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1 Introduction

Production functions are one of the fundamental primitives in economics, and their es-

timates are key inputs for various economic analyses. One factor that complicates the

estimation of production functions is that not all firms have access to the latest tech-

nology, resulting in heterogeneity in the production technologies owned by each firm.

While there is heterogeneity in production technologies, many applied studies ignore

suchheterogeneity, assuming thatfirmswithin the same industryhave the sameproduc-

tion function. Recent research onmarkups andmonopsony power has pointed out that

incorrect markup estimates can be obtained when assuming firms in a broadly-defined

industry have the same production technology (Foster, Haltiwanger and Tuttle, 2022) or

when ignoring heterogeneity due to technical change (Demirer, 2022).

This paper precisely addresses this issue arising from ignoring such heterogeneity by

collecting data where we directly observe the types of production technologies at each

plant. Specifically, we exploit the plant-level data from the Japanese cement industry

between 1970 and 2010, during which the evolution of new cement production tech-

nology occurred, from the suspension preheater (SP) kiln to the new suspension pre-

heater (NSP) kiln. Moreover, cement is a homogeneous product, allowing us to assume

away product differentiation and quality difference, and has a simple production pro-

cess, which enables us to limit our attention to kiln technology. For these reasons, the

cement industry provides an ideal environment to examine the possible implications of

accounting for technological changes.

Wefirst showthat there is aplant-levelheterogeneity inproduction technologydue to

the gradual adoption of new technology in the industry over time. To understand how to

capture this diffusion of new technology as a change in the production function, we em-

ploy an event study design à la Callaway and Sant’Anna (2021). Using observed variation

in the timing of technology adoption, we see the effect of the adoption on outcome vari-

ables such as the number of employees, wages, production capacity, output value, and

capital-labor ratio. We find that, compared to the plants keeping the old technologies,
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the plants adopting the new technology exhibit (i) a decrease in the number of employ-

eesby approximately 20%overnine years, (ii) no significant changes in the growth rate of

wages per person, (iii) an immediate increase in production capacity by 30%, and (iv) an

increase in output value by approximately 30% one year after the new technology adop-

tion. These findings suggest that the introduction of NSP kilns embodies the explicit

technological changewith a different shape of production functions across plants rather

than a simple increase in total factor productivity (TFP). We confirm this by estimating

the production function for each technology using the control function approach con-

solidated by Ackerberg, Caves and Frazer (2015). We estimate different output elastici-

ties for different types of technologies and find that the new technology is indeed more

capital-intensive.

We then use our production function estimates to examine implications for monop-

sonypowerandmarkups to illustrate thatourconclusionwouldbequalitativelydifferent

if we lacked data on production technology. We estimate plant-level marginal revenue

products of labor (MRPL) and find thatwithout taking account of the differences in pro-

duction technology, the growth rate of MRPL is higher than that of wages. In particular,

this discrepancy occurs when new technology diffuses from the mid-1970s to the early

1980s. However, we find that this discrepancy vanishes once we control for plant-level

technology, suggesting that themonopsony power of firms has not increased over time.

Next, we estimate plant-level markups using the methodology from De Loecker and

Warzynski (2012)andfindthatwithout controlling for thedifferences inproduction tech-

nology, estimatedmarkups exhibit an increasing trend over time. This finding is consis-

tent with the recent studies by De Loecker, Eeckhout andUnger (2020) and Autor, Dorn,

Katz, Patterson and Van Reenen (2020). However, when we control for the plant-level

technology in our analysis, a large part of themarkup increase disappears. Also, we show

thatwith a single estimateof output elasticity imposing commonproduction technology

for all plants, an increase in the industry-level markup occurs when production shifts

from plants with relatively labor-intensive technology to plants with relatively capital-

intensive technology due to the fact that the output elasticity does not reflect different

3



production technologies in the same industry.

We further relate our findings to the recent important debates in macroeconomics

of why labor share declines in the modern economy. An enormous number of studies

have investigated this issue, proposing hypotheses to explain the phenomenon, such as

factor-biased technical changes, the increasedexercise of productmarket powerby large

firms, decliningworker power in labor relations, globalization and the rise of China, and

changes in the composition of the workforce.1 We show that “technology diffusion” is

the primary driver of labor share decline by appropriately controlling for technology in

our analysis. Without technology information, the decline of labor share coincides with

the increase in markups andmonopsony power. However, such a relationship vanishes

once controlling for technology.

Ourpapercontributes to the recent literatureon time-series changes inmarketpower.

There is a growing literature on market power from macroeconomics where the litera-

ture relies on the “production approach” (See Syverson, 2019). Drawing on De Loecker

and Warzynski (2012) and production function estimation from the IO literature (e.g.,

Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg, Caves and Frazer, 2015),

De Loecker, Eeckhout and Unger (2020) estimate markups during the period 1955-2016

for the U.S. economy and find that they have risen steadily. Similarly, Yeh et al. (2022)

develop a newway to characterize aggregatemarkdowns fromproduction function esti-

mationandquantify the long-termtrendsofmonopsonypower in theUSmanufacturing

sector. Our contribution to this literature is thatwe document the importance of estima-

tion bias in market power due to the lack of production technology information. In this

regard, Foster, Haltiwanger and Tuttle (2022) is the closest paper, where they find that

the increase inmarkups is substantially dampenedwithmore granular estimates of out-

put elasticities obtained by estimating production function with six-digit industry code

rather than two-digit level. Our results show that even in a narrowly-classified indus-

try, different plants use different production technologies, and assuming the same tech-

nology across all plants would be problematic. Given the rise of the macroeconomics
1See Grossman and Oberfield (2022) for a more detailed summary of the literature.
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approach, several studies, such as Grieco, Murry and Yurukoglu (2021) and Miller, Os-

borne, Sheu and Sileo (2023), re-examine findings using an IO-type demand estimation

approach by focusing on specific industries as we do in this paper.

Our paper also relates to the burgeoning literature on technological change and pro-

duction function estimation. A common approach to production function estimation

assumes productivity as a Hicks-neutral shifter. Several authors, including Doraszelski

and Jaumandreu (2018), Raval (2023), Zhang (2019), Jaumandreu (2022), and Demirer

(2022), have recently considered departures from this standard assumption. These pa-

pers highlight the importance of labor-augmenting productivity anddevelopways to es-

timate production functions with factor-augmenting productivity change. By contrast,

our paper instead assumes that producers have an explicitly different production func-

tion according to their use of old or new types of kilns, aside from any productivity dif-

ferences. The dataset, which is uncommon in that we can directly observe plant-level

production technology, makes it possible, and there are only a few works with this ap-

proach. Examples are van Biesebroeck (2003), which models the choice between lean

or mass production in the car industry, Rubens (2022), who features the introduction of

mechanical coal cutters in the 19th-century coal mining industry, and Collard-Wexler

and De Loecker (2015), who collect data on production technology directly as we do in

this paper.

Finally, thispaper alsocontributes toa largebodyof literatureon labor sharedecline.2

The decline of the labor share has been observed inmany countries (Karabarbounis and

Neiman, 2014) and inmany industries (Kehrig andVincent, 2021), andmany researchers

ascribe it to technological changes, in particular, introduction of computers and indus-

trial robots, as in Acemoglu andRestrepo (2020), Autor et al. (2020), andHumlum (2021).

Our focus on the advancement of kilns in the cement industry during the 1970s can ad-
2Grossman and Oberfield (2022) classify hypotheses for declining labor share into the following five

categories: (i) technological changes, (e.g., Karabarbounis and Neiman, 2014; Acemoglu and Restrepo,
2020; Autor et al., 2020), (ii) increased exercise of product market power by large firms (e.g., Barkai, 2020;
De Loecker et al., 2020), (iii) decliningworker power in labor relations (e.g., Stansbury and Summers, 2020;
Drautzburg et al., 2021), (iv) globalization and the rise of China (e.g., Abdih and Danninger, 2017; Sun,
2020), and (v) changes in the composition of the workforce (e.g., Glover and Short, 2020; Acemoglu and
Restrepo, 2020).
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dress the gap between the rise in automation and ICT in the 1990s and the labor share

decline observed since the 1980s.

This paper is organized as follows. Section 2 describes the industry and provides the

historical background of the Japanese cement industry as well as the data used in our

empirical analysis. We conduct some reduced-form analysis to motivate how to trans-

late newproduction technology into production functions and estimate them in Section

3. We then examine the implications for monopsony power and markups in Section 4.

We also discuss the implications for the declining labor share in Section 5. Section 6 con-

cludes.

2 Industry Background and Data

Thereare three important advantages to studying thecement industry: (i) theavailability

of production technology informationat eachplant, which is typically unobserved in the

standard census data; (ii) the homogeneity of the product, which enables us to estimate

markups accurately; and (iii) a simple production process, which enables us to estimate

productivity easily through production function estimation.

In this section, wefirst explain the industry backgrounds, elaborate on the aforemen-

tioned features and advantages of the industry, and describe the two data sources that

we use in this paper. We then show some key statistics.

