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Dynamic Relationship between Information Dissemination by Local 
Governors and Mobility during the COVID-19 Pandemic 1 

 

Yasuhiro HARA 
 

 

 

The COVID-19 pandemic has prompted countries to implement a variety of containment measures, including 

non-pharmaceutical interventions such as stay-at-home orders. Japan has avoided legally enforcing strict 

measures such as complete or partial lockdowns, instead relying on voluntary restraint from going out during the 

state of emergency. 

We evaluate the impact of information dissemination on people’s mobility. First, we apply the latest findings 

in natural language processing research to precisely measure the information dissemination effect for each 

prefecture in Japan. Second, we analyse the dynamic relationship between information dissemination and 

mobility in each prefecture in Japan using econometric methods. Third, we divide the sample into an early and a 

later period when the Delta variant emerged in order to analyse the time-varying dynamics of the information 

effect.  

Our investigation yields two major findings: First, the stay-at-home information dissemination significantly 

suppressed people’s mobility. Second, we found a remarkable change in the magnitude of the information effect 

over time. The information effect weakens after the dominance of the Delta variant compared with the early stage 

of the pandemic. 
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I. Introduction 

 

The COVID-19 pandemic has prompted countries to implement a variety of containment measures, of which 

non-pharmaceutical interventions (NPIs), such as stay-at-home orders, have proven to be an effective tool. While 

China, the United States, and European countries have legally enforced strict measures such as complete or 

partial lockdowns, Japan has avoided such a strategy, instead relying on voluntary restraint from going out during 

the state of emergency. This study analyses the effectiveness of policies sans legal enforcement, as in the case of 

Japan. Of especial importance to us are Watanabe and Yabu’s (2020, 2021)1 ) studies, which examine the 

mechanisms through which such policies induce behavioural changes in people. Watanabe and Yabu (2020, 2021) 

use mobility data as an indicator of the extent of people's stay-at-home behaviour and decompose the changes in 

these data into two channels: an intervention effect and an information effect. The former refers to changes in 

behaviour arising from government orders or requests, while the latter refers to voluntary changes in people’s 

behaviour that arise when people update their risk perceptions based on information about the pandemic, such 

as government announcements and the number of new infections. Watanabe and Yabu (2020, p.1) find that the 

information effect is more significant than the intervention effect; that is, ‘what is necessary to contain the spread 

of COVID-19 is not strong, legally binding measures but the provision of appropriate information that 

encourages people to change their behaviour’. 

Our primary contribution to the exhaustive and growing corpus of literature on the effectiveness of COVID-

19 policymaking is that we re-examine the information effects analysed by Watanabe and Yabu (2020, 2021), 

but this time, we account for the dynamic relationship between information dissemination by local governors 

and mobility in 18 prefectures that had relatively high numbers of infections in Japan during the pandemic. 

First, we develop a more refined measure of government information dissemination. While Watanabe and 

Yabu (2020, 2021) measure information dissemination by using dummy variables for the issuance and lifting of 

specific policies (e.g. declaration of a state of emergency), we apply sentiment analysis, a natural language 

processing (NLP) technique. While the presence or absence of specific policies is one element that represents 

the “information” disseminated by a government, the government disseminates information in various forms on 

a daily basis. Watanabe and Yabu (2020, 2021) may have missed a significant portion of this information. 

Sentiment analysis, our preferred technique, transforms text into quantitative data2). It allows us to measure 

information not only in terms of specific policies but also on a daily basis, including daily alerts on the threat of 

a pandemic. We use bidirectional encoder representations from transformers (BERT3)), a deep learning-based 

sentiment analysis approach, to conduct sentiment analysis on text data from press conferences in order to 

precisely measure government information dissemination. BERT-based sentiment analysis is increasingly being 

used in economics literature for nowcasting economic trends, as exemplified by Seki et al.’s (2022) S-APIR 

Index. However, very few scholars use this approach to evaluate policy effects. By exploring the dynamic 

relationship between information dissemination and mobility in each prefecture in Japan using econometric 

methods, we evaluate the impact of government information dissemination on people’s mobility. 

Second, we also employ the local projection (LP) method in line with Inoue and Okimoto (2023), who also 

analyse the dynamic relationship between changes in mobility and the spread of COVID-19. The LP method 

helps us estimate the duration of the information effect after the information is disseminated, that is, as an impulse 

response function. Other factors and their impacts that concern our investigation include the information effect 

of factors other than government announcements (e.g. information on the infection status, including daily number 

 
 1)  A similar study based on Watanabe and Yabu (2020) was conducted by the Cabinet Office, Government of Japan (2021). 
 2)  Grimmer and Stewart (2013) 
 3)  BERT is explained in detail in Section II. 
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of infected people and vaccination rate), intervention effect of the state of emergency declaration, and others (e.g. 

climatic factors). 

Third, we analyse the time-varying dynamics of the information effect. We divide the sample period into the 

early stage of the pandemic and the later stage after the Delta variant outbreak in July 20214 ), primarily to 

determine whether the magnitude of the information effect differs between these two periods. We already know 

that the magnitude of an intervention effect changes over time5), as evidenced by Watanabe and Yabu (2021), 

albeit in the context of the early stage of the pandemic. To the best of our knowledge, very few studies examine 

the time-varying effects of information during the later stages of the pandemic when vaccination was widespread 

and rapidly mutating strains, such as the Delta and Omicron variants, emerged. In summary, our analysis sheds 

light on the time-varying dynamics of the information effect over a longer period than most literature tackles. 

Our investigation yields two major findings: First, the stay-at-home information dissemination significantly 

suppressed people’s mobility. Second, we found a remarkable change in the magnitude of the information effect 

over time. The information effect weakens after the dominance of the Delta variant compared with the early stage 

of the pandemic. 

The remaining article is organized as follows: In section II, we construct a model that quantifies the extent to 

which local governors aim to suppress mobility in their information dissemination. In section III, we analyse the 

dynamic relationship between information dissemination and mobility. In section IV, we examine the time-

varying dynamics of the relationship between information dissemination and mobility. Section V concludes. 

 

 

II. Measuring information dissemination 

II.1. Model 

 

We apply sentiment analysis, an NLP technique, to constructs a model that quantifies the extent to which local 

governors aim to suppress mobility in their information dissemination. 

Al-Qablan et al. (2023) classify sentiment analysis techniques into three categories: lexicon-based, machine 

learning (ML) based, and deep learning (DL) based. Lexicon-based approaches utilize predefined sentiment 

dictionaries or rules to assign sentiment scores. This method has advantages such as simplicity and speed, but it 

is usually designed for specific domains. In this article, we require a COVID-19-specific Japanese dictionary, 

which has not yet been established in the literature. Using a dictionary unrelated to COVID-19 may have trouble 

with terms such as 'Three Cs' (known as 'sanmitsu' in Japanese), making it difficult to accurately measure 

sentiment. 

The majority of ML-based approaches provide high accuracy by learning from labelled data. DL-based 

approaches have the potential to automatically learn complex patterns, capture contextual information, and 

demonstrate impressive performance. In this study, we utilize BERT, a DL-based model developed by Devlin et 

al. (2018). BERT has been applied in economics in various ways. For instance, Alaparthi and Mishra (2021) 

analysed movie review data from IMDb, while Seki et al. (2022) constructed the S-APIR Index. Alaparthi and 

Mishra (2021) compared BERT with lexicon-based and ML-based approaches and found that BERT 

outperformed the others. Based on these characteristics, we selected BERT for its strong performance in 

sentiment analysis, as demonstrated in the study by Al-Qablan et al. (2023), and its suitability for index creation, 

as proven in the study by Seki et al. (2022). We utilized the Japanese BERT tokenizer released by the NLP Group 

 
 4)  National Institute of Infectious Diseases (2022) defines July 3 - August 15, 2021 as the Delta strain epidemic period. 
 5)  Yeyati, and Sartorio (2020), Goldstein et al. (2021) 
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at Tohoku University6) for our implementation. To assess the model's performance, we divided the data into three 

sets: 70% for training, 15% for validation, and 15% for testing. Stratified sampling is employed to maintain the 

same distribution of class labels in the divided data as in the original data. 

 

 

II.2. Data 

 

This study utilizes two sets of data: textual data on information dissemination regarding COVID-19 and 

indices of the stringency of the COVID-19 response measures. The textual data consists of daily announcements 

made by the Prime Minister and relevant ministers in Japan. The data on the information disseminated by the 

Prime Minister are obtained from the Prime Minister's Office website. 

The data on information disseminated by ministers are collected from two sources on the website of the 

Japanese government. The first source is the Ministry of Health, Labour and Welfare (MHLW) website, which 

contains information disseminated by the former Minister before March 17, 2020. The second source is the 

website of the Cabinet Agency for Infectious Disease Crisis Management, which contains information 

disseminated by the minister in charge of the COVID-19 response. To assess the government's proactive 

information dissemination, we collect data based solely on the opening statements of press conferences, 

excluding question-and-answer sessions. For the purpose of this study, which aims to create an index of 

information dissemination at the prefectural level, the text classification model uses data on the dissemination of 

information by the central government, while data from local governments are only used when calculating the 

index based on the constructed model. 

Regarding the second type of data, we utilize the COVID: Stringency Index7) to label the textual data. A higher 

index value indicates a stricter government policy against COVID-19, while a lower value indicates a looser 

policy. The index is transformed into daily differenced data and labelled as follows: 'Strict' should be used if the 

difference is greater than 0, 'neutral' if the difference is 0, and 'lenient' if the difference is less than 0. It should 

be noted that policy changes may not occur on the same day as information dissemination. Thus, we align the 

dissemination of information with the policy change that triggered the index update. Mathieu et al. (2020) provide 

notes that form the basis for changes in the index. On this basis, the text data should be labelled as 'strict' when 

they provide information on policies that contributed to strict index changes, 'lenient' when they provide 

information on policies that contributed to lenient index changes, and 'neutral' in all other cases. To analyse the 

impact of information dissemination on human mobility, this study focuses on Japanese citizens, who are the 

primary recipients of this information. Therefore, we exclude any index changes based on border control 

measures and related text data from our analysis. Our model construction utilizes only the information provided 

by the central government. We exclude information related to local government measures as the index also takes 

them into account. Additionally, it is possible that the index may have missed some policy changes. If a policy 

change involves the issuance or expansion of a state of emergency (SOE) or quasi-state of emergency (QSOE), 

the labels will be adjusted to 'strict'. If a policy change involves lifting the SOE or QSOE, or reducing the target 

regions, the labels will be partially corrected to 'lenient'. 

