
s(1− w − 2s)

2(1− s)(w + s)
=

1− w∗
b

2

1− w/w∗
b

1 + w
.

Therefore, the sufficient condition (3.11) follows.

A.6 Proof of Proposition 5.1

To prove Proposition 5.1, we need the following lemma.

Lemma A.2 (Characterization of equilibrium efficiency). Suppose Assumptions

1–3 hold and let {St}∞t=0 be an equilibrium. Let Gt = eyt+1/e
y
t , wt = eot/e

y
t , and

st = St/e
y
t . Let

Rt =
cy
cz
(1− st, Gt(wt+1 + st+1)) (A.18)
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be the equilibrium risk-free rate and define the Arrow-Debreu price by q0 = 1 and

qt = 1/
∏t−1

s=0Rs for t ≥ 1. Then the following statements are true.

(i) If lim inft→∞Rt > G, then the equilibrium is Pareto efficient.

(ii) If lim supt→∞ st < 1, then the equilibrium is Pareto efficient if and only if

∞∑
t=0

1

Gtqt
=∞. (A.19)

Proof of Lemma A.2. Let ut(y, z) = c(y,Gtz) be the utility function in the de-

trended economy. Then the implied gross risk-free rate at the proposed allocation

(cyt , c
o
t+1) = (1− st, wt+1 + st+1) is

R̃t :=
uty

utz

(1− st, wt+1 + st+1) =
1

Gt

cy
cz
(1− st, wt+1 + st+1) =

Rt

Gt

.

Therefore, the Arrow-Debreu price in the detrended economy is q̃t =
∏t−1

s=0(Gs/Rs).

We now apply the results of Balasko and Shell (1980). If lim inft→∞Rt > G,

then by Assumption 1 we can take R > G such that Rt ≥ R > G = Gt for t large

enough. Then Gt/Rt ≤ G/R < 1, so we have limt→∞ q̃t = 0. Proposition 5.3 of

Balasko and Shell (1980) then implies that the equilibrium is efficient.

We next consider the case s̄ := lim supt→∞ st < 1. We verify each assumption

of Proposition 5.6 of Balasko and Shell (1980). Since the partial derivatives of c

can be signed as in Lemma A.1, the Gaussian curvature of indifference curves are

strictly positive. Since the time t aggregate endowment of the detrended economy

is 1+wt, which is bounded by Assumption 1, it follows that the Gaussian curvature

of indifference curves within the feasible region (weakly preferred to endowments)

is uniformly bounded and bounded away from 0 because 1 − s̄ > 0. Therefore,

assumptions (a) and (b) hold. Since s̄ < 1 and Gt, wt+1 are bounded, the gross

risk-free rate (A.18) can be uniformly bounded from above and away from 0.

Therefore, assumption (c) holds. Assumption (d) holds because wt is bounded,

and assumption (e) holds because lim inft→∞(1 − st) = 1 − s̄ > 0. Since all

assumptions are verified, Proposition 5.6 of Balasko and Shell (1980) implies that

the equilibrium is efficient if and only if

∞ =
∞∑
t=0

1

q̃t
=

∞∑
t=0

1

qt

t−1∏
s=0

(1/Gs). (A.20)

Since by Assumption 1 we have Gt = G for large enough t, (A.20) is clearly
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equivalent to (A.19).

Proof of Proposition 5.1. Suppose γ < 1 and consider any equilibrium. Using

(A.18), Assumption 1, Lemma A.1, and st ≥ 0, we obtain

Rt =
cy
cz
(1− st, Gt(wt+1 + st+1)) ≥

cy
cz
(1, Gw) (A.21)

for large enough t. If w ≥ w∗
b , then (A.21), Lemma A.1, and (3.8) imply

Rt ≥
cy
cz
(1, Gw) ≥ cy

cz
(1, Gw∗

b ) = G.

Since Rt ≥ G eventually, the sequence 1/(Gtqt) =
∏t−1

s=0(Rs/G) is positive and

bounded away from 0. Therefore, (A.19) holds, and the equilibrium is efficient.

Suppose w < w∗
b and take any bubbly equilibrium converging to the bubbly

steady state. By (3.9b), we can take p > 0 such that Pt ≥ pGt for large enough t.

Then

Gtqt =
1

p
qtpG

t ≤ 1

p
qtPt ≤

1

p
P0

using (B.2). Since Gtqt is positive and bounded above, 1/(Gtqt) is positive and

bounded away from 0, so (A.19) holds and the equilibrium is Pareto efficient.