2.1 Industry Background: Cement and Its Production Technology

Cement is one of themost important constructionmaterials, as concrete andmortar are

made from cement. There are several types of cement. For example, Portland cement

is the most common type of cement, accounting for about 75% of cement products, ac-

cording to the Japanese Cement Association.3 They are defined by the Japanese Indus-

trial Standards and thus can be treated as homogeneous products. To produce cement,

crushed limestone, clay, and otherminerals aremixed and put into a kiln to be heated at
3See https://www.jcassoc.or.jp/cement/1jpn/jc.html (Last accessed: November 25, 2022).
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high temperatures. This process causes chemical reactions of rawmaterials inside a kiln

and yields clinker. The final procedure of mixing ground clinker with gypsum produces

cement. As demonstrated, the production process of cement is simple.

Cementkilnsare theheartof this simpleproductionprocess, and it is important forus

to understand some technical aspects of cement kilns in Japan. Prior to our sample pe-

riod, in the 1960s, the suspension preheater (SP) process was imported from Germany,

and due to its high energy efficiency, SP kilns gained popularity and took a dominant

position. Most of the newly built kilns in the 1960s were SP kilns, and in the 1970s, con-

tinuing improvements weremade by Japanese engineering firms and cement firms, and

new suspension preheater (hereinafter NSP) kilns were developed.4 The main innova-

tion of NSP kilns is attaching pre-calciner to the SP kilns, which breaks down CaCO3 in

limestone into CaO and CO2 in an efficient way, and this feature enabled further mass

production. In our data, after 1970, almost all newly built kilns were NSP kilns, and this

homogeneity of investment also simplifies our analysis.

Note that the existing literature emphasizes the importance of spatial differentiation.

For example, Miller and Osborne (2014) show that importance of import competition

affects prices and Salvo (2010) shows that the potential threat of import competition re-

stricts market power. However, as Japan is geographically isolated from other countries

and cement is a bulky good, import and export were not so large in the period of our fo-

cus.5 As for domestic spatial differentiation, as many plants are located near the ocean

and shipping costs are low, the scope of spatial differentiation is limited.

2.2 Data Sources

For this study,wecombine twocomplementaryplant-leveldata sources: (i)CementYear-

book (Cement Nenkan), published by the Cement Press Co. Ltd. (Cement Shinbunsha),

and (ii) Census of Manufacture, collected by the Japanese Ministry of Economy, Trade,

and Industry. The yearbookmainly provides plant-level information on production out-
4For interested readers, Shimoda (2016)hasadetaileddiscussionandexplanationof thehistoryof tech-

nology evolution in the cement industry.
5See Panel (a) of Figure 1 in Okazaki, Onishi andWakamori (2022).
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put (in tons), number ofworkers, andownership andgeographical locationof theplants.

In addition to these basic characteristics of theplants, the dataset also contains the types

and thenumber of kilns that eachplant owns, and theirmonthly production capacity (in

tons), definedashowmuchclinker aplant canproducewhenoperating for 600hoursper

month. These variables on production technology at each plant make this dataset spe-

cial. Although the technology each plant employs is typically unobserved in the census

data, the Yearbook dataset provides such kiln-level information. By contrast, the Census

of Manufacture provides a similar but slightly different set of information on the plants,

i.e., the total shipment value (in JPY), material inputs (in JPY), number of employees,

total wage (in JPY), investment (in JPY), and asset values (in JPY).

Note that the sample periods for these two data sources are slightly different. We ob-

tain the former data from 1970 to 2010, whereas we obtain the latter data from 1980 to

2010 because the data from 1970 to 1979 are unavailable. We combine these two data

sources via some common variables in both data sources. We impute the plant-level

wage and material inputs before 1980 using the census data and variables that we ob-

serve throughout the entire sample period. See Appendix A for details.

2.3 Summary Statistics and Key Features

Summary statistics of our data are given in Table 1. Panel (A) presents plant-level sum-

mary statistics pooling all years, whereas Panels (B1), (B2), and (B3) present plant-level

statistics for the years 1970, 1990, and 2010, respectively. Furthermore, Panels (C1) and

(C2) present plant-level statistics for the plants with and without NSP kilns.

First, according toPanels (B1), (B2), and (B3), thenumberof observations in 1970was

53,whereas itwas 30 in2010, implying that thenumberofplants decreasedbyabout 40%

over 40 years. By contrast, as therewere fourmergers andno entries occurredduring this

period, thenumber of firms in 1970 and2010was 22 and18, respectively. These two facts

imply thatmost firms concentrated their production on a single plant or a small number

of plants in 2010. Although the number of plants decreased sharply, monthly capacity

and annual clinker production per plant have increased over 40 years, so industry-level
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Table 1: Summary Statistics

Num. of Obs. Mean Std. Dev. Min. Max.
Panel (A): Plant-Level Statistics (All)
Monthly Capacity (tons) 1,672 190,085 124,810 25,000 696,250
Annual Clinker Production (tons) 1,672 1,772,267 1,297,989 27,910 8,082,269
Average Cement Price (JPY/ton) 1,672 10,354 2,609 5,800 17,075
# of Workers (person) 1,672 193 141 16 1303
AverageWage perWorker (JPY) 1,672 4.38 1.44 .922 13.77
Share of NSP Kilns 1,672 .567 .427 0 1
Panel (B1): Plant-Level Statistics in 1970
Monthly Capacity (tons) 53 128,396 80,840 25,000 350,000
Annual Clinker Production (tons) 53 1,025,507 621,417 48,000 2,684,197
Average Cement Price (JPY/ton) 53 5,965 202.0 5,800 6,900
# of Workers (person) 53 318 175 114 1,205
AverageWage perWorker (JPY) 53 2.32 .527 .928 3.62
Share of NSP Kilns 53 0 0 0 0
Panel (B2): Plant-Level Statistics in 1990
Monthly Capacity (tons) 41 178,472 111,121 30,000 553,417
Annual Clinker Production (tons) 41 1,836,281 1,160,588 255,000 5,428,197
Average Cement Price (JPY/ton) 41 11,550 1,375 9,600 13,200
# of Workers (person) 41 169 94.4 57 560
AverageWage perWorker (JPY) 41 4.47 .571 2.83 5.41
Share of NSP Kilns 41 .750 .379 0 1
Panel (B3): Plant-Level Statistics in 2010
Monthly Capacity (tons) 30 165,567 127,285 36,167 557,083
Annual Clinker Production (tons) 30 1,561,800 1,321,220 276,000 6,169,000
Average Cement Price (JPY/ton) 30 10,076 471.0 9,000 10,900
# of Workers (person) 30 104 65.5 34 371
AverageWage perWorker (JPY) 30 5.98 .842 4.32 7.91
Share of NSP Kilns 30 .861 .300 0 1
Panel (C1): Plants with NSP Kilns
Monthly Capacity (tons) 1,234 212,440 130,193 31,667 696,250
Annual Clinker Production (tons) 1,234 2,025,289 1,365,910 131,550 8,082,269
Average Cement Price (JPY/ton) 1,234 10,889 2,265 5,883 17,075
# of Workers (person) 1,234 170 100.0 31 824
AverageWage perWorker (JPY) 1,234 4.74 1.38 1.40 13.77
Panel (C2): Plants without NSP Kilns
Monthly Capacity (tons) 438 127,102 79,703 25,000 445,140
Annual Clinker Production (tons) 438 1,059,415 698,583 27,910 3,848,100
Average Cement Price (JPY/ton) 438 8,850 2,911 5,800 15,800
# of Workers (person) 438 259 205 16 1303
AverageWage perWorker (JPY) 438 3.38 1.13 0.92 6.96

Notes: This table reports summary statistics for the following variables: Monthly (Production) Capacity,
measured in ton; Annual Clinker Production, measured in ton; Average Cement Price, measured in JPY
per ton; Number of Workers, measured in number of people; Average Wage per Worker, measured in
1,000,000 JPY; and Share of NSP Kilns, defined as the fraction of NSP kilns out of total number of kilns
in a given plant. Panel (A) shows summary statistics for all observations between 1970 and 2010. Panels
(B1) to (B3) show summary statistics for some selected years to see the variation within a year and the
changes in the variables over time. Panels (C1) and (C2) show summary statistics for the plantswith and
without NSP kilns.
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capacity and production have decreased only slightly. 6

Second, the fraction of the number of NSP kilns at plant has increased considerably.

Therewere noNSPkilns in 1970, whereas the old kilnsweremostly replacedbyNSP kilns

over 40 years. To further see the change in cement production technology, Panel (a) of

Figure 1 graphically shows the absolute number of kilns and share, by technology, i.e.,

types of kilns, over time. In 1970, the initial year of our sample period, there were about

220 kilns, the majority of which were kilns of old types. SP kilns accounted for less than

20%, and there were no NSP kilns. During the 1970s, however, NSP kilns dramatically

increased their popularity, maintaining their dominant position after the 1980s. Based

on Panels (C1) and (C2) of Table 1, we can clearly see that the plants with NSP kilns have

larger production capacity, yielding more clinkers with fewer workers. We can clearly

see that the plants with NSP kilns have larger production capacity, yeilding more clink-

ers with fewer workers in panels (b) to (d) of Figure 1. These observations can be also

confirmed numerically in panels (C1) and (C2) of Table 1. In our main analysis, we ex-

ploremonopsony power, themarkups, and the labor share with andwithout controlling

for this technology information.