 

 

II.3. Prediction accuracy of the text classification model 

 
 6)  Tohoku NLP Group. “cl-tohoku/bert-japanese: BERT models for Japanese text”. Retrieved from: ‘https://github.com/cl-
tohoku/bert-Japanese’. (Accessed: November 17, 2023) 
 7)  Mathieu et al. (2020) 
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Table 1 presents the classification performance metrics for the developed model. The evaluation metrics 

comprise precision, recall, and F1 score. We focus on the F1 score, which provides a balance between precision 

and recall, and is an amalgamation of these two measures. Specifically, we focus on the macro F1 score, which 

is the average of the F1 scores calculated for each class. The data used in this study is unbalanced, with the 

neutral class having the most data and the remaining two classes having less data. To avoid overestimating the 

accuracy of the class with the most samples, a simple average is more suitable than a weighted average. 

 

Table 1: Prediction accuracy of the text classification model 
 

Precision Recall F1 score 
macro avg. 

weighted avg. 
0.98 
0.95 

0.87 
0.95 

0.92 
0.95 

 

As shown in Table 1, the macro F1 score of the model is measured at 0.92, indicating a high accuracy. This 

result is consistent with the results reported by Alaparthi and Mishra (2021), who constructed a text classification 

model for IMDb review data. 

 

 

II.4. Calculation of information dissemination index based on the constructed model 

 

The following describes the process of creating the local governor’s information dissemination index (‘local 

governor’s index’) using the constructed model. The 18 prefectures with the highest cumulative number of new 

cases at the end of the analysis period, October 13, 2022, were targeted, excluding two prefectures. As this study 

focuses on changes in mobility during the COVID-19 pandemic, the sample is limited by the number of cases, 

and it is assumed that regions with a high number of cases have more active NPIs. Regarding the two excluded 

prefectures, regular press conferences are published in text format on their websites, while press conferences 

related to COVID-19 are only published in video format. For the purpose of this study, which aims to analyse 

the dynamic changes in information dissemination and human mobility during the COVID-19 pandemic, it is 

deemed appropriate to exclude the data from these two prefectures. The textual data are obtained from the 

websites of the 18 prefectures8) mentioned above.  

To measure local governor’s index, we define the index as:  

𝑙𝑔_𝑖𝑛𝑓𝑜 ൌ 𝑃ሺ𝑠𝑡𝑟𝑖𝑐𝑡ሻ ∙ 1൅ 𝑃ሺ𝑛𝑒𝑢𝑡𝑟𝑎𝑙ሻ ∙ 0൅ 𝑃ሺ𝑙𝑒𝑛𝑖𝑒𝑛𝑡ሻ ∙ ሺെ1ሻ (1) 

where 𝑃ሺ𝑠𝑡𝑟𝑖𝑐𝑡ሻ denotes the probability that the given text encourages staying at home, 𝑃ሺ𝑙𝑒𝑛𝑖𝑒𝑛𝑡ሻ denotes 

the probability that the text encourages going out, and 𝑃ሺ𝑛𝑒𝑢𝑡𝑟𝑎𝑙ሻ denotes the probability that the text is neither 

strict nor lenient.  

Note that the maximum token length is set to 512 when the model is created. To construct a model with high 

accuracy, it is sufficient to read the beginning and end of the document, as the main message is often concentrated 

in these sections9). For documents longer than 512 tokens, the local governor's index for each prefecture in this 

study is calculated using the average value estimated by the first 512 tokens and the value estimated by the last 

512 tokens. 

 

 
 8)  These are Aichi, Chiba, Fukuoka, Gifu, Hiroshima, Hokkaido, Ibaraki, Kanagawa, Kumamoto, Kyoto, Mie, Miyagi, 
Okayama, Okinawa, Osaka, Saitama, Shizuoka, and Tokyo. 
 9)  Sun et al. (2019) 
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III. Dynamic relationship between information dissemination and mobility 

III.1. Model 

 

We apply the LP method10), following Inoue and Okimoto (2023), to investigate the responses of the level of 

change in the mobility ℎ  periods ahead to a change in causal variables at time 𝑡 . The R package 'lpirfs', 

developed by Adämmer (2019), is used for implementation. The following assumptions are made for each of the 

variables. 

We assume that the level of mobility factor from 𝑡 to 𝑡 ൅ ℎ െ 1 collectively consists of multiple factors 

identified in previous studies. Specifically, information effect, including the local governor’s index, intervention 

effects, represented by the SOE declaration, and other factors such as weather and autocorrelation are considered. 

For the measure of mobility 𝑚௜,௧
௔ , we use the Google COVID-19 Community Mobility Reports11) index as the 

dependent variable.  

To measure the information effect at time 𝑡, we use the local governor's index constructed in section II. The 

data is aggregated into weekly totals in each prefecture. 

The COVID-19 infection status is also included as a variable related to the information effect. The perception 

of infection risk among individuals may change based on the information they receive about the spread or 

containment of the infection, and their behaviour may adapt accordingly. This study focuses on the daily number 

of new cases and deaths and the vaccination rate. As the number of cases and deaths increases, people may be 

more likely to stay at home as they perceive a higher risk of infection. We denote the total number of daily cases 

or deaths per 1 million in the population at time 𝑡 in prefecture 𝑖 by 𝑥௜௧. Following Watanabe and Yabu (2020, 

2021), we transform 𝑥௜௧  using the inverse hyperbolic sine transformation. Specifically, we define 𝑋௜௧ ൌ

𝑙𝑛ሺ𝑥௜௧ ൅ ඥ𝑥௜௧ ൅ 1ሻ. On the other hand, a higher vaccination rate is associated with a lower perceived risk of 

infection, which may lead to an increase in mobility. 

It is important to note that the variables of the daily numbers of new cases and deaths are considered with a 

time lag, as it is assumed that people need time to recognize the number of cases and deaths and adjust their 

behaviour accordingly. Additionally, there is a delay in behavioural changes following vaccination, and recovery 

at home may be necessary due to side effects. Moreover, the relationship between the infection status and 

mobility variables is interdependent, and the potential issue of endogeneity is acknowledged. The objective of 

this study is to examine the dynamic relationship between various variables and mobility, rather than to draw 

strict causal inferences. However, the use of time lags can help to mitigate the problem of endogeneity to some 

extent. 

To assess the impact of the intervention, we also construct a variable that counts the number of days that the 

declaration of a SOE was implemented in week 𝑡. Additionally, we include a variable for the number of days of 

a QSOE, which was introduced from April 2021 as an equivalent measure. Our analysis differs from that of 

Watanabe and Yabu (2020, 2021) in that we use weekly data instead of daily data. 

As for the weather, in addition to the precipitation data used by Watanabe and Yabu (2020, 2021), we also 

incorporate maximum temperature data as a weather factor that affects the change in people's mobility used by 

Inoue and Okimoto (2023). However, while Inoue and Okimoto (2023) used temperature to capture the 

possibility that extreme temperature may lower immunity and make ventilation difficult due to room temperature 

control problems, we examine the relationship between the number of hot summer days and ice days per week 

 
 10)  Jordà (2005) 
 11)  Google LLC. “Google COVID-19 Community Mobility Reports”. Retrieved from: 
‘https://www.google.com/covid19/mobility/’. (Accessed: October 17, 2023) 
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and mobility considering the possibility that extreme temperature may discourage people from going out, 

regardless of COVID-19 prevalence. 

Furthermore, as the Google COVID-19 Community Mobility Reports indices used in this study are time series 

data, we consider the autocorrelation and use the mobility data of the previous period. The regression model that 

integrates the above is written as: 

𝑚௜,௧ା௛
௔ െ 𝑚௜,௧

௔ ൌ 𝛽௔௛𝑙𝑔_𝑖𝑛𝑓𝑜௜௧ ൅ ∑ 𝛾௔௛ఛ𝑋௜,௧ିఛ௉
ఛୀଵ ൅ 𝛿௔௛𝑍௜௧ ൅ 𝜀௧

௔௛ ൅ 𝜀௜
௔௛ ൅ 𝜖௜௧

௔௛ (2) 

where 𝛽, 𝛾 and 𝛿 are the regression coefficients. Variable 𝑚௜,௧
௔  denotes the mobility observed in the category 

of place 𝑎 of prefecture 𝑖 during week 𝑡. 

Variable 𝑙𝑔_𝑖𝑛𝑓𝑜௜௧  denotes the level of information dissemination by local governors, which is the main 

explanatory variable in this study. The control variables are represented by 𝑋௜,௧ିఛ and 𝑍௜௧. Among the control 

variables, 𝑋௜,௧ିఛ is the lagged12) control variable and comprises three variables: the number of cases, the number 

of deaths, and vaccination rate; 𝑍௜௧ is the control variable that does not consider lags, which are variables other 

than 𝑋௜,௧ିఛ. 

𝜀௧
௔௛ is a time-fixed effect representing factors such as the nationwide changes in mobility due to the changes 

in the perception of the risk of infection or serious illness due to the appearance of mutant strains, the 

implementation or changes in policies, and the number of national holidays at different times of the year that are 

not explicitly considered in Eq. (2). 𝜀௜
௔௛  is a prefecture fixed effect representing the specificity and 

heterogeneity of each prefecture, including demographics, lifestyle (e.g. commuting modes, presence of 

downtown areas), external human mobility, average household size, and others. Lastly, 𝜖௜௧
௔௛ is an error term. 

Note that the left side of Eq. (2) is the amount of change in mobility from 𝑡 to 𝑡 ൅ ℎ. In LP, the values of the 

regression coefficients vary across the forecast horizon ℎ, necessitating the addition of ℎ as a superscript to 

distinguish them. 

 

 

III.2. Data 

 

This study uses weekly panel data for 18 prefectures in Japan from April 17, 2020 to October 13, 2022. The 

data used in this analysis are described below. 

The Google COVID-19 Community Mobility Reports indices are utilized to measure prefecture-level mobility 

on a daily basis. This index classifies the mobility of the categories of places into six categories: retail and 

recreation, grocery and pharmacy, parks, transit stations, workplaces, and residential. The index was created 

using the early stage of the COVID-19 pandemic (from January 3 to February 6, 2020) as the base period. The 

indices are calculated based on the percentage increase or decrease from the median of the corresponding day of 

the week during this period. In this study, we represent the weekly mobility level by averaging the daily values 

per week. 

The analysis focuses on data up until October 15, 2022, the latest Thursday in the data release period for 

weekly aggregation. Figure 1 illustrates mobility trends by prefecture and category. Following Watanabe and 

Yabu (2020), we use level data instead of differenced data. Three types of unit root tests13) were conducted, each 

of which rejected the null hypothesis of non-stationarity. 