Suppose w < w∗
b and take the (unique) fundamental equilibrium. Then by

Theorem 3 we have st := St/(e1G
t)→ 0. Then (A.18), st → 0, and w < w∗

b imply

that

lim
t→∞

Rt =
cy
cz
(1, Gw) <

cy
cz
(1, Gw∗

b ) = G.

Therefore, we can take R < G and T > 0 such that Rt ≤ R < G for t ≥ T . Since

1

Gtqt
=

t−1∏
s=0

(Rs/G) ≤ 1

GT qT
(R/G)t−T ,

the sum
∑∞

t=0 1/(G
tqt) converges to a finite value, so by Lemma A.2(ii) the equi-

librium is inefficient.

A.7 Proof of Proposition 5.2

By the discussion before the proposition, the available funds to the young at time

t is ẽyt = eyt + ℓt = (e1 + ℓ)Gt and the available funds of the old at time t is

ẽot = eot − Gℓt−1 = (e2 − ℓ)Gt at interest rate G. Therefore, by Theorem 4, a
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bubbly long-run equilibrium exists if

0 <
e2 − ℓ

e1 + ℓ
< w∗

b ⇐⇒ w >
ℓ

e1
>

w − w∗
b

w∗
b + 1

,

which is (5.1). Under this condition, because the old to young available funds

ratio is w̃ := e2−λe1
e1+λe1

= w−λ
1+λ

, using (3.9b) we obtain the asymptotic housing price

Pt ∼ e1(1 + λ)
w∗

b − w̃

w∗
b + 1

Gt = e1
(1 + λ)w∗

b − (w − λ)

w∗
b + 1

Gt,

which simplifies to (5.2).
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Online Appendix

B Definition and characterization of bubbles

B.1 Definition of housing bubbles

Following the standard definition of rational bubbles in the literature (Hirano and

Toda, 2024a, 2025b), we define a housing bubble by a situation in which the

housing price exceeds its fundamental value defined by the present value of rents.

Let Rt > 0 be the equilibrium gross risk-free rate. Let qt > 0 be the Arrow-

Debreu price of date-t consumption in units of date-0 consumption, so q0 = 1 and

qt = 1/
∏t−1

s=0Rs. Since by definition qt+1 = qt/Rt holds, using (2.3) we obtain the

no-arbitrage condition

qtPt = qt+1(Pt+1 + rt+1). (B.1)

Iterating (B.1) forward, for all T > t we obtain

qtPt =
T∑

s=t+1

qsrs + qTPT . (B.2)

Since qsrs ≥ 0, letting T → ∞ in (B.2), we have
∑∞

s=t+1 qsrs ≤ qtPt, so we may

define the fundamental value of housing by the present value of rents

Vt :=
1

qt

∞∑
s=t+1

qsrs.

Letting T →∞ in (B.2), we obtain the limit

0 ≤ lim
T→∞

qTPT = qt(Pt − Vt). (B.3)

When the limit in (B.3) equals 0, we say that the no-bubble condition holds and

the asset price Pt equals its fundamental value Vt. When limT→∞ qTPT > 0, we

say that the no-bubble condition fails and the asset price contains a bubble. Note

that under rational expectations, we have either Pt = Vt for all t or Pt > Vt for all

t. Throughout the rest of the paper, we refer to an equilibrium with (without) a

housing bubble a bubbly (fundamental) equilibrium.

The economic meaning of limT→∞ qTPT is that it captures a speculative aspect,

that is, agents buy housing now for the purpose of resale in the future, in addition

to receiving rents. The limit limT→∞ qTPT captures its impact on current housing
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prices. When the no-bubble condition holds, the aspect of speculation becomes

negligible and housing prices are determined only by factors that are backed in

equilibrium, namely rents. On the other hand, when the no-bubble condition is

violated, equilibrium housing prices contain a speculative aspect.

B.2 Characterization and necessity of bubbles

In general, proving the existence or nonexistence of bubbles is challenging because

in the limit (B.3), both the Arrow-Debreu price qt and the housing price Pt are

endogenous. Here we discuss two useful results. Because the context does not

matter, we consider a general asset that pays dividend Dt ≥ 0 and trades at price

Pt (both in units of the consumption good). The first is the following Bubble

Characterization Lemma due to Montrucchio (2004).

Lemma B.1 (Bubble Characterization, Montrucchio, 2004). If Pt > 0 for all t,

the asset price exhibits a bubble if and only if
∑∞

t=1Dt/Pt <∞.