Third, the number of workers has decreased sharply; the average number of work-

ers per plant in 1970 was 318, whereas it was 104 in 2010. Figure 2 plots the plant-level

number of employees over time. The solid line denotes the median, whereas the dot-

ted lines denote the first and the third quantiles. This decrease in the number of work-

ers means that the labor productivity—measured in output per worker—also increased

over 40 years, as we see that the plant-level clinker production has increased. By con-

trast, though the average wage also increased over time, the change in the average wage

is not as large as the change in labor productivity. These facts raise a couple of questions:

whether this reduction in thenumberofworkerswasdrivenby theadoptionofnew tech-
6Wemight notice that there was a drop in the capacity of the industry in the early-mid 1980s without a

significant change in employment. During the period, the industry experienced excess capacity problem
after the two waves of the oil shock. Japanese government implemented the capacity coordination policy
to let the cement firms to divest old kilns and reduce excess capacity. Since these divested old kilns were
not utilized for production, we observe capacity reduction without declining employment. Okazaki et al.
(2022) conducts the detailed welfare analysis of this policy.
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Figure 1: Diffusion of Technology

(a) Number of Kilns (b) Num ofWorkers (in Person)

(c) Capacity (inMillion Tons) (d) Production (inMillion Tons)

Note: Panel (a), (b), (c), and (d) graphically demonstrate the number of cement kilns, the number of workers, the
production capacity, and the total production amount in the industry by types of kilns.

nology andwhether the gap between growth in labor productivity andwages was due to

increasedmonopsony power of firms in the labor market.

3 NewTechnology and Implications for Production Func-
tion

In this section, to investigate how to capture the diffusion of new technology as a change

in the production function, wefirst examine the effects of the adoption onoutcome vari-

ables such as the number of employees, wages, production capacity, output value, and

capital-labor ratio, using an event study design à la Callaway and Sant’Anna (2021). We

then show that new technology adoption comes with a change in the shape of produc-
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Figure 2: Number of Workers per Plant Over Time

Note: This figure plots the plant-level number of employees over time.
The solid line depicts the median, whereas the dotted lines depict the
first and the third quantiles.

tion function by estimating the production function with information on plant technol-

ogy. More specifically, we show that cement production becomesmore capital-intensive

when plants adopt new technology.

3.1 Evidence from Event Study Design

To assess the changes induced by new technology in the production function, we first

examine what happened in the plants that have adopted new NSP kiln technology. To

this end, we take advantage of the richness of our data, i.e., we can observe the timing of

new technology adoption. Using the variation in the timing of technology adoption, we

employ an event study design, i.e., difference-in-differences with leads and lags of treat-

ment variable. The objective of this exercise is to descriptively quantify the change in

variables of interest before and after the technology adoption, rather than claiming the

causal impact of technology adoption. The difference-in-differences framework is con-

venient for suchanobjective aswell. Formally, we adopt amethodproposedbyCallaway

andSant’Anna (2021). Here, theadoptionofNSPkilns is the“treatment,” andweestimate

the average treatment effect on the treated (ATT) for each treatment cohort. ATT after τ
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years from the treatment for the plants that adopted NSP kilns in year t is identified as:

ATT(t, τ) = E

 Git

E[Git]
−

pt(Xi,t−1)Cit

1−pt(Xi,t−1)

E
[
pt(Xi,t−1)Cit

1−pt(Xi,t−1)

]
 (yi,t+τ − yi,t−1)

 , (1)

whereGit is one if plant i adopts NSP kilns in year t and zero otherwise,Cit is one if firm i

never adopts or has not yet adopted NSP kilns and zero otherwise, pt(Xi,t−1) is the prob-

ability that plant i adopts NSP kilns in year t conditional onGit = 1 or Cit = 1, and yiu is

the outcome variable of plant i in year u.7 We define ATT τ years from the treatment as

the weighted average of ATT(t, τ), that is,:

ATT(τ) =
∑
t

wtATT(t, τ),

where wt denotes the weight, which is the number of plants treated in year t divided by

the total number of treated firms.

We estimate ATT(t, τ) by replacing the expectation with the empirical average, and

pt(Xi,t−1), the propensity score, by estimating a probit model. ForXi,t−1, we use the log-

arithm of plant i’s total capacity and production quantity, the number of kilns at plant i,

the vintage of the oldest kiln at plant i, and the logarithm of the number of plants in the

region, andwe estimate a separate probitmodel for each year. The estimated coefficient

for the year before the adoption (τ = −1) is normalized to be zero by construction. To

fully utilize the data, we estimate ATT(τ ) for τ = −3,−2, . . . , 9, 10, because the adoption

of NSP kilns started in 1973 but the data is available only from 1970.

Figure 3 plots the evolution of plant-level revenue (PQ) and output quantity (Q) rel-

ative to the timing of the new technology adoption to examine whether output-level in-

deed increases by technology adoption. The x-axis shows the years relative to the year

of NSP kiln adoption and the y-axis shows the estimated ATT. Here, the year of NSP kiln
7CallawayandSant’Anna (2021)propose tousenever treated individuals as the control group. However,

it is not feasible in our context because the number of plants that never adopted NSP kilns is too small to
derive any meaningful inference. In addition, they provide computer codes for Stata and R to implement
the estimation and provide the option to use never-treated and not-yet-treated individuals as the control
group.
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Figure 3: The Effects of New Technology Adoption on Plant-level Revenue and Output
Quantity

(a) Revenue (PQ) (b) Output Quantity (Q)
Note: This figure plots the estimated effect of new technology adoption from the event-study design, Equation
(1). The year before the adoption is normalized to be zero.

adoption isdefinedby theyear theplant installed itsfirstNSPkiln.8 Thesolid linepresents

the estimated ATT, and the gray dotted lines represent a 90% confidence interval. The

confidence interval is constructed by the bootstrapmethodwith 200 replications. When

we look at the solid line in Panel (a), revenue jumps after a year of the technology adop-

tion and stays constant after two years. It takes two years for the production quantity

to increase because it requires adjustment time to operate the new production facilities

at full capacity. One may worry that the change is driven by the change in the cement

price. This may be a valid concern if a new technology produces higher-quality output.

However, in the cement industry, the output quality is homogeneous, and it is hard to

believe the cement price varies based on the technology. To confirm that the change is

attributed to output quantity rather than price, we estimate the same equationwith out-

put quantity itself in Panel (b). The estimates in Panels (a) and (b) are almost identical,

suggesting that new technology adoption indeed increases the output level.

We next investigate the impacts of technology adoption on the input side. There is

no clear difference between the treated group and the control group in terms of wage

growth (per person) as in Panel (a) of Figure 4. Panel (b) of Figure 4 plots the evolution
8A plant typically has multiple kilns, and the adoption of NSP kilns is typically gradual, i.e., each plant

replaces one or two of its kilns first and then replaces the remaining kilns over time.
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of plant-level (log) employment relative to the timing of new technology adoption. The

number of employees decreases gradually and the estimated effect becomes statistically

significant after 9 years of the new technology adoption. In the long run, the number of

workersdecreasesby20%. Thegrowthofoutput, togetherwith thedecline in thenumber

of workers, implies that labor productivity defined by output per worker has increased.

Figure 4: The Effects of Adoption of New Technology on Plant-Level Outcomes

(a) Wage Growth (per Person) (b) log(NumWorkers)

(c) log(Capacity) (d) Capital-Labor Ratio
Note: This figure plots the estimated effect of new technology adoption from the event-study design, Equation
(1). The year before the adoption is normalized to be zero.

Whydoes labor productivity increasewithout any change inwage growth? To answer

this question, we plot the evolution of plant-level (log) capacity relative to the timing

of new technology adoption in Panel (c) of Figure 4. Capacity increases right after the

adoption and stays at a higher level compared with the preadoption period. Similarly,

Panel (d) of Figure 4 plots the evolution of plant-level capital-labor ratio relative to the

timing of new technology adoption. As implied by the results in Panels (a) and (c), the

capital-labor ratio increases,whichsuggests that theproduction technologyandoptimal
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capital-labor ratio are different between non-NSP kilns and NSP kilns.

3.2 Technology Adoption and the Shape of the Production Function

Ourfindings in the previous subsection—the increase of output quantity in tandemwith

the increase in capital-labor ratio after new technology adoption—are very difficult to

rationalize if the new technology simply increases TFP. This is because if the new tech-

nology adoption simply increases TFP,whatwe shouldhave seen is an increase in output

quantity and labor input aswell as a constant capital-labor ratio. However, weobserve an

increase in the capital-labor ratio—adecrease in thenumber ofworkers togetherwith an

increase in capacity—after thenew technologyadoption,which shouldnothappen if the

new technology adoption just brings a change in TFP.

Then,what are the implicationsof thesefindings for production function? The recent

literature on factor-augmenting technical changes, such asDoraszelski and Jaumandreu

(2018), Zhang (2019), Raval (2023), and Demirer (2022), suggests that our findings may

be explained by incorporating labor-augmenting technical changes. Although we could

employ suchanapproach,weadopt amore straightforwardone. Takingadvantageof the

data where we can directly observe technology for each plant, we estimate production

functions separately by technology, because it is more natural to assume that the shape

of production functions differs across technologies.