 

 
 12)  We treat the lag order of the variables as 𝑃 ൌ 1. To assess robustness, we also estimate the models with the case where the 
maximum lag order 𝑃 ൌ 2,3, and obtain qualitatively similar outcomes. 
 13)  Levin et al. (2002), Im et al. (2003), and Maddala and Wu (1999) 
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Figure 1: Trends in mobility by prefecture and category 

 
 

This analysis focuses on the local governor’s index, which is constructed in section II. The model construction 

method and the data used are detailed in the same section. We use the weekly aggregated data from this index, 

as explained in section III. If there were no press conferences during the week, we treat the data as an NA14). 

Figure 2 shows the trends of the local governor’s index for each prefecture. 

  

 
 14)  To assess robustness, we also estimate the models with the index of NAs filled with 0, and obtain qualitatively similar 
outcomes. 
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Figure 2: Trends in local governor’s index by prefecture 

 
 

Data is collected from the ‘Data Shows – COVID-19 Information’ section of the MHLW website. Regarding 

the daily number of new cases, the ‘Trend of New Positive Cases (Daily)’ data is used, while for the number of 

deaths, the ‘Trend of Deaths’ data is referenced. Both datasets are available at the prefectural level. According to 

the website, the number of cases is aggregated based on HER-SYS data, except for the period between September 

21, 2022, and September 25, 2022, when individual cases reported by each local government are used. The 

number of deaths is the aggregated value reported by each local government and excludes charter flights. To 

calculate rates per 1 million population, we divide the number of cases and deaths by the total population of each 

prefecture, and we also multiply the result by 100 million to enhance clarity. 

Data on the total population by prefecture is obtained from the ‘Population by Age Group’ section of the ‘Basic 

Resident Register (2022) (City/Ward/Town/Village)’ published on the website of the Ministry of Internal Affairs 

and Communications. 

Following Inoue and Okimoto (2023), we use weekly aggregated values for the number of cases and deaths, 

as these tend to have a strong weekly effect. We follow Watanabe and Yabu (2020, 2021) by taking the inverse 

hyperbolic sine transformed values. The website reports the number of cases from January 16, 2020. However, 

for our analysis, we have limited the data from April 17, 2020, when the infection had spread nationwide and at 

least one weekly positive case was recorded in each of the 18 prefectures analysed. Our analysis accounts for 

approximately 75% of the total number of infected individuals and deaths nationwide as of October 13, 2022. 

Figure 3 illustrates the trend of the number of new cases and deaths per million population in 18 prefectures. 
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Figure 3: Trends in the number of new cases and deaths 

(per million population, inverse hyperbolic sine transformed) 

 
 

The vaccination rate is calculated based on the data obtained from two sources. The weekly number of 

vaccinations is collected from the ‘Open Data – Prefectural Vaccination Number Details’ published by the 

Vaccination Record System (VRS) of the Digital Agency, Japan. This data is used to determine the number of 

people who completed the second vaccination dose in each prefecture. To calculate the vaccination rate for each 

prefecture, ‘the Basic Resident Register (2022) (City/Ward/Town/Village)’ is used, following the same method 

as for the number of cases and deaths. 

Regarding the SOE and QSOE, data are obtained from the website of the Cabinet Agency for Infectious 

Disease Crisis Management. The number of days on which SOE or QSOE declarations were implemented in 

week 𝑡 is taken into consideration. 

It is important to note that the local governor’s index we constructed had almost no linear relationship with 

other variables related to the information effect and the variables related to the intervention effect. This outcome 

can be attributed to the delay between information dissemination and policy intervention, as well as the difference 

in information volume between raw data, such as the number of new cases, and processed data, such as the actual 

textual information disseminated by the government. 

The maximum daily temperature and total daily precipitation data for each prefecture are obtained from the 

Japan Meteorological Agency website. The observation data of the prefectural capital are used as the 

representative weather condition of the prefecture. The number of days with extremely high and low temperatures 

per week is calculated from the daily maximum temperature. The weekly precipitation is calculated by 

aggregating the daily total precipitation for each week. Figure 4 shows the trends of the number of days with 

extremely high and low temperatures and precipitation. 
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Figure 4: Trends in climatic factors by prefecture 

 
 

Table 2 displays the descriptive statistics for the aforementioned data. 

 

Table 2: Descriptive statistics 
Variable Obs. Mean Std.Dev. Min. Max. 

m1(retail_and_recreation) 2340 -11 9.2 -59 26 
m2(grocery_and_pharmacy) 2340 1.2 5.1 -17 23 
m3(parks) 2340 -9.4 16 -54 72 
m4(transit_stations) 2340 -24 11 -66 34 
m5(workplaces) 2340 -14 9.2 -59 1.3 
m6(residential) 2340 6.7 3.4 0.86 28 
lg_info 1228 0.019 0.18 -0.99 1.5 
log(cases) 2340 5.1 2.5 0 10 
log(deaths) 2340 1 0.92 0 3.6 
vaccination 2340 0.35 0.35 0 0.81 
SOE 2340 0.98 2.4 0 7 
QSOE 2340 0.8 2.1 0 7 
hot summer / ice days 2340 1.5 2.4 0 7 
precipitation 2340 36 51 0 480 

 

 

III.3. Estimation results 

III.3.1. Estimation results for one-week ahead model 

 

Table 3 presents the estimation results of Eq. (2) for the one-week-ahead model (ℎ ൌ 1). The R2 values for all 

models, except for transit stations and workplaces mobility, are above 0.6, indicating that this specification has 

high explanatory power15).  

The information effects of the local governor’s index show a significant positive coefficient for residential 

mobility and significant negative coefficients for the mobility of other categories. This suggests that the mobility 

of residential category is increased while the mobility of other categories is decreased, indicating that the stay-

at-home information dissemination significantly suppressed people’s mobility of all categories of places. Note 

 
 15)  The VIF values were calculated and were all below 1.5, so it is considered that there is little concern about multicollinearity. 
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that the local governor’s index we constructed had almost no linear relationship with other variables related to 

the information effect and the variables related to the intervention effect (see Appendix D). This can be 

interpreted as confirming, to a certain extent, the unique effect of information dissemination. The confirmation 

of the information effect even after extracting the unique effects of information dissemination further strengthens 

prior findings. 

Regarding the number of new cases, with the exception of the grocery and pharmacy mobility, a significant 

effect of discouraging people from going out was confirmed. Upon examination of the coefficients of the local 

governor’s index and the number of cases in the residential mobility, it was found that the local governor’s index 

was 0.345 and the number of cases was 0.328. This indicates that a suppression effect on people’s going out 

behaviour can be achieved at the same level when the number of cases is 1.0 ൈ ଴.ଷସହ

଴.ଷଶ଼
ൌ 1.052, as when the local 

governor’s index is 1.0. Although the units differ, a local governor’s index of 1.0 indicates information 

dissemination equivalent to declaring a SOE, while an index of -1.0 indicates information dissemination 

equivalent to lifting such a declaration. Regarding the number of cases, a value of 1.052 means that 1.335 infected 

people per million population were observed in one week, which translates to 18,419 infected people in Tokyo. 

Conversely, no significant effect was confirmed for the number of deaths. 

The vaccination rate had a significant impact on people’s behaviour in different categories of places. In terms 

of the mobility of retail and recreation and residential categories, vaccination was found to reduce people’s 

mobility, whereas vaccination increased the mobility of workplaces category. This finding regarding the 

workplaces and the residential mobility is consistent with the assumption that vaccination reduces the perceived 

risk of infection. However, there may be some kind of bias in retail and recreation mobility, where residents who 

are more willing to be vaccinated may be more likely to refrain from going out to prevent the spread of infection, 

and this altruistic behaviour may influence their vaccination behaviour. 

While the intervention effects of the declaration of a SOE and QSOE may vary from category to category, 

they generally have a suppressive effect on people’s mobility. Specifically, the declaration of a SOE has a 

significant negative effect on the mobility of retail and recreation, transit stations, and workplaces categories, 

while it has a positive effect on residential mobility. Similarly, a QSOE has a significant negative effect on 

mobility in transit stations category at the 10% level, while it has a positive effect on residential mobility. 

Although it may be difficult to compare the values of the coefficients directly with the local governor's index, 

the index is equal to 1.0 when the dissemination of information is equivalent to the declaration of a SOE. 

Analogously, when a SOE is declared, the value of the SOE variable is also 1.0, indicating that the units of both 

are similar. Based on Table 3, the coefficient for the local governor's index is consistently larger in magnitude 

than that for the declaration of a SOE in all categories. This suggests that the local governor's index is more 

significant in terms of the regression coefficient. 

The weather factors of hot summer days and ice days had no significant effect, while an increase in 

precipitation had a suppressing effect on the mobility of all categories of places. For the lagged mobility, the 

coefficients were consistently positive for all mobility indices. 
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Table 3: Estimation results for one-week ahead model 
 Google COVID-19 Community Mobility Reports 
 (1) 

retail_and_recreation 
(2) 

grocery_and_pharmacy 
(3) 

parks 
(4) 

transit_stations 
(5) 

workplaces 
(6) 

residential 
lg_info -1.077*** -0.675** -2.080*** -0.897** -0.451*** 0.345*** 
 (0.236) (0.327) (0.708) (0.434) (0.161) (0.081) 
log(cases)_lag1 -1.217*** -0.026 -0.484** -1.341*** -0.445*** 0.328*** 
 (0.221) (0.083) (0.22) (0.169) (0.155) (0.076) 
log(deaths)_lag1 0.003 -0.018 0.168 -0.038 -0.065 0.002 
 (0.109) (0.087) (0.358) (0.236) (0.104) (0.049) 
vaccination_lag1 -12.271** 3.086 -7.579 -14.792 7.252** -2.012*** 
 (6.081) (2.84) (13.316) (11.859) (3.332) (0.404) 
SOE -0.200*** 0.022 0.034 -0.081*** -0.130*** 0.081*** 
 (0.054) (0.016) (0.102) (0.029) (0.03) (0.018) 
QSOE -0.046 -0.007 0.006 -0.084* -0.008 0.023** 
 (0.036) (0.022) (0.065) (0.048) (0.023) (0.01) 
hot_ice_days 0.015 0.033 -0.503 -0.105 -0.054 0.003 
 (0.116) (0.054) (0.485) (0.125) (0.036) (0.027) 
precipitation -0.012*** -0.012*** -0.062*** -0.017*** -0.005** 0.005*** 
 (0.003) (0.002) (0.012) (0.004) (0.002) (0.001) 
mobility_lag1 0.558*** 0.720*** 0.682*** 0.566*** 0.497*** 0.579*** 
 (0.051) (0.049) (0.029) (0.04) (0.077) (0.069) 
Observations 1212 1212 1212 1212 1212 1212 
R2 0.620 0.604 0.640 0.503 0.390 0.641 

Note: Heteroscedasticity-consistent robust standard errors in parentheses. Asterisks denote statistical significance:  
∗p<0.1;∗∗p<0.05;∗∗∗p<0.01. 

