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Abstract. The Generalized Method of Moments (GMM) attains the
semiparametric efficiency bound when the weight matrix is optimally
chosen. In this study, we characterize the efficiency of the GMM estima-
tion from the viewpoint of information geometry. Using the convexity of
the criterion function of the GMM estimation, we introduce a dually flat
connection structure to the model and derive the canonical divergence.
At the same time, using the asymptotic normality of the GMM esti-
mator, we formulate statistical differentiation and define the statistical
divergence. In conclusion, we prove that the two divergences coincide if
and only if the optimal weight matrix is employed.
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1 Introduction

This paper presents a geometric intuition for the efficiency of the Generalized
Method of Moments (GMM). The classical least squares method cannot be ap-
plied in regression models where the explanatory variables are correlated with
the forecast errors. In econometrics, this is called the endogeneity problem. In
order to obtain consistent estimates for regression with endogeneity, instrumen-
tal variables, or instruments, are often used. A higher dimensional vector of
instruments contains more information and allows for more accurate estimation.
However, it leads to the problem of over-identification, i.e., solving simultaneous
equations whose dimensions are higher than the number of parameters to be
estimated.

The GMM is a method proposed by [10] to deal with the over-identification
problem, in which an appropriate positive definite matrix is employed as a weight
matrix, and solving the high-dimensional simultaneous equations is replaced by
a problem of minimizing the quadratic form of the weight matrix. [6] found
an optimal weight matrix selection method that allows the GMM estimator to
achieve semiparametric efficiency bounds. See also [4] and [5] for more details
on the GMM estimation and its efficiency.



In this paper, we understand the efficiency of the GMM estimation from
the viewpoint of information geometry. We interpret the introduction of instru-
ments as setting an equivalence relation in the space of random variables. In
the quotient space, the set of GMM models is realized as a finite-dimensional
manifold. The weight matrix for the GMM estimation defines the Riemannian
metric, dually flat structures, and the canonical divergence.

We also propose a new method of differentiation based on asymptotically
normally distributed estimators. In the standard theory of differentiable mani-
folds, a smooth path on the manifold defines a tangent vector. Similarly, in this
paper, a sequence of estimates converging in distribution to the true parameter
defines statistical versions of the co-metric and the canonical divergence of the
GMM manifold.

Hence, the GMM manifold has two different divergences, which are generally
not equivalent. We prove that they coincide if and only if the weight matrix is
optimal. The result implies that we can illustrate the efficiency of GMM estima-
tion by a Pythagorean theorem between the two divergences derived from the
criteria function and the asymptotically normal estimator. This insight offers
some intuitions for estimation efficiency in other estimation methods, such as
least squares or maximum likelihood.

The application of differential geometry to the estimation efficiency has often
focused on the higher-order efficiency [3, 7]. However, this paper considers the
case of the first-order efficiency, that is, the conditions for the estimator to have
the least asymptotic variance. In addition, although many of the information
geometric considerations of statistical models assume an exponential distribution
family [1, 2, 15], the models analyzed in this paper do not make assumptions
about the distribution type.

This study is based primarily on [12] and [13]: the former shows that when
a convex potential function is given on a differentiable manifold, a dually flat
structure is naturally derived from the potential; the latter constructs informa-
tion geometry based on a co-metric rather than a metric. We also use the fact
that the criterion function of the GMM estimation is convex to show the dual
flatness of the GMM manifold and formulate a statistical version of the co-metric
by asymptotic behaviors of the GMM estimator.

2 The Generalized Method of Moments

This section briefly explains asymptotic theory of the linear GMM estimation.
Details and proofs of claims given in this section are found in Appendix A of the
paper.