Here, we assume that the production function takes a Cobb-Douglas form:

Yit = AitK
βτ
k

it L
βτ
l

it ,

where Yit is the quantity of the output, Ait is the TFP, Kit is the physical capacity, Lit is

the total wage payment, and (βτ
k , β

τ
l ) is a set of parameters to be estimated for technol-

ogy τ , τ ∈ {old, new}. Following De Loecker and Scott (2016), Ackerberg et al. (2015),

andDeLoecker et al. (2020),weestimate the structural value-addedproduction function

and take thematerial input into the production process as a fixed-proportion (Leontief)
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technology. Formally, we consider the following production technology:

Yit = min{βmtMit, AitK
βkt
it Lβlt

it },

where βmtMit captures thematerial contribution to the final output. We use this specifi-

cation to followDe Loecker et al. (2020), and believe that this specification is reasonable

for the cement industry, because thefinal output is constrainedby the chemical reaction

of intermediate inputs, e.g., limestone and cray, regardless of the production technology.

With this specification, we can also avoidpotential identificationproblems regarding in-

termediate inputs and gross output production function, pointed out by Gandhi et al.

(2020).

The specification is written as

yit = βτ
kkit + βτ

l lit + ωit + εit,

where each lowercase variable is in the form of a logarithm, ωit is an unobserved pro-

ductivity shock, and εit is the unanticipated shock to output or measurement errors. We

control the unobserved productivity shock with a control function with the value of in-

vestment iit as in Olley and Pakes (1996) and Ackerberg et al. (2015):

ωit = hτ (kit, iit).

The estimation procedure consists of two stages. First, we nonparametrically estimate

yit = ϕτ (kit, lit, iit) + ϵit,

whereϕτ (kit, lit, iit) = βτ
kkit+βτ

l lit+h(kit, iit). Given theproductivityprocessωit = g(ωit−1)+

ξit andωit = ϕτ (kit, lit, iit)−βτ
kkit−βτ

l lit fromthefirst stage,weestimate a set of parameters

θ including βτ
k and βτ

l using the followingmoment condition:

E[ξit(θ)|Iit−1] = 0,
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Table 2: Production Function Estimates With andWithout Technology Information

(i) (ii) (iii)
Pooling Separately Pooling

Both Technologies Old Tech New Tech Both Technologies
βk 0.971 0.778 0.907 0.872

(0.110) (0.110) (0.085) (0.071)
βl 0.184 0.259 0.099 0.237

(0.140) (0.103) (0.096) (0.094)
β0 (TFP Gain) - - 0.106 0.060

- - (0.710) (0.103 )
N 1,408 1,408 1,408

Notes: This table reports the production function estimates based on Ackerberg et al. (2015). Column
(i) reports the estimates by pooling all data and estimating a single production function, column (ii)
reports the estimates by allowing for technology specific productivity as well as technology specific co-
efficients on capital and labor, and column (iii) reports the estimates by allowing for technology specific
productivity but common coefficients on capital and labor.

where Iit−1 is plant i’ information set at time t− 1, which includes (iit−1, kit, lit−1).

Table 2 summarizes the estimation results. Column (i) demonstrates the resultswhen

we estimate the labor and capital coefficients by pooling all plants regardless of their

technology:

yit = βkkit + βllit + ωit + εit,

whereasColumn(ii)demonstrates the resultswhenweestimate themseparately foreach

technology via introducing kiln-type dummies and their interaction terms with other

variables to obtain output elasticities by kiln types:

yit = βold
k kit + βold

l lit + 1{NSP Kilnsit}(β0 + βnew
k kit + βnew

l lit) + ωit + εit. (2)

Standard errors are calculated by the bootstrapmethod with 200 replications.

When we estimate the model by pooling all plants, βk is close to 1, and βl is about

0.18, implying that technology exhibits increasing returns to scale. By contrast, whenwe

estimate the model separately for each technology, as in Column (ii), capital and labor

coefficients are 0.778 and 0.259 for old technology and 0.907 and 0.099 for new technol-

ogy, respectively, implying that both technologies no longer exhibit economies of scale.
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One of the reasons for technology exhibiting economies of scale when estimating the

model by pooling both technologies is omitted variable bias. As mentioned in Section

2, NSP kilns tend to be larger in size and have higher TFP (more efficient) than the older

types of kilns. Thus, if we do not control for the TFP gain of new technology, 1{NSP Kilnsit}β0

in Equation (2), wewould have an upward bias for capital and labor coefficients, as there

arepositive correlationsbetween theTFPgain and labor input andbetween theTFPgain

and capital input.

Coming back to the results in Column (ii), as we expect, the new technology is more

capital intensive, whereas the old technology is more labor intensive. We indeed test

a hypothesis thatH0 : βk
old = βk

new and reject the null hypothesis at the 10% significance

level. Therefore, profit-maximizingplantswouldneed less labor, which results in a lower

level of labor share. When more plants adopt new technology, the industry-level labor

share falls consequently.

One natural concern is that wemay reach the same conclusion by just including the

technology dummy in the production function. To address this concern, we check how

the estimated production function would change by including technology fixed effects,

and the estimated results are presented in Column (iii). First, note that the scale param-

eter, i.e., βk + βl, is about 1.15 in Column (i), whereas the scale parameter is close to 1 in

Column (ii) of Table 2 . Because new technology plants are more efficient (higher TFP)

and have a larger capacity, ignoring the technology information creates an upward bias

in the scaleparameter as theplant size is seemingly correlatedwith efficiency. With tech-

nology fixed effects but with a single input elasticity for capital and labor (Column (iii)),

the scale parameter is in between these, about 1.1, suggesting that the bias is at least

partly mitigated. Interestingly, both the estimated capital coefficient and labor coeffi-

cient also fall between the estimated coefficients for old and new technology reported

in Column (ii), suggesting that it is still different from our specification. These results

indicate that technology fixed effects alone are not enough to capture the difference in

technology.

So far, we have estimated the Cobb-Douglas production function. This functional
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Table 3: Production Function Estimates (Translog)

(i) (ii)
Pooling summary by technology

Old Tech New Tech
βk mean 0.942 0.952 0.940

median 0.942 0.955 0.940
Std. dev. 0.022 0.026 0.020

βl mean 0.124 0.097 0.131
median 0.127 0.097 0.132
Std. dev. 0.034 0.040 0.028

Notes: This table summarizes the plant-level output elasticities of the translog production function
based on Ackerberg et al. (2015). Column (i) reports the mean and median of output elasticities with
respect to capital and labor. Column (ii) reports the mean, median, and standard deviation of output
elasticities across plants without NSP kilns and across plants with NSP kilns.

form may not be able to flexibly capture the output elasticities, because they are con-

stant across firms. The existing studies often estimate translog production function for

allowing output elasticities to be more flexible, partly because its output elasticities can

be varied across plants. For that reason, we also estimate translog production function,

without using technology information, and examine whether this functional form actu-

ally captures the difference in production technology, i.e., whether plants withNSP kilns

have lower output elasticity for labor andhigher one for capital as is shown in Section 3.1

and in the Table 2.9

Table3 summarizes theplant-leveloutputelasticitiesof the translogproduction func-

tionwithoutusing the informationonplant-level production technology. Themeanout-

put elasticity with respect to capital is 0.942, whereas themean output elasticity with re-

spect to labor is 0.124. These numbers are consistent with the estimates in Column (i)

of Table 2. Column (ii) shows the mean, median, and standard deviation calculated by

each technology type. The output elasticities for plants without NSP kilns are 0.952 and

0.097, on average, for capital and labor, while those for plants with NSP kilns are 0.940

and 0.131. As we can see in standard deviations, the translog production function allows
9Another functional form assumption used frequently in the literature is time-varying specification as

in De Loecker, Eeckhout and Unger (2020) and Foster, Haltiwanger and Tuttle (2022). We also follow their
approach when estimatingmarkups in Section 4.2.
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for heterogeneity in output elasticities across plants so that we can estimate output elas-

ticity more flexibly than in the case of the Cobb-Douglas production function that im-

poses constant output elasticities. However, Column (ii) clearly shows that the translog

specification of production function does not capture the heterogeneity in production

technology across plants: whether plants have NSP kilns or not does not affect the out-

put elasticities, and on average, plantswithout NSP kilns have lower output elasticity for

labor and higher one for capital, which is not consistent with our findings in Section 3.1

and in Table 2. Contrary to one’s expectation, the use of translog specification does not

solve the issue, as it is just a second-order approximation of the underlying production

function assuming common output elasticities across plants and does not capture tech-

nological changes in the production function.

4 Implications for Monopsony Power andMarkups

Ouranalysis in theprevious section reveals thatnewtechnologyexhibits adifferent shape

of production function compared with old technology. The gradual adoption of NSP

kilns creates heterogeneity in production technology, even within the same industry.

In this section, we investigate the issues arising from such heterogeneity in production

technology in the context of monopsony power andmarkups.

