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Abstract

Regulating externalities is particularly challenging in the presence of uncertainty and
disagreement among economic agents. Traditional Pigouvian and Coasean approaches
often fail because they require either precise knowledge of externality costs or frictionless
bargaining. We propose an “uncertainty-based regulation” (UBR) mechanism that
harnesses heterogeneous information and disagreement among firms to achieve socially
efficient outcomes without requiring explicit information revelation. UBR modifies firms’
payoffs based on their deviation from the aggregate action, weighted by observable
outcomes, effectively creating a synthetic market that internalizes externalities. This
mechanism implicitly defines property rights, aligns incentives, and elicits private
information without direct negotiation. We show that UBR achieves team efficiency,
dominates conventional regulation, incentivizes information acquisition, and remains
robust even when firms distrust each others’ signals. Moreover, if brought to a vote, it
would receive unanimous support, making it politically viable.
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1 Introduction

A central challenge in economics is the design of effective regulation for activities that generate

externalities. This task is made all the more difficult in the presence of uncertainty and

disagreement among economic agents. Nowhere is this more evident than in the current

climate-change debate, where uncertainty about future climate outcomes and disagreement

among stakeholders have led to political gridlock and stalled policy adoption. Traditional

approaches, rooted in the work of Pigou (1920) and Coase (1960), often falter in these

complex environments. Pigouvian taxes or subsidies, while theoretically appealing, require

the regulator to possess precise knowledge of the externality’s magnitude (such as the social

cost of carbon)—a requirement rendered unattainable by the combination of pervasive

uncertainty and firms’ private information (Mirrlees, 1971; Weitzman, 1974; Stiglitz, 1982).

Similarly, Coasean bargaining relies on well-defined property rights and negligible transaction

costs, conditions rarely met in practice, especially when dealing with diffuse externalities and

large numbers of actors holding private information (Kwerel, 1977; Farrell, 1987).

The literature has responded to this challenge through two main approaches. The first

approach, mechanism design, consists of developing sophisticated schemes to elicit private

information from firms (e.g., Dasgupta, Hammond, and Maskin, 1979). These mechanisms are

often complex, difficult to implement, and vulnerable to collusion or strategic misreporting,

particularly when trust among agents is limited (Laffont and Tirole, 1986; Laffont, 1994).

The second approach explores second-best policies that rely solely on publicly available

information, such as uniform standards or taxes based on aggregate outcomes (e.g., Roberts

and Spence, 1976; Weitzman, 1974). While simpler, these approaches sacrifice efficiency by

failing to utilize the valuable private information held by firms. The regulation of externalities

is then confronted with a challenging trade off: either complex mechanisms with potential

fragility or simpler mechanisms with inherent inefficiency.

In this paper we address this challenge by proposing a novel regulatory approach that

harnesses uncertainty and disagreement to achieve efficiency without explicit information

revelation. We label this approach “Uncertainty-Based Regulation” (UBR). We consider a
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setting where firms undertake socially beneficial actions (e.g., investing in green technologies,

contributing to public goods, enhancing cybersecurity) whose effectiveness is uncertain and

about which firms possess heterogeneous private information.

Instead of directly controlling prices or quantities, UBR adjusts firms’ payoffs based on

(i) the gap between their individual actions and the average, and (ii) observable aggregate

outcomes such as temperature changes or total emissions. We show that this seemingly minor

adjustment—a “quiet hand” of regulation—is equivalent to creating a synthetic Coasean

market for the externality. An endogenous “shadow price” emerges for deviating from the

average, reflecting both the overall level of socially beneficial activity and the true, underlying

state of the environment. By maximizing their profits under this regulation, firms implicitly

act as Cournot competitors responding to this endogenous price. This price mimics the

outcome of Coasean bargaining, but without requiring explicit negotiation or ex-ante defined

property rights. It induces firms to internalize the externality and coordinate their actions in

a way that implicitly incorporates their private information.

Our key result is to show that the proposed UBR achieves the team-efficient allocation

in the economy, that is, the best outcome a benevolent social planner could attain, given

the constraint that private information remains decentralized and cannot be directly com-

municated among agents (Radner, 1962; Angeletos and Pavan, 2007, 2009). This shows

that efficiency can be achieved without explicit information revelation or centralized control,

unlike standard regulatory instruments such as Pigouvian taxes and cap-and-trade, which

often fall short under uncertainty and disagreement. UBR strictly dominates both the status

quo (no regulation) and a social planner with only public information. This stems from

two sources: a beneficial “tilting” of aggregate activity and the freedom of firms to choose

actions tailored to their private information, which is absent under uniform policies. UBR

elicits firms’ dispersed knowledge, thereby boosting efficiency. This mechanism remains

effective even when agents distrust the quality of others’ information; in fact, distrust further

strengthens their incentive to acquire more precise private signals. Finally, we examine the

political economy implications of the proposed regulation, showing that in a voting setting,

all firms would ex-ante prefer this approach, making it politically viable.
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In sum, UBR bridges the Pigouvian goal of internalizing externalities and the Coasean

principle of decentralized efficiency, achieving both without the precise ex-ante knowledge

demanded by Pigou (1920) or the restrictive conditions required by Coase (1960). We show

that the proposed mechanism is formally equivalent to a Cournot game in a hypothetical

market for the externality, where the equilibrium price is determined by observable outcomes,

thus linking our results to formal work on information aggregation in Cournot settings

(e.g., Vives, 1988) and to the classic idea that decentralized actions can aggregate dispersed

knowledge (Hayek, 1945).

Literature. The work most closely related to ours is Angeletos and Pavan (2009), who

analyze economies with dispersed information about aggregate shocks and characterize the

resulting inefficiencies, suggesting that taxes contingent on aggregate outcomes could improve

welfare. We build directly on their framework and propose an implementable mechanism.

Unlike standard regulatory tools, UBR achieves team efficiency by creating a synthetic market

that aligns private incentives with social goals without the need to observe firms’ private

information. We prove this is impossible with standard Pigouvian taxation or a cap-and-trade

scheme, and offer a new economic interpretation, showing how the mechanism creates implicit

property rights that mimics the outcome of Coasean bargaining.

Our work is also related to the literature on information economics and heterogeneous

beliefs. Our model builds on Romer (1986), where agents take an aggregate variable—

knowledge in Romer’s model, environmental quality in ours—as given. While individual agents

cannot directly influence environmental quality, their collective actions shape it, generating

positive externalities. We extend this framework by introducing belief heterogeneity and a

regulatory design that elicits private information, demonstrating how a regulator can leverage

uncertainty and disagreement to align individual incentives with societal goals. This places

our work within the literature on regulation under information asymmetry, e.g., Roberts and

Spence (1976); Kwerel (1977); Montero (2008), though we focus specifically on leveraging

agents’ disagreements and private signals to coordinate actions toward a social optimum.

Additionally, by incorporating agents with diverse private signals, our work is related to
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the literature on heterogeneous beliefs and market dynamics (Keynes, 1964; Bikhchandani,

Hirshleifer, and Welch, 1992; Morris and Shin, 2002; Veldkamp, 2011; Myatt and Wallace,

2008). As in Morris and Shin (2002), agents anticipate others’ actions, with a firm’s profit

depending on its deviation from aggregate actions, a form of “beauty contest”. Furthermore,

similar to Banerjee (2011), our model includes agents who may distrust others’ signals—

introducing a risk component analogous to the “sentiment risk” studied by Dumas, Kurshev,

and Uppal (2009). Unlike most of this literature, however, our focus is on how regulation can

exploit uncertainty and disagreement as policy tools to align individual actions with societal

goals, even amid agent distrust.

Recent work also exploits state-contingent policies. Colombo, Femminis, and Pavan

(2025) show that a subsidy indexed to aggregate investment and fundamentals can correct

both real spillovers and under-investment in information. Lemoine (2024) proposes “carbon

shares”—a deposit–refund security whose market price adjusts with realized damages, likewise

internalising the externality through an asset indexed to aggregate outcomes. Our framework

bridges these two paradigms, introducing a mechanism that can be viewed as both a state-

contingent Pigouvian tax and a fully decentralized, market-based solution. Our main result

shows that UBR leads to the same allocation as if there were a market for the externality—even

though no such market exists.

Finally, our work contributes to the broader literature on uncertainty, economic decision-

making, and regulatory design. Since the seminal work of Knight (1921), uncertainty has

often been viewed as a barrier to effective decision-making (e.g., Bernanke, 1983; Rodrik,

1991; Dixit and Pindyck, 1994; Caballero and Pindyck, 1996). We challenge this perspective

by demonstrating that uncertainty can be harnessed to achieve desirable societal goals. This

insight aligns with Wang (2022), who shows that environmental regulatory uncertainty can

incentivize firms to adopt greener practices preemptively, and with Pindyck (2007, 2022),

who explore uncertainty’s role in prompting proactive environmental policies. In the context

of climate policy and regulatory economics (Nordhaus, 2019; Stern, 2007; Heal, 2009), our

approach offers an alternative to traditional regulatory tools. While Pigouvian taxes (Pigou,

1920) require precise estimates of externalities and Coasean bargaining (Coase, 1960) relies on
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well-defined property rights and frictionless negotiations—conditions rarely met in practice

(Farrell, 1987)—our framework bridges these perspectives by designing a regulatory mechanism

that internalizes externalities without explicit information revelation or centralized control.

In so doing, our work connects to the literature on market-based mechanisms and information

aggregation in strategic settings (Vives, 1988).

In summary, our findings contribute to the long-standing debate on optimal regulation

under uncertainty and asymmetric information, and have broad potential applications, ranging

from environmental policy and the promotion of innovation to public health and cybersecurity.

By demonstrating that it is possible to achieve a high degree of efficiency without resorting to

complex, potentially fragile revelation mechanisms or sacrificing the benefits of decentralized

decision-making, we offer a practical alternative to traditional regulatory tools.

The paper proceeds as follows. Section 2 introduces the model, presents benchmark

allocations, and characterizes the equilibrium allocation under UBR. Section 3 analyzes

welfare and political viability. Section 4 studies the impact of distrust. Section 5 concludes.

Appendix A contains all proofs.

2 The Model

Consider an economy with two dates, t ∈ {0, 1}, populated by a continuum of households

indexed by i ∈ [0, 1]. Each household (or “agent”) acts as both a consumer and a producer

(owning and operating a firm). There is a single consumption good, which serves as the

numéraire. Each household i is endowed with e units of the consumption good at time 0.

Actions and payoffs. At time t = 1, consumers derive utility from consumption and from

the overall quality of the environment. We begin with a general utility function, U(ci, q), where

ci represents consumer i’s consumption and q represents environmental quality. We assume

that consumers prefer higher consumption and higher environmental quality (Uci
(ci, q) > 0

and Uq(ci, q) > 0), and that there are diminishing marginal returns (or increasing marginal
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damages) to environmental quality (Uqq(ci, q) < 0).1 The utility function incorporates

environmental quality as a non-pecuniary factor. This is consistent with integrated climate

assessment models (Nordhaus, 1991, 2015), which incorporate the effects of climate change

and emissions into the utility function.2

Each household i operates a firm. At t = 0, household i chooses γi, which represents

its firm’s contribution to a socially desirable activity (e.g., investment in green technology).

We denote by γi the firm’s level of “greenness”. While individual households choose γi,

aggregate greenness, Γ̃ =
∫ 1

0 γidi, is determined by the combined actions of all households and

is uncertain at t = 0.3

The firm’s profit, π(γi), depends on the household’s choice of greenness, γi. We assume that

all firms initially operate at a status quo level of greenness, Γ0. The profit function is quadratic,

concave (i.e., πγγ < 0 is a negative constant), and maximized at γi = Γ0, reflecting diminishing

returns and adjustment costs incurred for changing the level of greenness. Consequently,

time-1 consumption for household i is:4

ci = e + π(γi). (1)

Environmental quality is measured through changes in an Environmental Performance

Index (EPI), where a higher EPI reflects a healthier environment.5 A higher EPI reflects

reductions in greenhouse gas emissions, carbon dioxide levels, deforestation, and other climate

risks. We define q̃ as the change in the EPI from time 0 to time 1. To link environmental

quality to aggregate greenness, we assume the following relationship:

q̃ = θ̃ + a(Γ̃ − Γ0), (2)

where θ̃ is a random variable representing the underlying uncertain environmental trend
1Throughout this paper, we use subscripts to denote partial derivatives. For example, given a function

f(x, y), we have fx ≡ ∂f/∂x, fy ≡ ∂f/∂y, fxx ≡ ∂2f/∂x2, fxy ≡ ∂2f/∂x∂y, and so on.
2See, e.g., Michel and Rotillon (1995) and Baker, Hollifield, and Osambela (2022) for further discussion,

and Acemoglu, Aghion, Bursztyn, and Hemous (2012) for an additional application.
3We use a tilde (e.g., Γ̃) to denote variables that are uncertain at t = 0, when households make their

decisions. Variables without tildes (e.g., q, ci, γi, Γ0, a) represent either quantities known at t = 0 or values
realized at t = 1.

4We assume e is large enough that the probability of negative realized consumption is negligible in
equilibrium.

5See https://epi.yale.edu/ for an example.
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absent human interventions and a > 0 is a “climate sensitivity” parameter.6 Equation (2)

implies that increased aggregate greenness relative to the status quo improves environmental

quality. We assume that the expected environmental trend µθ ≡ E[θ̃] is public information.

Although θ̃ and Γ̃ are uncertain at t = 0, the realized value of q̃ is publicly observed at t = 1.

At t = 1, the values of θ̃, Γ̃, and ci are realized. At t = 0, household i chooses γi to

maximize its expected utility. Ideally, the household would choose γi to maximize Ei[U(ci, q̃)],

where ci is given in equation (1), q̃ is defined in equation (2), and the expectation Ei[·] is based

on the information available to household i at t = 0. However, because of the general form of

U and the uncertainty surrounding q̃, this optimization problem is analytically intractable.

To proceed, we approximate the general utility function U(ci, q) using a Taylor expansion

around (c0, q0), where c0 is a baseline level of consumption and q0 = µθ is the expected value

of environmental quality in the status quo (both corresponding to the status quo greenness

level Γ0 and the expected environmental trend µθ). We use a first-order approximation in ci

and a second-order approximation in q. Specifically,

U(ci, θ, Γ) := U(c0, µθ) + Uc(c0, µθ)(ci − c0) + Uq(c0, µθ)(q − µθ) + 1
2Uqq(c0, µθ)(q − µθ)2. (3)

Substituting the expression for ci from equation (1) and q̃ from equation (2) into the

Taylor expansion (3), we obtain a new utility function, U(ci, θ̃, Γ̃), that is quadratic in θ̃

and Γ̃, and linear in ci.7 This linear-quadratic form is commonly used in macroeconomic

models with dispersed information (Angeletos and Pavan, 2007, 2009) and renders the model

analytically tractable.8

6In the climate context, a is the marginal effect of aggregate mitigation effort on a summary indicator
such as temperature or the EPI. Estimates come from integrated-assessment and carbon-cycle models; see,
e.g., Meinshausen, Meinshausen, Hare, Raper, Frieler, Knutti, Frame, and Allen (2009), Nordhaus (2014),
and IPCC AR6 (2021, ch. 7). In other externality settings, a could capture how total activity influences a
common outcome—e.g., how an increase in the number of cars raises traffic congestion, or how industry-wide
underinvestment heightens cybersecurity risk.

7The function U(ci, θ̃, Γ̃) represents the approximated utility, expressed as a function of consumption and
the uncertain variables θ̃ and Γ̃. The household’s choice of γi directly affects its utility through its impact on
ci, where ci = e + π(γi).