Suppose that the probability space (Ω,B, P ) is given. Denote by L2(P ) the
space of squared integrable random variables with norm ‖y‖L2(P ) = (Ey2)1/2; by
Lm2 (P ) the space of m-dimensional vectors of square-integrable random variables
with norm ‖x‖Lm

2 (P ) = (E
∑m
i=1 x

2
i )

1/2 for x = (x1, · · · , xm)⊤.
Assume that a linear relation

y = x⊤θ + ϵ (2.1)
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between y ∈ L2(P ) and x ∈ Lm2 (P ) holds with error term ϵ and parameter
θ = (θ1, · · · , θm)⊤ ∈ Rm. If conditions ϵ ⊥⊥ x and rankExx⊤ = m are satisfied,
θ is consistently estimated by the Ordinary Least Squares (OLS). In applications
in economics, however, some components of x are possibly correlated with the
error term due to the endogeneity of the model. In such a case, classical OLS
fails to be consistent for θ. To deal with the endogeneity problem, we assume
the existence of instruments z ∈ LI2(P ), I > m, that satisfy moment conditions

(A1) Ezϵ = 0

and the rank condition

(A2) rankEzx⊤ = rankExx⊤ = m.

Under these conditions, θ is characterized as a unique solution to

Ez(y − x⊤θ) = 0. (2.2)

If n independent copies

(x1, y1, z1), . . . , (xn, yn, zn)

of (x, y, z) are observed, corresponding equations

1

n

n∑
i=1

zi(yi − x⊤i θ) = 0 (2.3)

might offer an estimator θ̂n of θ. However, empirical equations (2.3) might fail
to have solutions when dim z > dimx.

An equivalent way to characterize θ is to consider it as a minimizer of the
criterion function

M(θ) =
1

2
(Ez(y − x⊤θ))⊤WEz(y − x⊤θ), (2.4)

where W is a positive definite I × I matrix.
Let Ên be the empirical expectation operator based on the data: for an

arbitrary function f(x, y, z),

Ênf(x, y, z) =
1

n

n∑
i=1

f(xi, yi, zi). (2.5)

When dim z > dimx, the Generalized Method of Moments (GMM) estimator θ̂n
is defined as the minimizer of the sample M -function

M̂(θ) =
1

2
Ênz(y − x⊤θ)⊤WÊnz(y − x⊤θ). (2.6)

Since M̂ is convex with respect to θ, the estimator is obtained by solving the
first-order conditions of minimization,

∂

∂θ
M̂(θ) = −(Ênzx⊤)⊤WÊnz(y − x⊤θ) = 0, (2.7)
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which yield the formula of the GMM estimator

θ̂n = ((Ênzx
⊤)⊤WÊnzx

⊤)−1(Ênzx
⊤)⊤WÊnzy. (2.8)

Assume that

(A3) Eϵ2zz⊤ <∞.

Let Λ = Ezx⊤ and Σ = Eϵ2zz⊤. By the weak law of large numbers and the
central limit theorem, consistency

θ̂n
p→ θ (2.9)

and asymptotic normality

√
n(θ̂n − θ)

d→ N (0, V ) (2.10)

are satisfied as n→∞, where

V =
(
Λ⊤WΛ

)−1
Λ⊤WΣWΛ

(
Λ⊤WΛ

)−1
. (2.11)

Asymptotics (2.9) and (2.10) hold for arbitraryW , but the size of the asymptotic
variance V depends on the choice of W . Chemberlain (1987) proves that by the
optimal choice Wopt = Σ−1,

V (W ) ≥ V (Wopt) =
(
Λ⊤Σ−1Λ

)−1
(2.12)

holds for arbitrary W , where the matrix inequality means that V (W )−V (Wopt)
is positive semi-definite [6].

3 Dually flat manifold and the canonical divergence

This section summarizes [12], which illustrates how to introduce dually flat struc-
tures and the canonical divergence of a manifold via a convex function. Proofs
of claims in this section are given in Appendix B of the paper.