Proof. See Hirano and Toda (2025a, Lemma 2.1).

Lemma B.1 is useful because it does not involve the Arrow-Debreu price qt and

provides a necessary and sufficient condition for the existence of bubbles.

The second result is the Bubble Necessity Theorem due to Hirano and Toda

(2025a). To make the paper self-contained but to avoid technicalities, here we

specialize the setting of Hirano and Toda (2025a). As in §2, consider a two-period

OLG model with a long-lived asset but assume that there is a single perishable

good and the date-t dividend Dt ≥ 0 is exogenous (unlike our setting with en-

dogenous rents). Define the long-run dividend growth rate by

Gd := lim sup
t→∞

D
1/t
t . (B.4)

Let (at, bt) be the date-t endowments of the young and old, and let Pt ≥ 0 be the

(endogenous) equilibrium asset price.

Lemma B.2 (Hirano and Toda, 2025a, Theorem 2). Suppose that (i) the utility

function U(y, z) is continuously differentiable, homothetic, and quasi-concave, and

(ii) the endowments satisfy G−t(at, bt) → (a, b) as t → ∞, where G > 0, a > 0,

and b ≥ 0. Define the long-run autarky interest rate by R := (Uy/Uz)(a, b). If

R < Gd < G, (B.5)

then all equilibria are bubbly with asset price Pt satisfying lim inft→∞ Pt/at > 0.
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Although the proof of Lemma B.2 is technical and we refer the reader to Hirano

and Toda (2025a), the intuition is clear. If a fundamental equilibrium exists, the

asset price must grow at the same rate as dividends, which is Gd. If Gd < G,

the asset price becomes negligible relative to the size of the economy, and hence

the allocation approaches autarky. With an autarky interest rate of R < Gd, the

present value of dividends (and hence the asset price) becomes infinite, which is

impossible. Therefore, a fundamental equilibrium cannot exist.

C Elasticity of substitution at most 1

The analysis in the main text focused on the empirically relevant case of γ <

1 (Footnote 3), that is, the elasticity of substitution between consumption and

housing 1/γ exceeds 1. For completeness, we present an analysis for the case

γ ≥ 1.

C.1 Elasticity of substitution below 1

We first consider the case γ > 1, so the elasticity of substitution 1/γ is less

than 1. In this case we cannot study the local dynamics around the steady state

by linearization because the implicit function theorem is not applicable due to

a singularity. Nevertheless, we may characterize the asymptotic behavior of all

equilibria as follows.

Proposition C.1 (Equilibrium with γ > 1). Suppose Assumptions 1–3 hold,

γ > 1, and let w = e2/e1. Then the following statements are true.

(i) In any equilibrium, the equilibrium objects satisfy

lim
t→∞

(cyt , c
o
t )/(e1G

t) = (0, 1 + w), (C.1a)

lim
t→∞

(Pt, rt)/(e1G
t) = (0, 1), (C.1b)

lim
t→∞

Rt =∞. (C.1c)

(ii) There is no housing bubble and the price-rent ratio converges to 0.

(iii) Any equilibrium is Pareto efficient.

Proof. Let ũ be defined by (A.5). Then the equilibrium dynamics (3.3) can be

written as

Gst+1ũz = stũy −meγ−1
1 G(γ−1)t, (C.2)
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where ũy, ũz are evaluated at (y, z) = (1−st, G(w+st+1)). Define s
¯
= lim inft→∞ st.

Since st ∈ (0, 1), we have 0 ≤ s̄ ≤ 1. Take a subsequence of (st, st+1) such that

(st, st+1)→ (s
¯
, s̃) for some s̃. Letting t→∞ in (C.2) along this subsequence, we

obtain

0 ≤ Gs̃ũz(1− s
¯
, G(w + s̃)) = s

¯
ũy(1− s

¯
, G(w + s̃))−∞. (C.3)

Noting that ũy(0, z) =∞ by (A.6), the only possibility for (C.3) to hold is s
¯
= 1.

Then st → 1, and

lim
t→∞

St

e1Gt
= lim

t→∞
st = 1. (C.4)

Noting that cyt = e1G
t−St and cot = e2G

t +St, we obtain (C.1a). Using (2.7) and

(2.8c), we obtain

rt = St − St+1
Uz

Uy

= St − St+1
cz
cy
, (C.5)

where cy, cz are evaluated at (y, z) = (1− st, G(w+ st+1)). Dividing both sides of

(C.5) by e1G
t, letting t→∞, and using Lemma A.1, we obtain

lim
t→∞

rt
e1Gt

= 1−G · 0 = 1.