8Appendix B revisits the model under an exponential-utility specification. We solve in full for the individual
and aggregate greenness choices and show—analytically where tractable and numerically otherwise—that the
key equilibrium relationships reported in the main text are unaffected. The linear-quadratic approximation
used in the main text thus serves purely to streamline the exposition, not to drive the results.
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Therefore, at t = 0, household i chooses γi to maximize:

max
γi

Ei[U(ci, θ̃, Γ̃)], (4)

subject to equation (1).

The Taylor approximation (3) and our assumptions on U yield the following properties

for U :

Property 1. Uc = Uc(c0, µθ) > 0 is a positive constant. The first-order approximation of U

in ci implies U is linear in ci.

Property 2. UΓ(θ̃, Γ̃) is linear in θ̃ and Γ̃. This follows from the second-order approximation

of U in q and the linearity of (2).

Property 3. UΓΓ = a2Uqq(c0, µθ) < 0 is a negative constant. Since Uqq(c0, µθ) < 0, we have

UΓΓ < 0, reflecting diminishing marginal returns to aggregate greenness.

Property 4. UcΓ = 0. Marginal utility of consumption is independent of aggregate greenness.

This follows from the Taylor expansion: because U is linear in ci, and q (and thus Γ) is

independent of ci, there is no interaction term between consumption and aggregate greenness.

Property 5. UθΓ = aUqq(c0, µθ) < 0 is a negative constant. Given a > 0 and Uqq(c0, µθ) < 0,

we have UθΓ < 0.

Information. At time t = 0, all households share a common prior belief about the unob-

servable environmental trend θ̃, which we assume to be represented by a normal distribution,

θ̃ ∼ N (µθ, σ2
θ). Each household i observes a private signal yi and a public signal z about θ̃:

yi = θ̃ + ε̃y,i, (5)

z = θ̃ + ε̃z, (6)

where ε̃y,i ∼ N (0, τ−1
y ) and ε̃z ∼ N (0, τ−1

z ) are independent noise terms, also independent

of θ̃. The parameters τy and τz represent the precisions of the private and public signals,

respectively. We assume throughout that households trust the informational content of others’

signals. Section 4 relaxes this assumption and explores the implications of agents’ distrust in

the quality of each others’ private signals.
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Let Ei[θ̃] := E[θ̃|yi, z] denote household i’s posterior expectation of θ̃, conditional on its

information set {yi, z}. The posterior precision, τ , is defined as:

τ := (Var[θ̃|yi, z])−1 = σ−2
θ + τy + τz. (7)

By Bayes’ theorem, household i’s posterior expectation is the prior mean plus precision-

weighted deviations of the private and public signals from that mean:

Ei[θ̃] = µθ + τy

τ
(yi − µθ) + τz

τ
(z − µθ). (8)

2.1 Benchmark Allocations

Before introducing our regulatory mechanism, we define several benchmark allocations that

will serve as points of comparison. These benchmarks help illustrate the inefficiencies that

arise in the absence of regulation and the potential gains from our proposed approach.

We begin by characterizing the status quo allocation, which represents the outcome when

there is no regulation and households do not internalize the externality. Since each household

owns and operates a single firm, we can equivalently refer to the household’s decision as the

firm’s decision.

Lemma 1 (Status quo allocation). In the absence of regulation or policy intervention, each

firm chooses its greenness level to maximize the household’s utility, ignoring the environmental

impact. This results in all firms choosing the status quo level of greenness:

γsq
i = Γ0, ∀i ∈ [0, 1]. (9)

Hence, aggregate greenness is also at the status quo level:

Γ̃sq = Γ0. (10)

Given the assumption that π(γi) is a quadratic concave function maximized at Γ0, the

status quo (γsq
i = Γ0) is, by construction, privately optimal. It is, however, socially inefficient

because γsq
i does not accounts for the positive externality of green investments, which enhance

environmental quality.

Next, consider the first-best allocation. This allocation is defined as the solution to a
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social planner’s problem, where the planner possesses perfect information regarding the

environmental trend θ̃ at time t = 0, that is, it observes θ directly and has direct control over

all firms’ greenness choices. The planner’s objective is to maximize social welfare, subject

to the constraint that the planner internalizes the externality arising from the impact of

individual greenness choices on aggregate greenness.

Since the social planner observes θ directly, all households are effectively homogeneous.

Consequently, the planner’s problem reduces to choosing a uniform greenness level, γ, for all

firms. The first-best allocation is thus the solution to the following:

max
γ∗

U(c(γ∗), θ, Γ(γ∗)), (11)

subject to c(γ∗) = e + π(γ∗) and Γ(γ∗) = γ∗.

Lemma 2 (First-best allocation). The first-best allocation is characterized by a uniform

greenness level γ∗(θ) across all firms that is a linear function of the realized environmental

trend:

γ∗(θ) = κ∗
0 + κ∗

1(θ − µθ), (12)

where9

κ∗
0 := Γ0 − UΓ(µθ, Γ0)

Ucπγγ + UΓΓ
and κ∗

1 := − UθΓ

Ucπγγ + UΓΓ
. (13)

This first-best allocation is unattainable in our main setting because θ is unobservable at

t = 0. In the first-best, all firms choose γ∗(θ) contingent on the realized value of θ. Since

UθΓ < 0 (by Property 5), Uc > 0 (by Property 1), πγγ < 0 (by assumption), and UΓΓ < 0 (by

Property 3), we have κ∗
1 < 0. Therefore, the first-best level of greenness, γ∗(θ), is decreasing

in θ: a worse environmental trend (lower θ) requires a higher level of green investment.

Finally, consider the team-efficient allocation. Following Radner (1962), and Angeletos

and Pavan (2007, 2009), this benchmark represents the best achievable outcome when a social

planner can specify a decision rule that maps each firm’s private and public information to a
9In the definition of κ∗

0 in equation (13), the notation UΓ(µθ, Γ0) denotes the partial derivative ∂U/∂Γ
evaluated at (ci, θ, Γ) = (ci, µθ, Γ0). We use the two-argument shorthand UΓ(µθ, Γ0) because, under our
assumptions, UΓ is independent of ci.
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recommended greenness level, but cannot directly observe individual firms’ information sets.

Firms are assumed to commit to this rule, maximizing ex-ante expected social welfare. This

differs from the first-best because actions are decentralized.

To formalize this, the ex-ante expected social welfare in this economy is given by:

E[U ] :=
∫

(θ̃,z)

∫
yi

U(e + π(γi), θ̃, Γ̃)dP (yi|θ̃, z)dP (θ̃, z), (14)

where dP (yi|θ̃, z) is the conditional probability distribution of the private signal yi given θ̃

and z, and dP (θ̃, z) is the joint probability distribution of θ̃ and the public signal z.

The team-efficient allocation is then defined as the strategy γte
i (yi, z) that solves the

following maximization problem:

max
γte

i (·)

∫
(θ̃,z)

∫
yi

U
(
e + π

(
γte

i (yi, z)
)
, θ̃, Γ̃te(θ̃, z)

)
dP (yi|θ̃, z)dP (θ̃, z), (15)

subject to Γ̃te(θ̃, z) =
∫

yi
γte

i (yi, z)dP (yi|θ̃, z).

Lemma 3 (Team-efficient allocation). The team-efficient allocation is characterized by

each firm choosing a greenness level, γte
i , that is a linear function of its conditional expectations

of the first-best level of individual greenness, γ∗(θ), and the aggregate greenness, Γ̃te:

γte
i = (1 − α)Ei[γ∗(θ)] + αEi[Γ̃te], (16)

where Ei[·] denotes the expectation conditional on household i’s information set {yi, z}, γ∗(θ)

is the first-best level of greenness defined in Lemma 2, Γ̃te =
∫ 1

0 γte
i di is the aggregate greenness,

and α is defined as

α := − UΓΓ

Ucπγγ

. (17)

Since UΓΓ < 0, Uc > 0 and πγγ < 0, we have α < 0, implying that firms’ actions are strategic

substitutes in equilibrium.

In the team-efficient allocation, each firm’s action, γte
i , is a weighted average of its expec-

tation of the first-best action, Ei[γ∗(θ)], and its expectation of the aggregate action, Ei[Γ̃te].

This reflects the dual goals of responding to private information and coordinating with others.
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The weight α governs the balance between these considerations and represents the equilibrium

degree of coordination. When α < 0, as in this case, actions are strategic substitutes, pushing

firms to differentiate from others and rely more on their private information. As shown

by Angeletos and Pavan (2007, 2009), this optimal action, shaped by expectations of both

individual and aggregate targets, is a hallmark of economies with dispersed information and

strategic interactions.

We now compare the welfare implications of the three benchmark allocations.

Lemma 4 (Welfare ranking). The ex-ante expected social welfare, defined in (14), is

ranked across the three benchmark allocations as follows:

E[U sq] ≤ E[U te] ≤ E[U∗], (18)

where E[U sq], E[U te], and E[U∗] denote the ex-ante expected social welfare under the status

quo, team-efficient, and first-best allocations, respectively.

The team-efficient allocation improves upon the status quo by leveraging dispersed

private information, even without direct information sharing or centralized control. However,

because information remains dispersed, the team-efficient allocation remains inferior to the

unattainable first-best, where θ is perfectly observed.

2.2 Uncertainty-Based Regulation (UBR)

The goal of the regulatory mechanism we propose, UBR, is to harness uncertainty and

disagreement without requiring the regulator to have precise knowledge of the externality’s

magnitude or to observe firms’ private information. The central idea of UBR is to modify

firms’ payoffs by adding a term that depends on both the firm’s individual action and

observable aggregate outcomes. Crucially, this modification is not a command-and-control

approach; firms retain their freedom to choose their greenness levels. Instead, as we will show

below, the mechanism creates an implicit “market” for the externality, where the “shadow

price” of deviating from the average action is determined ex post by realized environmental

outcomes.

12



Formally, let f(q) be a function of the realized environmental quality, q. This function is

known to all agents at t = 0 and is part of the regulatory framework, even though its value

depends on the ex-post realizations of q. The regulator modifies each firm’s profit at time

t = 1 by adding the following term:

T (q, Γ, γi) = (γi − Γ)f(q). (19)

This regulatory term has a specific interpretation. The factor (γi − Γ) represents the

difference between firm i’s greenness choice and aggregate greenness, measuring the firm’s

deviation from the average action. The function f(q) acts as a “shadow price” for this

deviation, determined ex post by the realized environmental quality, q. Although the value

of this price depends on a realized outcome, the function f(q) itself is fully specified ex ante

as part of the regulatory framework. This term introduces a beauty contest element into the

firms’ decisions, creating incentives similar to those studied by Morris and Shin (2002).

Accounting for the regulatory term, the household’s time-1 consumption becomes:

ci = e + π(γi) + T (q, Γ, γi). (20)

At t = 0, firm i chooses the level of greenness γi to solve the following maximization

problem:

max
γi

Ei[U(c̃i, θ̃, Γ̃)], (21)

where by equation (20), the consumption at time t = 1 is c̃i = e + π(γi) + T (q̃, Γ̃, γi). Note

that, from the household’s perspective at t = 0, consumption at t = 1 is now uncertain due

to the regulatory term T (q̃, Γ̃, γi).

What functional form for f(q̃) will induce firms to choose the team-efficient allocation?

In other words, how can we design the regulatory mechanism to align individual incentives

with the socially desirable outcome, despite the presence of asymmetric information and

uncertainty? As Angeletos and Pavan (2009) suggest, appropriately designed interventions

that are contingent on aggregate outcomes can, in principle, achieve team efficiency in

economies with dispersed information. In the following proposition we provide a concrete
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mechanism that achieves team efficiency.

Proposition 1 (Team efficiency of UBR). Let the regulatory function f(q̃) be given by:

f(q̃) = a [MRS − ERA(q̃ − µθ)] , (22)

where MRS is the marginal rate of substitution between environmental quality and consumption

(evaluated at the status quo) and ERA represents society’s aversion to environmental risk

(also evaluated at the status quo):

MRS := Uq(c0, µθ)
Uc(c0, µθ)

> 0, (23)

ERA := −Uqq(c0, µθ)
Uc(c0, µθ)

> 0. (24)

Then, the unique linear equilibrium in an economy with UBR is for each firm to choose the

team-efficient level of greenness, γte
i , as defined in Lemma 3.

The marginal rate of substitution (MRS) between environmental quality and consumption

represents the baseline social cost of reducing environmental quality—or equivalently, the

social benefit of improving it—expressed in units of consumption. Society’s aversion to

environmental risk (ERA) reflects the concavity of the utility function with respect to

environmental quality; a more negative Uqq (i.e., stronger diminishing marginal utility of

environmental quality) implies a higher ERA. The term (q̃ − µθ), unknown at t = 0, captures

the deviation of realized environmental quality from its expected status quo level.

Proposition 1 shows that the regulatory function acts as an endogenous price for deviations

from average greenness. This price consists of two components: a baseline term, a × MRS,

which captures the fundamental trade-off between consumption and environmental quality,

and a risk adjustment term, −a × ERA × (q − µθ), which scales with both society’s aversion

to environmental risk (ERA) and the environmental surprise (q − µθ). For instance, if the

realized value of q − µθ is strongly negative, meaning environmental quality is much worse

than expected, the price of greenness rises significantly. In such bad times, greenness becomes

especially valuable, as mitigating environmental damage is more urgent.

Table 1 displays the state-contingent incentives under UBR. It contrasts two cases:
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(i) environmental quality below expectation (q < µθ), characterized by a high shadow price

f(q) and (ii) environmental quality above expectation (q > µθ), characterized by a low

shadow price. A high price spurs action and incentivizes leaders (γi > Γ) to “Advance” and

laggards (γi < Γ) to “Catch up”. A low price relaxes pressure and incentivizes leaders to

“Slow down” and laggards to “Linger”. Thus, firms, guided by their private signals about q,

have an incentive to position themselves along the main diagonal of Table 1: they increase

investment in greenness when they expect environmental quality to fall short of expectations,

and reduce it when they anticipate environmental quality to exceed expectations.

Table 1: State-Contingent Incentives under UBR

The table shows firms’ incentive contingent on the realized environmental state (q vs. µθ) and the firm’s
action relative to the average (γi vs. Γ). The quantity f(q) represents the shadow price firms face when
deviating from the average action, as discussed in equation (19).

Realized Environmental Quality
Firm i’s Greenness q < µθ, high f(q) q > µθ, low f(q)
γi > Γ (leader) Advance Slow down
γi < Γ (laggard) Catch up Linger

Because q is publicly observable at t = 1 and all other components are predetermined,

the UBR mechanism is implementable. The regulator specifies the function f(·) ex ante,

announcing calibrated values for a, MRS, and ERA. The climate sensitivity a is informed by

scientific evidence,10 while MRS and ERA can be either estimated from economic data or set

as policy choices. Firms then choose γi, incorporating the regulatory rule and their private

information. Ex post, q is observed and the regulatory adjustment T (q, Γ, γi) is applied to

each firm’s realized profit. As such, UBR requires no firm-specific cost data, adapts to shocks,

incentivizes efficient action, and remains transparent. Moreover, the regulation is neutral,

solely redistributing profits among firms—that is, from equation (19),
∫ 1

0 T (q, Γ, γi)di = 0,

hence the regulatory term cancels out when integrated across firms. Finally, its flexibility

allows policymakers to embed different degrees of environmental risk aversion through ERA.

Proposition 1 establishes that the appropriately defined regulatory function, f(q̃), achieves
10The parameter a is informed by estimates of the relationship between greenhouse gas emissions and

environmental quality. See footnote 6 for a more detailed discussion and references.
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the team-efficient allocation even without the regulator accessing firms’ private signals. This

function creates an endogenous “price” on deviations from aggregate greenness. This “price”

induces firms to internalize the externality and encourages them to act based on their private

information. The UBR needs no complex revelation mechanisms, or even advanced knowledge

of externality levels. In the next section we show that this regulatory mechanism is equivalent

to a synthetic Cournot market for greenness.