 

 

III.3.2. Impulse response analysis 

 

This subsection conducts an impulse response analysis based on the LP method. Figure 5 shows the impulse 

response functions (IRFs) of the level of change in the mobility of each of the six categories of places when the 

local governor’s index increases by 1.0. The impulse response and its confidence interval are calculated from the 

coefficient 𝛽௔௛ሺ𝑎 ൌ 1, 2, … , 6;ℎ ൌ 1, 2, … , 5ሻ and its standard error, estimated by panel OLS based on Eq. (2), 

and show how much mobility changes when the local governor’s index increases by one unit. 

Figure 5 displays that an increase in the local governor’s index resulted in a statistically significant decrease 

in the mobility of categories other than residential and workplaces categories for at least three weeks after the 

increase. In the workplace category, mobility decreased significantly in the first, fourth, and fifth weeks after the 

index increase. By contrast, mobility in residential category increased significantly from the first week to at least 

the fifth week after the increase in the local governor's index. 

In summary, the analysis of the impulse response indicates that an increase in the local governor's index 

significantly reduces mobility for at least one week ahead. Although the strength of the effect varies across 

categories of places, it persists afterwards. 
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Figure 5: IRFs of the rate of change in the level mobility to an increase in the local governor’s index 

 
Note: The solid lines correspond to the point estimate and the shaded areas correspond to the 90% confidence interval. 

 

 

IV. The time-varying effects of information dissemination 

 

Finally, we analyse the changes in the information effect over time by dividing the sample into the early phase 

of the pandemic and the period after the delta variant outbreak in July 2021. As explained in section I, previous 

studies have also suggested that the information effect changes over time. We estimate the one-week-ahead model 

for each period and perform an impulse response analysis using the LP method. The study period comprised 62 

periods during the early pandemic and 68 periods after the delta variant outbreak. Tables 4 and 5 show the 

estimation results for each period and Figure 6 shows the results of the impulse response analysis. 

The results of the one-week-ahead model's estimation are presented in Tables 4 and 5. We find a remarkable 

change in the magnitude of the information effect over time. However, the information effect weakens after the 

dominance of the Delta variant compared with the early stage of the pandemic. 

Furthermore, Figure 6’s impulse response analysis indicates that mobility was more suppressed during the 

early stages of the pandemic than after the Delta variant outbreak. Regarding residential mobility, the study found 

a significant decrease in mobility one to four weeks after the local governor's index increased during the early 

pandemic period. However, in the sample after the Delta variant outbreak, this significant decrease in mobility 

was no longer observed at one week or four weeks. Regarding mobility other than the residential category, the 

IRFs for the early pandemic period are generally lower and the period during which the IRFs are below 0 is 

longer. Previous studies have shown that the information effect varies over time, which is confirmed by this 

statement16). 

  

 
 16)  To assess robustness, we also estimated the model the NAs filled with 0, and with the case where the maximum lag order 
𝑃 ൌ 2,3. The outcomes obtained with these models were qualitatively similar. 
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Table 4: Estimation results for one-week ahead model in the early pandemic period 
 Google COVID-19 Community Mobility Reports 
 (1) 

retail_and_recreation 
(2) 

grocery_and_pharmacy 
(3) 

parks 
(4) 

transit_stations 
(5) 

workplaces 
(6) 

residential 
lg_info -1.540*** -1.099*** -3.391*** -1.621** -1.189*** 0.576*** 
 (0.444) (0.301) (0.803) (0.761) (0.445) (0.201) 
log(cases)_lag1 -1.163*** -0.346*** -1.123*** -1.150*** -0.419*** 0.301*** 
 (0.211) (0.128) (0.28) (0.124) (0.125) (0.065) 
log(deaths)_lag1 0.136 -0.077 0.675* -0.045 -0.080 -0.067 
 (0.178) (0.113) (0.349) (0.244) (0.234) (0.08) 
vaccination_lag1 -26.956 -14.394 -80.919 -72.434** -48.576 23.721** 
 (27.966) (22.731) (118.225) (34.62) (29.548) (9.307) 
SOE -0.194*** 0.036 -0.028 -0.093 -0.167*** 0.089*** 
 (0.044) (0.038) (0.137) (0.072) (0.042) (0.019) 
QSOE 0.017 0.125*** 0.084 0.076 0.035 0.019 
 (0.042) (0.028) (0.129) (0.072) (0.037) (0.015) 
hot_ice_days -0.040 -0.122 -1.041 -0.068 -0.065 0.011 
 (0.129) (0.15) (0.862) (0.174) (0.055) (0.04) 
precipitation -0.01*** -0.012*** -0.061*** -0.012*** -0.006*** 0.005*** 
 (0.003) (0.002) (0.017) (0.003) (0.002) (0.001) 
mobility_lag1 0.585*** 0.465*** 0.601*** 0.623*** 0.538*** 0.618*** 
 (0.043) (0.078) (0.033) (0.049) (0.06) (0.055) 
Observations 622 622 622 622 622 622 
R2 0.670 0.429 0.547 0.599 0.478 0.655 

Note: Heteroscedasticity-consistent robust standard errors in parentheses. Asterisks denote statistical significance:  
∗p<0.1;∗∗p<0.05;∗∗∗p<0.01. 

 

Table 5: Estimation results for one-week ahead model in the period after the Delta variant outbreak 

 Google COVID-19 Community Mobility Reports 
 (1) 

retail_and_recreation 
(2) 

grocery_and_pharmacy 
(3) 

parks 
(4) 

transit_stations 
(5) 

workplaces 
(6) 

residential 
lg_info -0.302 0.100 -0.355 0.553 0.471 0.031 
 (0.274) (0.381) (0.923) (1.187) (0.334) (0.145) 
log(cases)_lag1 -1.089*** 0.055 -0.144 -1.543*** -0.270 0.311*** 
 (0.144) (0.139) (0.383) (0.453) (0.196) (0.074) 
log(deaths)_lag1 -0.266* -0.102 -0.522 -0.053 -0.148** 0.105*** 
 (0.151) (0.163) (0.54) (0.232) (0.067) (0.023) 
vaccination_lag1 -2.693 -0.383 -4.166 4.887 11.219*** -3.405* 
 (10.056) (7.97) (17.215) (12.139) (3.987) (1.936) 
SOE -0.390** 0.044 -0.089 -0.222 -0.069 0.099** 
 (0.163) (0.075) (0.192) (0.217) (0.05) (0.046) 
QSOE -0.160*** -0.035 -0.084 -0.203 -0.081 0.043 
 (0.062) (0.049) (0.116) (0.124) (0.067) (0.03) 
hot_ice_days -0.022 0.108*** -0.112 -0.096 -0.121** 0.022 
 (0.153) (0.032) (0.217) (0.155) (0.06) (0.023) 
precipitation -0.015*** -0.014*** -0.062*** -0.024*** -0.007* 0.006*** 
 (0.004) (0.002) (0.011) (0.007) (0.004) (0.001) 
mobility_lag1 0.401*** 0.704*** 0.712*** 0.455*** 0.239*** 0.433*** 
 (0.072) (0.058) (0.049) (0.048) (0.067) (0.091) 
Observations 582 582 582 582 582 582 
R2 0.467 0.575 0.690 0.381 0.139 0.528 

Note: Heteroscedasticity-consistent robust standard errors in parentheses. Asterisks denote statistical significance:  
∗p<0.1;∗∗p<0.05;∗∗∗p<0.01. 
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Figure 6: IRFs in the early pandemic period and the period after the Delta variant outbreak 

 
Note: The solid lines correspond to the point estimate and the shaded areas correspond to the 90% confidence interval. 

 

Watanabe and Yabu (2021) put forward several hypotheses to explain the absence of the information effect 

after the delta variant outbreak, despite its presence in the early stages of the pandemic. These hypotheses 

included a possible decline in altruism17) over time and the emergence of a gap between people's perceptions of 

the severity of the infection and the actual situation. 

Our investigation focuses on the impact of information dissemination on the information effect. Thus, we 

examine additional factors beyond those examined by Watanabe and Yabu (2021), who analysed the information 

effects of announcements of new cases and deaths. In the early stages of the pandemic, people struggled to make 

informed decisions based solely on announcements such as the number of cases. As a result, the dissemination 

of government information was critical. However, as people became better able to make decisions based on 

announcements of infection status, the importance of government information dissemination declined relative to 

its initial role. 

Tables 4 and 5 show that the information effect of information dissemination was not observed after the Delta 

variant outbreak. However, information effect made by daily announcements of the number of cases continued 

to affect the majority of categories. Additionally, the impact of daily announcements of the number of deaths on 

mobility decreased significantly in more categories after the Delta variant outbreak compared to the early phase. 

This could be evidence of a decline in the relative importance of information dissemination. 

 

 

V.  Conclusion 

 

In this article, we applied the latest findings in NLP research to precisely measure the information 

dissemination effect for each prefecture in Japan in the context of the COVID-19 pandemic. We then analysed 

 
 17)  Alfaro et al. (2024) examine altruism as a potential motivator for changes in human behaviour. Altruism refers to the 
concern that one's own infection may endanger those around them. 
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the dynamic relationship between the index of information dissemination constructed based on the above and 

mobility, and followed through with an econometric analysis of the importance of the information effect 

presented in Watanabe and Yabu’s (2020, 2021) study. 

First, let us consider the proposed index of information dissemination for each prefecture. Unlike Watanabe 

and Yabu (2020, 2021), we did not simply use the presence or absence of certain policies as a dummy variable 

to create a new index, but applied the latest research in NLP to textual data. This method has gained popularity, 

especially for nowcasting economic trends. We built this model based on findings in extant literature on NLP. 

The accuracy of the model built for index construction was evaluated using the macro F1 score, which measured 

at 0.92, the same as Alaparthi and Mishra (2021), who constructed a text classification model for IMDb review 

data. 