Consider an m-dimensional C∞-manifold M with a coordinate system θ =
(θ1, · · · , θm) : M → Rm. Let C∞(M) be the set of smooth functions on the
manifold. Suppose that a function ψ ∈ C∞(M) has the positive definite Hessian
D2ψ = [∂i∂jψ], where

∂i :=
∂

∂θi
. (3.1)

We call the pair (θ, ψ) a frame ofM. If (θ̃, ψ̃) satisfies

θ̃ = Aθ + b, ψ̃(θ) = ψ(θ) + c⊤θ + d (3.2)

at every p ∈ M, where A is an m ×m matrix, b, c ∈ Rm and d ∈ R, we regard
(θ̃, ψ̃) as equivalent to (θ, ψ), and write (θ, ψ) ∼ (θ̃, ψ̃). Let A be the equivalent
class of (θ, ψ).
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Define η = (η1, · · · , ηm)⊤ :M→ Rm and φ ∈ C∞(M) by

ηi = ∂iψ and ψ + φ = θ⊤η. (3.3)

Then, (η, φ) also gives a frame ofM. In particular, θi = ∂iφ holds, where

∂i :=
∂

∂ηi
. (3.4)

The definition (3.3) implies that

[∂i∂jψ(p)]
−1 = [∂i∂jφ(p)]. (3.5)

We say (η, φ) as the dual frame of (θ, ψ), and denote by A∗ the set of dual
frames: that is,

A∗ = {(η, φ) | (η, φ) is dual of ∃(θ, ψ) ∈ A}. (3.6)

If (η, φ) is the dual frame of (θ, ψ), then (θ, ψ) is shown to be the dual frame of
(η, φ). Hence, A = (A∗)∗ holds. Additionally, if (η̃, φ̃) is the dual frame of (θ̃, ψ̃),
then (θ, ψ) ∼ (θ̃, ψ̃) implies (η, φ) ∼ (η̃, φ̃). We call (M,A,A∗) the dually flat
space for the reason stated below.

The divergence ofM is a smooth function D :M×M→ R such that

D(p‖q)
{
≥ 0,
= 0 ⇐⇒ p = q.

(3.7)

When the divergence D is given, we can derive geometric properties ofM from
D [1, 2, 8, 9]. Denote by X (M) the set of smooth vector fields on M. The Rie-
mannian metric g ofM is given by

gp(Xp, Yp) = XqYqD(p‖q)
∣∣∣
q=p

(3.8)

for every p ∈ M and X,Y ∈ X (M). The affine connections ∇ and ∇∗ are also
determined by

gp((∇XY )p, Zp) = −XpYpZqD(p‖q)
∣∣∣
q=p

(3.9)

and
gp((∇∗

XY )p, Zp) = −XqYqZpD(p‖q)
∣∣∣
q=p

. (3.10)

To be emphasized here is that (∇,∇∗) is a pair of the dual connections, which
satisfy

X [g(Y, Z)] = g(∇XY, Z) + g(Y,∇∗
XY ) (3.11)

for any X,Y, Z ∈ X (M).
For the dually flat space (M,A,A∗), the canonical divergence is defined by

D(p‖q) = φ(p) + ψ(q)− η(p)⊤θ(q), (3.12)
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where (η, φ) ∈ A∗ is the dual frame of (θ, ψ) ∈ A. It is shown that (3.12) satisfies
the condition (3.7). Furthermore, for any p, q, r ∈M, (3.12) satisfies

D(p‖q) +D(q‖r)−D(p‖r) = (η(p)− η(q))⊤(θ(r)− θ(q)), (3.13)

which implies
D(p‖q) +D(q‖r) = D(p‖r) (3.14)

if (η(p) − η(q))⊤(θ(r) − θ(q)) is satisfied. This is a version of the Pythagorean
theorem. Therefore, we can consider D(p‖q) as a squared distance between p
and q.