Since St = Pt + rt, we immediately obtain (C.1b). Finally, the risk-free rate is

Rt =
St+1

Pt

= G
St+1/(e1G

t+1)

(St − rt)/(e1Gt)
→ G

1

1− 1
=∞,

which is (C.1c).

Since Pt ≤ St ∼ e1G
t grows at rate at most G and the risk-free rate diverges to

infinity (hence eventually exceeds the housing price growth rate), the no-bubble

condition holds and there is no housing bubble. Using (C.1b), we obtain Pt/rt → 0,

so the price-rent ratio converges to 0. The Pareto efficiency of equilibrium follows

from (C.1c) and Lemma A.2(i).

C.2 Elasticity of substitution equal to 1

We next consider the case γ = 1 (log utility), which is commonly used in applied

theory. When u(c) = log c, the difference equation (3.3) reduces to

Gst+1cz = stcy −mc, (C.6)

which is an autonomous nonlinear implicit difference equation. The following

theorem shows that this difference equation admits a unique steady state, which
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defines a balanced growth path equilibrium.

Proposition C.2 (Equilibrium with γ = 1). Suppose Assumptions 1–3 hold,

γ = 1, and let w = e2/e1. Then the following statements are true.

(i) There exists a unique steady state s∗ ∈ (0, 1) of (C.6), which depends only

on G,w, c,m.

(ii) There exists a unique balanced growth path equilibrium. The equilibrium

objects satisfy

(cyt , c
o
t ) = ((1− s∗)e1G

t, (w + s∗)e1G
t), (C.7a)

(Pt, rt) =

(
Gs∗cz
cy

e1G
t,m

c

cy
e1G

t

)
, (C.7b)

Rt =
cy
cz

> G, (C.7c)

where c, cy, cz are evaluated at (y, z) = (1− s∗, G(w + s∗)).

(iii) In the equilibrium (C.7), there is no housing bubble and the price-rent ratio

Pt/rt is constant.

(iv) Any equilibrium converging to the balanced growth path is Pareto efficient.

(v) If in addition the elasticity of intertemporal substitution satisfies

1

ε(y, z)
:=

ccyz
cycz

<
1 + w/s∗

1 + w

(
1 +Gw

cz
cy

)
(C.8)

at (y, z) = (1− s∗, G(w + s∗)), then the equilibrium is locally determinate.

Proof. We divide the proof into several steps.

Step 1. Existence and uniqueness of s∗.

Letting st = st+1 = s in (C.6) and rearranging terms, we obtain the steady

state condition

Gscz = scy −mc ⇐⇒ Gcz − cy
c

+
m

s
= 0, (C.9)

where c, cy, cz are evaluated at (y, z) = (1− s,G(w+ s)). Define f : (0, 1)→ R by

f(s) := log c(1− s,G(w + s)) +m log s.
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Then (C.9) is equivalent to f ′(s) = 0. Since s 7→ (1 − s,G(w + s)) is affine, the

logarithmic function is increasing and strictly concave, and m > 0, Proposition

11.4 of Toda (2025, p. 150) implies that f is strictly concave. Clearly f ′(0) =∞.

Letting ũ(y, z) = log c(y, z), an argument similar to the derivation of (A.6) shows

ũy(0, z) =∞. Therefore, f ′(1) = −∞. Since f is strictly concave, it has a unique

global maximum s∗ ∈ (0, 1), which satisfies f ′(s∗) = 0 and hence (C.9). Clearly

this s∗ depends only on G,w, c,m.

Step 2. Existence, uniqueness, and characterization of a balanced growth path.

In any balanced growth path equilibrium, we must have St = s∗e1G
t for some

s∗ ∈ (0, 1). The previous step establishes the existence and uniqueness of s∗. The

consumption allocation (C.7a) follows from (2.8a), and Assumption 1. The rent

in (C.7b) follows from (2.8c), Assumption 2, and Lemma A.1. Using (C.9), we

obtain the housing price

Pt = St − rt = e1G
t

(
s−m

c

cy

)
= e1G

t scy −mc

cy
= e1G

tGscz
cy

,

which is (C.7b). Using (C.9), we obtain the gross risk-free rate

Rt =
St+1

Pt

=
se1G

t+1

e1Gs(cz/cy)Gt
=

cy
cz

= G+
mc

scz
> G,

which is (C.7c). Clearly the price-rent ratio is constant by (C.7b). Since R > G,

we obtain

lim
T→∞

R−TPT = lim
T→∞

e1
Gscz
cy

(G/R)T = 0,

so the no-bubble condition holds and there is no housing bubble. The Pareto

efficiency of equilibrium follows from (C.7c) and Lemma A.2(i).