Second, econometric methods helped us study the dynamic relationship between the newly developed index 

representing information dissemination and mobility. We subsequently confirmed that the stay-at-home 

information dissemination done by local governors during the COVID-19 pandemic effectively suppressed 

people’s mobility. 

Our results are not unexpected. Watanabe and Yabu (2020, 2021) also impress upon the importance of the 

information effect through information dissemination. However, our approach is novel because it allowed us to 

precisely and quantitatively assess the impact of information dissemination on mobility based on existing data. 

We also confirmed that the information effect of announcing the number of new cases and the intervention 

effect of declaring a SOE suppressed mobility, but the significance of this effect varied by the mobility of the 

categories of places. Moreover, an increase in precipitation had a suppressing effect on the mobility of all 

categories of places. These findings reaffirm Watanabe and Yabu’s (2020, 2021) study through the use of our 

precise index representing information dissemination. 

Significant results were obtained for the intervention of the declaration of a SOE only for some categories of 

places. However, the local governor’s index significantly suppressed the mobility of all categories of places, 

further strengthening Watanabe and Yabu’s (2020, 2021) claim that appropriate information encouraged 

behavioural change rather than legally binding countermeasures against COVID-19. 

The local governor’s index we constructed had almost no linear relationship with other variables related to the 

information effect and the variables related to the intervention effect. This can be interpreted as confirming, to a 

certain extent, the unique effect of information dissemination. The confirmation of the information effect even 

after extracting the unique effects of information dissemination further strengthens prior findings. 

Third, we split the sample into an early and a later period when the Delta variant emerged in order to analyse 

changes in the information effect over time. A comparison of the one-week-ahead models revealed a significant 

effect of suppressing mobility even after splitting the sample in the early pandemic period. No significant effect 

was confirmed in any area after the Delta variant outbreak. After including periods that have not been analysed 

in many previous studies, the finding holds that the information effect changes over time. Again, we strengthen 

the findings in extant literature. 

Finally, we simultaneously analysed the changes over time of both the information effect caused by the 

announcement of the infection status and that caused by the dissemination of information. The weakening of the 

information effect caused by information dissemination over time is more significant than that caused by the 

announcement of the infection status. That is, both exploiting an information effect and knowing when and what 

kind of information to disseminate are equally important to maximize the overall effect. This finding has serious 

policy implications. 

Our study is unique in applying findings of NLP research to create an index of information dissemination, and 

then using this index as a proxy for the information effect. We followed through with an econometric analysis to 



 

18 
 

verify the information effect. 

Nevertheless, it is essential to note the limitations of our methodology. Regarding the first analysis, we used a 

small number of samples for model construction. Although BERT can help construct highly accurate models 

even with a small number of samples, and we were indeed able to construct highly accurate prediction models, 

using more samples would be beneficial for constructing a more refined model. 

The computer memory was also a limiting factor in model construction. We were unable to read text longer 

than 512 tokens. Following Sun et al. (2019), we compressed the input data for text data longer than a certain 

unit. If there were no such limitations, we could construct a model that is not dependent on the length of the text. 

Regarding the second and third analyses, although we considered two fixed effects—time and prefecture—the 

time fixed effect may still differ by prefecture, which we did not examine. 

Finally, we used impulse response analysis to analyse the impact of the local governor's index on mobility up 

to five weeks ahead. It may also be that information dissemination occurs in anticipation of the following week's 

mobility, so considering lead effects as well as lags would be interesting. Not all prefectures analysed are now 

governed by the same governor as when the study was undertaken. In such prefectures, we suggest including the 

effect of changes in information disseminators as an explanatory variable.  

We hope that future research in this field will develop further once our limitations are considered when 

developing new methodologies for analysis. 
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Appendixes 

 

A.  Parameter settings 

 

Table A.1 shows the values of the parameters used to construct the text classification model in Section II. 

 

Table A.1: Parameter settings 
Parameters Settings 

Transformer Hugging Face 
Batch size 32 

Token length 512 
Epochs 15 

Learning rate 0.00005 

 

 

B.  Examples of estimated values of the text classification model 

 

The model is applied to the actual statements of local governors announcing the issuance and lifting of a SOE. 

Examples of actual statements are as follows. 

 

Example 1: Statement by the Governor of Tokyo, April 23, 2021 (provisional translation) 

The government has just decided to declare a state of emergency under the Act on Special Measures against 

Novel Influenza for Tokyo, Osaka, Kyoto and Hyogo prefectures. The Tokyo Metropolitan Government has 

decided to implement emergency measures under the Act on Special Measures against Novel Influenza from 

Sunday, April 25 to Tuesday, May 11. In order to ensure that the people’s mobility in Tokyo is controlled, we 

would like to request all citizens of Tokyo to stay at home during the period of this declaration. 

 

Example 2: Statement by the Governor of Okinawa, May 15, 2020 (provisional translation) 

On May 14, the government decided to change its basic policy on measures against COVID-19 and to 

remove 39 prefectures, including Okinawa Prefecture, from the area where emergency measures should be 

implemented based on the Act on Special Measures against Novel Influenza. This means that the emergency 

measures in Okinawa Prefecture will also be lifted, and daily life will gradually return to normal. 

 

Example 1 is classified as ‘strict’ as it announces the implementation of a SOE in Tokyo, which requires 

individuals to stay indoors. In contrast, Example 2 is labelled as ‘lenient’ as it declares the lifting of the SOE in 

Okinawa. 

 

Table B.1: Prediction results of the text classification model 
 

𝑃ሺ𝑠𝑡𝑟𝑖𝑐𝑡ሻ 𝑃ሺ𝑛𝑒𝑢𝑡𝑟𝑎𝑙ሻ 𝑃ሺ𝑙𝑒𝑛𝑖𝑒𝑛𝑡ሻ 
Example 1 0.9955 0.0002 0.0043 
Example 2 0.0022 0.0015 0.9963 

 

Table B.1 shows that the announcement of the application of the SOE in Example 1 has the highest probability 

of being classified as 'strict', while the announcement of the lifting of the SOE in Example 2 has the highest 

probability of being classified as 'lenient', which is in line with expectations. It was confirmed that the model 

construction was intuitively reasonable.  
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C.  Panel unit root tests 

 

As outlined in section III, we use level data instead of differenced data, following the approach of Watanabe 

and Yabu (2020). Table C.1 presents the results of the panel unit root tests. We conducted three types of unit root 

tests18), each of which rejected the null hypothesis of non-stationarity. 

 

Table C.1: The panel unit root test results 
 Intercept & trend  Intercept 
 Levin-Lin-Chu Im-Pesaran-Shin Maddala-Wu  Levin-Lin-Chu Im-Pesaran-Shin Maddala-Wu 

m1 -17.42 -16.389 349.41  -14.787 -16.298 376.5 
retail and 
recreation (< 2.2e-16)*** (< 2.2e-16)*** (< 2.2e-16)***  (< 2.2e-16)*** (< 2.2e-16)*** (< 2.2e-16)*** 

m2 -14.969 -14.525 351.17  -9.0733 -10.366 230.79 
grocery and 
pharmacy (< 2.2e-16)*** (< 2.2e-16)*** (< 2.2e-16)***  (< 2.2e-16)*** (< 2.2e-16)*** (< 2.2e-16)*** 

m3 -25.004 -25.723 667.79  -18.523 -21.388 583.47 
parks 

 (< 2.2e-16)*** (< 2.2e-16)*** (< 2.2e-16)***  (< 2.2e-16)*** (< 2.2e-16)*** (< 2.2e-16)*** 

m4 -8.6732 -8.5914 157.39  -7.0808 -8.0056 147.91 
transit stations 

 (< 2.2e-16)*** (< 2.2e-16)*** (7.573e-16)***  (7.167e-13)*** (5.942e-16)*** (2.717e-14)*** 

m5 -41.19 -35.196 989.18  -35.334 -33.389 1056.4 
workplaces 

 (< 2.2e-16)*** (< 2.2e-16)*** (< 2.2e-16)***  (< 2.2e-16)*** (< 2.2e-16)*** (< 2.2e-16)*** 

m6 -21.356 -18.449 406.04  -18.71 -19.051 466.9 
residential 

 (< 2.2e-16)*** (< 2.2e-16)*** (< 2.2e-16)***  (< 2.2e-16)*** (< 2.2e-16)*** (< 2.2e-16)*** 

Note: Asterisks denote statistical significance: ∗p<0.1;∗∗p<0.05;∗∗∗p<0.01. 

 

  

 
 18)  Levin et al. (2002), Im et al. (2003), and Maddala and Wu (1999) 
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D.  Correlation analysis 

 

The local governor’s index we constructed had almost no linear relationship with other variables related to the 

information effect and the variables related to the intervention effect. The correlation coefficients between the 

variables have an absolute value of less than 0.2 in all cases. As explained in section II, the local governor's index 

is a numerical representation of the dissemination of information on various policies, including intervention 

measures. It is expected to reflect the intervention effect to an extent, as well as the information effect to some 

degree, given that intervention measures are based on infection status information. However, the correlation 

analysis results indicate that there is only a minimal linear relationship between the local governor's index and 

other variables associated with information and intervention effects. Scatter plots of the local governor's index 

and the four variables are shown in Fig. D.1. 

 

Fig. D.1: The scatter plots of the local governor’s index and the other variables 

 
Note: Straight lines represent regression lines. 

 

 

E.  Robustness checks 

 

This section evaluates the robustness of the estimation results of the one-week ahead model from two 

perspectives. First, the handling of NAs in the local governor's index is assessed. The second perspective is the 

robustness of the order of lags. 