2.2.1 Equivalence Between UBR and a Synthetic Cournot Market

Consider a hypothetical Cournot market where firms produce and trade “units of greenness”

at an endogenous price, p. At t = 1, after uncertainty is resolved, each consumer i solves the

following optimization problem:

max
{ci,gi}

U(ci, θ, gi) (25)

subject to

ci + pgi = e + πi, (26)

where the utility function U(·, ·, ·) is defined as in equation (3), ci is consumption of the

numéraire good, gi is the quantity of greenness purchased, e is an endowment of the numéraire,

and πi represents consumer i’s share of firm profits, which the consumer treats as exogenous.

This framework is analogous to a consumer maximizing utility over greenness and the

numéraire, with the utility function remaining consistent with the main model. Equation

(26) is a budget constraint where the consumer would pay a price p for greenness.

Substituting the budget constraint (26) into the utility maximization problem (25) yields:

max
gi

U(e + πi − pgi, θ, gi). (27)

Taking the first-order condition with respect to gi, then rearranging, we find the optimal

demand for greenness for consumer i at time t = 1:

p = UΓ(θ, gi)
Uc

. (28)
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Because UΓ is linear in gi and Uc is constant, condition (28) implies that all consumers

choose the same level of greenness, gi = G for all i. Aggregating across all consumers, the

total demand for greenness is then
∫

i gidi = G. Given that UΓ is linear in gi, we can substitute

G into (28) to obtain the inverse demand function for greenness:

p = UΓ(θ, G)
Uc

. (29)

At time t = 0, before the environmental state θ̃ and the aggregate demand for greenness

G̃ are revealed, each firm i faces an uncertain price p̃ and chooses its level of greenness, γc
i

(the superscript ‘c’ denotes the Cournot analogy), to maximize household i’s expected utility:

max
γc

i

Ei

[
U(e + π(γc

i ) + p̃γc
i , θ̃, G̃)

]
. (30)

This objective function includes the firm’s revenue from selling greenness, p̃γc
i , in addition

to its standard profit function, π(γc
i ) (which remains unchanged from the original model).

Because each firm is infinitesimally small, it acts as a price-taker, treating the market price

of greenness, p̃, as given. At t = 0, firms will generally choose different levels of greenness, γc
i ,

due to their differing expectations based on private signals. However, in the t = 1 equilibrium,

after uncertainty is resolved, aggregate supply will equal aggregate demand (
∫

i γc
i di = G).

In essence, the above analysis describes a market where firms supply greenness, and con-

sumers demand it, even though this market doesn’t literally exist. The following proposition

shows that this synthetic Cournot market achieves the same outcome as UBR in equilibrium.

Proposition 2 (Cournot equivalence). The UBR mechanism with the regulatory function

f(q̃) defined in Proposition 1 is equivalent to a Cournot game in which firms supply greenness

to a market with an inverse demand curve given by p̃ = f(q̃). In this Cournot game:

1. The realized equilibrium price of greenness at time t = 1 is given by p = f(q).

2. Each firm’s optimal greenness level is given by γc
i = γte

i , as defined in Lemma 3.

3. The realized aggregate greenness level at time t = 1 is given by Γte =
∫ 1

0 γte
i di.

Proposition 2 reveals the underlying mechanism of UBR: the regulatory function, f(q),
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serves as the inverse demand curve in a synthetic Cournot market for greenness. By maximizing

their augmented profits, firms implicitly act as Cournot competitors responding to this

endogenous “price”, which reflects both aggregate demand for greenness, G, and the realized

environmental state, θ. This construction shares conceptual similarities with the information

aggregation properties explored in Cournot models (see, e.g., Vives, 1988), but within a

synthetically created market that does not literally exist. Consequently, UBR achieves the

Coasean ideal of efficient resource allocation in the presence of externalities (Coase, 1960),

yet circumvents the need for explicit bargaining or perfectly defined property rights—and in

so doing enacts Hayek’s insight: it creates a “quiet hand” that channels dispersed knowledge

into a coherent collective outcome (Hayek, 1945).

Figure 1 illustrates the equivalence between UBR and a synthetic Cournot market. In the

left panel, UBR assigns each firm an additional profit term of (γi − Γ)f(q), while in the right

panel, a Cournot firm earns a revenue pγc
i . In both settings, the firm’s optimality condition

is given by the same first-order condition (FOC): “marginal cost = expected price”. Since the

equilibrium price satisfies p = f(q), the identical FOCs determine γi under UBR and γc
i in

the Cournot market. The two diagrams thus present alternative representations of the same

underlying incentive problem.

2.3 Strategic Behavior and Information Acquisition

Having established that UBR can achieve the team-efficient allocation, we now characterize

the equilibrium behavior of firms and their incentives regarding information acquisition. The

following proposition characterizes how individual firms’ greenness choices respond to their

private and public signals.

Proposition 3 (Firms’ Equilibrium Strategy). Under UBR, with the regulatory function

defined in Proposition 1, a linear equilibrium is for each firm i to choose a greenness level, γi,

that is a linear function of its private signal, yi, and the public signal, z:

γi = β0 + βy(yi − µθ) + βz(z − µθ), (31)
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Figure 1: Equivalence between UBR and a Synthetic Cournot Market

The figure compares firm i’s optimization under UBR (left panel), where its payoff includes the term
(γi − Γ)f(q) involving the shadow price f(q), with its optimization in a hypothetical Cournot market
(right panel), where the payoff includes revenue pγc

i from market price p. If the market price equals
the shadow price in equilibrium (p = f(q)), the FOCs (green boxes) align, leading to the same optimal
greenness choice (γte

i = γc
i ). (Note: in the figure we suppress tildes; q denotes the realized value of q̃

and Γ the realized value of Γ̃.)

UBR World

Firm i Payoff includes
π(γi) + (γi − Γ)f(q)

Firm maximizes
Ei[U(. . . )] choosing γi

FOC requires:
−πγ = Ei[f(q)]

If f(q) = a[MRS−ERA(q̃ − µθ)]
=⇒ Optimal action γte

i

Cournot World

Firm i sells γc
i at price p;

Payoff includes π(γc
i ) + pγc

i

Firm maximizes
Ei[U(. . . )] choosing γc

i

FOC requires:
−πγ = Ei[p]

Market clearing p = f(q)
=⇒ Optimal action γc

i

where

β0 := Γ0 − UΓ(µθ, Γ0)
Ucπγγ + UΓΓ

, (32)

βy := − UθΓτy

Ucπγγτ + UΓΓτy

< 0, (33)

βz := − 1
1 − α

UθΓτz

Ucπγγτ + UΓΓτy

< 0, (34)

and where α is defined in Lemma 3.11

The coefficients βy and βz are negative. Consequently, firms increase their greenness

investments in response to either private or public signals that indicate a deterioration in the

expected environmental trend. The following corollary examines the relative weight firms

place on private versus public information, as reflected in the ratio βy/βz.
11We restrict attention to linear strategies, consistent with the linear-quadratic framework. See, e.g.,

Angeletos and Pavan (2007, 2009) for similar approaches.
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Corollary 3.1 (Strategic substitutability and information weighting). In the linear

equilibrium of Proposition 3, firms’ actions are strategic substitutes. Furthermore, the ratio

of the weights placed on private and public signals is:

βy

βz

= (1 − α)τy

τz

>
τy

τz

, (35)

implying that firms overweight their private information relative to the public signal, compared

to the Bayesian posterior weights in equation (8).

As established in Lemma 3, the parameter α, which determines the nature of strategic

interaction, is negative. Following Angeletos and Pavan (2007), α represents the equilibrium

degree of coordination and reflects the slope of a firm’s best response function with respect

to the average action of other firms. A negative α implies strategic substitutability: firms

increase (decrease) their greenness when they expect others to decrease (increase) theirs. In

essence, firms have an incentive to differentiate their actions from their competitors. This

drive to differentiate is what motivates firms overweight on their private information, as

shown in the corollary.

While strategic substitutability might suggest a free-rider problem, it has a key offsetting

benefit: it amplifies the informational content of firms’ actions. Because each firm reacts more

strongly to its private signal than it would in a purely Bayesian update, aggregate greenness, Γ̃,

becomes more sensitive to the dispersed private information in the economy. This heightened

responsiveness, driven by the (1 − α) term in the ratio βy/βz, improves the informational

efficiency of the aggregate outcome, in the spirit of Hayek’s knowledge-aggregation via prices

(Hayek, 1945). We show in Section 3 that this informational-efficiency effect contributes to

welfare gains under UBR.

2.3.1 Aggregate Greenness and its Determinants

We now examine the aggregate implications of firms’ equilibrium behavior. Substituting the

equilibrium expression for γi from Proposition 3 into the definition of aggregate greenness,
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Γ̃ =
∫ 1

0 γidi, and noting that
∫ 1

0 (yi − µθ)di = θ̃ − µθ by the law of large numbers, we obtain:

Γ̃ = β0 + βy(θ̃ − µθ) + βz(z − µθ). (36)

The coefficients βy and βz (given in Proposition 3) govern the sensitivity of aggregate

greenness to the unobservable environmental trend, θ̃, and the public signal, z, respectively.

Thus, UBR induces firms to collectively respond to the underlying environmental state, θ̃,

even though this state is not directly observable by the regulator. As shown in Proposition

3, the sum βy + βz is negative. Equation (36) thus reveals that aggregate green investment

compensates for adverse environmental shocks: a lower θ̃ (worse underlying conditions)

triggers a rise in Γ̃.

We define the information sensitivity of aggregate greenness, denoted by B, as the absolute

magnitude of the combined response to the environmental trend and the public signal:

B := |βy + βz|. (37)

Indeed, substituting z = θ̃ + ε̃z into equation (36) reveals that Γ̃ changes by (βy + βz) per unit

of θ̃, motivating our definition of B as the overall sensitivity. This measure thus captures the

overall responsiveness of aggregate green investment to changes in available information about

the environmental state. A higher B implies that UBR more effectively translates dispersed

private and public signals into collective action, better aligning green investment with the

(unobserved) environmental needs. This improved alignment contrasts with the unresponsive

status quo. The regulator’s goal is to achieve the team-efficient level of responsiveness,

meaning that B should be high enough to reflect the available information, but not so high

as to overreact to noise.

The following corollary characterizes the key determinants of this information sensitivity.

Corollary 3.2 (Information sensitivity). The information sensitivity, B, of aggregate

green investment has the following properties:

(a) It increases with greater uncertainty about θ̃ (higher σθ).

(b) It increases with the precision of private information (τy).
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(c) It increases with the precision of public information (τz).

Point (a) of Corollary 3.2 reveals a key feature of UBR: it transforms environmental

uncertainty, typically an impediment to effective policy, into a mechanism for enhancing

information sensitivity. Specifically, a higher σθ increases the responsiveness of aggregate

greenness to informative signals, promoting a more efficient aggregate response.

Points (b) and (c) of Corollary 3.2 further demonstrate UBR’s effectiveness in aggregating

information. Increased precision of either private information (τy) or public information (τz)

also increases the information sensitivity, B. While seemingly distinct from the effect of

uncertainty in (a), these results are complementary. Higher τy and τz increase the weights, βy

and βz respectively, placed on the corresponding signals in the aggregate greenness equation

(36). Thus, both greater uncertainty (higher σθ) and greater precision (higher τy or τz)

enhance the information sensitivity of the system, albeit through different channels.

2.3.2 Incentives for Information Acquisition

We now examine whether individual firms have an incentive to acquire more precise private

information about the underlying environmental trend, θ̃, when the UBR mechanism is in

place. To analyze this, we consider a unilateral deviation by a single firm. We assume this

firm can exogenously increase the precision of its private signal and we examine the impact

on its ex-ante expected utility.

Suppose firm i increases the precision of its private information from τy to τ ′
y = ξτy, where

ξ > 1. This represents an exogenous increase in the quality of the firm’s private signal, yi.

We assume this is a unilateral deviation: firm i takes the actions of all other firms, and

the parameters of the UBR mechanism, as given. It does not anticipate that its action will

change the equilibrium behavior of other firms or the aggregate outcome, except insofar

as its own action affects its payoff. To isolate the effect of increased signal precision, the

following corollary characterizes its impact on the firm’s action and its ex-ante expected

utility—evaluated before the firm observes its private signal yi but after the public signal z

has been revealed.
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Corollary 3.3 (Incentives for Information Acquisition). Under the UBR mechanism,

consider a unilateral increase in the precision of firm i’s private signal about θ̃ from τy to

τ ′
y = ξτy, where ξ > 1. The firm’s action, γ′

i, is then given by:

γ′
i = β0 + βy

[
1 + (ξ − 1)(1 + σ2

θτz)
1 + σ2

θ(ξτy + τz)

]
(yi − µθ) + βz

[
1 − (ξ − 1)(1 − α)σ2

θτy

1 + σ2
θ(ξτy + τz)

]
(z − µθ), (38)

where the coefficients β0, βy, and βz are determined in Proposition 3. The resulting change

in ex-ante expected utility, conditional on the public signal z, is:

∆E[U |z] = − Uc

2πγγ

(Var [E′
i[f(q̃)]|z] − Var [Ei[f(q̃)]|z]) > 0, (39)

where E′
i[f(q̃)] denotes the expectation of f(q̃) conditional on the more precise private signal.

Consequently, the firm’s ex-ante expected utility is strictly increasing in the precision of its

private signal.

Equation (38) shows how the firm’s optimal action adjusts in response to the increased

precision. If ξ = 1, then γ′
i = γi, and the firm’s action reverts to the original equilibrium.

However, if ξ > 1, the firm places relatively more weight on its (now more precise) private

signal, (yi − µθ), and relatively less weight on the public signal, (z − µθ), reflecting the

enhanced informational content of its private signal.

Equation (39) shows a strict increase in ex-ante expected utility due to the enhanced

signal precision. A more precise private signal leads to a more precise posterior belief about

f(q̃), which is reflected in a higher variance of the expectation of f(q̃) conditional on z. This,

in turn, allows a more efficient response to the underlying environmental state, providing a

clear incentive for information acquisition.

In sum, UBR achieves the team-efficient allocation and incentivizes firms to acquire

more precise private information about the environmental trend, θ̃. Therefore, UBR has the

potential to not only align current actions with social objectives but also to encourage firms

to actively seek more accurate information about environmental trends.
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3 Welfare Analysis and Political Viability of UBR

We now turn to a welfare analysis, comparing UBR to alternative policy approaches and

subsequently examining its political feasibility. We begin with a comparison to a social

planner constrained by limited information.

3.1 The Social Planner’s Allocation

Consider a benevolent social planner who seeks to maximize ex-ante expected social welfare.

The planner’s information set consists solely of publicly available information—the prior

distribution of θ̃ and, potentially, the public signal z—excluding individual private signals, yi,

and the true state, θ. Therefore, the only feasible policy is to set a uniform greenness level,

γsp, for all firms.

The social planner’s problem can be formally stated as:

max
γsp

Esp

[
U(c(γsp), θ̃, Γ(γsp))

]
, (40)

where c(γsp) = e + π(γsp), Γ(γsp) = γsp, and Esp[·] denotes the expectation taken with respect

to the social planner’s information set. We now characterize the solution to this constrained

optimization problem and its welfare implications.