The components of the Riemannian metric are given by

gij(p) := gp(∂i, ∂j) = ∂i∂jψ(p) (3.15)

with respect to θ, and

gij(p) := gp(∂
i, ∂j) = ∂i∂jφ(p) (3.16)

with respect to η. Let G(p) = [gij(p)] and G
∗(p) = [gij(p)]. Then, the relation

G(p)−1 = G∗(p) is confirmed. Furthermore, the connection coefficients of ∇ with
respect to θ are

Γij,k(p) := −(∂i)p(∂j)p(∂k)qD(p‖q)
∣∣∣
q=p
≡ 0, (3.17)

and the coefficients of ∇∗ with respect to η are

Γ ∗
ij,k(p) := −(∂i)q(∂j)q(∂k)pD(p‖q)

∣∣∣
q=p
≡ 0. (3.18)

Therefore, θ is the affine coordinate of (M,∇), and η is the affine coordinate of
(M,∇∗). Since

gp(∂i, ∂
j) = ∂k∂iψ(p)∂

k∂jφ(p) =

{
1 (i = j)
0 (i 6= j)

, (3.19)

(θ, η) is the dual affine coordinate, and (M, g,∇,∇∗) is indeed the dually flat
space.

Thus, the dually flat structure (g,∇,∇∗) is derived from the dual frames
{(θ, ψ), (η, φ)}. It is also shown that the corresponding dual frames are uniquely
determined by (g,∇,∇∗). Therefore, there is a one-to-one correspondence be-
tween {(θ, ψ), (η, φ)} and (g,∇,∇∗).

4 Cotangent space generated by asymptotically normal
estimators

In the previous section, we derive a dually flat structure from a convex function
defined on a manifold. An alternative method to determine the dually flat struc-
ture is constructing the co-tangent space from asymptotically normal statistics.
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Let M be an m-dimensional C∞-manifold with canonical coordinate θ :
M→ Rm. Assume that there exits a sequence θ̂ = {θ̂n} of statistics satisfying
asymptotic normality

√
n(θ̂n(p)− θ(p))

d→ N(0, Vp) (4.1)

at every p ∈M, where Vp = [V ij(p)] is the asymptotic variance of θ̂(p).

Definition 1. The statistical derivative (d̂f)p of f ∈ C∞(M) at p relative to

θ̂ = {θ̂n} is the limit distribution of
√
n(f(θ̂n(p))− f(θ(p))). That is,

√
n(f(θ̂n(p))− f(θ(p)))

d→ (d̂f)p (4.2)

as n→∞.

For the coordinate function θ :M→ Rm itself,

(d̂θ)p =

 (d̂θ1)(p)
...

(d̂θm)(p)

 ∼ N(0, Vp). (4.3)

The following properties hold for the statistical derivative.

Proposition 1. For f, f ′ ∈ C∞(M) and a ∈ R,

(i) (d̂(f + f ′))p = (d̂f)p + (d̂f ′)p
(ii) (d̂(af))p = a(d̂f)p
(iii) (d̂(f · f ′))p = f ′(p)(d̂f)p + f(p)(d̂f ′)p
(iv) (d̂f)p = ∂if(p)(d̂θ

i)p

The property (iv) of the proposition is known as the Delta method in statistics

[14, 16]. The properties imply that (d̂f)p is identified with the ordinary derivative
(df)p ∈ T ∗

pM.

Definition 2. The statistical cotangent space ofM at p relative to θ̂ = {θ̂n} is
defined as

T̂ ∗
pM = {(d̂f)p | f ∈ C∞(M)}. (4.4)

Proposition 2. The dimension of T̂ ∗
pM is m, and

T̂ ∗
pM = span{(d̂θ1)p, · · · , (d̂θm)p}. (4.5)

Considering that each statistical co-tangent vector is a normally distributed
random variable, we define the statistical co-metric ĝp by

ĝp(α̂p, β̂p) = Cov(α̂p, β̂p) = αiβjV
ij(p) (4.6)

for α̂p = αi(d̂θ
i)p and β̂p = βj(d̂θ

j)p in T̂ ∗
pM.
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Definition 3. The statistical tangent space T̂pM is the dual space of T̂ ∗
pM.