 

Robustness on handling of NAs 

In section III, the local governor's index is treated as NAs if there was no information dissemination in that 

period to distinguish between no information dissemination and information dissemination equivalent to a value 

of 0. However, there is a possibility of introducing bias in the estimation results if the data for weeks with missing 

governor indices are not included in the analysis. Therefore, in this section, we reanalyse the data by filling in 

the NAs of the local governor's index with 0 and confirm the robustness of the analysis in section III. 
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Table E.1: Estimation results for one-week ahead model with NAs imputed with 0 
 Google COVID-19 Community Mobility Reports 
 (1) 

retail_and_recreation 
(2) 

grocery_and_pharmacy 
(3) 

parks 
(4) 

transit_stations 
(5) 

workplaces 
(6) 

residential 
lg_info (filled) -1.153*** -0.674** -2.288*** -0.687 -0.335*** 0.302*** 
 (0.26) (0.327) (0.693) (0.441) (0.12) (0.083) 
log(cases)_lag1 -6.278 3.797 -2.529 -4.717 4.267 -1.386** 
 (4.626) (2.413) (10.159) (12.148) (3.458) (0.588) 
log(deaths)_lag1 -0.862*** 0.055 -0.094 -0.854*** -0.307*** 0.261*** 
 (0.129) (0.056) (0.215) (0.161) (0.103) (0.048) 
vaccination_lag1 0.032 -0.002 0.174 -0.103 -0.093 0.034 
 (0.095) (0.059) (0.208) (0.196) (0.061) (0.023) 
SOE -0.188*** 0.033*** 0.045 -0.086*** -0.132*** 0.081*** 
 (0.05) (0.013) (0.06) (0.031) (0.021) (0.015) 
QSOE -0.012 0.015 0.109* -0.017 -0.016 0.019*** 
 (0.038) (0.02) (0.065) (0.047) (0.015) (0.007) 
hot_ice_days -0.01 0.009 -0.388 -0.176 -0.049 0.007 
 (0.103) (0.057) (0.383) (0.128) (0.034) (0.027) 
precipitation -0.011*** -0.01*** -0.051*** -0.016*** -0.004* 0.004*** 
 (0.002) (0.002) (0.009) (0.003) (0.002) (0.001) 
mobility_lag1 0.615*** 0.752*** 0.718*** 0.577*** 0.501*** 0.569*** 
 (0.036) (0.047) (0.042) (0.041) (0.076) (0.057) 
Observations 2322 2322 2322 2322 2322 2322 
R2 0.563 0.601 0.608 0.410 0.372 0.605 

Note: Heteroscedasticity-consistent robust standard errors in parentheses. Asterisks denote statistical significance:  
∗p<0.1;∗∗p<0.05;∗∗∗p<0.01. 

 

Figure E.1: IRFs of the rate of change in the level mobility to an increase in the local governor’s index 

 
Note: The solid lines correspond to the point estimate and the shaded areas correspond to the 90% confidence interval. 

 

The results of the one-week-ahead model indicated that the local governor's index, with NAs filled in, 

significantly suppressed the mobility of categories other than the transit station category. The results for the other 

variables are similar to those in section III. The difference between the estimation results in section III and Table 

E.1 is that the number of deaths was found to significantly suppress the mobility of four categories of places 

when NAs were filled: retail and recreation, transit transportation, workplaces, and residential. The impulse 

response analysis in Figure E.1 also confirmed the effect of suppressing mobility, even when using the local 

governor's index with imputed NAs, similar to the results in section III. 
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Robustness on lag order 

In Section III, the lag order of the two variables related to infection status (number of new cases and number 

of deaths) considered as part of the information effect was treated as 𝑃 ൌ 1. On the other hand, there is little 

theoretical basis for how many lag periods should be included for these variables related to infection status, and 

it is necessary to make an empirical judgement. Therefore, we reanalyse the case in which the maximum lag 

order is 𝑃 ൌ 2, 3. We assume that the period for which the number of new cases and deaths can be recognized 

and used as a reference for behavioural change is at most three weeks, and we check the robustness of the analysis 

in Section III. Note that the lag order of the vaccination rate is fixed at 𝑃 ൌ 1 because the variable is cumulative 

and likely to be autocorrelated. 

 

Table E.2: Estimation results for one-week ahead model (𝑃 ൌ 2) 
 Google COVID-19 Community Mobility Reports 
 (1) 

retail_and_recreation 
(2) 

grocery_and_pharmacy 
(3) 

parks 
(4) 

transit_stations 
(5) 

workplaces 
(6) 

residential 
lg_info -1.047*** -0.633** -1.969*** -0.872** -0.490*** 0.346*** 
 (0.228) (0.298) (0.641) (0.441) (0.188) (0.085) 
log(cases)_lag1 -1.400*** -0.206 -0.618 -1.415*** -0.094 0.260*** 
 (0.272) (0.153) (0.454) (0.238) (0.173) (0.099) 
log(cases)_lag2 0.227 0.247 0.175 0.070 -0.459*** 0.098 
 (0.265) (0.153) (0.508) (0.274) (0.172) (0.06) 
log(deaths)_lag1 0.063 0.078 0.770* 0.072 0.003 -0.037 
 (0.14) (0.097) (0.449) (0.275) (0.096) (0.029) 
log(deaths)_lag2 -0.155 -0.222 -1.049* -0.181 -0.021 0.054 
 (0.124) (0.146) (0.582) (0.139) (0.115) (0.046) 
vaccination_lag1 -12.137** 3.852 -6.771 -14.731 6.783** -1.986*** 
 (5.827) (2.868) (12.285) (11.653) (3.169) (0.434) 
SOE -0.207*** 0.018 0.051 -0.077*** -0.123*** 0.081*** 
 (0.056) (0.016) (0.103) (0.029) (0.032) (0.019) 
QSOE -0.052 -0.012 0.007 -0.084 -0.002 0.023** 
 (0.036) (0.023) (0.068) (0.051) (0.023) (0.011) 
hot_ice_days 0.016 0.035 -0.515 -0.105 -0.059* 0.005 
 (0.118) (0.053) (0.475) (0.124) (0.035) (0.028) 
precipitation -0.012*** -0.012*** -0.062*** -0.017*** -0.005** 0.005*** 
 (0.003) (0.002) (0.012) (0.004) (0.002) (0.001) 
mobility_lag1 0.554*** 0.720*** 0.677*** 0.565*** 0.478*** 0.558*** 
 (0.054) (0.05) (0.029) (0.042) (0.083) (0.072) 
Observations 1198 1198 1198 1198 1198 1198 
R2 0.617 0.605 0.643 0.502 0.374 0.631 

Note: Heteroscedasticity-consistent robust standard errors in parentheses. Asterisks denote statistical significance:  
∗p<0.1;∗∗p<0.05;∗∗∗p<0.01. 

 

Table E.3: Estimation results for one-week ahead model (𝑃 ൌ 3) 
 Google COVID-19 Community Mobility Reports 
 (1) 

retail_and_recreation 
(2) 

grocery_and_pharmacy 
(3) 

parks 
(4) 

transit_stations 
(5) 

workplaces 
(6) 

residential 
lg_info -1.011*** -0.616** -1.850*** -0.816* -0.467** 0.332*** 
 (0.211) (0.295) (0.606) (0.439) (0.182) (0.078) 
log(cases)_lag1 -1.337*** -0.164 -0.632 -1.444*** -0.172 0.291*** 
 (0.257) (0.165) (0.441) (0.239) (0.139) (0.081) 
log(cases)_lag2 -0.129 0.088 -0.475 -0.308 -0.264 0.106 
 (0.227) (0.239) (0.615) (0.377) (0.169) (0.076) 
log(cases)_lag3 0.395** 0.166 0.844* 0.499* -0.163 -0.039 
 (0.198) (0.13) (0.492) (0.266) (0.21) (0.073) 
log(deaths)_lag1 -0.011 0.064 0.559 0.012 -0.015 -0.026 
 (0.142) (0.104) (0.412) (0.275) (0.099) (0.025) 
log(deaths)_lag2 -0.266** -0.229** -1.472** -0.287 -0.09 0.081** 
 (0.111) (0.107) (0.65) (0.177) (0.121) (0.039) 
log(deaths)_lag3 0.145 -0.005 0.739* 0.132 0.174** -0.051 
 (0.139) (0.134) (0.428) (0.168) (0.085) (0.032) 
vaccination_lag1 -11.973** 3.847 -5.797 -14.753 6.089** -1.801*** 
 (5.821) (2.832) (11.784) (11.381) (2.986) (0.453) 
SOE -0.216*** 0.017 0.047 -0.074** -0.121*** 0.080*** 
 (0.058) (0.016) (0.104) (0.029) (0.03) (0.02) 
QSOE -0.053 -0.012 0.013 -0.081 0.000 0.022* 
 (0.036) (0.023) (0.067) (0.052) (0.024) (0.011) 
hot_ice_days 0.018 0.036 -0.504 -0.097 -0.058* 0.004 
 (0.122) (0.053) (0.473) (0.123) (0.033) (0.027) 
precipitation -0.012*** -0.013*** -0.062*** -0.017*** -0.006* 0.005*** 
 (0.003) (0.002) (0.012) (0.004) (0.003) (0.001) 
mobility_lag1 0.547*** 0.719*** 0.678*** 0.564*** 0.477*** 0.557*** 
 (0.058) (0.05) (0.031) (0.042) (0.092) (0.074) 
Observations 1190 1190 1190 1190 1190 1190 
R2 0.619 0.607 0.643 0.505 0.380 0.638 

Note: Heteroscedasticity-consistent robust standard errors in parentheses. Asterisks denote statistical significance:  
∗p<0.1;∗∗p<0.05;∗∗∗p<0.01. 

 



 

27 
 

Figure E.2: IRFs of the rate of change in the level mobility to an increase in the local governor’s index (𝑃 ൌ 2) 

 
Note: The solid lines correspond to the point estimate and the shaded areas correspond to the 90% confidence interval. 

 

Figure E.3: IRFs of the rate of change in the level mobility to an increase in the local governor’s index (𝑃 ൌ 3) 

 
Note: The solid lines correspond to the point estimate and the shaded areas correspond to the 90% confidence interval. 

 

The results of the one-week-ahead model, as presented in Tables E.2 and E.3, are consistent with those in 

section III, even when the lag order is set to 𝑃 ൌ 2, 3. In both cases, the local governor's index had a significant 

effect on mobility suppression. The results for the other variables are similar to those in section III. 

The coefficient of the number of new cases with a lag order of P=3, as shown in Table E.3, was contrary to 

the results in section III in three areas: retail and recreation, parks, and transit stations. The analysis indicated 
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that an increase in the number of new cases with a lag order of 𝑃 ൌ 1  significantly suppressed mobility. 

However, an increase in the number of new cases three weeks ago may have created the impression that the 

number of new cases was relatively low compared to three weeks ago, even if the number of new cases in the 

subsequent two weeks was high. Therefore, it is possible that the increase in the number of new cases three weeks 

prior appears to increase mobility.  

The impulse response analysis shown in Figures E.2 and E.3 confirms the impact of mobility suppression, 

even when the maximum lag order is 𝑃 ൌ 2,3, which is consistent with the findings in section III. 

 

 

F.  Robustness on the analysis of the time-varying effects of information dissemination 

 

As in the robustness checks conducted for the benchmark model in section III, we examine the robustness of 

the analysis of time-varying effects of information dissemination in section IV from two perspectives. 