Proposition 4 (Social Planner’s solution). The solution to the social planner’s problem

in equation (40) is given by:

γsp = Γ0 + −Esp[UΓ(θ̃, Γ0)]
Ucπγγ + UΓΓ

= Esp[γ∗(θ)], (41)

where γ∗(θ) is the first-best allocation derived in Lemma 2.

The social planner allocation γsp yields a higher ex-ante expected utility than the status

quo (γi = Γ0 for all i). Specifically, define the welfare gain relative to the status quo by

∆Wsp := E [∆Ui], where ∆Ui := Ei[U(e + π(γsp), θ̃, γsp)] − Ei[U(e + π(Γ0), θ̃, Γ0)]. Then the

welfare gain can be written as

∆Wsp = −1
2(Ucπγγ + UΓΓ)

[
UΓ(µθ, Γ0)2 + U2

θΓ
σ2

θτz

σ−2
θ + τz

]
> 0. (42)
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The welfare gain is increasing in the precision of the public signal , τz. However, the first-best

allocation γ∗(θ) (Lemma 2) and the team-efficient allocation γte
i (Lemma 3) both yield strictly

higher ex-ante welfare than the social planner allocation γsp.

The constrained social planner’s optimal uniform greenness level, γsp, given by (41), is

equivalent to the expected first-best level of greenness, conditional on public information.

This reflects the planner’s inability to condition policy on private signals; the best achievable

outcome is thus the average first-best, given the public signal z and the prior on θ̃.

The welfare gain ∆Wsp arises from two distinct channels. The first term, UΓ(µθ, Γ0)2,

captures the welfare improvement from adjusting the allocation away from the status quo

(Γ0) toward the social planner’s chosen allocation (γsp). This improvement occurs because

at the status quo, the marginal social benefit UΓ(µθ, Γ0) differs from zero. The second term,

U2
θΓ

σ2
θτz

σ−2
θ

+τz
, captures the value of adjusting greenness based on the public signal z. This term

increases with both the precision of the public signal (τz) and the responsiveness of the

marginal social benefit to the underlying state (UθΓ). Hence, the social planner’s intervention

unambiguously improves welfare relative to the status quo. Nonetheless, welfare remains

strictly below the team-efficient and first-best allocations because the planner cannot use

private information.

Going forward, we assume that the social planner’s chosen allocation γsp exceeds the

status quo Γ0, reflecting the presence of a positive externality from green investment.

3.1.1 Implementing the Social Planner’s Solution

We next demonstrate that the social planner’s allocation, γsp, can be implemented through

either a Pigouvian tax or a cap-and-trade system, as in the classic “prices-versus-quantities”

framework of Weitzman (1974). For this purpose, let E(γi) denote the emissions generated by

a firm investing γi in greenness. We assume E(γi) > 0, E ′(γi) < 0, and E ′′(γi) > 0. Thus, all

firms generate some negative environmental impact, but emissions decrease (at a diminishing

rate) as firm greenness increases.

A suitably designed Pigouvian tax on emissions can replicate the social planner’s outcome.
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Corollary 4.1 (Pigouvian tax on emissions). The social planner’s optimal uniform

greenness level, γsp, can be implemented by imposing a Pigouvian tax, T , per unit of emissions:

T = (γsp − Γ0)πγγ

E ′(γsp) . (43)

Since we have assumed that green investment generates a positive externality, i.e., γsp > Γ0,

it follows that the emissions tax is strictly positive: T > 0.

Intuitively, the tax internalizes the expected environmental externality perceived by the

social planner, who observes only public signals and the prior distribution of θ̃. When a

firm considers deviating its greenness from γsp, it must now account for the tax on the

emissions thereby generated. Because T depends solely on public information, all firms

respond uniformly by choosing γsp, and the resulting aggregate emissions coincide with those

in the social planner’s constrained optimum.

An alternative approach to implementing the social planner’s solution is through a system

of tradable permits, or “cap-and-trade”. As before, let each firm’s emissions be given by E(γi),

and suppose the regulator issues a total quantity of permits, Q, where each permit allows

one unit of emissions. Firms must acquire permits equal to the emission they produce, and

the equilibrium permit price is denoted by ppermit.12

Corollary 4.2 (Cap-and-Trade implementation). The social planner’s optimal uniform

greenness level, γsp, can be implemented by issuing a quantity of tradable permits, Q, equal

to the aggregate emissions associated with γsp, i.e., Q = E(γsp). The resulting equilibrium

permit price, ppermit, will be identical to the Pigouvian tax, T , derived in Corollary 4.1, and

will induce all firms to choose γi = γsp.

By setting Q = E(γsp), the regulator ensures that the equilibrium permit price—identical
12We note that UBR admits a cap-and-trade interpretation: each firm’s net position γi − Γ plays the role

of tradable permits and f(q) the state-contingent permit price. Crucially, however, both the aggregate “cap”
Γ and the price schedule f(q) are determined ex post by realized environmental quality q rather than fixed ex
ante by the regulator. Indeed, some real-world cap-and-trade programs already hint at UBR’s logic. For
instance, the EU ETS’s Market Stability Reserve automatically tightens its cap when permits accumulate,
and it hands out free allowances based on how well firms have performed—both ways of feeding past outcomes
back into future incentives. See https://bit.ly/4jT6xZP for more information. See also Lemoine (2024),
who ties refund payments to measured climate damages, thereby creating an incentive schedule akin to UBR’s
outcome-based price.
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to the Pigouvian tax T from Corollary 4.1—induces all firms to choose the social planner’s

greenness level γsp.13 Critically, however, neither Q nor ppermit can be contingent on firms’

private information. Thus, the permit price reflects only public information available to the

social planner, precluding firm-specific, information-contingent responses required for team

efficiency.

Unlike standard Pigouvian taxes or cap-and-trade, which rely exclusively on ex-ante public

information, UBR harnesses uncertainty and dispersed private signals, thereby generating

social value from private information and improving welfare outcomes (see, e.g., Angeletos

and Pavan, 2007; Vives, 1988; Hayek, 1945). Given these theoretical advantages, a natural

question arises concerning the political viability of UBR, which we analyze next.

3.2 Is UBR Politically Viable?

Suppose households, after observing their private signals, yi, and the public signal, z, must

vote on whether to adopt UBR or implement the social planner’s allocation (as shown in

Lemma 4 and Proposition 4, both these alternative dominate the status quo). The next

proposition establishes the political viability of UBR.

Proposition 5 (Political viability of UBR). After observing their private signals, yi, and

the public signal, z, all households compare UBR to the social planner’s uniform policy. The

expected utility gain from UBR, compared to the social planner’s allocation, is given by:

Ei[∆Ui] = −1
2Ucπγγ(γte

i − γsp)2︸ ︷︷ ︸
Gain from individualized greenness

−1
2UΓΓEi[(Γ̃te − γsp)2]︸ ︷︷ ︸
Gain from aggregate greenness

. (44)

Since both terms are positive, every household experiences a strictly positive utility gain under

UBR. Therefore, in a direct vote between UBR and the social planner’s uniform policy, UBR

would receive unanimous support.
13Since the profit function π(·) and the emissions technology E(·) are common knowledge and deterministic,

there is no firm-specific cost uncertainty. This removes the “price vs. quantity” wedge discussed by Weitzman
(1974), and explains why both standard instruments—a Pigouvian tax and Cap-and-Trade—lead to the same
social planner outcome γsp. As in Weitzman (1974), uncertainty on the benefit side, from θ̃, does not affect
the choice or level of these instruments.

27



The difference in equation (44) is strictly positive due to two distinct mechanisms. The

first term, −1
2Ucπγγ(γte

i − γsp)2 > 0, captures the value of individualized greenness choices

permitted under UBR, allowing firms to tailor their actions to their private signals. The

second term, −1
2UΓΓEi[(Γ̃te − γsp)2] > 0, reflects the utility gain from aggregate greenness

adjusting to the unobservable environmental state, θ̃. This latter mechanism can be viewed

as a form of social insurance: adopting UBR allows aggregate greenness to adjust to the

realized environmental state, thereby insuring society against environmental risk.

Since both terms in equation (44) are positive, regardless of the specific values of yi and

z, all households strictly prefer UBR over the social planner’s allocation. This unanimous

preference, driven by both firm-level benefits and aggregate risk mitigation, holds despite

dispersed private information and heterogeneous beliefs. It suggests that UBR is not only

theoretically superior but also politically viable.

4 Distrust and UBR

Thus far, our analysis has assumed that households have rational expectations and fully trust

the informational content of others’ signals. We now relax this assumption, introducing the

possibility of distrust in the signals received by other agents. This is formally analogous to

the “sentiment risk” channel studied by Dumas et al. (2009). This allows us to explore the

robustness of UBR in a setting where agents may have differing, and potentially biased, views

about the informativeness of others’ observations. The issue is particularly relevant in the

context of climate change, where public opinion is often polarized and trust in scientific data

can vary significantly across groups.14

To capture disagreement that may emerge from difference of opinion, we build on insights

from Morris (1995) and introduce the concept of trust in others’ private signals. While each

agent i observes its own private signal yi, it believes that the private signals of other agents
14Research documents significant political polarization in public views on climate change, highlighting

differing beliefs about environmental data across groups (McCright and Dunlap, 2011). For further evidence
on polarized beliefs and skepticism about environmental data, see Dunlap and McCright (2008) and Douglas,
Uscinski, Sutton, Cichocka, Nefes, Ang, and Deravi (2019).
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(which it does not observe) follow a different structure:

yi
j = µθ + φ(θ̃ − µθ) +

√
1 − φ2ϕ̃i + εy,j, (45)

where, ϕ̃i ∼ N (0, σ2
θ) represents additional noise or bias in others’ signals (see, e.g. Banerjee,

2011). The distribution of ϕ̃i is such that the unconditional moments of yi
j, as perceived

by agent i, are independent of φ. Specifically, Ei[yi
j] = µθ and Vari[yi

j] = σ2
θ + τ−1

y . This

isolates the effect of varying φ (perceived correlation) from any confounding effects on the

perceived overall informativeness of others’ signals.15 Agent i does not observe the noise ϕ̃i,

but believes it exists. The parameter φ ∈ [0, 1] measures the extent to which agent i trusts

that others’ signals are correlated with the true environmental trend θ̃. A higher φ indicates

greater trust in others’ private information.

By varying the parameter φ, our model encompasses both the standard rational expecta-

tions framework and scenarios with different level of trust. When φ = 1, agents fully trust that

others’ private signals are as informative as their own, consistent with rational expectations.

In contrast, when φ = 0, agents regard others’ signals as pure noise, representing a complete

lack of trust. Examining our regulation under varying trust levels helps us understand its

robustness in settings where agents are not fully rational.

Impact on strategy and information. Distrust among agents alters the information

environment, with consequences for equilibrium greenness, the information sensitivity B, and

firms’ incentives for private information acquisition. While several results from Section 2

continue to hold, the presence of distrust introduces new results. Importantly, the definitions

of ex-ante expected social welfare (equation (14)) and the team-efficient allocation (equation

(15) and its constraint) remain unchanged. These definitions are based on the true underlying

distributions of signals, not on agents’ subjective beliefs about each other. The results are

summarized in Proposition 6 below. A detailed discussion of how each result from Section 2

is affected by distrust is provided in the Appendix.

15A valuable extension would be to consider a case where agent i believes that others, on average, are
systematically biased, with Ei[ϕ̃i] ̸= 0. This would allow for an investigation of how perceived systematic
optimism or pessimism influences equilibrium outcomes.
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Proposition 6. When agents distrust the information of others:

(a) The implementation of UBR, specifically the functional form of f(q̃) defined in Propo-

sition 1, remains valid for achieving team efficiency. Each firm i chooses a greenness

level γi that is a linear function of its private signal, yi, and the public signal, z:

γi = β̂0 + β̂y(yi − µθ) + β̂z(z − µθ), (46)

where

β̂0 := Γ0 − UΓ(µθ, Γ0)
Ucπγγ + UΓΓ

, (47)

β̂y := − UθΓτy

Ucπγγτ + UΓΓτyφ
< 0, (48)

β̂z := − 1
1 − α

UθΓτz

Ucπγγτ + UΓΓτyφ
< 0, (49)

(b) The information sensitivity B increases with the precision of public information, τz, if

and only if φ > 1 − 1
(−α)σ2

θ
τy

.

(c) The information sensitivity of aggregate greenness, B, increases with the degree of

distrust, that is, it decreases with φ:

∂B
∂φ

= − ακ∗
1σ

4
θτy(τy − ατy + τz)

(1 + σ2
θ(τy + τz − ατyφ))2 < 0. (50)

(d) Incentives for information acquisition increase with the degree of distrust.

Point (a) highlights the robustness of the UBR mechanism’s design. While the presence

of distrust alters equilibrium outcomes, the functional form of the payment function, f(q̃),

remains optimal for achieving team efficiency. Equation (46) further shows that in equilibrium,

each firm’s chosen greenness level γi is a linear function of its private signal, yi, and the

public signal, z. Setting φ = 1 (full trust) recovers the coefficients from Proposition 3.

Increased distrust (lower φ) has several effects. It increases the magnitudes of β̂y and β̂z,

making firms more responsive to their private and public signals, respectively. Moreover, it

induces firms to rely more heavily on their private signals, yi, and to discount the influence of
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public information precision, denoted by τz. This shift in information weighting has further

consequences. First, the impact of public information precision (τz) on information sensitivity

(B) is contingent on the level of trust; specifically, τz increases B only when φ exceeds a

critical threshold (point (b) of Proposition 6). Second, increased distrust (lower φ) raises

the information sensitivity, B (point (c)), as firms place greater weight on their private

information. Third, distrust strengthens incentives for firms to acquire private information

(point (d)), as the relative value of their private signals increases. Ultimately, distrust makes

private signals matter more.

Impact on Welfare and Political Viability. We now examine the effect of distrust on

welfare and the political viability of UBR. Because UBR achieves team efficiency for any level

of distrust (Proposition 6), it continues to dominate the social planner’s allocation in terms of

ex-ante welfare. The following proposition formalizes the implications for political viability.

Proposition 7. Under UBR, and with a trust parameter φ ∈ [0, 1], all households strictly

prefer UBR to the social planner’s allocation, irrespective of the value of φ.

In summary, while distrust among introduces complexities into the equilibrium, it does

not undermine the fundamental advantages of UBR. The mechanism’s design, specifically the

functional form of f(q̃), remains optimal for achieving team efficiency regardless of the level

of distrust. Furthermore, UBR continues to dominate the social planner’s allocation, ensuring

its political viability. Distrust does, however, affect firm behavior: it increases information

sensitivity by inducing greater reliance on private signals, and it strengthens incentives for

information acquisition. Thus, UBR remains a robust and effective regulatory tool even in

the presence of significant disagreement among economic agents.

5 Conclusion

We challenge the common view that uncertainty and disagreement hinder good decision-

making. Instead, we show how both can drive markets toward efficient and socially desirable

outcomes. We propose a new regulatory mechanism that embeds a synthetic market for
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the externality, ensuring firms internalize social costs and benefits—without requiring direct

information disclosure. By harnessing private signals and differences in opinion, this approach

turns perceived obstacles into policy tools.

Although our main implementation focuses specifically on climate-change policies, we

believe that the framework we propose applies more broadly whenever there are externalities

and private information varies across agents. For example, it could guide regulation in areas

like cybersecurity, public health, or artificial intelligence, where uncertainty and ethical or

practical disagreements are widespread. In each case, the same principle—linking individual

payoffs to deviations from an aggregate benchmark—channels uncertainty and disagreement

into productive coordination.