In this section, to simplify the discussion, we consider two theoretical examples with

eithermonopsony power, i.e., themarket power in the labormarket, ormarkups, i.e., the

market power in the product market, separately. We present a model with bothmonop-

sony power and markups in Appendix B. Empirically, in the production function ap-

proach, the market power is measured as the difference between the marginal cost of

production input and the marginal revenue of the same input, the estimated market

power is the mixture of both the market power in the product market and the market

power in the input market. Therefore, we cannot separately identify these two market

power.

21



4.1 Does Firms’ Monopsony Power Increase?

As documented in Stansbury and Summers (2018), several studies find that wedges be-

tween the growth rate ofwages and the growth rate of theMRPLhave been increasing. In

many existing studies, however, we cannot observe plant-level technology information

and estimates of production functionwould be biased, aswe see in Table 2. This subsec-

tion, therefore, examineswhethermonopsonypower increasesover time in this industry

in the presence of production technology information. More specifically, by using pro-

duction functions estimated separately for new and old technologies, we calculate the

growth rate of MRPL and compare it with the evolution of wage growth to see how the

results would change if we did not have kiln information for the analysis.

4.1.1 A Simple Theoretical Model

As discussed in Section 3, production function estimates without technology informa-

tion would be biased. Such a bias may further result in a qualitatively different conclu-

sion on MRPL. To address such concerns, it is crucial to examine the relationship be-

tweenMRPL and wages with and without technology information.

Formally, we consider the following production function;

Yi = AiK
βk
i Lβl

i ,

where Yi is the physical unit of the output of firm i,Ai is the TFP,Ki is the physical capac-

ity,Li is the total number of employees, and βk and βl are the parameters to be estimated.

Also, assume that the labor market competition is imperfect, i.e., firm i faces the follow-

ing inverse labor supply function: Wi(Li) = ζLϵW
i . The profit-maximizing plant solves

the following problem;

max
Li

PiYi −Wi(Li)Li,

whereweassume that the labor input is theonly variable input. Thefirst-order condition
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of the problem induces

Wi =
1

1 + ϵW
βl
PiYi

Li

=
1

1 + ϵW
MRPLi,

which implies that the wage equals to the MRPL if the labor market is competitive, i.e.,

ϵW = 0, but the wage is less than MRPL when market power exists. The industry-level

MRPL is simply the weighted average of the firm-level MRPL as

MRPL =
∑
i

ωiMRPLi,

where ω is a weight, e.g., market shares or cost shares. In this environment, as long as

the labor market is competitive or market power in the labor market is constant over

time, the MRPL, both at the firm level and the industry level, and the wage should grow

at the same rate. This is a testable implication of the model, and, in fact, many studies

comparewagegrowthandMRPLgrowth. FromtheData, researchers canestimateMRPL

by substituting βl with an estimate, β̂l.

In this environment, consider a case where there are two different types of firms.

One type of firm has labor-intensive (old) production technology characterized by Yi =

AiK
βO
k

i L
βO
l

i and the other type of firm has capital-intensive (new) technology character-

ized by Yi = AiK
βN
k

i L
βN
l

i , where βN
k > βO

k and βO
l > βN

l . At firm-level, the optimization

problem takes the same form and we can derive the same wage-MRPL relationship as

Wi =
1

1 + ϵW
βτ
l

PiYi

Li

=
1

1 + ϵW
MRPLi,

where τ denotes firm i’s technology.

Suppose that the true environment is with two technologies, but researchers cannot

distinguish the technologies and, therefore, estimate a single β̂l by pooling all the data. A

singleestimateofβl, β̂l, createsadiscrepancybetween theestimatedMRPLand thewage,

i.e.,MRPL
∧

i−Wi = (β̂l−βτ
l )

1
1+ϵW

PiYi

Li
. As a result, when a firmadopts the new technology

in period t, the growth rate of the wage and the growth rate of MRPL seemingly become

23



discrepant. Formally, the fraction of both growth rates is

MRPL
∧

it/MRPL
∧

i,t−1

Wit/Wi,t−1

=

(
β̂l

1
1+ϵW

PitYit

Lit

)
/
(
β̂l

1
1+ϵW

Pi,t−1Yi,t−1

Li,t−1

)
(
βN
l

1
1+ϵW

PitYit

Lit

)
/
(
βO
l

1
1+ϵW

Pi,t−1Yi,t−1

Li,t−1

) =
βO
l

βN
l

> 1,

whereas the growth rate of the wage and true MRPL would be the same.10 This means

that we observe a faster growth rate for MRPL compared to the wage when we do not

have technology information at the firm level even though both grow at the same rate.

As the industry level wage and MRPL are the weighted average of firm-level variables,

these two variables show growing discrepancy when new technology is diffusing in the

industry.

4.1.2 The Evolution of MRPL andWage

Figure5plots thegrowthof industry-level realwageandMRPL.On theonehand, inPanel

(a), we plot themusing all the data pooled and not controlling for the technology at each

plant. As is clear from the plot, the growth rate of the real wage and MRPL diverge dur-

ing the period when the new technology diffuses in the industry. More specifically, the

growth rate of real wage is lower than that ofMRPL over time, implying thatmonopsony

power increasesduring thisperiod. In a typical datasetwherewedonotobserve technol-

ogy clearly, we would reach the same observation as in the literature—wage and MRPL

diverge.

On the other hand, Panel (b) plots the same variables, but the production functions

are separately estimated for new and old technologies. The plots differ from those of

Panel (a). After controlling for plant-level technology,wage growth andMRPLgrowth are

more closely aligned, suggesting that monopsony power does not increase over time or

evendecreases over time. Whenproduction shifts from labor-intensiveplants to capital-

intensiveplants, ifwedonot control for the technologyof theplants, the growthofMRPL

is overestimated, which leads to a seemingly disconnected relationship. By contrast, in

Panel (b), there is still some difference between the two variables, but these two vari-
10Here, we assume β̂l to be time-invariant.
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Figure 5: Growth of Real Wage andMRPL

(a) With Pooled Data (b) With Technology Controlled
Note: This figures plots the growth of the estimatedMRPL together with the growth of real wage. The estimated
MRPL in Panel (a) is based on production function estimation where we assume all plants have a common pro-
duction function, whereas the estimatedMRPL in Panel (b) is based on production function where we allow for
technology-specific productivity as well as technology-specific coefficients on capital and labor.

ables grow together at a similar rate overall. These results highlight the importance of

controlling for the technology to draw implications from data and the usefulness of our

complementary approach.

Whenweuse theestimates fromthe translogproduction function, this resultdoesnot

change. Figure D1 in Appendix D plots the growth of industry-level real wage andMRPL

with the translog specification. The gap between the two growth rates still increases over

time. Although the translog production function ismore flexible than theCobb-Douglas

case, it does not result in correctly capturing heterogeneity in production technology,

and thus, it exhibits the seemingly increasing trend inmonopsony power over time.

4.2 The Increase inMarkups

There is a growing interest inhowconcentration affectsmacroeconomic conditions, and

there are a number of studies that show that the increase in markups is paired with the

decline of labor share. The literature follows the methods proposed by De Loecker and

Warzynski (2012) andDeLoecker et al. (2020) and estimatesmarkupsusing aproduction

function approach, assuming the optimality of variable inputs. Recently, a few stud-

ies (e.g., Raval, 2023; Doraszelski and Jaumandreu, 2019) have questioned whether the

markup implied from cost minimization captures the actual product-level markups ac-
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curately. In thispaper,wefindanotherpotential factor thatmaybias theestimatedmarkups:

the lack of information on plant- or firm-level technology. We find that, in the absence

of technology information, the adoption of more capital-intensive technology at some

plantswould lead to anoverestimationof their plant-levelmarkups implied by costmin-

imization. Thus, as more andmore plants switch to the new production technology, the

industry-level markupwould be overestimated, as if the labor share decline is caused by

the increasingmarkups.

4.2.1 The Role of Technology Information

Let us first provide a similar example as in the previous section to highlight the mech-

anism by which the lack of information on the technology would lead to a bias in the

industry-level markup.11 Consider an environment where firm i has a production tech-

nology characterizedbyYi = AiK
βk
i Lβl

i . In addition, suppose firm i faces a demand curve

characterized by Pi(Qi) = ξiQ
−ϵ
i where ϵ < 1. The labor market is competitive with wage

level w, and each firm maximizes its profit by choosing its optimal level of labor input.

Firm i solves the followingmaximization problem:

max
Li

Pi(Qi)Qi − wLi subject to Qi ≤ AiK
βk
i Lβl

i .

In this environment, we can analytically solve for the markup firm i charges. The corre-

sponding cost minimization problem to the abovementioned profit maximization is

min
Li

wLi subject to Yi ≥ Q.

Thefirst-order conditionof this problemgivesus ananalytical expressionof themarkup,

which is given by

Markupi = βl
PiYi

wLi

=
1

1− ϵ
.

Note that this markup is constant and solely depends on the demand elasticity ϵ. In this

environment, researchers can easily estimate themarkupwhen βl is estimable. As Pi, Yi,
11Again, to simplify thediscussion, themodelbelowassumes there isnomonopsonypower. InAppendix

B, we present amodel where bothmonopsony power andmarket power exist.
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Li, and w are in the data, firm i’s markup can be estimated with an estimate of βl, β̂l, by

Markupi

∧
= β̂l

PiYi

wLi

.