Step 3. Sufficient condition for local determinacy of equilibrium.

Define the function Φ : (0, 1)× (0,∞)→ R by

Φ(ξ, η) = Gηcz − ξcy +mc, (C.10)

where c, cy, cz are evaluated at (y, z) = (1−ξ,G(w+η)). Then (C.6) can be written

as Φ(st, st+1) = 0 and Φ(s, s) = 0 holds, where we write s = s∗. Assuming that

the implicit function theorem is applicable and partially differentiating (C.10), we
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can solve the local dynamics as st+1 = ϕ(st), where

ϕ′(s) = −Φξ

Φη

= − −Gscyz + scyy − (1 +m)cy
−Gscyz +G2sczz +G(1 +m)cz

=
(1 +m)cy +Gscyz − scyy

G(1 +m)cz −Gscyz +G2sczz
=:

n

d
. (C.11)

By exactly the same argument as in the proof of Theorem 4, we obtain

n = (1 +m)cy −
s(1 + w)

G(w + s)2
g′′,

d = G(1 +m)cz +
s(1− s)(1 + w)

G(w + s)3
g′′.

If ϕ′(s) > 1, then s = s∗ is a source and hence the balanced growth path equilib-

rium is locally determinate.

We now seek to derive a sufficient condition for local determinacy. Since g′′ < 0,

we have

n− d > (1 +m)(cy −Gcz) = m(1 +m)
c

s
> 0,

where we have used (C.9). Therefore, if Φη = d > 0, then ϕ′(s) = n/d > 1 and we

have local determinacy.

Using (C.11), (A.2), and σ := ccyz
cycz

, the sign of Φη becomes

sgn(Φη) = sgn

(
−Gy + z

z
scyz + (1 +m)cz

)
= sgn

(
−Gy + z

z
sσ

cycz
c

+ (1 +m)cz

)
= sgn

(
−Gy + z

z
sσcy + (1 +m)c

)
.

Using (A.4) and (C.9), we obtain

sgn(Φη) = sgn

(
−Gy + z

z
sσcy + ycy + zcz + scy −Gscz

)
.

Substituting (y, z) = (1− s,G(w+ s)), dividing by cy > 0, and rearranging terms,

we obtain

sgn(Φη) = sgn

(
−G(1 + w)

G(w + s)
sσ + 1 +Gw

cz
cy

)
.
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Therefore, we have Φη > 0 if and only if

1

ε
= σ <

1 + w/s

1 + w

(
1 +Gw

cz
cy

)
,

which is exactly (C.8).

D Stylized facts

This appendix presents stylized facts regarding housing prices and rents.

We use the regional housing price data from Realtor.com, which provides

detailed monthly data at the county level since July 2016.17 We use the median

listing price in July because the sales volume tends to be higher in spring and

summer.

Regional rents are the Fair Market Rents (FMRs) from the U.S. Department

of Housing and Urban Development (HUD).18 FMRs are defined by estimates of

40th percentile gross rents for standard quality units within a metropolitan area or

non-metropolitan county and are available for housing units with 0–4 bedrooms.

We use the values for three bedrooms.

The number of housing units is “All housing units” in Quarterly Estimates

of the Total Housing Inventory for the United States from the Census Bureau,19

which is available since 1965.

Figure 5 shows the time series of U.S. real GDP and the total number of

housing units, where we normalize the values in 1965 to 1. We can see that GDP

growth is faster, justifying our assumption G > 1 in the model.

Let rit and Pit be the rent and housing price in county i in year t constructed

above. Figure 6 plots logPit against log rit for the year 2023 and estimates

logPit = α + β log rit + ϵit, i = 1, . . . , I

by ordinary least squares (OLS) regression. The results for other years are all

similar. Although this picture only documents correlation, the coefficient β̂ =

1.46 > 1 corresponds to 1/γ in the model.

17https://www.realtor.com/research/data/
18https://www.huduser.gov/portal/datasets/fmr.html
19https://www.census.gov/housing/hvs/data/histtab8.xlsx
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