 

Robustness checks on handling of NAs 

Examining the estimation results of the one-week-ahead models, it was found that in the model for the early 

pandemic period, the local governor's index, with NAs filled in, had a significant effect on suppressing 

mobility in almost all categories of places. However, in the period after the Delta-variant outbreak, no 

significant effects were observed. The main results for the other variables are similar to the estimation results in 

section IV. In addition, the impulse response analysis presented in Figure F.1 adheres to a conventional 

structure and suggests that mobility was suppressed more in the early stages of the pandemic. In summary, the 

primary conclusions drawn from these analyses were nearly identical to those outlined in section IV. 

 

Table F.1: Estimation results for one-week ahead model with NAs imputed with 0 in the early pandemic period 
 Google COVID-19 Community Mobility Reports 
 (1) 

retail_and_recreation 
(2) 

grocery_and_pharmacy 
(3) 

parks 
(4) 

transit_stations 
(5) 

workplaces 
(6) 

residential 
lg_info (filled) -1.571*** -1.08*** -3.52*** -0.921 -0.788*** 0.435*** 
 (0.433) (0.346) (0.794) (0.702) (0.288) (0.166) 
log(cases)_lag1 -0.949*** -0.245*** -0.992*** -0.987*** -0.323*** 0.264*** 
 (0.131) (0.091) (0.131) (0.164) (0.082) (0.044) 
log(deaths)_lag1 0.153 -0.051 0.455* -0.172 -0.039 -0.019 
 (0.152) (0.1) (0.236) (0.235) (0.14) (0.045) 
vaccination_lag1 -0.636 -18.59 -6.499 -72.988*** -27.731 7.816* 
 (14.975) (15.667) (45.242) (18.817) (17.896) (4.236) 
SOE -0.194*** 0.037 -0.053 -0.133*** -0.157*** 0.088*** 
 (0.037) (0.024) (0.115) (0.037) (0.021) (0.014) 
QSOE 0.047 0.111*** 0.153 0.028 0 0.021* 
 (0.033) (0.029) (0.098) (0.062) (0.03) (0.011) 
hot_ice_days 0.024 -0.055 -0.604 -0.039 -0.032 -0.001 
 (0.11) (0.125) (0.593) (0.129) (0.046) (0.04) 
precipitation -0.009*** -0.01*** -0.054*** -0.013*** -0.004** 0.004*** 
 (0.002) (0.002) (0.013) (0.002) (0.002) (0.001) 
mobility_lag1 0.629*** 0.486*** 0.631*** 0.596*** 0.525*** 0.584*** 
 (0.035) (0.069) (0.045) (0.044) (0.056) (0.046) 
Observations 1116 1116 1116 1116 1116 1116 
R2 0.616 0.387 0.535 0.495 0.431 0.609 

Note: Heteroscedasticity-consistent robust standard errors in parentheses. Asterisks denote statistical significance:  
∗p<0.1;∗∗p<0.05;∗∗∗p<0.01. 
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Table F.2: Estimation results for one-week ahead model with NAs imputed with 0 in the period after the Delta 

variant outbreak 
 Google COVID-19 Community Mobility Reports 
 (1) 

retail_and_recreation 
(2) 

grocery_and_pharmacy 
(3) 

parks 
(4) 

transit_stations 
(5) 

workplaces 
(6) 

residential 
lg_info (filled) -0.554 0.018 -0.83 0.021 0.236 0.138 
 (0.341) (0.401) (0.946) (1.011) (0.356) (0.146) 
log(cases)_lag1 -0.615*** 0.126* 0.496 -0.644*** -0.238*** 0.231*** 
 (0.114) (0.068) (0.339) (0.19) (0.079) (0.05) 
log(deaths)_lag1 -0.097 -0.032 -0.241 -0.009 -0.152*** 0.091*** 
 (0.139) (0.108) (0.387) (0.232) (0.057) (0.021) 
vaccination_lag1 3.757 2.552 -1.896 13.405 9.602*** -2.911*** 
 (7.335) (5.247) (14.86) (8.83) (2.921) (1.018) 
SOE -0.304** 0.07 0.083 -0.132 -0.08* 0.086** 
 (0.136) (0.055) (0.172) (0.167) (0.042) (0.034) 
QSOE -0.132** -0.011 0.033 -0.102 -0.058 0.028 
 (0.058) (0.034) (0.123) (0.093) (0.038) (0.019) 
hot_ice_days -0.107 0.008 -0.446* -0.268 -0.091 0.026 
 (0.15) (0.054) (0.268) (0.187) (0.058) (0.025) 
precipitation -0.013*** -0.01*** -0.051*** -0.019*** -0.005 0.005*** 
 (0.003) (0.002) (0.008) (0.005) (0.003) (0.001) 
mobility_lag1 0.444*** 0.73*** 0.727*** 0.477*** 0.234*** 0.458*** 
 (0.049) (0.054) (0.063) (0.047) (0.062) (0.08) 
Observations 1188 1188 1188 1188 1188 1188 
R2 0.355 0.569 0.621 0.282 0.129 0.490 

Note: Heteroscedasticity-consistent robust standard errors in parentheses. Asterisks denote statistical significance:  
∗p<0.1;∗∗p<0.05;∗∗∗p<0.01. 

 

Figure F.1: IRFs of the rate of change in the level mobility to an increase in the local governor’s index with 

NAs imputed with 0 

 
Note: The solid lines correspond to the point estimate and the shaded areas correspond to the 90% confidence interval. 
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Robustness on lag order 

Examining the estimation results of the one-week-ahead models with maximum lag order 𝑃 ൌ 2,3, a 

significant effect of the local governor's index in suppressing mobility was confirmed in the model for the early 

pandemic period in all categories of places. However, no significant effect was observed in the period after the 

Delta-variant outbreak. The main results for the other variables are similar to the estimation results in section 

IV. Furthermore, the impulse response analysis depicted in Figures E.2 and E.3 indicated that mobility was 

significantly suppressed during the early pandemic period. In summary, the primary findings of these analyses 

are nearly identical to those presented in section IV. 

 

Table F.3: Estimation results for one-week ahead model ሺP ൌ 2ሻ in the early pandemic period 
 Google COVID-19 Community Mobility Reports 
 (1) 

retail_and_recreation 
(2) 

grocery_and_pharmacy 
(3) 

parks 
(4) 

transit_stations 
(5) 

workplaces 
(6) 

residential 
lg_info -1.499*** -1.041*** -3.201*** -1.619** -1.224** 0.57*** 
 (0.443) (0.289) (0.724) (0.786) (0.49) (0.201) 
log(cases)_lag1 -1.328*** -0.396** -0.887 -1.353*** -0.22 0.271*** 
 (0.314) (0.194) (0.79) (0.199) (0.14) (0.102) 
log(cases)_lag2 0.202 0.075 -0.379 0.237 -0.274* 0.05 
 (0.279) (0.182) (0.901) (0.356) (0.156) (0.062) 
log(deaths)_lag1 0.124 0.112 1.359** 0.261 -0.036 -0.086 
 (0.204) (0.147) (0.637) (0.253) (0.152) (0.059) 
log(deaths)_lag2 -0.055 -0.365** -1.138 -0.57*** 0.019 0.024 
 (0.172) (0.147) (0.822) (0.184) (0.221) (0.081) 
vaccination_lag1 -29.845 -15.917 -80.376 -74.112** -45.961 23.426** 
 (27.564) (22.357) (118.228) (36.748) (29.543) (9.925) 
SOE -0.2*** 0.042 0.023 -0.081 -0.167*** 0.09*** 
 (0.044) (0.038) (0.14) (0.071) (0.045) (0.021) 
QSOE 0.008 0.126*** 0.101 0.076 0.042 0.019 
 (0.037) (0.026) (0.134) (0.071) (0.042) (0.016) 
hot_ice_days -0.035 -0.12 -1.09 -0.055 -0.071 0.013 
 (0.134) (0.146) (0.86) (0.177) (0.054) (0.043) 
precipitation -0.01*** -0.011*** -0.061*** -0.011*** -0.006*** 0.005*** 
 (0.003) (0.002) (0.016) (0.003) (0.002) (0.001) 
mobility_lag1 0.581*** 0.457*** 0.591*** 0.622*** 0.527*** 0.603*** 
 (0.047) (0.08) (0.035) (0.052) (0.069) (0.058) 
Observations 608 608 608 608 608 608 
R2 0.667 0.431 0.553 0.602 0.456 0.642 

Note: Heteroscedasticity-consistent robust standard errors in parentheses. Asterisks denote statistical significance:  
∗p<0.1;∗∗p<0.05;∗∗∗p<0.01. 

 

Table F.4: Estimation results for one-week ahead model ሺP ൌ 2ሻin the period after the Delta variant outbreak 
 Google COVID-19 Community Mobility Reports 
 (1) 

retail_and_recreation 
(2) 

grocery_and_pharmacy 
(3) 

parks 
(4) 

transit_stations 
(5) 

workplaces 
(6) 

residential 
lg_info -0.253 0.167 -0.079 0.644 0.443 0.048 
 (0.274) (0.375) (1.005) (1.234) (0.363) (0.149) 
log(cases)_lag1 -1.22*** -0.156 -0.477 -1.493*** 0.451 0.133 
 (0.29) (0.212) (0.73) (0.576) (0.325) (0.135) 
log(cases)_lag2 0.175 0.258 0.438 -0.072 -0.937*** 0.229 
 (0.3) (0.281) (0.548) (0.41) (0.311) (0.141) 
log(deaths)_lag1 -0.045 -0.053 0.209 -0.096 -0.1 0.047 
 (0.147) (0.136) (0.376) (0.36) (0.065) (0.032) 
log(deaths)_lag2 -0.353** -0.068 -1.119** 0.136 0.038 0.083** 
 (0.175) (0.202) (0.523) (0.29) (0.096) (0.041) 
vaccination_lag1 -0.618 1.056 4.197 6.243 10.305** -3.174 
 (9.769) (8.004) (15.433) (12.425) (4.151) (2.206) 
SOE -0.399** 0.037 -0.061 -0.209 -0.022 0.092** 
 (0.165) (0.071) (0.162) (0.219) (0.049) (0.045) 
QSOE -0.173*** -0.051 -0.134 -0.206 -0.058 0.038 
 (0.06) (0.053) (0.119) (0.13) (0.061) (0.028) 
hot_ice_days -0.029 0.108*** -0.126 -0.119 -0.128* 0.027 
 (0.157) (0.033) (0.213) (0.173) (0.071) (0.025) 
precipitation -0.015*** -0.014*** -0.064*** -0.024*** -0.008* 0.006*** 
 (0.004) (0.002) (0.012) (0.007) (0.004) (0.001) 
mobility_lag1 0.4*** 0.703*** 0.711*** 0.452*** 0.216*** 0.411*** 
 (0.072) (0.058) (0.05) (0.048) (0.076) (0.098) 
Observations 574 574 574 574 574 574 
R2 0.467 0.571 0.693 0.382 0.164 0.533 

Note: Heteroscedasticity-consistent robust standard errors in parentheses. Asterisks denote statistical significance:  
∗p<0.1;∗∗p<0.05;∗∗∗p<0.01. 
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Fig. F.2: IRFs of the rate of change in the level mobility to an increase in the local governor’s index (𝑃 ൌ 2) 

 
Note: The solid lines correspond to the point estimate and the shaded areas correspond to the 90% confidence interval. 