For simplicity, we assume each household owns a single firm, isolating the core incentives

behind our regulation. A valuable next step is to relax this assumption and incorporate

financial markets. Share prices would provide an extra public signal about firms’ prospects and

the broader environment. This could strengthen firms’ incentives to invest in green innovation

(or make other beneficial investments) since financial markets aggregate information beyond

what regulators observe. Portfolio mandates—an increasingly debated policy tool—could also

shape how market signals influence firms’ decisions. Studying how our mechanism interacts

with financial markets, particularly in pricing climate or other external risks, is a promising

avenue for future research.

By showing how uncertainty and disagreement can be managed, our work contributes

to the broader discussion on governance in complex environments. Rather than seeing

imperfect information as a barrier, we show it can fuel market-based regulatory solutions.

Taken together, these ideas point to a broader move toward outcome-responsive policy

tools—approaches that harness uncertainty and disagreement to achieve socially desirable

outcomes.
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A Proofs
A.1 Proof of Lemma 1
In the status quo, household i maximizes its expected utility:

max
γi

Ei[U(ci, θ̃, Γ̃)], (A1)

subject to ci = e + π(γi). Because household i is infinitesimal, its choice of γi does not affect

Γ̃ =
∫ 1

0 γidi. Therefore, Γ̃ can be treated as a constant with respect to the maximization over γi.

Substituting the constraint, then taking the first-order condition with respect to γi is leads to:

Ei

[
Uc(e + π(γi), θ̃, Γ̃) · πγ(γi)

]
= 0. (A2)

By Property 1, Uc is a positive constant. Therefore, the first-order condition simplifies to:

πγ(γi) = 0. (A3)

By assumption, the profit function π(γi) is maximized at γi = Γ0. Therefore, γsq
i = Γ0. Since all

households are identical ex-ante and face the same optimization problem, they all choose the same
level of greenness. Aggregate greenness is then:

Γ̃sq =
∫ 1

0
γsq

i di =
∫ 1

0
Γ0di = Γ0. (A4)

A.2 Proof of Lemma 2
The perfectly informed social planner maximizes social welfare, while internalizing the externality.

Due to household homogeneity, γi = γ for all i, and thus Γ̃ = γ. The planner’s problem is then:

max
γ

U(c(γ), θ, Γ(γ)), (A5)

subject to c(γ) = e + π(γ) and Γ(γ) = γ. Substituting the constraints, we have:

max
γ

U(e + π(γ), θ, γ). (A6)

The first-order condition with respect to γ is:

dU

dγ
= Ucπγ(γ) + UΓ(θ, γ) = 0. (A7)

By Property 1, Uc is a constant. The quadratic profit function, maximized at Γ0, implies πγ(γ) =

πγγ(γ − Γ0). Applying a first-order Taylor expansion to UΓ(θ, γ) around (µθ, Γ0), which is justified
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by Property 2, yields:

UΓ(θ, γ) = UΓ(µθ, Γ0) + UθΓ(θ − µθ) + UΓΓ(γ − Γ0). (A8)

Substituting into the first-order condition:

Ucπγγ(γ − Γ0) + UΓ(µθ, Γ0) + UθΓ(θ − µθ) + UΓΓ(γ − Γ0) = 0. (A9)

Solving for γ, which we denote as γ∗(θ) in the first-best:

γ∗(θ) = Γ0 − UΓ(µθ, Γ0)
Ucπγγ + UΓΓ

− UθΓ
Ucπγγ + UΓΓ

(θ − µθ). (A10)

A.3 Proof of Lemma 3

An efficient allocation is a strategy γte
i (yi, z) that maximizes

E[U ] =
∫

(θ̃,z)

∫
yi

U
(
e + π

(
γte

i (yi, z)
)
, θ̃, Γ̃te(θ̃, z)

)
dP (yi|θ̃, z)dP (θ̃, z), (A11)

subject to Γ̃te(θ̃, z) =
∫

yi
γte

i (yi, z)dP (yi|θ̃, z). Note that given the continuum of firms, the empirical

distribution of private signals converges to the conditional distribution P (yi|θ̃, z) by the Law of Large

Numbers. Consequently, the aggregate greenness, Γ̃(θ̃, z), can be represented both as an integral

over the signal distribution and as an integral over the firm index:
∫

yi
γi(yi, z)dP (yi|θ̃, z) =

∫
i γidi.

Write the Lagrangian:

Λ =
∫

(θ̃,z)

∫
yi

U
(
e + π(γte

i (yi, z)), θ̃, Γ̃te(θ̃, z)
)
dP (yi|θ̃, z)dP (θ̃, z)

+
∫

(θ̃,z)
λ(θ̃, z)

[
Γ̃te(θ̃, z) −

∫
yi

γte
i (yi, z)dP (yi|θ̃, z)

]
dP (θ̃, z). (A12)

The first order condition for Γ̃te(θ̃, z),∫
yi

UΓ
(
θ̃, Γ̃te(θ̃, z)

)
dP (yi|θ̃, z) + λ(θ̃, z) = 0, (A13)

must hold for almost all (θ̃, z). Thus:

UΓ
(
θ̃, Γ̃te(θ̃, z)

)
+ λ(θ̃, z) = 0. (A14)

The chain rule of probability states that:

dP (yi, θ̃, z) = dP (yi|θ̃, z)dP (θ̃, z) = dP (θ̃|yi, z)dP (yi, z). (A15)
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By the chain rule and Fubini’s theorem (to change the order of integration), the Lagrangian becomes:

Λ =
∫

(yi,z)

∫
θ̃

U
(
e + π(γte

i (yi, z)), θ̃, Γ̃te(θ̃, z)
)
dP (θ̃|yi, z)dP (yi, z)

+
∫

(yi,z)

∫
θ̃

λ(θ̃, z)
[
Γ̃te(θ̃, z) −

∫
yi

γte
i (yi, z)dP (yi|θ̃, z)

]
dP (θ̃|yi, z)dP (yi, z). (A16)

The first order condition for γte
i (yi, z) is then:∫

θ̃

[
Ucπγ(γte

i (yi, z)) − λ(θ̃, z)
]
dP
(
θ̃|yi, z

)
= 0, (A17)

which must hold for almost all (yi, z). Replacing the first-order condition for Γ̃te, we obtain:

Ei

[
Ucπγ(γte

i (yi, z))
]

+ Ei

[
UΓ
(
θ̃, Γ̃te(θ̃, z)

)]
= 0. (A18)

Since πγ and UΓ are linear in their arguments, we can write:

πγ(γte
i (yi, z)) = πγ(γ∗(θ)) + πγγ(γte

i (yi, z) − γ∗(θ)), (A19)

UΓ
(
θ̃, Γ̃te(θ̃, z)

)
= UΓ(θ̃, γ∗(θ)) + UΓΓ(Γ̃te(θ̃, z) − γ∗(θ)). (A20)

By definition of the first-best allocation (see equation (A7)):

Ucπγ(γ∗(θ)) + UΓ(θ̃, γ∗(θ)) = 0, (A21)

and thus one can rewrite equation (A18) as

UcπγγEi[γte
i (yi, z) − γ∗(θ)] + UΓΓEi[Γ̃te(θ̃, z) − γ∗(θ)] = 0. (A22)

Solving for γte
i (yi, z) yields:

γte
i (yi, z) = (1 − α)Ei[γ∗(θ)] + αEi[Γ̃te(θ̃, z)], (A23)

where α is defined as in Lemma 3, equation (17).

A.4 Proof of Lemma 4

The ranking E[U sq] ≤ E[U te] follows from the definition of the team-efficient allocation as the

solution to the welfare maximization problem. The team-efficient allocation, γte
i (yi, z), is chosen

to maximize E[U ] subject to the constraint that actions depend only on the available information

(private and public signals). The status quo allocation, γsq
i = Γ0, is not the solution to this

maximization problem, and thus cannot yield a higher level of ex-ante expected welfare.
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We now prove the statement that welfare is highest in the first-best. The ex-ante expected social

welfare in this economy is given by equation (14). Recall that Γ̃ =
∫ 1

0 γidi and that U is linear in

ci = e + π(γi) and π(γi) is quadratic in γi. Thus, U can be written as:

U(e + π(γi), θ̃, Γ̃) = U(e + π(Γ̃), θ̃, Γ̃) + Ucπγ(Γ̃) · (γi − Γ̃) + 1
2Ucπγγ · (γi − Γ̃)2. (A24)

This is a Taylor series expansion around the point γi = Γ̃. The transformation is exact, since U is

quadratic in γi. We omit the dependence of πγγ on Γ̃ since π(·) is a quadratic function.

The linear term, Ucπγ(Γ̃)·(γi−Γ̃), vanishes when integrated over the conditional distribution of private

signals in equation (14),
∫

yi
Ucπγ(Γ̃)·(γi−Γ̃)dP (yi|θ̃, z), because

∫
yi

γidP (yi|θ̃, z) = Γ̃. The quadratic

term, when integrated over the conditional distribution of private signals, is the variance of γi

conditional on θ̃ and z:
∫

yi
(γi −Γ̃)2dP (yi|θ̃, z) = σ2

γ , with σ2
γ :=

∫
yi

(γi −
∫

yj
γjdP (yj |θ̃, z))2dP (yi|θ̃, z).

Thus, defining W (θ̃, Γ̃, σγ) := U(e + π(Γ̃), θ̃, Γ̃) + 1
2Ucπγγσ2

γ , ex-ante welfare can be rewritten as:

E[U ] =
∫

(θ̃,z)
W (θ̃, Γ̃, σγ)dP (θ̃, z). (A25)

We notice that the first-best γ∗(θ) is the unique solution to WΓ(θ̃, γ∗(θ), 0) = 0. A second-order

Taylor expansion of W (θ̃, Γ̃, σγ) around Γ̃ = γ∗(θ) and σγ = 0 gives:

W (θ̃, Γ̃, σγ) = W (θ̃, γ∗(θ), 0) + WΓ(θ̃, γ∗(θ), 0) · (Γ̃ − γ∗(θ)) + Wσγ (θ̃, γ∗(θ), 0) · σγ

+ 1
2WΓΓ(θ̃, γ∗(θ), 0) · (Γ̃ − γ∗(θ))2 + 1

2Wσγσγ (θ̃, γ∗(θ), 0) · σ2
γ . (A26)

Replacing WΓ(θ̃, γ∗(θ), 0) = 0 and Wσγ (θ̃, γ∗(θ), 0) = 0 and recognizing that
∫

(θ̃,z)(Γ̃−γ∗(θ))2dP (θ̃, z) =

E[(Γ̃ − γ∗(θ))2] and
∫

(θ̃,z) σ2
γdP (θ̃, z) = E[(γi − Γ̃)2], we obtain

E[U ] = E[W (θ̃, γ∗(θ), 0)] + 1
2(Ucπγγ + UΓΓ) · E[(Γ̃ − γ∗(θ))2] + 1

2Ucπγγ · E[(γi − Γ̃)2]. (A27)

Since Ucπγγ + UΓΓ < 0 and Ucπγγ < 0, it implies that welfare is highest in the first-best:

E[U ] ≤ E[W (θ̃, γ∗(θ), 0)]. (A28)

The additional terms, 1
2(Ucπγγ + UΓΓ) · E[(Γ̃ − γ∗(θ))2] and Ucπγγ · E[(γi − Γ̃)2], measure welfare

losses due to volatility and dispersion, as −(Ucπγγ + UΓΓ) can be interpreted as “social aversion

to volatility” and −Ucπγγ can be interpreted as “social aversion to dispersion”. See Angeletos and

Pavan (2007) for similar interpretations.
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A.5 Proof of Proposition 1

Under UBR, firm i’s maximization problem leads to the first-order condition:

Ei[Uc (πγ(γi) + f(q̃))] = 0. (A29)

Substituting πγ(γi) = πγγ(γi − Γ0), then solving for γi:

γi = Γ0 − Ei[f(q̃)]
πγγ

. (A30)

Consider the team-efficient allocation from Lemma 3:

γte
i =

(
1 + UΓΓ

Ucπγγ

)
Ei[γ∗(θ)] − UΓΓ

Ucπγγ
Ei[Γ̃te]. (A31)

where γ∗(θ) is the first-best greenness level (obtained in Lemma 2):

γ∗(θ) = Γ0 − UΓ(µθ, Γ0)
Ucπγγ + UΓΓ

− UθΓ
Ucπγγ + UΓΓ

(θ̃ − µθ). (A32)

We want to find a regulatory function f(q̃) such that the firm’s optimal choice under UBR given by

equation (A30) equals the team-efficient greenness, γte
i (given by the general form of equation (A31)

without the ‘te’ superscript on the last term). That is, we seek to satisfy:

Γ0 − Ei[f(q̃)]
πγγ

=
(

1 + UΓΓ
Ucπγγ

)
Ei[γ∗(θ)] − UΓΓ

Ucπγγ
Ei[Γ̃]. (A33)

Substituting in the expression for γ∗(θ) from equation (A32) and taking expectations:

Γ0−Ei[f(q̃)]
πγγ

=
(

1 + UΓΓ
Ucπγγ

)(
Γ0 − UΓ(µθ, Γ0)

Ucπγγ + UΓΓ
− UθΓ

Ucπγγ + UΓΓ
Ei[θ̃ − µθ]

)
− UΓΓ

Ucπγγ
Ei[Γ̃]. (A34)

Multiplying through and simplifying, we want (A33) to hold, meaning we need:

Ei[f(q̃)] = UΓ(µθ, Γ0)
Uc

+ UθΓ
Uc

Ei[θ̃ − µθ] + UΓΓ
Uc

Ei[Γ̃ − Γ0]. (A35)

From the Taylor expansion of the utility function U provided in equation (3), we can derive:

UθΓ
Uc

= a
Uqq(c0, µθ)
Uc(c0, µθ) = −a · ERA, (A36)

UΓΓ
Uc

= a2 Uqq(c0, µθ)
Uc(c0, µθ) = −a2 · ERA, (A37)
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and

UΓ(µθ, Γ0)
Uc

= a
Uq(c0, µθ)
Uc(c0, µθ) = a · MRS. (A38)

Consider now the following candidate function:

f(q̃) = UΓ(µθ, Γ0)
Uc

+ UθΓ
Uc

(θ̃ − µθ) + UΓΓ
Uc

(Γ̃ − Γ0). (A39)

Using equations (A36), (A37), and (A38), and recalling the definition of q̃ from (2), leads to:

f(q̃) = a [MRS − ERA(q̃ − µθ)] . (A40)

Take the expectation of this candidate function, conditional on household i’s information:

Ei[f(q̃)] = UΓ(µθ, Γ0)
Uc

+ UθΓ
Uc

Ei[θ̃ − µθ] + UΓΓ
Uc

Ei[Γ̃ − Γ0]. (A41)

Equation (A41) is identical to equation (A35), which is the required condition for the firm’s optimal

choice under UBR to coincide with the general form of the team-efficient action. Because the

candidate f(q̃) given by equation (A39) (or equivalently, (A40)) satisfies the necessary condition

(A35), it follows that under UBR, each firm’s optimal choice of greenness, γi, will be given by:

γi =
(

1 + UΓΓ
Ucπγγ

)
Ei[γ∗(θ)] − UΓΓ

Ucπγγ
Ei[Γ̃]. (A42)

This is the defining characteristic of the team-efficient equilibrium. Since each firm i is acting

according to this rule, the aggregate outcome Γ̃ will be the team-efficient aggregate outcome, Γ̃te.

Therefore, the regulatory function defined by (A39) (or (A40)) ensures that each firm chooses the

team-efficient level of greenness, γte
i , in the unique linear equilibrium.