Let {(∂̂1)p, . . . , (∂̂m)p} be the dual basis of {(d̂θ1)p, . . . , (d̂θm)p}:

T̂pM = span
{
(∂̂1)p, . . . , (∂̂m)p

}
, (4.7)

and

(∂̂i)p(d̂θ
j)p =

{
1 (i = j)
0 (i 6= j)

. (4.8)

Each Âp ∈ T̂pM can operate on f ∈ C∞(M) by

Âp(f) = Âp(d̂f)p. (4.9)

Then,

(∂̂i)pf = (∂̂i)p

[
∂jf(p)(d̂θ

j)p

]
= (∂i)pf, (4.10)

and T̂pM is naturally identified with TpM by ∂̂i 7→ ∂i =
∂
∂θi .

According to [13], given the co-metric ĝ, correspondence Âp
ĝp←→ α̂p between

a tangent vector Âp ∈ T̂pM and a co-tangent vector α̂p ∈ T̂ ∗
pM is given by

Âp(β̂p) ≡ ĝp(α̂p, β̂p) (4.11)

for every β̂p ∈ T̂ ∗
pM. Define (∂̂i)p by

(∂̂i)p
ĝp←→ (d̂θi)p. (4.12)

For β̂p = βj(d̂θ
j)p,

(∂̂i)p(β̂p) = ĝp((d̂θ
i)p, β̂p) = V ij(p)βj ,

which implies (∂̂j)p = Vij(p)(∂̂
i)p with V −1

p = [Vij(p)]. Therefore, the statistical
metric ofM is defined by

ĝp(∂̂i, ∂̂j) = Vij(p). (4.13)

By identifying ∂̂i with ∂i =
∂
∂θi , the potential ψ̂ and its dual potential φ̂ are

respectivelty given by 
Vij(p) =

(
∂
∂θi

)
p

(
∂
∂θj

)
p
ψ̂(θ)

V ij(p) =
(

∂
∂ηi

)
p

(
∂
∂ηj

)
p
φ̂(η),

(4.14)

where η = V −1θ.

Definition 4. Relative to θ̂ = {θ̂n} such that
√
n(θ̂n(p)− θ(p))

d→ N(0, Vp), the
statistical divergence of M is defined by

D̂(p‖q) = φ̂(η(p)) + ψ̂(θ(p))− η(p)⊤θ(p). (4.15)
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5 Geometry of the GMM model

Geometrically, the GMM is illustrated as a projection of y onto the plane spanned
by x. To make this intuition more rigorous, we will define an equivalence relation
on L2(P ) using instruments z. We say that w and w′ in L2(P ) are equivalent
with respect to z if Ez(w−w′) = 0 holds, and express the relation as w ∼z w′.
We denote by [w] the equivalence class of each w and by L2(P )/z the quotient
space of L2(P ) under ∼z. The projection q : w 7→ [w] naturally induces the
quotient topology of L2(P )/z, where U ⊂ L2(P )/z is open if q−1(U) ⊂ L2(P )
is open.

Addition and real multiplication in L2(P )/z are defined as follows:{
[w] + [w′] = [w + w′]
α[w] = [αw]

(5.1)

for w,w′ ∈ L2(P ) and α ∈ R. The operations are well-defined since, if w1∼z w
and w2∼z w′,

Ez((w1 + w2)− (w + w′)) = Ez(w1 − w) + Ez(w2 − w′) = 0

and
Ez(αw1 − αw) = αEz(w1 − w) = 0.

Denote by span(x) the subspace of L2(P ) spanned by x = (x1, . . . , xm)⊤, that
is,

span(x) = {x⊤θ | θ ∈ Rm}. (5.2)

Note that
span(x)/z = span{[x1], . . . , [xm]}

because [x⊤θ] = [x1]θ
1 + · · · + [xm]θm for every θ = (θ1, · · · , θm). Let us define

the GMM model set by
M = span(x)/z. (5.3)

Then, the GMM model (2.1) is simply expressed as

[y] ∈M. (5.4)

We introduce open sets OM of the model set by restricting topology of L2(P )/z
ontoM. Then, the next result is shown.