 

Table F.5: Estimation results for one-week ahead model ሺP ൌ 3ሻ in the early pandemic period 
 Google COVID-19 Community Mobility Reports 
 (1) 

retail_and_recreation 
(2) 

grocery_and_pharmacy 
(3) 

parks 
(4) 

transit_stations 
(5) 

workplaces 
(6) 

residential 
lg_info -1.505*** -1.04*** -3.07*** -1.587** -1.224** 0.556*** 
 (0.425) (0.291) (0.628) (0.74) (0.504) (0.192) 
log(cases)_lag1 -1.265*** -0.377* -1.032 -1.409*** -0.308*** 0.32*** 
 (0.313) (0.199) (0.864) (0.247) (0.113) (0.086) 
log(cases)_lag2 -0.1 0.041 -0.962 0.141 0.023 0.027 
 (0.281) (0.256) (1.13) (0.483) (0.197) (0.094) 
log(cases)_lag3 0.365 0.033 0.943 0.279 -0.235 -0.034 
 (0.288) (0.165) (0.852) (0.349) (0.265) (0.076) 
log(deaths)_lag1 -0.037 0.115 1.126** 0.054 -0.092 -0.057 
 (0.222) (0.161) (0.568) (0.235) (0.176) (0.061) 
log(deaths)_lag2 -0.273* -0.339*** -1.625* -0.987*** -0.124 0.096 
 (0.149) (0.115) (0.91) (0.281) (0.213) (0.068) 
log(deaths)_lag3 0.345 -0.045 0.802 0.817** 0.405*** -0.151*** 
 (0.242) (0.14) (0.674) (0.349) (0.156) (0.038) 
vaccination_lag1 -31.717 -18.242 -79.527 -69.861* -47.251 23.877** 
 (29.569) (23.203) (119.516) (36.337) (33.241) (10.987) 
SOE -0.211*** 0.041 0.023 -0.08 -0.166*** 0.089*** 
 (0.046) (0.039) (0.139) (0.07) (0.04) (0.02) 
QSOE 0.001 0.125*** 0.09 0.069 0.038 0.021 
 (0.034) (0.026) (0.129) (0.072) (0.042) (0.015) 
hot_ice_days -0.029 -0.116 -1.06 -0.053 -0.077 0.011 
 (0.142) (0.144) (0.855) (0.178) (0.05) (0.042) 
precipitation -0.011*** -0.012*** -0.06*** -0.012*** -0.008*** 0.006*** 
 (0.003) (0.002) (0.017) (0.003) (0.003) (0.001) 
mobility_lag1 0.567*** 0.454*** 0.593*** 0.628*** 0.537*** 0.606*** 
 (0.05) (0.079) (0.036) (0.056) (0.078) (0.056) 
Observations 600 600 600 600 600 600 
R2 0.674 0.432 0.554 0.612 0.479 0.658 

Note: Heteroscedasticity-consistent robust standard errors in parentheses. Asterisks denote statistical significance:  
∗p<0.1;∗∗p<0.05;∗∗∗p<0.01. 
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Table F.6: Estimation results for one-week ahead model ሺP ൌ 3ሻ in the period after the Delta variant outbreak 
 Google COVID-19 Community Mobility Reports 
 (1) 

retail_and_recreation 
(2) 

grocery_and_pharmacy 
(3) 

parks 
(4) 

transit_stations 
(5) 

workplaces 
(6) 

residential 
lg_info -0.186 0.153 0.132 1.092 0.448 -0.046 
 (0.281) (0.356) (1.173) (1.547) (0.396) (0.17) 
log(cases)_lag1 -1.217*** -0.154 -0.491 -1.38*** 0.386 0.159 
 (0.28) (0.207) (0.736) (0.506) (0.303) (0.131) 
log(cases)_lag2 -0.338 -0.075 0.174 -0.928* -0.662** 0.26** 
 (0.339) (0.32) (0.89) (0.558) (0.278) (0.131) 
log(cases)_lag3 0.561** 0.349* 0.279 0.997** -0.303* -0.045 
 (0.257) (0.199) (0.681) (0.429) (0.177) (0.081) 
log(deaths)_lag1 0.01 0.031 0.357 0.143 -0.087 0.008 
 (0.14) (0.138) (0.377) (0.414) (0.066) (0.046) 
log(deaths)_lag2 -0.302* 0.015 -1.256** 0.535 0.018 0.043 
 (0.164) (0.168) (0.635) (0.364) (0.104) (0.042) 
log(deaths)_lag3 0.002 -0.114 0.298 -0.687** 0.074 0.047 
 (0.177) (0.171) (0.54) (0.329) (0.09) (0.04) 
vaccination_lag1 2.849 5.628 10.355 7.941 11.693** -4.145* 
 (8.561) (7.268) (13.674) (11.01) (4.687) (2.187) 
SOE -0.324** 0.08 0.077 -0.091 0.003 0.059** 
 (0.143) (0.054) (0.141) (0.164) (0.051) (0.03) 
QSOE -0.173*** -0.06 -0.116 -0.16 -0.058 0.029 
 (0.059) (0.053) (0.118) (0.127) (0.063) (0.027) 
hot_ice_days -0.094 0.044 -0.266 -0.211 -0.147** 0.048** 
 (0.133) (0.031) (0.229) (0.154) (0.067) (0.019) 
precipitation -0.014*** -0.013*** -0.062*** -0.023*** -0.007** 0.006*** 
 (0.004) (0.002) (0.012) (0.006) (0.004) (0.001) 
mobility_lag1 0.405*** 0.693*** 0.706*** 0.457*** 0.206*** 0.427*** 
 (0.073) (0.055) (0.049) (0.05) (0.076) (0.087) 
Observations 560 560 560 560 560 560 
R2 0.461 0.573 0.693 0.386 0.164 0.532 

Note: Heteroscedasticity-consistent robust standard errors in parentheses. Asterisks denote statistical significance:  
∗p<0.1;∗∗p<0.05;∗∗∗p<0.01. 

 

Figure F.3: IRFs of the rate of change in the level mobility to an increase in the local governor’s index (𝑃 ൌ 3) 

 
Note: The solid lines correspond to the point estimate and the shaded areas correspond to the 90% confidence interval. 
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G.  Source of text data for each prefecture used to calculate the local governor's index19) 

 

Aichi Government．“知事記者会見トップページ [Governor's Press Conference]”. Retrieved from: 

‘https://www.pref.aichi.jp/site/chiji-kaiken/’. 

Chiba Government．“知事定例記者会見 [Governor's Regular Press Conference]”. Retrieved from: 

‘https://www.pref.chiba.lg.jp/cate/kt/goannnai/chijishitsu/teirei/index.html’. 

Fukuoka Government．“知事記者会見録 [Governor's Press Conference Transcript]”. Retrieved from: 

‘https://www.pref.fukuoka.lg.jp/site/chiji-kisha/kaiken-new.html’. 

Gifu Government．“知事記者会見 [Governor's Press Conference]”. Retrieved from: 

‘https://www.pref.gifu.lg.jp/site/kaiken/’. 

Hiroshima Government．“知事記者会見一覧 [List of Governor's Press Conferences]”. Retrieved from: 

‘https://www.pref.hiroshima.lg.jp/site/kishakaiken/index-2.html’. 

Hokkaido Government．“知事記者会見 [Governor's Press Conference]”. Retrieved from: 

‘https://www.pref.hokkaido.lg.jp/category/d006/c026/s084/’. 

Ibaraki Government．“知事記者会見録 [Governor's Press Conference Transcript]”. Retrieved from: 

‘https://www.pref.ibaraki.jp/shiru/annai/chiji/kishakaiken/_index.html’. 

Kanagawa Government．“記者会見 [Press Conference]”. Retrieved from: 

‘https://www.pref.kanagawa.jp/chiji/press-conference/’. 

Kumamoto Government．“記者会見 [Press Conference]”. Retrieved from: 

‘https://www.pref.kumamoto.jp/site/chiji/list57.html’. 

Kyoto Government．“知事記者会見 [Governor's Press Conference]”. Retrieved from: 

‘https://www.pref.kyoto.jp/koho/kaiken/’. 

Mie Government．“知事定例記者会見 [Governor's Regular Press Conference]”. Retrieved from: 

‘https://www.pref.mie.lg.jp/common/09/ci400000468.htm’. 

Miyagi Government．“知事定例記者会見 [Governor's Regular Press Conference]”. Retrieved from: 

‘https://www.pref.miyagi.jp/site/chiji-kaiken/’. 

Okayama Government．“知事記者会見 [Governor's Press Conference]”. Retrieved from: 

‘https://www.pref.okayama.jp/site/chijikaiken/’. 

Okinawa Government．“新型コロナウイルス感染症にかかる知事コメント [Governor's comments on 

COVID-19]”. Retrieved from: 

‘https://www.pref.okinawa.jp/site/chijiko/kohokoryu/koho/2020_new_korona_virs.html’. 

Osaka Government．“知事の記者会見 [Governor's Press Conference]”. Retrieved from: 

‘https://www.pref.osaka.lg.jp/koho/kaiken2/’. 

Saitama Government．“定例記者会見 [Regular Press Conference]”. Retrieved from: 

‘https://www.pref.saitama.lg.jp/kense/koho/kaiken/index.html’. 

Shizuoka Government．“記者会見 [Press Conference]”. Retrieved from: 

‘https://www.pref.shizuoka.jp/kensei/introduction/governor/kaiken/index.html’. 

Tokyo Government．“知事の記者会見 [Governor's Press Conference]”. Retrieved from: 

‘https://www.metro.tokyo.lg.jp/tosei/governor/governor/kishakaiken/index.html’. 

 

 
 19)  All sources are in Japanese (Accessed: January 31, 2024). 