The industry-level markup can be estimated by the weighted average of the firm-level

markups by

Markup
∧

=
∑

ωiMarkupi

∧
,

where ωi is an appropriate weight (such as the share of sales).

Now, furthermore, consider again a case where there are two different types of firms.

One typeoffirmhas labor-intensiveproduction technologycharacterizedbyYi = AiK
βO
k

i L
βO
l

i

and theother typeoffirmhascapital intensive technologycharacterizedbyYi = AiK
βN
k

i L
βN
l

i ,

where βN
k > βO

k and βO
l > βN

l . Even in this case of heterogeneous technologies, the

markup is constant, 1/(1 − ϵ), regardless of production technology at each plant. Sup-

pose the researchers do not have direct information on the production technology each

firmuses and estimate a single production function, a single value for βk and βl, by pool-

ing all the observations. Let β̃l be an estimate from such a misspecified model. When

β̃l is used to estimate the firm-level markup, the estimated firm-level markups would be

biased because

Markupt
i

∼
= β̃l

PiYi

wLi

= β̃l
βt
l

βt
l

PiYi

wLi

=
β̃l

βt
l

1

1− ϵ
,

where t ∈ {N,O} denotes the type of firms. As βO
l > βN

l , the estimated markups for

each technology under this misspecification would be different and have the relation-

ship, MarkupO
i

∼
< MarkupN

i

∼
, even though the markups in this environment must be

identical and only depend on the demand elasticity, ϵ. In addition, if β̃l ∈ (βN
l , βO

l ), then

themarkup is downward biased for labor-intensive firms and upward biased for capital-

intensive firms.

In an environment with heterogeneous technologies, as firm-level markups are con-

stant across firms, the industry-level markup would also be constant. When production

shifts from plants with labor-intensive technology to plants with capital-intensive tech-

nology, themisspecifiedmodelwould lead to an increase in the estimated industry-level
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markup because the estimated industry-level markup is a weighted average of the es-

timated firm-level markups and MarkupO
i

∼
< MarkupN

i

∼
. If researchers had the firm- or

plant-level technology information, such an issue would not arise, i.e., if the model is

correctly specified and a production function is separately estimated for each technol-

ogy, the estimatedmarkups for both firm-level and industry-level would be constant.

This example matches the data pattern observed in the Japanese cement industry

well; there are labor-intensive (old types of kilns) and capital-intensive (NSP kilns) tech-

nologies, and production has shifted to plants with NSP kilns because more and more

plants adopt NSP kilns. Therefore, a natural concern arises that we would reach a qual-

itatively different conclusion as to whether a rise in markups is the main driver of labor

share decline when we have or do not have plant-level technology information.

4.2.2 The Estimation of Markup

Given the aforementioned potential concern, we examine how the estimated markups

change over time with and without controlling for the plant-level technology. For this

purpose, we first hypothetically assume that we do not observe plant-level technology

and followDe Loecker et al. (2020) to estimate the industry-levelmarkups. Then, we use

the estimation results in Section 3 and estimate markups taking into account the plant-

level technology. The difference between these two tells us how the estimated markups

are affected by the technology information.

For the casewithout technology information, again, we assumeaCobb-Douglas pro-

duction function as

Yit = AitK
βkt
it Lβlt

it , (3)

whereweallowtheshapeof theproduction function tochangeover timeas inDeLoecker

et al. (2020), i.e., βk and βl now depend on time t as well. The corresponding cost mini-

mization problem is written as

min
K,L

rtKit + wtLit subject to Yit ≥ Q,
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and the impliedmarkup is

Markupit = βlt
PtYit

WtLit

. (4)

In the estimation in Section 3,we consider a structural value-addedproduction func-

tion where we took thematerial input into the production process as a fixed-proportion

(Leontief) technology. Under this specification, the markup that takes into account the

material input can be expressed as

MarkupM
it =

1

Markup−1
it + PMMit

PtYit

, (5)

where Markupit is the markup estimates from Equation (4) and PMMit is total material

spending. For the case with technology information, we follow the same steps and use

the estimates in Table 2.12

Figure 6 plots the industry-level markups with and without controlling for the plant-

level technology; The dashed line plots the industry-level markups with controlling for

technology, using the separate estimates for each technology as in Table 2, whereas the

solid line plots the industry-levelmarkupswithout controlling for technology but allow-

ing the time-varying production function.13 When we do not control for the technology

as in the solid line, theestimatedmarkup increases frommid-1970 toearly 1980when the

new technology diffuses and production shifts to plants with new technology. By con-

trast, the estimatedmarkup after controlling for the plant-level technology stays around

1.5 for the corresponding period. Until 1976, the estimated markups are almost identi-

cal for the both cases, whereas the discrepancy starts to appear as the new technology

emerges. These contrasting plots, again, highlight that the availability of information on

technology could change the result and its implications, qualitatively.14

12This procedure does not require us to estimate βm, because we can directly estimate the input-
adjustedmarkups from themarkup in Equation (4) and thematerial share, PMMit

PtYit
.

13In the Japanese cement industry, there are about 30-50 plants per year. Given the small number of ob-
servations, we estimate the time-varying production function by smoothly approximating it via trigono-
metric polynomials. To check the robustness of the results, we also estimate the production functionwith
a different approximation specification in FigureC1 in Appendix C,wherewe confirmqualitatively similar
results.

14Interestingly, both markups with and without controlling for the plant-level technology seem to in-
crease around the early 2000s. These increases may be due to the changes in market structure because
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Figure 6: Markups With and Without Technology Information (Trigonometric Polyno-
mials)

Note: This figure plots the aggregatemarkups over time, togetherwith a linear polynomial
fitted value. Markups are calculated using the estimates of production function control-
ling or without controlling plant-level technology information.

Our results are robust to (i) the functional formof the time-dependencyofproduction

function and (ii) the functional form of the production function itself. To address the

first point, we allow the capital and labor coefficients to be arbitrarily different every five

years, i.e., estimating different coefficients for years in 1971-1975, 1976-1980, 1981-1985,

and so on. We plot the estimated markups together with the markups controlling for

technology information in Figure C1 in Appendix C, where we observe qualitatively and

quantitatively similar patterns; The markups are almost identical until mid-1970 with

the discrepancy starting from late 1970s. For the second point, we estimate a translog

production function and conduct the same exercise, where we plot the results in Figure

C2. The results quantitatively differ from the results with Cobb-Douglas but the main

fourmergers andoneacquisition tookplace around this period, as studiedbyNishiwaki (2016). To see this,
Figure D2 in Appendix D plots the industry-level HHI, and the HHI indeed increased during this period.
Having said that, our claimhere highlights the importance of technology information and themechanism
of why themarkups increase during this period is beyond the scope of our paper.

30



take-away remains the same; The markups seemingly increases from late 1970s when

observations are pooled, whereas the markups stay constant when we explicitly control

for the technology. See Appendix C formore detailed discussion of this robustness check

exercise.

Our results are consistent with the recent findings of Demirer (2022), Raval (2023),

and Jaumandreu (2022); Though they do not directly observe technology information,

theyaccount for technologicaldifferencesacrossfirms indirectly through labor-augmenting

productivity and find relatively stable markups over time. In particular, we have simi-

lar quantitative results as those of Demirer (2022). Using the manufacturing industries

in the US, he finds that the aggregate markup has risen from 1.3 in 1960 to 1.45 in 2012,

though theaggregatemarkuphas increased furtherwithoutcontrolling for labor-augmenting

productivity.

These studies and our study complement each other. Our results give support for

their findings by highlighting the importance of technological changes in production,

and their studies provide ways to reconcile these technological changes whenwe do not

haveaccess to technology information toderive implicationsonmarkups. Analternative

way to take heterogeneity explicitly into account as a latent variable and incorporate it

into a structural model is considered by Kasahara, Schrimpf and Suzuki (2022).

5 Implications of Technology Adoption for Labor Share

In the previous sections, we highlight the importance of technology information when

quantifying the evolution ofmonopsony power andmarkups and correctly deriving im-

plications for them; Without technology information, the estimated output elasticities

are biased, which results in a qualitatively different conclusion on monopsony power

and markups. In addition, our approach, collecting information on plant-level produc-

tion technologyand the timingofnewtechnologyadoption, complementsexistingmacroe-

conomic debates on why labor share recently declined.

As discussed in the introduction, an enormous number of studies have investigated
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this issue, proposingmanyhypotheses toexplain thisphenomenon. GrossmanandOber-

field (2022) classify these hypotheses into the following five categories: (i) technological

changes (e.g., Karabarbounis and Neiman, 2014; Acemoglu and Restrepo, 2020; Autor et

al., 2020), (ii) declining worker power in labor relations (e.g., Stansbury and Summers,

2020; Drautzburg et al., 2021), (iii) increased exercise of product market power by large

firms (e.g., Barkai, 2020; De Loecker et al., 2020), (iv) globalization and the rise of China

(e.g., Abdih and Danninger, 2017; Sun, 2020), and (v) changes in the composition of the

workforce (e.g., Glover and Short, 2020; Acemoglu and Restrepo, 2020). Among these

hypotheses, technology plays a key role; Not only some hypotheses related to technical

changes but also other hypotheses—increasing monopsony power and product market

power—hinge on technology, because estimation ofmarginal revenue products of labor

andmarkups is often based on estimates of the production function, as demonstrated in

the previous section. Therefore, the existing studies that do not control for technology

may obscure the difference between technological changes and other factors.