Proposition 3. Assume (A1)-(A2). Then, M is a m-dimensional C∞ man-
ifold with the canonical coordinate [x⊤θ] 7→ θ.

Proof. Choose arbitrary points p and p′ fromM. Then θ and θ′ exist, such that
p = [x⊤θ] and p′ = [x⊤θ′]. If θ 6= θ′,

Ez(x⊤θ − x⊤θ′) = Ezx⊤(θ − θ′) 6= 0

because kerEzx⊤ = {0} by the assumption. Hence, p 6= p′ is shown.
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For every [U ] ⊂ M, there exists V ⊂ Rm such that [U ] = {[x⊤θ] | θ ∈ V }.
Let q′ : span(x) → span(x)/z be the standard projection. Since [x⊤θ] 7→ θ
is bijection, q′(w) = {w} holds for every w ∈ span(x). Hence, [U ] ∈ OM if
and only if U := (q′)−1([U ]) = {x⊤θ | θ ∈ V } is an open subset of span(x).
Moreover, U is shown to be open if and only if V is open. Let U be open
in span(x). There exist an open subset U0 of L2(P ) and V ⊂ Rm such that
U = U0 ∩ span(x) = {x⊤θ | θ ∈ V }. To be shown is openness of V . Choose
arbitrary τ ∈ V , and set w = x⊤τ . Since w ∈ U0, there exists sufficiently small
δ > 0 such that

B(w, δ) := {w′ ∈ L2(P ) | ‖w′ − w‖L2(P ) < δ} ⊂ U0,

which implies

U0 ∩ span(x) ⊃ B(w, δ) ∩ span(x)

= {x⊤ρ | ρ ∈ Rm, ‖x⊤ρ− x⊤τ‖L2(P ) < δ}
= {x⊤ρ | ρ ∈ Rm, (ρ− τ)⊤Exx⊤(ρ− τ) < δ2}.

By (A2), there exists λ > 0 such that |ρ−τ | < λ implies (ρ−τ)⊤Exx⊤(ρ−τ) <
δ2. Hence,

U = {x⊤θ | θ ∈ V } ⊃ {x⊤ρ | ρ ∈ Rm, |ρ− τ | < λ},

which shows {ρ ∈ Rm | |ρ−τ | < λ} ⊂ V . To show the inverse is straightforward.
Again, choose arbitrary points p = [x⊤θ] and p′ = [x⊤θ′] fromM. If p 6= p′,

then δ := |θ − θ′|/3 > 0. Let U and U ′ be open sets respectively defined by

U = {[x⊤τ ] | |τ − θ| < δ}, U ′ = {[x⊤τ ′] | |τ ′ − θ′| < δ}.

Then, p ∈ U , p ∈ U ′, and U ∩ U ′ = ∅. Hence,M is Hausdorff.
It is clear from the above discussion that M and Rm are homeomorphic by

[x⊤θ] 7→ θ. ut

Let us define an inner product of L2(P )/z by

〈[w], [w′]〉 = (Ezw)⊤WEzw′ (5.5)

for every [w], [w′] ∈ L2(P )/z. A norm is also given by

‖[w]‖ = 〈[w], [w]〉1/2 . (5.6)

Note that ‖[w]‖ = ‖[w′]‖ holds if w ∼z w′. Particularly, ‖[w]‖ = 0 holds if and
only if w ∈ [0]. Topology generated by the norm is weaker than the standard
quotient toporogy. By restricting the norm onM, however,

‖p‖ =
√
θ⊤Λ⊤WΛθ (5.7)
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holds for every p = [x⊤θ]. Since rankΛ⊤WΛ = m, the topology induced by the
norm is equivalent to OM.