A.6 Proof of Proposition 2

Expanding UΓ(θ, G) around the status quo (µθ, Γ0) using a first-order Taylor expansion (consistent

with Property 2), we have:

p = UΓ(µθ, Γ0)
Uc

+ UθΓ(µθ, Γ0)
Uc

(θ − µθ) + UΓΓ(µθ, Γ0)
Uc

(G − Γ0). (A43)

We notice that the “price of greenness” in the hypothetical Cournot market has the same structure
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as the UBR regulatory function, f(q̃), from Proposition 1:

f(q̃) = a · MRS − a · ERA(θ̃ − µθ) − a2 · ERA(Γ̃te − Γ0). (A44)

Consider now firms’ problem in this hypothetical Cournot market. Firm i chooses its “greenness
output”, denoted by γc

i , to maximize household i’s expected utility:

max
γc

i

Ei

[
U(e + π(γc

i ) + p̃γc
i , θ̃, G̃)

]
, (A45)

where π(γc
i ) is the firm’s profit (exactly the same function as before) to which we add the revenues

that the firm gets from selling “greenness”, and hence the new term p̃γc
i . The aggregate supply of

greenness must satisfy G̃ =
∫

i γc
i di by market clearing. Note that the firm is taking as given p̃ and

G̃ (firms are infinitesimally small). The first-order condition leads to:

0 = Ei[Uc (p̃ + πγγ(γc
i − Γ0))], (A46)

and thus (Uc is constant and cancels out):

γc
i = Γ0 − Ei[p̃]

πγγ
. (A47)

Substituting the expression for p from the inverse demand function (A43) into (A47), we have:

γc
i = Γ0 − 1

πγγ
Ei

[
UΓ(µθ, Γ0)

Uc
+ UθΓ

Uc
(θ̃ − µθ) + UΓΓ

Uc

(∫
i
γc

i di − Γ0

)]
. (A48)

Substituting, we get:

γc
i = Γ0 − 1

πγγ

(
a · MRS − a · ERAEi[θ̃ − µθ] − a2 · ERAEi

[∫
i
γc

i di − Γ0

])
. (A49)

Equation (A49) is identical to the first-order condition for γi under UBR (equation (A30) in

Proposition 1), implying γc
i = γte

i . Thus, the UBR mechanism effectively creates a synthetic Cournot

market, achieving the team-efficient outcome.

A.7 Proof of Proposition 3

The firm’s problem is to maximize (21), where consumption is given by:

c̃i = e + π(γi) + (γi − Γ̃)f(q̃). (A50)

Substituting (A50) into the objective function (21) and taking the first-order condition with respect
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to γi gives γi = Γ0 − Ei[f(q̃)]
πγγ

. Substituting f(q̃) from equation (A39) leads to:

γi = Γ0 − 1
πγγUc

[
UΓ(µθ, Γ0) + UΓΓ(Ei[Γ̃] − Γ0) + UθΓ(Ei[θ̃] − µθ)

]
. (A51)

From equations (8) and (36), we are given that:

Ei[θ̃] − µθ = τy

τ
(yi − µθ) + τz

τ
(z − µθ), (A52)

Ei[Γ̃] = β0 + βyEi[θ̃ − µθ] + βz(z − µθ), (A53)

where the last equation follows from aggregating the conjectured form in equation (31).

Substituting (A52) and (A53) into (A51), and using our conjecture (31) yields:

β0 + βy(yi − µθ) + βz(z − µθ) = Γ0 − 1
πγγUc

[
UΓ(µθ, Γ0)

+ UΓΓ

(
β0 + βy

τy

τ
(yi − µθ) +

(
βy

τz

τ
+ βz

)
(z − µθ) − Γ0

)

+ UθΓ

(
τy

τ
(yi − µθ) + τz

τ
(z − µθ)

) ]
. (A54)

We equate coefficients for the constant term, the coefficients for (yi − µθ), and the coefficients for

(z − µθ). First, solving for β0:

β0 = Γ0 − 1
πγγUc

[UΓ(µθ, Γ0) + UΓΓ(β0 − Γ0)] , (A55)

and thus:

β0 = Γ0 − UΓ(µθ, Γ0)
Ucπγγ + UΓΓ

. (A56)

Second, solving for βy:

βy = − 1
Ucπγγ

[
UΓΓβy

τy

τ
+ UθΓ

τy

τ

]
, (A57)

yields:

βy = − UθΓτy

Ucπγγτ + UΓΓτy
< 0. (A58)
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Third and finally, solving for βz:

βz = − 1
Ucπγγ

[
UΓΓ

(
βy

τz

τ
+ βz

)
+ UθΓ

τz

τ

]
. (A59)

which, after substituting the solution for βy from (A58), leads to

βz = − Ucπγγ

Ucπγγ + UΓΓ

UθΓτz

Ucπγγτ + UΓΓτy
. (A60)

and thus, recognizing that Ucπγγ

Ucπγγ+UΓΓ
= 1

1−α (Lemma 3, equation (17)):

βz = − 1
1 − α

UθΓτz

Ucπγγτ + UΓΓτy
< 0. (A61)

Equations (A56), (A58), and (A61) characterize the coefficients β0, βy, and βz in terms of the model

parameters, and confirm equations (32) through (34) in Proposition 3.

A.8 Proof of Corollary 3.1

From Lemma 3, we know that α = − UΓΓ
Ucπγγ

. We also know that UΓΓ < 0, Uc > 0, and πγγ < 0.

Therefore, α < 0. Consequently, as shown in equation (16) of Lemma 3, firm i’s expectation of the

average action of others, Ei[Γ̃te], enters with a negative coefficient, implying that firms’ actions are

strategic substitutes.

From Proposition 3, using the expressions for βy and βz, we can directly calculate the ratio βy

βz
:

βy

βz
= τy

τz
1−α

= (1 − α)τy

τz
. (A62)

Since α < 0, we have (1 − α) > 1. Therefore:

βy

βz
= (1 − α)τy

τz
>

τy

τz
. (A63)

This confirms that firms overweight their private information relative to the public signal.

45



A.9 Proof of Corollary 3.2

We start first by writing the coefficients β0, βy, and βz as functions of κ∗
0, κ∗

1, and α, noting that

these latter three coefficients do not depend on σθ, τy, and τz:

β0 = κ∗
0, (A64)

βy = (1 − α)κ∗
1σ2

θτy

1 + σ2
θ(τy − ατy + τz)

, (A65)

βz = κ∗
1σ2

θτz

1 + σ2
θ(τy − ατy + τz)

. (A66)

We aim to show that ∂B
∂σθ

> 0, where B = |βy +βz|. Since βy < 0 and βz < 0, we have B = −(βy +βz):

B = κ∗
1

(
1

1 + σ2
θ(τy(1 − α) + τz)

− 1
)

(A67)

Noting that κ∗
1 < 0 and α < 0, points (a), (b), and (c) of Corollary 3.2 result immediately.

A.10 Proof of Corollary 3.3

Consider a firm i that unilaterally increases its private signal precision to τ ′
y = ξτy, where ξ > 1. Let

E′
i[·] denote expectations conditional on this more precise signal. The first-order condition implies

the firm’s optimal greenness level, denoted γ′
i:

γ′
i = Γ0 − E′

i[f(q̃)]
πγγ

. (A68)

We know from Proposition 1 that f(q̃) = UΓ(µθ,Γ0)
Uc

+ UθΓ
Uc

(θ̃ − µθ) + UΓΓ
Uc

(Γ̃ − Γ0), which remains the

same as in the main model. Replacing this in (A68) yields:

γ′
i = Γ0 − UΓ(µθ, Γ0)

Ucπγγ
− UθΓ

Ucπγγ
(E′

i[θ̃] − µθ) − UΓΓ
Ucπγγ

(E′
i[Γ̃] − Γ0). (A69)

Make the following substitutions:

E′
i[θ̃] = σ−2

θ

σ−2
θ + ξτy + τz

µθ + ξτy

σ−2
θ + ξτy + τz

yi + τz

σ−2
θ + ξτy + τz

z, (A70)

E′
i[Γ̃] = β0 + βy(E′

i[θ̃] − µθ) + βz(z − µθ), (A71)

and replace the solutions for β0, βy, and βz given in equations (32)–(34) of Proposition 3. Straight-

46



forward but tedious algebra (details omitted) then leads to equation (38) of Corollary 3.3:

γ′
i = β0 + βy

[
1 + (ξ − 1)(1 + σ2

θτz)
1 + σ2

θ(ξτy + τz)

]
(yi − µθ) + βz

[
1 − (ξ − 1)(1 − α)σ2

θτy

1 + σ2
θ(ξτy + τz)

]
(z − µθ). (A72)

We now demonstrate that firm i’s ex-ante expected utility (conditional on z, but before observing

yi) is strictly increasing in the precision of its private signal. From Proposition 1, we note that the

regulatory function can also be written as:

f(q̃) = UΓ(θ̃, Γ̃)
Uc

= UΓ(θ̃, Γ0) + UΓΓ(Γ̃ − Γ0)
Uc

. (A73)

Consider a second-order Taylor expansion of the utility function U(e + π(γi) + (γi − Γ̃)f(q̃), θ̃, Γ̃)

around the status quo point (γi, Γ̃) = (Γ0, Γ0):

U

(
e + π(γi) + (γi − Γ̃)UΓ(θ̃, Γ0) + UΓΓ(Γ̃ − Γ0)

Uc
, θ̃, Γ̃

)
= U

(
e + π(Γ0), θ̃, Γ0

)
+ 0 · (Γ̃ − Γ0) + UΓ(θ̃, Γ0) · (γi − Γ0)

− 1
2UΓΓ · (Γ̃ − Γ0)2 + 1

2Ucπγγ · (γi − Γ0)2 + UΓΓ · (Γ̃ − Γ0)(γi − Γ0).

(A74)

This expansion is exact, given the linear-quadratic structure of the model. The expected utility

(conditional on both yi and z) is then

Ei[U ] = U
(
e + π(Γ0), θ̃, Γ0

)
+ Ei[UΓ(θ̃, Γ0)](γi − Γ0)

− 1
2UΓΓEi[(Γ̃ − Γ0)2] + 1

2Ucπγγ(γi − Γ0)2 + UΓΓEi[Γ̃ − Γ0](γi − Γ0).
(A75)

Recall from Lemma 2 that the first-best greenness level is given by γ∗(θ) = κ∗
0 + κ∗

1(θ̃ − µθ), and that

κ∗
0 = Γ0 − UΓ(µθ,Γ0)

Ucπγγ+UΓΓ
and κ∗

1 = − UθΓ
Ucπγγ+UΓΓ

. We can therefore rewrite the expression for γ∗(θ) as

γ∗(θ) = Γ0 + −UΓ(µθ, Γ0) − UθΓ(θ̃ − µθ)
Ucπγγ + UΓΓ

= Γ0 − UΓ(θ̃, Γ0)
Ucπγγ + UΓΓ

. (A76)

Thus, we can write Ei[UΓ(θ̃, Γ0)] = −(Ucπγγ + UΓΓ)Ei[γ∗(θ) − Γ0], which leads to:

Ei[U ] = U
(
e + π(Γ0), θ̃, Γ0

)
− 1

2UΓΓEi[(Γ̃ − Γ0)2] + 1
2Ucπγγ(γi − Γ0)2

−
(
(Ucπγγ + UΓΓ)Ei[γ∗(θ) − Γ0] − UΓΓEi[Γ̃ − Γ0]

)
(γi − Γ0),

(A77)
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or, using that α = − UΓΓ
Ucπγγ

,

Ei[U ] = U
(
e + π(Γ0), θ̃, Γ0

)
− 1

2UΓΓEi[(Γ̃ − Γ0)2] + 1
2Ucπγγ(γi − Γ0)2

− Ucπγγ

(
(1 − α)Ei[γ∗(θ) − Γ0] + αEi[Γ̃ − Γ0]

)
(γi − Γ0).

(A78)

Finally, recognizing from Lemma 3 that (1 − α)Ei[γ∗(θ) − Γ0] + αEi[Γ̃ − Γ0] = γi − Γ0:

Ei[U ] = U
(
e + π(Γ0), θ̃, Γ0

)
− 1

2UΓΓEi[(Γ̃ − Γ0)2] + 1
2Ucπγγ(γi − Γ0)2 − Ucπγγ(γi − Γ0)2 (A79)

= U
(
e + π(Γ0), θ̃, Γ0

)
− 1

2UΓΓEi[(Γ̃ − Γ0)2] − 1
2Ucπγγ(γi − Γ0)2. (A80)

Taking the ex-ante expectation (conditional on z), for both γi and γ′
i, yields:

E[Ei[U ]|z] = E[U(e + π(Γ0), θ̃, Γ0)|z] − 1
2UcπγγE[(γi − Γ0)2|z] − 1

2UΓΓE[(Γ̃ − Γ0)2|z], (A81)

E[E′
i[U ]|z] = E[U(e + π(Γ0), θ̃, Γ0)|z] − 1

2UcπγγE[(γ′
i − Γ0)2|z] − 1

2UΓΓE[(Γ̃ − Γ0)2|z]. (A82)

The difference in ex-ante expected utilities is therefore:

∆E[U |z] := E[E′
i[U ]|z] − E[Ei[U ]|z] = −1

2Ucπγγ

(
E[(γ′

i − Γ0)2|z] − E[(γi − Γ0)2|z]
)

. (A83)

From Propositions 2 and 3, we have γi − Γ0 = −Ei[f(q̃)]
πγγ

and γ′
i − Γ0 = −E′

i[f(q̃)]
πγγ

. Substituting these

into the expression for ∆E[U |z], we obtain:

∆E[U |z] = −Uc

2πγγ

(
E[E′

i[f(q̃)]2|z] − E[Ei[f(q̃)]2|z]
)

. (A84)

Applying the definition of variance, Var[X] = E[X2] − E[X]2, and the Law of Iterated Expectations:

E[E′
i[f(q̃)]2|z] = Var[E′

i[f(q̃)]|z] + E[f(q̃)|z]2, (A85)

E[Ei[f(q̃)]2|z] = Var[Ei[f(q̃)]|z] + E[f(q̃)|z]2. (A86)

Substituting these into the expression for the difference in expected utilities, we get

∆E[U |z] = −Uc

2πγγ

(
Var[E′

i[f(q̃)]|z] − Var[Ei[f(q̃)]|z]
)

. (A87)

The term −Uc
2πγγ

is positive (πγγ < 0 and Uc > 0). The increased precision (τ ′
y = ξτy, ξ > 1) implies

that the posterior belief about f(q̃) based on y′
i varies more than the posterior based on yi. Thus, a
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more precise signal leads to a larger variance of the conditional expectation. This can be understood

from the Law of Total Variance (LTV). Denoting Vari[f(q̃)] as shorthand notation for Var[f(q̃)|yi, z],

the LTV states that:

Var[f(q̃)|z] = E[Vari[f(q̃)]|z] + Var[Ei[f(q̃)]|z]. (A88)

In this setting, Vari[f(q̃)] is a constant with respect to both yi and z. Thus, we can write:

Var[f(q̃)|z] = Var[f(q̃)|y′
i, z] + Var[E′

i[f(q̃)]|z], (A89)

Var[f(q̃)|z] = Var[f(q̃)|yi, z] + Var[Ei[f(q̃)]|z]. (A90)

Var[f(q̃)|z] is the same in both LTV equations as it depends on the distribution of f(q̃) given the

public signal, z, which is unchanged by firm i’s private signal precision. Since the precision of the

private signal is increased, we have Var[f(q̃)|y′
i, z] < Var[f(q̃)|yi, z]. Therefore, it must be that:

Var[E′
i[f(q̃)]|z] > Var[Ei[f(q̃)]|z]. (A91)

Plugging this result into equation (A87), we conclude that ∆E[U |z] > 0. Thus, the firm has a strict

incentive to increase its private information precision, τy.