We first show that the adoption of NSP kilns is the main driver for the decline of la-

bor share in the industry by descriptive and event-study analysis. Then, using the es-

timates of production function in the previous section, we decompose the changes in

the labor share into a technology-related component and amarket-power-related com-

ponent that includes monopsony power in the labor market and market power in the

product market.

5.1 Descriptive and Reduced-form Evidence

To examine whether the labor share has been declining in this industry, we first plot the

industry-level labor share, defining the labor share as the total wage payment divided by

themonetary value of total output.15 In Figure 7, each dot represents the labor share for

each year and the gray line represents the smoothed nonparametric fit.
15As the Census data are available only after 1980, we compute the labor share using the data in the Ce-

ment Yearbook. More specifically, the total wage payment is computed as the number of employees mul-
tiplied by the average wage and the monetary value of total output is computed as the output multiplied
by the average cement price in that region.
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Figure 7: Industry-level Labor Share

Note: This figure plots the industry-level aggregate labor share over time, together with
a local-polynomial fitted value.

The industry-level labor share falls over our sample period with a sharper decline

when the new technology diffuses between 1973 and the early 1980s, as we see in Figure

1. The presented labor share is very low. This is due to two factors. First, our definition of

labor share is based on the total output value rather than the value added. We perform

the same exercise with value-added as the denominator, and we confirm qualitatively

the same results with a higher level of labor share, around 10%.16 Second, the cement

industry is a heavy equipment industry, and, by its nature, the labor share is lower com-

pared with other industries.

The virtue of our approach is thatweobserve the exact technologyused at eachplant.

To quantify howmuch the diffusion of new technology contributes to the decline of the

labor share, we replicate the analysis in Figure 7 conditional on the plant-level technol-

ogy. In Figure 8, we plot the average labor share within plants with new technology (the

dotted line), the average labor sharewithin plants with old technology (the dashed line),

and the industry-level labor share (the solid line). The last line, the industry-level labor
16Here, value added is defined as the monetary value of total output minus the material expenditure.

Since thematerial expenditure is only present in the census data, we use the imputed value for the 1970s.
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share, corresponds to the solid line in Figure 7. Interestingly, the labor share does not

fall within the same technology plants as the dashed and dotted lines stay relatively flat.

However, the industry-level labor share, the solid line, falls rapidly asnew technologydif-

fuses because the new technology plants have a lower labor share. Figure 8 clearly shows

that the decline of labor share is associated with the new technology diffusion.

Figure 8: Labor Share Conditional on Plant-level Technology

Note: This figure plots (1) the local-polynomial fitted value of the industry-level ag-
gregate labor share over time (solid line), (2) the local-polynomial fitted value of the
aggregate labor share of plants with old technology over time (dashed line), and (3) the
local-polynomial fitted value of the aggregate labor share of plants with new technology
over time (dotted line).

To assess the argumentmore quantitatively in a descriptivemanner, we estimate the

following equations using the plant-level labor share by ordinary least squares (OLS);

LaborShareit = β0 + β1t+ β21{NSP Kilnsit} + Fi + εit,

where i is a plant index, t denotes year, 1{NSP Kilnsit} is a dummy variable taking one if a

plant owns at least one NSP kiln in year t and zero otherwise, Fi is a plant fixed effects,

βs are the parameters to be estimated, and εit is an independent error term. Here, we

are interested in the estimated coefficient on t, i.e., β1. We expect that β1 would be es-
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Table 4: Time Trend of Labor Share

(i) (ii) (iii) (iv)
Dependent Var. Labor Share Labor Share Labor Share log(Labor Share)
Year (β1) -1.13×10−3 ∗∗∗ -2.42×10−4 3.71×10−4 ∗∗∗ 0.006∗∗∗

(0.157×10−3) (1.76×10−4) (0.880×10−4) (0.001)

NSP kiln dummy (β2) -0.0474∗∗∗ -0.0244∗∗∗ -0.389∗∗∗
(0.00469) (0.00302) (0.0301)

Constant
√ √ √ √

Plant fixed effects
√ √

N 1,673 1,673 1,673 1,673

Notes: Standard errors are reported in parentheses and significance levels are denoted by <0.1 (*), <0.05
(**), and <0.01 (***). The dependent variables for specifications (i) to (iii) are labor share, whereas the
dependent variable for specification (iv) is logarithms of labor share.

timated as negative when we do not control for the plant-level technology because the

industry-level labor share declines over time. By contrast, we expect that β1 would be

estimated near zero or positive when we control for the plant-level technology. Table

4 summarizes the estimation results and confirms our expectations. The first column

presents the results without control for technology, and the coefficient on year is esti-

mated as negative and statistically significant. In the second column, once we control

for the technology, the significance of β1 disappears. However, we now find that the co-

efficient on an NSP kiln dummy, β2, is estimated as negative and statistically significant,

implying that a plant introducing NSP kilns has a lower labor share. When we further

control for the plant fixed effects, the estimates become positive and statistically signif-

icant. These results are consistent with Figure 8. To quantify the economic significance

of the results in the third column, we replace the left-hand-side variable with the loga-

rithmof labor share, which allows us to quantify the percentage change easily. The result

is presented in the fourth column, suggesting that the labor share increases at the plant

level by 0.6% every year. The magnitude is not very large but not negligibly small. Note

that the labor share here is computed using the data from the Cement Yearbook. Even

when we use the value-added variables in the census data, we obtain the same qualita-

tive results.
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Figure 9: The Effects of New Technology Adoption on Plant-level Labor Share

Note: This figure plots the estimated effect of new technology adoption from the event-study design, Equation
(1). The year before the adoption is normalized to be zero.

We again employ event study design to further examine the plant-level changes in

the labor share when adopting new technology. Figure 9 plots the evolution of plant-

level labor share relative to the timing of the new technology adoption. Whenwe look at

the solid line, the labor share starts to decline after the technology adoption. However,

the decline is not immediate. Rather, it takes several years. After four years of adoption,

the labor share remains below the preadoption level with statistical significance.

5.2 Labor Share Decomposition

In Section 4, we examine the implications of monopsony power and product market

power in the presence of technology information and we cannot conclude that monop-

sonypower andproductmarket powerhave increased in this industry. These results sug-

gest that the labor share decline cannot be explained by monopsony power or product

market power. To examineour hypothesis—the labor share decline is causedby technol-

ogy diffusion— from a different angle, we now quantify the impact of technology adop-

tion on the labor share by decomposing the change in the labor share into a technology-
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related component and amarket-power-related component that includesmarket power

in the product market andmonopsony power (market power in labor markets).

The labor share can be expressed as

LS ≡ wL

PQ
=

wL

wL+ rK + π
=

wL
wL+rK

1 + π
wL+rK

=
βl

1 + π
wL+rK

,

where π is the total profit, defined as π = PQ− (wL+ rK), and βl is a labor coefficient of

production function, Then, the change in labor share is given as

LS ′ − LS =
(wL)′

(wL)′ + (rk)′ + π′ −
wL

wL+ rK + π
,

=

(wL)′

(wL)′+(rk)′

1 + π′

(wL)′+(rk)′

−
wL

wL+rK

1 + π
wL+rK

,

=
β′
l

1 + π′

(wL)′+(rK)′

− βl

1 + π
wL+rK

,

=

(
β′
l

1 + π′

(wL)′+(rK)′

− βl

1 + π′

(wL)′+(rK)′

)
+

(
βl

1 + π′

(wL)′+(rK)′

− βl

1 + π
wL+rK

)
.

The first term corresponds to the change in labor share due to the change in technology

(the change in labor coefficient in production function), whereas the second term cor-

responds to the change in labor share due to the change in market power. Moreover, βl

corresponds to the labor share for old technology in our production function estimation,

whereas β′
l corresponds to the labor share for new technology.

Figure 10 demonstrates the result of labor share decomposition. The solid line plots

the actual evolution of the labor share, which coincides with Figure 7. The dashed line

plots thecontributionof the technologyadoption to thechange in the labor share,whereas

the dotted line plots the contribution of the change in profit. First, as discussed in Sec-

tion 2 and demonstrated in Figure 10, the labor share was about 7% in the early 1970s

and about 3% in the 2010s. This decomposition indicates that the labor share could have

beeneven smaller if therewerenoother factors affecting the labor share. Second,wefind

that the other factors, includingmonopsony power ormarket power in the productmar-

ket, contribute to an increase in the labor share.
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These observations are also consistent with our descriptive analysis in Table 4 in two

ways. First, the results in Columns (ii) and (iii) of Table 4 indicate that the labor share

decreased by 2-4 percentage points due to technological adoption. This magnitude is

identical to our findings in Figure 10. Second, when controlling for other factors through

plant fixed effects in Table 4, we find a statistically significant time trend of labor share

in Columns (iii) and (iv). Themagnitude is again identical to our findings in Figure 10.