A goal of the GMM estimation is to find θ solving

[y] = [x⊤θ]. (5.8)

The solution is found by minimizing

M(θ) =
1

2
‖[y]− [x⊤θ]‖2 (5.9)

with respect to θ. In this sense, the GMM is understood as the projection of
data [y] onto the model spaceM.

Note that M(θ) ∼ ψ(θ) = 1
2θ

⊤Λ⊤WΛθ, which is the convex function of θ.
Therefore, (θ, ψ) is a frame of M, and the (i, j) component of the Riemannian
metric g is given by

gij(p) ≡ (Λ⊤WΛ)ij . (5.10)

In fact, sinceM is a linear space, the tangent space TpM at every p = [x⊤θ] is
identified withM itself. We denote this identification TpM→M by

Ap = ai(∂i)p 7→ AM
p := [x⊤a], (5.11)

where a = (a1, · · · , am)⊤. By the identification, the metric g of M is naturally
induced by (5.7): for every Ap = ai(∂i)p and Bp = bi(∂i)p,

gp(Ap, Bp) =
〈
AM
p , BM

p

〉
= a⊤Λ⊤WΛb. (5.12)

The correpondence Ap
gp←→ αp determines a co-metric onM by

gp(αp, βp) = gp(Ap, Bp) (5.13)

if Ap
gp←→ αp and Bp

gp←→ βp. Letting

gij(p) := gp((dθ
i)p, (dθ

j)p), (5.14)

we have [gij(p)] = (Λ⊤WΛ)−1. In fact, the dual frame of (θ, ψ) is given by

η =
∂

∂θ

(
1

2
θ⊤(Λ⊤WΛ)θ

)
= (Λ⊤WΛ)θ (5.15)

and

φ(η) = η⊤(Λ⊤WΛ)−1η − ψ((Λ⊤WΛ)−1η) =
1

2
η⊤(Λ⊤WΛ)−1η. (5.16)

Therefore, the canonical divergence of the GMM manifold is given by

D(p‖q) = 1

2
(θ(p)− θ(q))⊤(Λ⊤WΛ)(θ(p)− θ(q)) = 1

2
‖p− q‖2, (5.17)
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which is the squared norm of L2(P )/z.
Relative to the GMM estimator (2.8), on the other hand, the statistical

divergence is obtained by

D̂(p‖q) = 1

2
(θ(p)−θ(q))⊤(Λ⊤WΛ)(Λ⊤WΣWΛ)−1(Λ⊤WΛ)(θ(p)−θ(q)). (5.18)

The main theorem of the paper is stated as follows.

Theorem 1. The canonical divergence D of the GMM manifoldM = span(x)/z
with the frame (θ,M) is identical to the statistical divergence D̂ relative to
the GMM estimator (2.8) if and only if the weight matrix is given by W =
(Λ⊤Σ−1Λ)−1.

Proof. Let ψ(θ) ∼ ψ̃(θ) = ψ(θ)+c⊤θ+d. Then, the dual parameter η̃ = ∂ψ(θ)+
c = η + c is also equivalent to η. The dual potential is

φ̃(η̃) = η̃⊤θ − ψ̃(θ)
∣∣∣
θ=(∂ψ)−1(η̃−c)

= (η + c)⊤θ − (ψ(θ) + c⊤θ + d)
∣∣∣
θ=(∂ψ)−1(η̃−c), η=η̃−c

= φ(η̃ − c)− d,

and the divergence given by (θ, ψ̃) and (η̃, φ̃) is

D̃(p‖q) = φ̃(η̃(p)) + ψ̃(θ(q))− η̃(p)⊤θ(q)
=

[
φ((η(p) + c)− c)− d

]
+
[
ψ(θ(q)) + c⊤θ(q) + d

]
− (η(p) + c)⊤θ(q)

= D(p‖q).