A.11 Proof of Proposition 4

The social planner’s problem is:

max
γsp

Esp

[
U(e + π(γsp), θ̃, γsp)

]
. (A92)

The first-order condition (FOC) with respect to γsp is:

0 = Esp

[
Ucπγ(γsp) + UΓ(θ̃, γsp)

]
. (A93)

Rewrite UΓ(θ̃, γsp) = UΓ(θ̃, Γ0) + UΓΓ(γsp − Γ0) and Ucπγ(γsp) = Ucπγγ(γsp − Γ0), and substitute:

0 = Esp

[
Ucπγγ(γsp − Γ0) + UΓ(θ̃, Γ0) + UΓΓ(γsp − Γ0)

]
. (A94)

Solving for γsp, we obtain:

γsp = Γ0 − Esp[UΓ(θ̃, Γ0)]
Ucπγγ + UΓΓ

. (A95)
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Taking expectation of equation (A76) conditional only on public information gives:

Esp[γ∗(θ)] = Γ0 − Esp[UΓ(θ̃, Γ0)]
Ucπγγ + UΓΓ

. (A96)

Comparing this with equation (A95), we see that:

γsp = Esp[γ∗(θ)]. (A97)

We now compare the ex-ante expected social welfare under the social planner’s allocation to the
status quo. Define the difference in expected utility for household i, conditional on yi and z as:

∆Ui := Ei[U(e + π(γsp), θ̃, γsp)] − Ei[U(e + π(Γ0), θ̃, Γ0)]. (A98)

Write a second-order Taylor expansion of U around the status quo point (Γ̃, γi) = (Γ0, Γ0):

U(e + π(γi), θ̃, Γ̃) = U(θ̃, Γ0, e + π(Γ0)) + UΓ(θ̃, Γ0)(Γ̃ − Γ0) + Ucπγ(Γ0)(γi − Γ0)

+ 1
2UΓΓ(Γ̃ − Γ0)2 + 1

2Ucπγγ(γi − Γ0)2.
(A99)

Since πγ(Γ0) = 0, and evaluating the expression at γi = Γ̃ = γsp, the expansion becomes:

U(e + π(γsp), θ̃, γsp) = U(θ̃, Γ0, e + π(Γ0)) + UΓ(θ̃, Γ0)(γsp − Γ0) + Ucπγγ + UΓΓ
2 (γsp − Γ0)2. (A100)

Thus, the difference ∆Ui simplifies to:

∆Ui = Ei[UΓ(θ̃, Γ0)](γsp − Γ0) + Ucπγγ + UΓΓ
2 (γsp − Γ0)2. (A101)

From equation (A95), we know that γsp − Γ0 = −Esp[UΓ(θ̃,Γ0)]
Ucπγγ+UΓΓ

= −E[UΓ(θ̃,Γ0)|z]
Ucπγγ+UΓΓ

, where the second

equality holds because the social planner’s information set consists only of the prior and z. Thus:

∆Ui = Ei[UΓ(θ̃, Γ0)]−E[UΓ(θ̃, Γ0)|z]
Ucπγγ + UΓΓ

+ UΓΓ + Ucπγγ

2

(
−E[UΓ(θ̃, Γ0)|z]

Ucπγγ + UΓΓ

)2

(A102)

= −1
Ucπγγ + UΓΓ

(
Ei[UΓ(θ̃, Γ0)]E[UΓ(θ̃, Γ0)|z] − 1

2E[UΓ(θ̃, Γ0)|z]2
)

. (A103)

The welfare difference is the the ex-ante expectation E[∆Ui] = ∆Wsp, which averages over yi and z:

∆Wsp = −1
Ucπγγ + UΓΓ

E
[
Ei[UΓ(θ̃, Γ0)]E[UΓ(θ̃, Γ0)|z] − 1

2E[UΓ(θ̃, Γ0)|z]2
]

. (A104)
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Recall that UΓ(θ̃, Γ0) = UΓ(µθ, Γ0) + UθΓ(θ̃ − µθ). Also, Ei[θ̃ − µθ] = τy

τ (yi − µθ) + τz
τ (z − µθ) and

E[θ̃ − µθ|z] = τz
τsp

(z − µθ), where τ = σ−2
θ + τy + τz and τsp = σ−2

θ + τz. Therefore:

Ei[UΓ(θ̃, Γ0)] = UΓ(µθ, Γ0) + UθΓ

(
τy

τ
(yi − µθ) + τz

τ
(z − µθ)

)
, (A105)

E[UΓ(θ̃, Γ0)|z] = UΓ(µθ, Γ0) + UθΓ
τz

τsp
(z − µθ). (A106)

Substituting into the expression for ∆Wsp:

∆Wsp = −1
Ucπγγ + UΓΓ

E
{[

UΓ(µθ, Γ0) + UθΓ

(
τy

τ
(yi − µθ) + τz

τ
(z − µθ)

)]

×
[
UΓ(µθ, Γ0) + UθΓ

τz

τsp
(z − µθ)

]
− 1

2

[
UΓ(µθ, Γ0) + UθΓ

τz

τsp
(z − µθ)

]2}
.

(A107)

Now, we expand the terms inside the expectation and apply the following rules:

E[yi − µθ] = E[z − µθ] = 0, (A108)

E[(yi − µθ)(z − µθ)] = E[(θ̃ − µθ + ε̃y,i)(θ̃ − µθ + ε̃z)] = σ2
θ , (A109)

E[(z − µθ)2] = Var(z) = σ2
θ + 1/τz. (A110)

Expanding the product and taking expectations, then replacing τsp = σ−2
θ +τz and τ = σ−2

θ +τz +τy:

∆Wsp = −1
2(Ucπγγ + UΓΓ)

[
UΓ(µθ, Γ0)2 + U2

θΓ
σ2

θτz

σ−2
θ + τz

]
> 0. (A111)

A.12 Proof of Corollary 4.1

Consider a firm facing a tax T per unit of emissions, E(γi). The firm’s objective function is:

max
γi

Ei

[
U(e + π(γi) − TE(γi), θ̃, Γ̃)

]
. (A112)

Taking the first-order condition with respect to γi (and noting that firm i takes Γ̃ as given) implies:

Ei[πγ(γi)] = TEi[E ′(γi)]. (A113)

To implement the social planner’s solution, γsp, we need all firms to choose γi = γsp. Since the tax

is uniform and all firms are identical ex ante, we need to impose:

πγ(γsp) = TE ′(γsp), (A114)
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and noting that πγ(γsp) = πγγ(γsp − Γ0), we must have

T = (γsp − Γ0)πγγ

E ′(γsp) . (A115)

Because πγγ < 0 and E ′(γsp) < 0, the sign of t is dictated by the difference γsp − Γ0. Since we have

assumed that green investment generates a positive externality, we have γsp > Γ0 and thus T > 0.

Consequently, the per-unit-emissions tax is strictly positive and ensures that all firms choose the
social planner’s greenness level γsp.

A.13 Proof of Corollary 4.2

When firm i purchases Qi permits, its profit function is:

πi = π(γi) − ppermitQi. (A116)

Firms must hold enough permits to cover their emissions. Therefore, the quantity of permits
purchased, Qi, must equal the firm’s emissions:

Qi = E(γi). (A117)

The firm maximizes its expected utility. Substituting (A117) into the profit function:

max
γi

Ei[U(e + π(γi) − ppermitE(γi), θ̃, Γ̃)]. (A118)

Taking the first-order condition with respect to γi (the firm takes ppermit and Γ̃ as given):

Ei[Uc(πγ(γi) − ppermitE ′(γi))] = 0, (A119)

or

πγγ(γi − Γ0) − ppermitE ′(γi) = 0. (A120)

Since E ′(γi) < 0 and E ′′(γi) > 0, the left-hand side of (A120) is strictly decreasing in γi. It is also

strictly positive at γi = Γ0. Thus, for a given ppermit, there’s a unique γi > Γ0 that solves the FOC.

Because ppermit is uniform across firms, and π(·) and E(·) are identical for all firms, all firms will

choose the same level of greenness.
The social planner aims to implement γsp. In equilibrium, aggregate emissions must equal the total

permits issued, Q. Since all firms choose γsp, aggregate emissions are:∫ 1

0
E(γsp)di = E(γsp). (A121)
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Therefore, to implement the social planner’s solution Q must solve:

Q = E(γsp). (A122)

Substituting γsp into the firm’s FOC:

πγγ(γsp − Γ0) − ppermitE ′(γsp) = 0. (A123)

Solving for the equilibrium permit price, ppermit and using the result of Proposition 4:

ppermit = πγγ(γsp − Γ0)
E ′(γsp) . (A124)

Thus, the equilibrium permit price, ppermit, is identical to the Pigouvian tax, T .

A.14 Proof of Proposition 5

A household with signal yi compares its expected utility under the two regimes:

1. UBR: Ei[U(cte
i , θ̃, Γ̃te)], where cte

i = e + π(γi) + (γi − Γ̃)f(q̃). As shown in Proposition 1, γi

is the team-efficient greenness level under UBR. Furthermore, from Proposition 1, we notice
that the regulatory function can also be written as:

f(q̃) = UΓ(θ̃, Γ̃)
Uc

= UΓ(θ̃, γsp) + UΓΓ(Γ̃ − γsp)
Uc

. (A125)

2. Social Planner: Ei[U(csp
i , θ̃, γsp)], where csp

i = e + π(γsp).

The household votes for the social planner if the second expression is greater than the first; otherwise,
it votes for UBR. Define the difference in utility for household i as:

∆Ui := U(cte
i , θ̃, Γ̃te) − U(csp

i , θ̃, γsp). (A126)

Take a second-order Taylor expansion of U(cte
i , θ̃, Γ̃te) around the social planner’s solution:

U(cte
i , θ̃, Γ̃te) = U(csp

i , θ̃, γsp) + [UΓ(θ̃, γsp) + Ucπγ(γsp)](γi − γsp)

− 1
2UΓΓ(Γ̃ − γsp)2 + 1

2Ucπγγ(γi − γsp)2 + UΓΓ(Γ̃ − γsp)(γi − γsp).
(A127)

Substituting this expansion into ∆Ui, and using the fact that πγ(γsp) = πγγ · (γsp − Γ0), we get:

∆Ui = [UΓ(θ̃, γsp) + Ucπγγ(γsp − Γ0)](γi − γsp)

− 1
2UΓΓ(Γ̃ − γsp)2 + 1

2Ucπγγ(γi − γsp)2 + UΓΓ(Γ̃ − γsp)(γi − γsp).
(A128)
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The household’s voting decision is based on Ei[∆Ui]. Given household i’s information set {yi, z},

γsp is known, and so is γi. The only random variables are θ̃ and Γ̃. Taking the expectation:

Ei[∆Ui] = Ei[UΓ(θ̃, γsp) + Ucπγγ(γsp − Γ0)](γi − γsp)

− 1
2UΓΓEi[(Γ̃ − γsp)2] + 1

2Ucπγγ(γi − γsp)2 + UΓΓEi[(Γ̃ − γsp)](γi − γsp).
(A129)

Make the following substitutions:

UΓ(θ̃, γsp) = UΓ(µθ, γsp) + UθΓ(θ̃ − µθ), (A130)

Ei[Γ̃ − γsp] = 1
α

(γi − γsp) − 1 − α

α
Ei[γ∗(θ) − γsp], (A131)

where the the latter comes from Lemma 3: γi = (1 − α)Ei[γ∗(θ)] + αEi[Γ̃]. Thus:

Ei[∆Ui] = [UΓ(µθ, γsp) + UθΓEi[θ̃ − µθ] + Ucπγγ(γsp − Γ0)](γi − γsp) − 1
2UΓΓEi[(Γ̃ − γsp)2]

+ 1
2Ucπγγ(γi − γsp)2 + UΓΓ

[ 1
α

(γi − γsp) − 1 − α

α
Ei[γ∗(θ) − γsp]

]
(γi − γsp).

(A132)

Using the definition of α = − UΓΓ
Ucπγγ

and simplifying:

Ei[∆Ui] =
{

UΓ(µθ, γsp) + UθΓEi[θ̃ − µθ] + Ucπγγ(γsp − Γ0) + (UΓΓ + Ucπγγ)Ei[γ∗(θ) − γsp]
}

(γi − γsp)

− 1
2Ucπγγ(γi − γsp)2 − 1

2UΓΓEi[(Γ̃ − γsp)2]. (A133)

From the first-best solution (Lemma 2) and equation (A76), we can write:

Ei[γ∗(θ) − γsp] = Ei[γ∗(θ) − Γ0] − (γsp − Γ0) = −UΓ(µθ, Γ0) − UθΓEi[θ̃ − µθ]
Ucπγγ + UΓΓ

− (γsp − Γ0).

(A134)

Substituting and simplifying leads to:

Ei[∆Ui] = {UΓ(µθ, γsp) − UΓ(µθ, Γ0) − UΓΓ(γsp − Γ0)} (γi − γsp)

− 1
2Ucπγγ(γi − γsp)2 − 1

2UΓΓEi[(Γ̃ − γsp)2]. (A135)

Recognizing that UΓ(µθ, γsp) = UΓ(µθ, Γ0) + UΓΓ(γsp − Γ0) cancels the first term:

Ei[∆Ui] = −1
2Ucπγγ(γi − γsp)2 − 1

2UΓΓEi[(Γ̃ − γsp)2]. (A136)
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Since Uc > 0, πγγ < 0, and UΓΓ < 0, we have Ei[∆Ui] > 0.

A.15 Proof of Proposition 6

We examine how distrust affects the equilibrium. Individual learning about θ̃ remains unchanged,

but learning about the aggregate, Γ̃, is altered. Under the conjecture (31), where hats denote

potentially modified coefficients, household i perceives the aggregate greenness as:

Γ̃i = β̂0 + β̂y

(∫
j

yi
jdj − µθ

)
+ β̂z(z − µθ) (A137)

= β̂0 + β̂y(φ(θ̃ − µθ) +
√

1 − φ2ϕ̃i) + β̂z(z − µθ). (A138)

Consequently, household i’s expectation of aggregate greenness is:

Ei[Γ̃i] = β̂0 + β̂yφ(Ei[θ̃] − µθ) + β̂z(z − µθ). (A139)

We proceed by revisiting the relevant results.

Lemma 1 (Status quo allocation): Unchanged.

Lemma 2 (First-Best allocation): Unchanged.

Lemma 3 (Team-efficient allocation): Equation (A18), reproduced here, remains valid:

Ei

[
Ucπγ(γte

i (yi, z))
]

+ Ei

[
UΓ
(
e + π(Γ̃te(θ̃, z)), θ̃, Γ̃te(θ̃, z)

)]
= 0. (A140)

Taking the derivative and rearranging, we obtain

UcπγγEi[γte
i − γ∗(θ)] + UΓΓEi[Γ̃te − γ∗(θ)] = 0, (A141)

which, as in Lemma 3, implies

γte
i =

(
1 + UΓΓ

Ucπγγ

)
Ei[γ∗(θ)] − UΓΓ

Ucπγγ
Ei[Γ̃te]. (A142)

Recall from Lemma 2 that γ∗(θ) = κ∗
0 + κ∗

1(θ − µθ). Thus, Ei[γ∗(θ)] is unaffected by distrust.

However, Ei[Γ̃te] depends on the trust parameter, φ. In the limiting case of complete distrust

(φ = 0), Ei[Γ̃te] becomes independent of θ̃, as seen from equation (A139). Still, the key result from

Lemma 3, given in equation (16), holds, and firms’ actions remain strategic substitutes.
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Lemma 4 (Welfare Ranking): Unchanged.