Figure 10: Labor Share Decomposition

Note: This figure plots the actual evolution of labor share and its changes caused
by technology and profit margin, respectively.

5.3 Remaining Hypotheses: Worker Composition and Globalization

Among the hypotheses listed in the beginning of this section, we have not yet discussed

the change in worker composition and globalization.

For the former point, we test whether the change in worker composition occured in

the period of our focus, taking advantage of the census data that contain worker com-

position for some years. More specifically, the Japanese census collected the number of

blue-collar and white-collar workers and the total payment bill for these workers for the
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years 1981, 1984, 1987, and 1990. We tabulate the employment share and payment share

of blue-collar workers at non-NSP plants and NSP plants over time in Panels (a) and (b)

of Table 5, respectively. These numbers immediately suggest that worker composition

did not change over time, at least for these years, because both employment and pay-

ment shares at non-NSP and NSP plants are not statistically different from each other.

Therefore, the changes inworker share composition cannot be a persuasive explanation

for the labor share decline in our context.

Table 5: Employment and Payment Shares of Blue-collar Workers

Non-NSP Plants NSP Plants
Mean Std. Dev. Mean Std. Dev.

Panel (a): Employment share of blue-collar workers
1981 .714 .103 .681 .140
1984 .717 .100 .656 .128
1987 .697 .093 .683 .113
1990 .647 .107 .649 .121
Panel (b): Payment share of blue-collar workers
1981 .731 .118 .666 .125
1984 .695 .082 .646 .137
1987 .671 .101 .677 .122
1990 .592 .170 .673 .113

Note: This table provides employment and payment share of blue-collar
workers over 1981-1990. All statistics are based on Census data.

In termsof a globalizationhypothesis,webelieve it cannot explain the labor sharede-

cline in this specific industry, as the import and export of cement were not important in

theperiodofour focus. Even though thereare several papers that focuson thecement in-

dustryandemphasize the importanceof international competition, includingMiller and

Osborne (2014) who show that import competition affects prices and Salvo (2010) who

shows that the potential “threat” of import competition restricts market power, Japan is

geographically isolated from other countries. Less than 10%, at maximum, of total ce-

ment production was exported to other Asian countries, and there is almost no import

fromother countries in the period of our focus, according toOkazaki et al. (2022). There-

fore, globalization cannot be amajor concern in the Japanese cement industry.

Overall, a series of our results suggest that themaindriver of the labor share decline is
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the diffusion of new technology rather than other hypotheses proposed in the literature.

6 Conclusion

We investigate the potential implications of ignoring heterogeneity in production tech-

nology owned by each plant onmonopsony power, markups, and labor share, using un-

usually detailed plant-level data of the cement industry in Japan. With information on

plant-level technology, estimatedmonopsony power andmarkups would have increas-

ing trends over time as more and more plants adopt new capital-intensive production

technology. However, when appropriately controlling for the plant-level heterogeneity

inproduction technology, suchupward trendswoulddisappear. In addition,wefind that

most of the labor share decline can be explained by the new technology diffusion; the la-

bor share stays constant or even slightly increases over timewithin the same technology

plants, whereas the aggregate labor share declines because production shifts to plants

with new andmore capital intensive technology.
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Appendix A ImputingMissing Variables

In our analyses, we combine two plant-level data sources: (i) Cement Yearbook(Cement
Nenkan), published by the Cement Press Co. Ltd. (Cement Shinbunsha), and (ii) Census
ofManufacture, collectedby the JapaneseMinistry of Economy, Trade, and Industry. The
sample periods for these two data sources are slightly different. We obtain the former
data from 1970 to 2010, whereas we obtain the latter data from 1980 to 2010 because the
data from1970 to1979areunavailable. We impute theplant-levelwageand intermediate
inputs before 1980 using the census data and variables that we observe throughout the
entire sample period.

Plant-level wages from 1970 to 1979 are imputed using prefecture-level wages in the
industry, which are available for 1970 to 2010, and plant fixed effects. We regress census
wages on prefecture-level wage and plant fixed effects using the period between 1980
and 2010 and predict census wages from 1970 to 1979. We confirm that the prediction
matches actual values for 1980-2010well. The results of ourmain analysis do not change
when we use prefecture-level wages for the entire sample period.

We imputed intermediate input expenditure between 1970 and 1979 as follows. First,
we calculate the sales share of the expenditure of intermediate materials, including en-
ergy expenses. Then,we take the logit function of this share, log( s

1−s
). We regress it on the

set of explanatory variables, plant fixed effects, the indicator function whether a plant
uses NSP kilns, the number of kilns in the plant, the share of NSP kilns in all the kilns a
plant uses, and oil prices. We also control time trends flexibly. After the regression, we
predict log( s

1−s
) and recover the predictedmaterial share ŝ for 1970-1979. This procedure

guarantees that the predictedmaterial expenditure does not exceed the value of cement
produced.

Figure A1 shows the fit of the prediction for wages andmaterial shares. The x-axis of
Panel (a) iswage levels in the census and that of Panel (b) ismaterial shares in the census.
The y-axis indicates the predicted value. For both two variables, the dots concentrate on
the 45-degree line, which implies that the performance of imputation is good enough.
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Figure A1: The Prediction of Imputed Variables

(a) Wages (b) Material Share

Appendix B AnExamplewithMarketPower inboth theProd-
uct Market and the LaborMarket

In this appendix, we extend the simple examples in themain text to derive the analytical
solution to the relationship with MRPL and wage as well as the solution to the markup.
Formally, we again consider the following production function;

Yi = AiK
βk
i Lβl

i ,

where Yi is the physical unit of the output of firm i,Ai is the TFP,Ki is the physical capac-
ity,Li is the total number of employees, and βk and βl are the parameters to be estimated.
Also, assume that the productmarket competition and the labormarket competition are
imperfect, i.e., firm i faces the following inverse demand function and labor supply func-
tion: Pi(Qi) = ξiQ

−ϵP
i andWi(Li) = ζiL

ϵW
i . The profit-maximizing plant solves the follow-

ing problem;
max
Li

Pi(Yi)Yit −Wi(Li)Li,

where we assume the labor input is the only variable input. The first-order condition of
the problem induces

Wi =
1− ϵP
1 + ϵW

βl
PiYi

Li

=
1− ϵP
1 + ϵW

MRPLi,

which implies that the wage equals to MRPL if both the product market and the labor
market are competitive, i.e., ϵP = ϵW = 0, but the wage is less thanMRPL when the firm
hasmarket power in either the product market or the labor market.
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As in themain text, the solution to themarkup canbederivedby considering the dual
problem, cost minimization.

min
Li

wLi subject to Yi ≥ Q.

The first-order condition of this problem gives us themarginal cost as

Marginal Cost = (1 + ϵW )LiWi

βlY
.

The FOC from the original profit maximization gives us

1

1− ϵP
=

βlPiYi

(1 + ϵW )LiWi

,

and themarkup is given by combining these two as

Markupi = βl
PiYi

(1 + ϵW )WiLi

=
1

1− ϵP
.

Appendix C Robustness

Figure C1: MarkupsWith andWithout Technology Information (Every Five Years)
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Figure C2: MarkupsWith Translog Production Function

First, to check the robustness of our results to the specification of the technological
changes over time, we use the same Cobb-Douglas production function as in Section
3.2 but estimate the production function with allowing the coefficients to change arbi-
trary every five years. Then, using these estimates, we obtain themarkups over time. We
plot them together with the markups controlling for technology information in Figure
C1. Again, the dashed line plots the industry-level markups with controlling for tech-
nology, using the separate estimates for each technology as in Table 2, whereas the solid
lineplots the industry-levelmarkupswithout controlling for technologybut allowing the
time-varying production function. We have qualitatively similar results as in Figure 6.
Themarkups are almost identical untilmid-1970with the discrepancy starting from late
1970s, though themarkupswithout controlling for technology fluctuatemore over time,
achieving higher markups around 2004.

Next, to address the robustness to the functional form assumption on production
function, we also obtain the markups using the translog specification. Figure C2 com-
pares the evolution of markups from translog specification without using technology
information and the one in Table 6 with technology information. The initial level of
markups in the early 1970s obtained from the translog production function is lower, and
the aggregatemarkups jumpedup in the late 1970swhenmore andmore plants adopted
NSP kilns. As a result, it has an increasing trend over time. Although the initial level
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of markups is lower compared with the Cobb-Douglas specification, the markups in-
creased from 1.1 in 1973 to 2.2 in 2004. This result may lead to the conclusion that the
markup increases over time. However, as discussed in Section 3.2, the translog specifica-
tion fails to capture the difference in output elasticities betweenNSP kilns and old kilns.
As a result, evenwith translog specification, ifwedonot have informationonproduction
technology,weobtain the sameconclusion thatmarkupswouldhavean increasing trend
over time when more and more plants adopt and produce with NSP kilns. However, as
discussed in 3.2, the translog specification fails to capture output elasticities. We there-
foreconclude that, in theabsenceof technology information, regardlessof the functional
form assumptions,

Appendix D Additional Figures and Tables

Figure D1: EstimatedMRPL with Translog Production Function
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Figure D2: Evolution of the Industry-Level HHI
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