Since

M(θ) =
1

2
θ⊤(Λ⊤WΛ)θ − (Ezy)⊤WΛθ +

1

2
(Ezy)⊤E(Ezy) ∼ 1

2
θ⊤(Λ⊤WΛ)θ,

the canonical divergence generated by (θ,M) is

D(p‖q) = 1

2
(θ(p)− θ(q))⊤(Λ⊤WΛ)(θ(p)− θ(q)). (5.19)

Therefore, D = D̂ holds if and only if

Λ⊤WΛ = (Λ⊤WΛ)(Λ⊤WΣWΛ)−1(Λ⊤WΛ),

which implies W = Σ−1. ut

6 Discussions

A geometric interpretation of Theorem 1 is given in Figure 6.1. As shown in
(5.17), the canonical divergence D is the squared norm of L2(P )/z. Hence, the

12



canonical digergence measures the distance between data [y] and the model
[x⊤θ]. The true model is the orthogonal projection of [y] under D. On the other
hand, the statistical divergence D̂ is interpreted as a measure of the gap between
the estimates θ̂ and true parameter value θ since the divergence is derived from
the asymptotic variance of the estimator. When the two distances coincide, the
generalized Pythagorean relation (3.14) justifies Figure 6.1, where estimation

errors θ̂n − θ and data [y] are orthgonal. However, when D 6= D̂, the orthogonal
projection does not necessarily satisfy the Pythagorean relation, and the GMM
estimator fails to be efficient.

[y] = [x⊤θ]

M

D(p∥q)

D̂(q∥r)

D(p∥r) = D̂(p∥r)

span(x)

p : y

q : x⊤θr : x⊤θ̂n

Fig. 6.1. The GMM manifold M when D = D̂.

Consider the classical linear regression model

y = x⊤θ + ϵ, E(ϵ|x) = 0 (6.1)

to see that the above intuition is valid. Let M = {x⊤θ | θ ∈ Rk}. Then, M
is shown to be a C∞-manifold with canonical coordinate p = x⊤θ 7→ θ. The
criterion function corresponding to (6.1) is the sample analog of

M(θ) =
1

2
Ew(x)(y − x⊤θ)2, (6.2)

where w(x) is a positive weight function chosen by the statistician. The corre-
sponding canonical divergence is shown to be

D(p‖q) = 1

2
(θ(p)− θ(q))⊤(Ew(x)xx⊤)(θ(p)− θ(q)). (6.3)
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The generalized least squares estimator (GLS) for the parameters is

θ̂n(p) =
[
Ênw(x)xx

⊤
]−1

Ênw(x)x(x
⊤θ(p) + ϵ), (6.4)

which shows asymptotic normality

√
n(θ̂n(p)− θ(p))

d→ N (0, Vp)

as n→∞, where σ2(x) = E(ϵ2 | x) and

Vp ≡ (Ew(x)xx⊤)−1(Eσ2(x)w(x)2xx⊤)(Ew(x)xx⊤)−1.

Hence, the statistical divergence derived by the GLS estimator is

D̂(p‖q) = 1

2
(θ(p)− θ(q))Vp(θ(p)− θ(q)). (6.5)

Notably, D = D̂ holds when and only when the optimal weight function

w(x) =
1

σ2(x)
, (6.6)

is chosen [6, 11].
Now consider the maximum likelihood estimation method. The criterion

function of the maximum likelihood estimation is a sample analog of M(θ) =
E log p(x, θ), where p(·, θ) is the density function of x parametrized by θ. Since
the Hessian matrix of M at the true parameter value is the information matrix

I(θ) =

[
E

(
∂ip(x, θ)

p(x, θ)

)(
∂jp(x, θ)

p(x, θ)

)]
, (6.7)

M(τ) is well approximated by ψ(τ) = 1
2τ

⊤I(θ)τ in a neighborhood of θ. On the

other hand, the asymptotic variance of the maximum likelihood estimator θ̂n is
I(θ)−1. Therefore, D = D̂ locally holds, which is consistent with the fact that
the maximum likelihood estimator achieves the estimation efficiency.
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