Proposition 1 (Team efficiency of UBR): The function f(q̃) must still satisfy (A41):

Ei[f(q̃)] = UΓ(µθ, Γ0)
Uc

+ UθΓ
Uc

(Ei[θ̃] − µθ) + UΓΓ
Uc

(Ei[Γ̃te] − Γ0). (A143)

This yields the same functional form as in Proposition 1:

f(q̃) = a [MRS − ERA(q̃ − µθ)] . (A144)

Therefore, UBR is robust to distrust among economic agents.

Proposition 2 (Cournot equivalence): Unchanged.

Proposition 3 (Equilibrium greenness): Under distrust, the coefficients of the conjectured

equilibrium greenness, given by equation (31), are modified. To further highlight the impact of

distrust (see also equations (46)–(49)), we express these coefficients in terms of κ∗
0, κ∗

1, and α, which

remain unchanged from the no-distrust case. The modified coefficients β̂0, β̂y, and β̂z are:

β̂0 = κ∗
0, (A145)

β̂y = (1 − α)κ∗
1σ2

θτy

1 + σ2
θ(τy + τz − ατyφ)

, (A146)

β̂z = κ∗
1σ2

θτz

1 + σ2
θ(τy + τz − ατyφ)

. (A147)

When φ = 1, we fall back on the original coefficients of Proposition 3 (see equations (A64)-(A66)).

Corollary 3.1 (Strategic substitutability and information weighting): Unchanged.

Corollary 3.2 (Information sensitivity): Points (a) and (b) of the corollary are unchanged.

For point (c), the sign of dependence of the information sensitivity on the precision of public

information depends on the trust parameter φ. To see this, write

∂B
∂τz

= κ∗
1σ2

θ(−1 + ασ2
θτy(−1 + φ))

(1 + σ2
θ(τy + τz − ατyφ))2 . (A148)

The sign of this derivative depends on the sign of (−1 + ασ2
θτy(−1 + φ)). Since κ∗

1 < 0, it follows
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that ∂B/∂τz > 0 if and only if

(−1 + ασ2
θτy(−1 + φ)) < 0, (A149)

or, equivalently, if and only if

φ > 1 − 1
(−α)σ2

θτy
. (A150)

Finally, we check the dependence of B on the trust parameter φ:

∂B
∂φ

= − ακ∗
1σ4

θτy(τy − ατy + τz)
(1 + σ2

θ(τy + τz − ατyφ))2 < 0. (A151)

Corollary 3.3 (Incentives for Information Acquisition): Equation (A87) remains valid

under distrust:

∆E[U |z] = −Uc

2πγγ

(
Var[E′

i[f(q̃)]|z] − Var[Ei[f(q̃)]|z]
)

> 0. (A152)

Thus, firms have a strict incentive to increase the precision of their private information.

Denote the difference in variances Var[E′
i[f(q̃)]|z] − Var[Ei[f(q̃)]|z] by ∆V(ξ, φ). We analyze how

the incentive for information acquisition, driven by ∆V(ξ, φ), changes with the trust parameter φ.

Recall that E′
i denotes the expectation after the firm increases the precision of its private signal yi

by a factor of ξ > 1, and Ei is the expectation with the original precision.

First, we substitute Γ̃i = β̂0 + β̂y(φ(θ̃ − µθ) +
√

1 − φ2ϕ̃i) + β̂z(z − µθ) into the expression for f(q̃):

f(q̃) = UΓ(µθ, Γ0)
Uc

+ UθΓ
Uc

(θ̃ − µθ) + UΓΓ
Uc

(Γ̃ − Γ0) (A153)

= UΓ(µθ, Γ0)
Uc

+ UθΓ
Uc

(θ̃ − µθ)

+ UΓΓ
Uc

(
β̂0 + β̂z(z − µθ) + β̂y(φ(θ̃ − µθ) +

√
1 − φ2ϕ̃i) − Γ0

)
. (A154)

Next, we compute the conditional expectations E′
i[f(q̃)|z] and Ei[f(q̃)|z]. Given that z is observed,

the only remaining random variables in (A154) are θ̃ and ϕ̃i. We have E[ϕ̃i|z] = 0. The conditional

expectation of θ̃ given z and yi (with precision τy) is given in equation (8):

E[θ̃|z, yi] = µθ + τy

σ−2
θ + τy + τz

(yi − µθ) + τz

σ−2
θ + τy + τz

(z − µθ). (A155)
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When the precision of yi increases by a factor of ξ, we replace yi with y′
i and τy with ξτy. Thus:

E′[θ̃|z, y′
i] = µθ + ξτy

σ−2
θ + ξτy + τz

(yi − µθ) + τz

σ−2
θ + ξτy + τz

(z − µθ). (A156)

Substituting these into the expression (A154) for f(q̃), we are interested in the coefficients of yi

in the resulting expression, as the variance with respect to yi is what determines the difference

∆V(ξ, φ) = Var[E′
i[f(q̃)]|z] − Var[Ei[f(q̃)]|z]. Let c′

i and ci be the coefficients of yi in E′
i[f(q̃)|z] and

Ei[f(q̃)|z], respectively. These coefficients are

c′
i = ξσ2

θτy(UθΓ + UΓΓβ̂yφ)
Uc(1 + σ2

θ(ξτy + τz))
and ci = σ2

θτy(UθΓ + UΓΓβ̂yφ)
Uc(1 + σ2

θ(τy + τz))
. (A157)

We also need the conditional variances of yi and y′
i given z. Using standard results for conditional

distributions of jointly normal variables:

Var[y′
i|z] = 1

ξτy
+ σ2

θ

1 + σ2
θτz

and Var[yi|z] = 1
τy

+ σ2
θ

1 + σ2
θτz

. (A158)

The difference in variances of the expectations is then:

∆V(ξ, φ) = (c′
i)2Var[y′

i|z] − c2
i Var[yi|z] (A159)

= (ξ − 1)τy(UθΓ + UΓΓβ̂yφ)2

U2
c (σ−2

θ + τy + τz)(σ−2
θ + ξτy + τz)

. (A160)

This expression is positive since ξ > 1. Substitute the solution for β̂y from equation (48):

βy = − UθΓτy

Ucπγγ(σ−2
θ + τy + τz) + UΓΓτyφ

, (A161)

simplifying, then taking the derivative of this expression with respect to φ leads to:

∂

∂φ
∆V(ξ, φ) = −

2UΓΓU2
θΓ(ξ − 1)π2

γγτ2
y (σ−2

θ + τy + τz)
(σ−2

θ + ξτy + τz)(Ucπγγ(σ−2
θ + τy + τz) + UΓΓτyφ)3 . (A162)

Under the assumptions UθΓ < 0, πγγ < 0, σθ > 0, τy > 0, τz > 0, Uc > 0, 0 < φ < 1, UΓΓ < 0, and

ξ > 1, this derivative is negative. Therefore, the incentive for information acquisition increases as

trust (φ) decreases.

A.16 Proof of Proposition 7

We examine how distrust affects the results from Section 3.
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Proposition 4 (Social Planner’s solution): Unchanged.

Corollary 4.1 (Pigouvian tax on emissions): Unchanged.

Corollary 4.2 (Cap-and-Trade implementation): Unchanged.

Proposition 5 (Political viability of UBR): Unchanged.

B Alternative Model with Exponential Utility

This appendix outlines an alternative model specification based on exponential utility to illustrate
the robustness of regulatory mechanism harnessing uncertainty and disagreement, similar in spirit to
the main analysis. Note that the notation used in this appendix differs from that in the main text;
this is intentional to prevent confusion between the two model frameworks. The detailed derivations
and analysis for this model specification can be found in a previous version of this paper, available
from the authors upon request.

Model Setup Consider a two-date economy (t = 0, 1) with a continuum of household-firm pairs

indexed by i ∈ [0, 1]. Households have CARA utility over consumption (c0i, c̃1i) and environmental

quality (q̃):

max
ki

−e−ρcc0i − βEi

[
e−ρcc̃1i−ρq q̃

]
(B1)

subject to budget constraints c0i = w0 − ki and c̃1i = (1 + ri)ki + π̃i. Environmental quality evolves

as (derived from an assumed GBM for the underlying EPI):

q̃ = µ0 + µ̃a − 1
2σ2 + ε̃, with ε̃ ∼ N (0, σ2). (B2)

The environmental trend µ̃a depends on aggregate firm greenness Γ̃ ≡
∫ 1

0 γi di:

µ̃a ≡ µ̃ + a(Γ̃ − Γ0), with a > 0. (B3)

The intrinsic trend µ̃ ∼ N (0, σ2
µ) is unknown. Similar to the main model, agents observe a private

signal yi = µ̃ + ε̃y,i and a public signal z = µ̃ + ε̃z, where ε̃y,i ∼ N (0, τ−1
y ) and ε̃z ∼ N (0, τ−1

z ). The

posterior precision and posterior mean are:

τ = σ−2
µ + τy + τz and Ei[µ̃ | yi, z] = τy

τ
yi + τz

τ
z. (B4)
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Agents may distrust others’ signals (φ ∈ [0, 1]), believing yi
j = φµ̃ +

√
1 − φ2ϕ̃i + ε̃y,j . This

specification mirrors the distrust mechanism introduced in Section 4 (cf. eq. (45)).

Firms choose capital ki and greenness γi. Their realized profits include a regulatory term:

π̃i = Akα
i − (1 + ri)ki − g

2(γi − Γ0)2 + ζ(Γ̃ − γi)q̃, with A, g, ζ > 0. (B5)

The regulatory term ζ(Γ̃ − γi)q̃ is analogous to the UBR mechanism (eq. (19)), with ζ modulating

the regulatory intensity.
Firms maximize expected profits:

Ei[π̃i] = Akα
i − (1 + ri)ki − g

2(γi − Γ0)2 + ζEi[Γ̃q̃] − ζγiEi[q̃]. (B6)

Equilibrium Firm Greenness The firm’s choice of greenness γ∗
i is determined independently

of capital investment. Taking the first-order condition of (B6) with respect to γi yields:

γ∗
i − Γ0 = −ζ

g
Ei[q̃], (B7)

where the expected environmental quality is

Ei[q̃] = µ0 + Ei[µ̃] + a(Ei[Γ̃] − Γ0) − σ2

2 . (B8)

We conjecture a linear solution for γ∗
i :

γ∗
i = θ0 + θµµ0 + θyyi + θzz. (B9)

Proposition B.1. Firm i’s optimal greenness γ∗
i and aggregate greenness Γ̃ =

∫ 1
0 γ∗

i di are:

γ∗
i = θ0 + θµµ0 + θyyi + θzz (B10)

Γ̃ = θ0 + θµµ0 + θyµ̃ + θzz, (B11)

where

θ0 = Γ0 + ζσ2

2(aζ + g) > 0, θµ = − ζ

aζ + g
< 0, (B12)

θy = − ζτy

φaζτy + gτ
< 0, and θz = − ζgτz

(φaζτy + gτ)(aζ + g) < 0, (B13)

and where, by the definition of private signals yi in equation (5), µ̃ =
∫ 1

0 yidi.

Proposition B.1 shows that, as in the main model (Proposition 3), the optimal individual greenness
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strategy (γ∗
i ) is linear in private (yi) and public (z) signals. Aggregating these choices leads to an

aggregate greenness level (Γ̃) also depending linearly on the underlying environmental trend (µ̃)

and public signal (z), mirroring the structure for Γ̃ in the main text (eq. (36)). The coefficients

governing these relationships (θ’s vs β’s) reflect sensitivities to information and the impact of the

regulatory design in each framework.

Information Sensitivity and Strategic Interactions The equilibrium aggregate greenness

Γ̃ responds to the underlying environmental trend µ̃. We define the information sensitivity δ as the

magnitude of this response (analogous to B := |βy + βz| used in the main model, eq. (37)):

δ := |θy + θz| = ζ[aζτy + g(τy + τz)]
(aζ + g)[φaζτy + g(σ−2

µ + τy + τz)]
. (B14)

The sensitivity δ increases with greater prior uncertainty about the trend (σµ), higher precision

of private information (τy), stronger regulation (ζ), and greater distrust among agents (lower φ).

The effect of public information precision (τz) is positive, provided private information precision or

distrust are not excessively high (specifically, if τy < g/[aζσ2
µ(1 − φ)]). These findings parallel the

results in the main model (Corollary 3.2 and Proposition 6), where sensitivity B also increases with

prior uncertainty (σθ), information precision (τy, τz under conditions), and distrust.

Similar to the main model, firms’ actions in this specification are strategic substitutes. This leads
firms to overweight their private information relative to the public signal when making greenness
decisions, compared to a simple Bayesian benchmark:

θy

θz
= g + aζ

g

τy

τz
>

τy

τz
if a > 0. (B15)

This mirrors the result in Corollary 3.1 of the main model, where the ratio βy/βz = (1 − α)(τy/τz)

also showed overweighting due to strategic substitutability (since α < 0). The factor (g + aζ)/g

here is analogous to (1 − α) in the main model.

In summary, this alternative CARA model yields equilibrium dynamics for greenness, information
sensitivity, and strategic interactions structurally consistent with the findings from the main

paper’s linear-quadratic (LQ) approximation. This supports the paper’s central theme: regulatory

mechanisms can effectively harness uncertainty and disagreement.

Capital Investment, Welfare, and Information Acquisition Further analysis of this

alternative CARA model, particularly for equilibrium capital investment (k∗
i ), welfare comparisons,
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and information acquisition incentives, generally requires numerical methods due to complex
expectations under exponential utility. This contrasts with the main paper’s LQ framework, which
often permits analytical solutions. Despite this difference in tractability, numerical investigation of
the CARA model confirms the robustness of the main paper’s core findings:

(a) Equilibrium Capital Investment: The equilibrium capital k∗
i is determined implicitly and

varies with agents’ private information yi. Numerical results suggest regulation (ζ > 0) tends to

crowd out capital investment in favour of greenness investment, an effect not explicitly captured in

the main model’s framework which focuses solely on the cost of greenness π(γi).

(b) Welfare Analysis: Numerical welfare comparisons with an information-constrained social

planner show the decentralized regulated outcome can yield higher welfare, especially with adverse

environmental trends (µ̃ < 0) or high distrust (φ = 0). There typically exists an optimal level

of regulatory stringency (ζ∗) maximizing welfare. This echoes the main model’s result where

UBR achieves team efficiency, dominating a planner restricted to public information (Lemma 4,

Proposition 4).

(c) Political Economy: Numerical simulations suggest a majority of households may prefer this

uncertainty-driven regulation over the planner’s uniform policy, particularly under high distrust.
This aligns qualitatively with the analytical result of unanimous support for UBR in the main model

(Proposition 5), indicating the potential political viability of such mechanisms.

(d) Information Acquisition: The CARA model confirms that regulation provides incentives

for firms to acquire more precise private information. The gain in expected profit from increasing

precision from τy to τ ′
y = ξτy is:

Et<0[π̃′∗
i ] − Et<0[π̃∗

i ] = (ξ − 1)
gζ2τy(σ−2

µ + τy + τz)
2[g(σ−2

µ + τy + τz) + aζτyφ]2(σ−2
µ + τz + ξτy)

. (B16)

This gain is positive if ξ > 1 and ζ > 0, and it increases as trust decreases (lower φ). This directly

parallels the findings in the main model (Corollary 3.3 and Proposition 6), where UBR incentivizes

information acquisition, and this incentive is strengthened by distrust.

In conclusion, while the CARA model introduces complexities requiring numerical analysis for
some aspects, its core results regarding the strategic effects of uncertainty-driven regulation on
greenness, information aggregation, welfare, and information acquisition incentives align well with
the analytical findings of the main paper’s LQ framework. This supports the general validity of
using regulatory mechanisms to harness uncertainty and disagreement.
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